3.2.1 Shodnost trojúhelníků I

Rozměr: px
Začít zobrazení ze stránky:

Download "3.2.1 Shodnost trojúhelníků I"

Transkript

1 3.2.1 hodnost trojúhelníků I Předpokldy: 3108 v útvry jsou shodné, pokud je možné je přemístěním ztotožnit. v prxi těžko proveditelné hledáme jinou možnost ověření shodnosti v útvry jsou shodné, pokud se všechny odpovídjící si vzdálenosti shodují. prolémy: musíme dát pozor, který od ptří ke kterému musíme zkontrolovt nekonečně mnoho dvojic vzdáleností vznikjí prvidl pro konkrétní útvry hodnost trojúhelníků píšeme KL (od odpovídá odu K, od odpovídá odu L, od odpovídá odu ) Věty o shodnosti trojúhelníků Vět sss: v trojúhelníky, které se shodují ve všech třech strnách, jsou shodné. Vět sus: v trojúhelníky, které se shodují ve dvou strnách úhlu jimi sevřeném, jsou shodné. Vět usu: v trojúhelníky, které se shodují v jedné strně úhlech přilehlých k této strně jsou shodné. věty o shodnosti jsou zároveň i věty o jednoznčném sestrojení trojúhelník pokud se dv trojúhelníky djí sestrojit ze stejných hodnot postup jejich sestrojování je jednoznčný, musí ýt shodné ke kždému jednoznčnému postupu odpovídá jedn vět o shodnosti Jk se pomocí předchozích vět dokzuje shodnost dvou trojúhelníků? příkld úhlopříčk dělí odélník n dv stejné trojúhelníky. Proč? u Úhlopříčk rozděluje odélník n dv trojúhelníky oznčíme si je modře zeleně. Protilehlé strny odélník jsou stejné o trojúhelníky mjí jednu strnu jednu strnu (oznčené stejnou rvou), třetí strnu trojúhelníky sdílejí (úhlopříčk u) o trojúhelníky mjí strny,, u shodují se ve všech třech strnách jsou shodné podle věty sss. Př. 1: okž pomocí kždé z předchozích vět, že úhlopříčk dělí rovnoěžník n dv stejné trojúhelníky. Při důkzech využij vlstnosti rovnoěžník: protější strny jsou shodné rovnoěžné, protější vnitřní úhly jsou shodné. ) vět sss 1

2 u protější strny rovnoěžník jsou shodné, o trojúhelníky mjí úhlopříčku jko společnou strnu o trojúhelníky mjí strny,, u shodují se ve všech třech strnách jsou shodné podle věty sss ) vět sus protější strny rovnoěžník jsou shodné, protější úhly v rovnoěžníku jsou shodné o trojúhelníky mjí strny, úhel α shodují se ve dvou strnách úhlu, který tyto strny svírjí jsou shodné podle věty sus c) vět usu protější strny rovnoěžník jsou shodné, protější úhly v rovnoěžníku jsou shodné, úhly, které svírá úhlopříčk s vodorovnými strnmi jsou shodné (rovnoěžky proťté příčkou) o trojúhelníky mjí shodnou strnu shodné úhly α, β, které k této strně přiléhjí shodují se ve strně přilehlých úhlech jsou shodné podle věty usu Pedgogická poznámk: Předchozí příkld je smozřejmě velmi jednoduchý, le jde o záměr. velkou prvděpodoností jde o první příkld tohoto typu, se kterým se studenti setkjí. Př. 2: od je středem zákldny rovnormenného trojúhelníku. odem jsou vedeny kolmice k rmenům. Pty těchto kolmici oznčíme K, L. okž, že trojúhelník K je shodný s trojúhelníkem L. kreslíme si náčrtek situce: 2

3 K L Oznčíme si trojúhelníky zčneme hledt shodné strny neo shodné úhly: K L k k O trojúhelníky se shodují: v zákldné k (od je středem strny ) v prvém úhlu při vrcholech K L (jde o pty kolmic n rmen trojúhelníku ) v úhlech α při vrcholech, (trojúhelník je rovnormenný se zákldnou ) v úhlech při vrcholu (zytek do 180 ) o trojúhelníky mjí shodnou strnu k shodné úhly α, β, které k této strně přiléhjí shodují se ve strně přilehlých úhlech jsou shodné podle věty usu Pedgogická poznámk: Předchozí příkld je nutné studentům necht udělt smosttně pečlivě je kontrolovt. Znčná část z nich příkld dokáže podle věty usu, le se strnmi K L. tudenti totiž nevnímjí poždvky n spolehlivost dosttečně striktně vycházejí z rovnosti strn K L ez toho, že y ji jkkoliv dokázli (nejčstěji to komentují slovy je to přece jsný ). Je tře trvt n tom, že shodnost strn musí ýt dokázán neo přímo vycházet ze zdání (jko z něj vychází shodnost úseček, která vyplývá ze zdné informce, že od je střed. chopnost zjistit ze zdání o jké informce se můžeme při řešení opírt je jednou z dovedností, které se doře procvičují právě u geometrie. Př. 3: Jsou dány dvě rovnoěžky,. Přímk p je liovolná příčk těchto rovnoěžek, ody, jsou její průsečíky s přímkmi, od je středem úsečky. okž, že když sestrojíme pomocí liovolné přímky p různoěžné s procházející odem ody, ude od středem úsečky. kreslíme si náčrtek situce: 3

4 p áme dokázt shodnost dvou strn zkusíme dokázt shodnost dvou trojúhelníku, které mjí tyto strny pokud se udou trojúhelníky shodovt musí se shodovt i jejich odpovídjící strny Pokusíme se dokázt shodnost trojúhelníků. Hledáme v oou trojúhelnících shodné strny shodné úhly: p O trojúhelníky se shodují: v strně (od je středem strny ) v úhlu α při vrcholech (rovnoěžky proťté příčkou) v úhlech β při vrcholech, (rovnoěžky proťté příčkou) v úhlech γ při vrcholu (zytek do 180 ) o trojúhelníky mjí shodnou strnu shodné úhly α, γ, které k této strně přiléhjí shodují se ve strně přilehlých úhlech jsou shodné podle věty usu Př. 4: Je dán ostroúhlý trojúhelník. d strnmi jsou sestrojeny rovnostrnné trojúhelníky. okž, že pltí =. kreslíme si orázek situce: usíme njít dv trojúhelníky, které oshují strny jsou shodné. 4

5 Při důkzu udeme určitě využívt rovnostrnnost trojúhelníků vyznčíme si do orázku všechny strny o délce : Je zřejmé, že k důkzu použijeme trojúhelníky : O trojúhelníky se shodují: v strně (strny ) v strně (strny ) v úhlech δ při vrchol (pltí δ = γ + 60 ) o trojúhelníky mjí dvě shodné strny shodný úhel strnmi sevřený jsou shodné podle věty sus Př. 5: Petáková: strn 86/cvičení 18 strn 86/cvičení 19 hrnutí: Při důkzech musíme zčít pouze od jistých informcí. 5

2.cvičení. 1. Polopřímka: bod O dělí přímku na dvě navzájem opačné polopřímky.

2.cvičení. 1. Polopřímka: bod O dělí přímku na dvě navzájem opačné polopřímky. 2.cvičení 1. Polopřímk: od O dělí přímku n dvě nvzájem opčné polopřímky. Úsečk: průnik dvou polopřímek,. Polorovin: přímk dělí rovinu n dvě nvzájem opčné poloroviny. Úhel: průnik polorovin (pozor n speciální

Více

1.7.4 Výšky v trojúhelníku II

1.7.4 Výšky v trojúhelníku II 1.7.4 Výšky v trojúhelníku II Předpokldy: 010703 Opkování z minulé hodiny Výšk trojúhelníku: úsečk, která spojuje vrhol trojúhelníku s ptou kolmie n protější strnu. 0 0 v v 0 Př. 1: Nrýsuj trojúhelník

Více

Podobnosti trojúhelníků, goniometrické funkce

Podobnosti trojúhelníků, goniometrické funkce 1116 Podonosti trojúhelníků, goniometriké funke Předpokldy: 010104, úhel Pedgogiká poznámk: Zčátek zryhlit α γ β K α' l M γ' m k β' L Trojúhelníky KLM n nšem orázku mjí stejný tvr (vypdjí stejně), le liší

Více

. V trojúhelníku ABC platí 180. Součet libovolného vnitřního úhlu a jemu odpovídajícího vnějšího úhlu je úhel přímý. /

. V trojúhelníku ABC platí 180. Součet libovolného vnitřního úhlu a jemu odpovídajícího vnějšího úhlu je úhel přímý. / TROJÚHELNÍK Trojúhelník, vlstnosti trojúhelníků Trojúhelník ABC je průnik polorovin ABC, BCA, CAB; přitom ody A, B, C jsou různé neleží v jedné příme. Trojúhelník ABC zpisujeme symoliky ABC. Symoliky píšeme:

Více

Projekt OP VK č. CZ.1.07/1.5.00/34.0420. Šablony Mendelova střední škola, Nový Jičín

Projekt OP VK č. CZ.1.07/1.5.00/34.0420. Šablony Mendelova střední škola, Nový Jičín Projekt OP VK č. CZ.1.07/1.5.00/34.0420 Šblony Mendelov střední škol, Nový Jičín NÁZEV MATERIÁLU: Trojúhelník zákldní pozntky Autor: Mgr. Břetislv Mcek Rok vydání: 2014 Tento projekt je spolufinncován

Více

3.2.7 Příklady řešené pomocí vět pro trojúhelníky

3.2.7 Příklady řešené pomocí vět pro trojúhelníky ..7 Příkldy řešené pomocí ět pro trojúhelníky Předpokldy:, 6 Pedgogická poznámk: U následujících příkldů ( u mnoh dlších příkldů z geometrie) pltí, že nedílnou součástí řešení je nápd (který se tké nemusí

Více

3.2.11 Obvody a obsahy obrazců I

3.2.11 Obvody a obsahy obrazců I ..11 Obvody obshy obrzců I Předpokldy: S pomocí vzorců v uvedených v tbulkách řeš následující příkldy Př. 1: Urči výšku lichoběžníku o obshu 54cm zákldnách 7cm 5cm. + c Obsh lichoběžníku: S v Výšk lichoběžníku

Více

4.4.1 Sinová věta. Předpoklady: Trigonometrie: řešení úloh o trojúhelnících.

4.4.1 Sinová věta. Předpoklady: Trigonometrie: řešení úloh o trojúhelnících. 4.4. Sinová vět Předpokldy Trigonometrie řešení úloh o trojúhelnííh. Prktiké využití změřování měření vzdáleností, tringulční síť Tringulční síť je prolém měřit vzdálenosti dvou odů v krjině změříme velmi

Více

5. Konstrukce trojúhelníků Konstrukce trojúhelníků podle vět sss, sus, usu, Ssu (ssu):

5. Konstrukce trojúhelníků Konstrukce trojúhelníků podle vět sss, sus, usu, Ssu (ssu): 5. Konstruke trojúhelníků Konstruke trojúhelníků podle vět sss, sus, usu, Ssu (ssu): 1. Nrýsuj trojúhelník ABC, je-li dáno: AB = 7,6 m, BC = 4,2 m, AC = 5,6 m Řešení: Pro strny trojúhelníku musí pltit

Více

4.2.1 Goniometrické funkce ostrého úhlu

4.2.1 Goniometrické funkce ostrého úhlu .. Goniometriké funke ostrého úhlu Předpokldy: 7 Dnešní látku opkujeme už potřetí (poprvé n zčátku mtemtiky, podruhé ve fyzie) je to oprvdu důležité. C C C C C C Všehny prvoúhlé trojúhelníky s úhlem α

Více

5.1.5 Základní vztahy mezi body přímkami a rovinami

5.1.5 Základní vztahy mezi body přímkami a rovinami 5.1.5 Zákldní vzthy mezi body přímkmi rovinmi Předpokldy: 510 Prostor má tři rozměry, skládá se z bodů. Přímk - jednorozměrná podmnožin prostoru (množin bodů) Rovin - dvojrozměrná podmnožin prostoru (množin

Více

PLANIMETRIE úvodní pojmy

PLANIMETRIE úvodní pojmy PLANIMETRIE úvodní pojmy Je část geometrie zabývající se studiem geometrických útvarů v rovině. Základními stavebními kameny v rovině budou bod a přímka. 1) Přímka a její části Dvěma různými body lze vést

Více

TROJÚHELNÍK 180. Definice. C neleží v přímce. Potom trojúhelníkem ABC nazveme průnik polorovin ABC, BCA, Nechť body. Viz příloha: obecny_trojuhelnik

TROJÚHELNÍK 180. Definice. C neleží v přímce. Potom trojúhelníkem ABC nazveme průnik polorovin ABC, BCA, Nechť body. Viz příloha: obecny_trojuhelnik TROJÚHELNÍK Definice Nechť body A, B, C neleží v přímce. Potom trojúhelníkem ABC nazveme průnik polorovin ABC, BCA, CAB. Viz příloha: obecny_trojuhelnik Definice trojúhelníku Uzavřená, jednoduchá (neprotínající

Více

Tangens a kotangens

Tangens a kotangens 4.3.12 Tngens kotngens Předpokldy: 040311 Př. 1: Úhel, pod kterým je možné ze pozorovt vrhol věže ze vzdálenosti 19 m od její pty, yl změřen n 53 od vodorovné roviny. Jk je věž vysoká? h 53 19 m Z orázku

Více

9. Planimetrie 1 bod

9. Planimetrie 1 bod 9. Plnimetrie 1 bod 9.1. Do rovnostrnného trojúhelníku ABC o strně je vepsán rovnostrnný trojúhelník DEF tk, že D AB, E BC, F CA. Jestliže obsh trojúhelníku DEF je roven polovině obshu trojúhelníku ABC,

Více

5.1.5 Základní vztahy mezi body, přímkami a rovinami

5.1.5 Základní vztahy mezi body, přímkami a rovinami 5.1.5 Zákldní vzthy mezi body, přímkmi rovinmi Předpokldy: 510 Prostor má tři rozměry, skládá se z bodů přímk - jednorozměrná podmnožin prostoru (množin bodů), rovin - dvojrozměrná podmnožin prostoru (množin

Více

ANALYTICKÁ GEOMETRIE V PROSTORU

ANALYTICKÁ GEOMETRIE V PROSTORU ANALYTICKÁ GEOMETRIE V PROSTORU 3. přednášk Vektorová lger Prvoúhlé souřdnice odu v prostoru Poloh odu v prostoru je vzhledem ke třem osám k soě kolmým určen třemi souřdnicemi, které tvoří uspořádnou trojici

Více

8 Mongeovo promítání

8 Mongeovo promítání 8 Mongeovo promítání Pomocí metod uvedených v kpitolách 3. 4., 3. 6. bychom mohli promítnout do roviny 3 libovolný útvr U E. V prxi všk většinou nestčí sestrojit jeden průmět. Z průmětu útvru U je většinou

Více

Výfučtení: Geometrické útvary a zobrazení

Výfučtení: Geometrické útvary a zobrazení Výfučtení: Geometrické útvry zorzení V geometrii očs nrzíme n to, že některé geometrické orzce vykzují jistou symetrii. Popřípdě můžeme slyšet, že nějké dv útvry jsou si podoné. V tomto Výfučtení udeme

Více

Geometrie. Mgr. Jarmila Zelená. Gymnázium, SOŠ a VOŠ Ledeč nad Sázavou

Geometrie. Mgr. Jarmila Zelená. Gymnázium, SOŠ a VOŠ Ledeč nad Sázavou Geometrie Mgr. Jrmil Zelená Gymnázium, SOŠ VOŠ Ledeč nd Sázvou Výpočty v prvoúhlém trojúhelníku VY_3_INOVACE_05_3_1_M Gymnázium, SOŠ VOŠ Ledeč nd Sázvou PRAVOÚHLÝ TROJÚHELNÍK 1 Pojmy oznčení:,.odvěsny

Více

February 05, Čtyřúhelníky lichoběžníky.notebook. 1. Vzdělávací oblast: Matematika a její aplikace

February 05, Čtyřúhelníky lichoběžníky.notebook. 1. Vzdělávací oblast: Matematika a její aplikace Registrační číslo projektu: Název projektu: Název a číslo globálního grantu: CZ.1.07/1.1.12/02.0010 Šumavská škola = evropská škola Zvyšování kvality ve vzdělání v Plzeňském kraji CZ.1.07/1.1.12 Název

Více

Rovinné obrazce. 1) Určete velikost úhlu α. (19 ) 2) Určete velikost úhlu δ, jestliže velikost úhlu α je 27. (99 )

Rovinné obrazce. 1) Určete velikost úhlu α. (19 ) 2) Určete velikost úhlu δ, jestliže velikost úhlu α je 27. (99 ) Rovinné orze 1) Určete velikost úhlu α. (19 ) 32 103 2) Určete velikost úhlu δ, jestliže velikost úhlu α je 27. (99 ) x d y x y 3) Vypočítejte osh orze znázorněného ve čtverové síti. (2 500 m 2 ) C A B

Více

PODOBNÁ ZOBRÁZENÍ 1. SHODNOST TROJÚHELNÍKŮ 2. PRÁVOÚHLÝ TROJÚHELNÍK

PODOBNÁ ZOBRÁZENÍ 1. SHODNOST TROJÚHELNÍKŮ 2. PRÁVOÚHLÝ TROJÚHELNÍK PODOBNÁ ZOBRÁZENÍ Kždá stejnolehlost je podonost ne oráeně! Podonost má vždy koefiient podonosti kldný znčíme jej k k >0 k R zhovává rovnoěžnost podonost shodnost nevlstní podonost úhly poměry Dělíme ji

Více

Název školy: ZŠ A MŠ ÚDOLÍ DESNÉ, DRUŽSTEVNÍ 125, RAPOTÍN Název projektu: Ve svazkové škole aktivně - interaktivně Číslo projektu:

Název školy: ZŠ A MŠ ÚDOLÍ DESNÉ, DRUŽSTEVNÍ 125, RAPOTÍN Název projektu: Ve svazkové škole aktivně - interaktivně Číslo projektu: Název školy: ZŠ MŠ ÚOLÍ ESNÉ, RUŽSTEVNÍ 125, RPOTÍN Název projektu: Ve svzkové škole ktivně - interktivně Číslo projektu: Z107/1400/213465 utor: Mgr Monik Vvříková Temtiký okruh: Geometrie 7 Název:VY_32_INOVE_16_Čtyřúhelníky

Více

( t) ( t) ( ( )) ( ) ( ) ( ) Vzdálenost bodu od přímky I. Předpoklady: 7308

( t) ( t) ( ( )) ( ) ( ) ( ) Vzdálenost bodu od přímky I. Předpoklady: 7308 731 Vzdálenost odu od římky I Předokldy: 7308 Pedgogiká oznámk: Pokud máte málo čsu, můžete odvodit vzore ez smosttné ráe studentů oužít některý z říkldů z dlší hodiny Tím jednu ze dvou hodin ro vzdálenost

Více

( ) 7.3.16 Další metrické úlohy II. Předpoklady: 7315. Př. 1: Najdi přímku rovnoběžnou s osou I a III kvadrantu vzdálenou od bodu A[ 1;2 ] 2 2.

( ) 7.3.16 Další metrické úlohy II. Předpoklady: 7315. Př. 1: Najdi přímku rovnoběžnou s osou I a III kvadrantu vzdálenou od bodu A[ 1;2 ] 2 2. 76 Další metriké úlohy II Předpoklady: 7 Př : Najdi přímku rovnoěžnou s osou I a III kvadrantu vzdálenou od odu A[ ; ] Osou I a III kvadrantu je přímka y = x přímky s ní rovnoěžné mají rovnii x y + = 0

Více

4.4.3 Kosinová věta. Předpoklady:

4.4.3 Kosinová věta. Předpoklady: 443 Kosinová vět Předpokldy 44 Př Rozhodni zd dokážeme spočítt zývjíí strny úhly u všeh trojúhelníků zdnýh pomoí trojie prvků (délek strn velikostí úhlů) V sinové větě vystupují dvě dvojie strn-protější

Více

Zkoušku snadno provedeme tak, že do soustavy (1), která je ekvivalentní dané soustavě rovnic, dosadíme příslušné hodnoty s a p.

Zkoušku snadno provedeme tak, že do soustavy (1), která je ekvivalentní dané soustavě rovnic, dosadíme příslušné hodnoty s a p. 1. V oboru reálných čísel řešte soustvu rovnic x 2 xy + y 2 = 7, x 2 y + xy 2 = 2. (J. Földes) Řešení. Protože druhou rovnici můžeme uprvit n tvr xy(x + y) = 2, uprvme podobně i první rovnici: (x + y)

Více

Výfučtení: Goniometrické funkce

Výfučtení: Goniometrické funkce Výfučtení: Goniometriké funke Tentokrát se seriál ude zývt spíše mtemtikým než fyzikálním témtem. Pokud počítáte nějkou úlohu, ve které vystupují síly, tk je potřeujete dost čsto rozložit n součet dopočítt

Více

Vzdálenosti přímek

Vzdálenosti přímek 5..11 Vzdálenosti přímek Předpokldy: 510 Př. 1: Rozhodni, kdy má smysl uvžovt o vzdálenosti dvou přímek nvrhni definici této vzdálenosti. Vzdálenost přímek má smysl, když přímky nemjí společné body tedy

Více

Konstrukce na základě výpočtu I

Konstrukce na základě výpočtu I .4.11 Konstruke n zákldě výpočtu I Předpokldy: Pedgogiká poznámk: Je důležité si uvědomit, že následujíí sled příkldů neslouží k tomu, y si žái upevnili mehniký postup n dělení úseček. Jediné, o y si měli

Více

Vzdálenosti přímek

Vzdálenosti přímek 5..1 Vzdálenosti přímek Předpokldy: 511 Př. 1: Rozhodni, kdy má smysl uvžovt o vzdálenosti dvou přímek nvrhni definici této vzdálenosti. Vzdálenost přímek má smysl, když přímky nemjí společné body tedy

Více

7.3.7 Přímková smršť. Předpoklady: 7306

7.3.7 Přímková smršť. Předpoklady: 7306 737 Přímkoá smršť Předpokldy 7306 Pedgogiká poznámk Hodin znikl jko reke n prní průhod učenií Třeoni se třídou 42011 Ukázlo se, že studenti mjí prolémy s přiřzením spráného ektoru k různým druhům roni

Více

II. kolo kategorie Z5

II. kolo kategorie Z5 II. kolo ktegorie Z5 Z5 II 1 Z prvé kpsy klhot jsem přendl 4 pětikoruny do levé kpsy z levé kpsy jsem přendl 16 dvoukorun do prvé kpsy. Teď mám v levé kpse o 13 korun méně než v prvé. Ve které kpse jsem

Více

14 Kuželosečky v základní poloze

14 Kuželosečky v základní poloze 4 Kuželosečk v zákldní poloze Následující tet 4 7 se týkjí geometrie v rovině. Až dosud jsme studovli útvr lineární (v nltickém vjádření l vžd proměnné,, z v první mocnině). Nní se udeme zývt některými

Více

{ } ( ) ( ) 2.5.8 Vztahy mezi kořeny a koeficienty kvadratické rovnice. Předpoklady: 2301, 2508, 2507

{ } ( ) ( ) 2.5.8 Vztahy mezi kořeny a koeficienty kvadratické rovnice. Předpoklady: 2301, 2508, 2507 58 Vzth mezi kořen koefiient kvdrtiké rovnie Předpokld:, 58, 57 Pedgogiká poznámk: Náplň zřejmě přeshuje možnost jedné vučoví hodin, příkld 8 9 zůstvjí n vičení neo polovinu hodin při píseme + + - zákldní

Více

Výukový matriál byl zpracován v rámci projektu OPVK 1.5 EU peníze školám. registrační číslo projektu:cz.1.07/1.5.00/

Výukový matriál byl zpracován v rámci projektu OPVK 1.5 EU peníze školám. registrační číslo projektu:cz.1.07/1.5.00/ Výukový mtriál yl zprcován v rámci projektu OPVK 1.5 EU peníze školám registrční číslo projektu:cz.1.07/1.5.00/34.1026 Autor: Mgr. Vldimír Mikel zprcováno: 7.12.2012 ročník (oor) temtická olst Předmět

Více

Svobodná chebská škola, základní škola a gymnázium s.r.o. Trojúhelník III. konstrukce trojúhelníku. Astaloš Dušan. frontální, fixační

Svobodná chebská škola, základní škola a gymnázium s.r.o. Trojúhelník III. konstrukce trojúhelníku. Astaloš Dušan. frontální, fixační METODICKÝ LIST DA35 Název tématu: Autor: Předmět: Ročník: Metody výuky: Formy výuky: Cíl výuky: Získané dovednosti: Stručný obsah: Trojúhelník III. konstrukce trojúhelníku Astaloš Dušan Matematika šestý

Více

Trojúhelník - určují tři body které neleţí na jedné přímce. Trojúhelník je rovněţ moţno povaţovat za průnik tří polorovin nebo tří konvexních úhlů.

Trojúhelník - určují tři body které neleţí na jedné přímce. Trojúhelník je rovněţ moţno povaţovat za průnik tří polorovin nebo tří konvexních úhlů. Trojúhelník Trojúhelník - určují tři body které neleţí na jedné přímce. Trojúhelník je rovněţ moţno povaţovat za průnik tří polorovin nebo tří konvexních úhlů. C Body se nazývají vrcholy trojúhelníku Úsečky

Více

METODICKÉ LISTY Z MATEMATIKY pro gymnázia a základní vzdělávání

METODICKÉ LISTY Z MATEMATIKY pro gymnázia a základní vzdělávání METODICKÉ LISTY Z MATEMATIKY pro gymnázi zákldní vzdělávání Jroslv Švrček kolektiv Rámcový vzdělávcí progrm pro zákldní vzdělávání Vzdělávcí oblst: Mtemtik její plikce Temtický okruh: Nestndrdní plikční

Více

Výpočet obsahu rovinného obrazce

Výpočet obsahu rovinného obrazce Výpočet oshu rovinného orzce Pro výpočet oshu čtverce, odélník, trojúhelník, kružnice, dlších útvrů, se kterými se můžeme setkt v elementární geometrii, máme k dispozici vzorce Kdchom chtěli vpočítt osh

Více

3.4.3 Množiny bodů dané vlastnosti I

3.4.3 Množiny bodů dané vlastnosti I 3.4.3 Množiny odů dné vlstnosti I Předpoldy: 3401 Něteé z těchto množin už známe. J je definován užnice ( ; )? Množin všech odů oviny, teé mjí od středu vzdálenost. Předchozí vět znmená dvě věci: Vzdálenost

Více

Jsou to rovnice, které obsahují neznámou nebo výraz s neznámou jako argument logaritmické funkce.

Jsou to rovnice, které obsahují neznámou nebo výraz s neznámou jako argument logaritmické funkce. Logritmické rovnice Jsou to rovnice, které oshují neznámou neo výrz s neznámou jko rgument ritmické funkce. Zákldní rovnice, 0 řešíme pomocí vzthu. Složitější uprvit n f g potom f g (protože ritmická funkce

Více

5.2.7 Odchylka přímky a roviny

5.2.7 Odchylka přímky a roviny 57 Odchylk přímky roiny Předpokldy: 50, 506 Jk odchylk přímky roiny? o by měl definice splňot: podobně jko u osttních ěcí ji musíme přeést n něco co už umíme (si odchylku dou přímek), měl by být jednoznčná,

Více

2.9.11 Logaritmus. Předpoklady: 2909

2.9.11 Logaritmus. Předpoklady: 2909 .9. Logritmus Předpokld: 909 Pedgogická poznámk: Následující příkld vždují tk jeden půl vučovcí hodin. V přípdě potřeb všk stčí dojít k příkldu 6 zbtek jen ukázt, což se dá z jednu hodinu stihnout (nedoporučuji).

Více

Stereometrie metrické vlastnosti

Stereometrie metrické vlastnosti Stereometrie metrické vlstnosti Odchylk dvou přímek Odchylk dvou různoběžek je velikost kždého z ostrých nebo prvých úhlů, které přímky spolu svírjí. Odchylk rovnoběžek je 0. Odchylk mimoběžných přímek

Více

Shodná zobrazení. bodu B ležet na na zobrazené množině b. Proto otočíme kružnici b kolem

Shodná zobrazení. bodu B ležet na na zobrazené množině b. Proto otočíme kružnici b kolem Shodná zobrazení Otočení Příklad 1. Jsou dány tři různé soustředné kružnice a, b a c. Sestrojte rovnostranný trojúhelník ABC tak, aby A ležel na a, B ležel na b a C ležel na c. Řešení. Zvolíme vrchol A

Více

6 Planimetrie. 6.1 Trojúhelník. body A, B, C vrcholy trojúhelníku. vnitřní úhly BAC = α, ABC = β, BCA = γ. konvexní (menší než 180º)

6 Planimetrie. 6.1 Trojúhelník. body A, B, C vrcholy trojúhelníku. vnitřní úhly BAC = α, ABC = β, BCA = γ. konvexní (menší než 180º) 6 Planimetrie Planimetrie = část matematiky, která se zabývá geometrií (původně věda o měřené země) v rovině (obrazce, jejich vlastnosti, shodnost a podobnost, zobrazení). 6.1 Trojúhelník Každé tři body,

Více

Trojúhelník. MATEMATIKA pro 1. ročníky tříletých učebních oborů. Ing. Miroslav Čapek srpen 2011

Trojúhelník. MATEMATIKA pro 1. ročníky tříletých učebních oborů. Ing. Miroslav Čapek srpen 2011 MATEMATIKA pro 1. ročníky tříletých učebních oborů Trojúhelník Ing. Miroslav Čapek srpen 2011 Projekt Využití e-learningu k rozvoji klíčových kompetencí reg. č.: CZ.1.07/1.1.10/03.0021 je spolufinancován

Více

9.6. Odchylky přímek a rovin

9.6. Odchylky přímek a rovin 9 Stereometrie 96 Odchylky přímek rovin Odchylku dvou přímek, dvou rovin přímky od roviny převádíme n určení velikosti úhlu dvou různoběžek Odchylk dvou přímek Odchylk dvou přímek splývjících nebo rovnoběžných

Více

3.2.3 Podobnost trojúhelníků I

3.2.3 Podobnost trojúhelníků I .. Podobnost trojúhelníků I Předpoklady: 01 Shodné útvary je možné je přemístěním ztotožnit, lidově řečeno jsou stejné Co splňují útvary, které jsou podobné? Mají stejný tvar, ale různou velikost. Kdybychom

Více

Definice limit I

Definice limit I 08 Definice limit I Předpokld: 006 Pedgogická poznámk: N úvod je třeb upozornit, že tto hodin je ze strn studentů snd nejvíce sbotovnou látkou z celé studium (podle rekcí 4B009) Jejich ochot brát n vědomí

Více

3.2.5 Pythagorova věta, Euklidovy věty I. α = = Předpoklady: 1107, 3204

3.2.5 Pythagorova věta, Euklidovy věty I. α = = Předpoklady: 1107, 3204 3..5 ythgoro ět, Euklidoy ěty I ředpokldy: 1107, 304 roúhlý trojúhelník = trojúhelník s nitřním úhlem 90 (s prým nitřním úhlem) prý úhel je z nitřníh úhlů nejětší (zýjíí d musí dát dohromdy tké 90 ) strn

Více

7.2.10 Skalární součin IV

7.2.10 Skalární součin IV 7.2.10 Sklární sočin IV Předpokld: 7209 Pedgogiká poznámk: Tto hodin je kontet čebnie zláštní. Obshje d důkz jeden příkld z klsiké čebnie. Všehn tři zdání jso znčně obtížná ždjí nápd, proto je řeším normálně

Více

Při výpočtu obsahu takto omezených rovinných oblastí mohou nastat následující základní případy : , osou x a přímkami. spojitá na intervalu

Při výpočtu obsahu takto omezených rovinných oblastí mohou nastat následující základní případy : , osou x a přímkami. spojitá na intervalu Geometrické plikce určitého integrálu Osh rovinné olsti Je-li ploch ohrničen křivkou f () osou Při výpočtu oshu tkto omezených rovinných olstí mohou nstt následující zákldní přípd : Nechť funkce f () je

Více

Rozpis výstupů zima 2008 Geometrie

Rozpis výstupů zima 2008 Geometrie Rozpis výstupů zima 2008 Geometrie 20. 10. porovnávání úseček grafický součet úseček grafický rozdíl úseček... porovnávání úhlů grafický součet úhlů grafický rozdíl úhlů... osa úhlu úhly vedlejší a vrcholové...

Více

4.3.9 Sinus ostrého úhlu I. α Předpoklady: Správně vyplněné hodnoty funkce a c. z minulé hodiny.

4.3.9 Sinus ostrého úhlu I. α Předpoklady: Správně vyplněné hodnoty funkce a c. z minulé hodiny. 4.3.9 Sinus ostrého úhlu I Předpokldy: 040308 Správně vyplněné hodnoty funke z minulé hodiny. α 10 20 30 40 50 60 70 80 poměr 0,17 0,34 0,50 0,64 0,77 0,87 0,94 0,98 Funke poměr se nzývá sinus x (zkráeně

Více

3.2.2 Shodnost trojúhelníků II

3.2.2 Shodnost trojúhelníků II 3.. hodnost tojúhelníků II Předpoklady: 30 Pokud mají tojúhelníky speiální vlastnosti, mohou se věty o shodnosti zjednodušit Př. : Zfomuluj věty o shodnosti: a) ovnoamennýh tojúhelníků b) ovnostannýh tojúhelníků

Více

Riemannův určitý integrál.

Riemannův určitý integrál. Riemnnův určitý integrál. Definice 1. Budiž

Více

5. P L A N I M E T R I E

5. P L A N I M E T R I E 5. P L A N I M E T R I E 5.1 Z Á K L A D N Í P L A N I M E T R I C K É P O J M Y Bod (definice, značení, znázornění) Přímka (definice, značení, znázornění) Polopřímka (definice, značení, znázornění, počáteční

Více

( a, { } Intervaly. Předpoklady: , , , Problém zapíšeme snadno i výčtem: { 2;3; 4;5}?

( a, { } Intervaly. Předpoklady: , , , Problém zapíšeme snadno i výčtem: { 2;3; 4;5}? 1.3.8 Intervly Předpokldy: 010210, 010301, 010302, 010303 Problém Množinu A = { x Z;2 x 5} zpíšeme sndno i výčtem: { 2;3; 4;5} Jk zpst množinu B = { x R;2 x 5}? A =. Jde o nekonečně mnoho čísel (2, 5 všechno

Více

1.3.8 Množiny - shrnutí

1.3.8 Množiny - shrnutí 1.3.8 Množiny - shrnutí Předpokldy: 010307 Pedgogická poznámk: Kpitol o množinách spolu s následujícími dvěm kpitolmi (výroky dělitelnost) slouží k nácviku učení. Součástí učení je tké příprv n písemky

Více

3.2.4 Podobnost trojúhelníků II

3.2.4 Podobnost trojúhelníků II 3..4 Podobnost trojúhelníků II Předpoklady: 33 Př. 1: V pravoúhlém trojúhelníku s pravým uhlem při vrcholu sestroj výšku na stranu. Patu výšky označ. Najdi podobné trojúhelníky. Nakreslíme si obrázek:

Více

- shodnost trojúhelníků. Věta SSS: Věta SUS: Věta USU:

- shodnost trojúhelníků. Věta SSS: Věta SUS: Věta USU: 1/12 PLANIMETRIE Základní pojmy: Shodnost, podobnost trojúhelníků Středová souměrnost, osová souměrnost, posunutí, otočení shodná zobrazení Středový a obvodový úhel Obsahy a obvody rovinných obrazců 1.

Více

Vzdálenost rovin

Vzdálenost rovin 510 zdálenost rovin ředpokldy: 509 Kdy má cenu uvžovt o vzdálenosti dvou rovin? ouze, když jsou rovnoběžné, jink se protínjí ř 1: Nvrhni definici vzdálenosti dvou rovnoběžných rovin Z vzdálenost dvou rovnoběžných

Více

2.2.9 Grafické řešení rovnic a nerovnic

2.2.9 Grafické řešení rovnic a nerovnic ..9 Grfické řešení rovnic nerovnic Předpokldy: 0, 06 Př. : Řeš početně i grficky rovnici x + = x. Početně: Už umíme. x + = x x = x = K = { } Grficky: Kždá ze strn rovnice je výrzem pro lineární funkci

Více

Úlohy školní klauzurní části I. kola kategorie C

Úlohy školní klauzurní části I. kola kategorie C 52. ročník mtemtické olympiády Úlohy školní kluzurní části I. kol ktegorie 1. Odtrhneme-li od libovolného lespoň dvojmístného přirozeného čísl číslici n místě jednotek, dostneme číslo o jednu číslici krtší.

Více

1. Planimetrie - geometrické útvary v rovině

1. Planimetrie - geometrické útvary v rovině 1. Planimetrie - geometrické útvary v rovině 1. Základní pojmy Body průsečíky čar, značí se velkými tiskacími písmeny A = B bod A je totožný (splývá) s bodem B A B různé body A, B Přímka je dána dvěma

Více

Digitální učební materiál

Digitální učební materiál Digitální učební materiál Projekt: Digitální učební materiály ve škole, registrační číslo projektu CZ.1.07/1.5.00/34.0527 Příjemce: Střední zdravotnická škola a Vyšší odborná škola zdravotnická, Husova

Více

( ) ( ) Pythagorova věta, Euklidovy věty II. γ = 90, je-li dáno: c = 10, c = 6. Předpoklady: 3205

( ) ( ) Pythagorova věta, Euklidovy věty II. γ = 90, je-li dáno: c = 10, c = 6. Předpoklady: 3205 3..6 Pythgoro ět, Euklidoy ěty II Předpokldy: 305 V kždém proúhlém trojúhelníku s oděsnmi, přeponou pltí: =, =, =, kde je ýšk n přeponu, jsou úseky přepony přilehlé ke strnám,. Kždou z předhozíh ět je

Více

Čtyřúhelník. O b s a h : Čtyřúhelník. 1. Jak definovat čtyřúhelník základní vlastnosti. 2. Názvy čtyřúhelníků Deltoid Tětivový čtyřúhelník

Čtyřúhelník. O b s a h : Čtyřúhelník. 1. Jak definovat čtyřúhelník základní vlastnosti. 2. Názvy čtyřúhelníků Deltoid Tětivový čtyřúhelník Čtyřúhelník : 1. Jak definovat čtyřúhelník základní vlastnosti 2. Názvy čtyřúhelníků 2.1. Deltoid 2.2. Tětivový čtyřúhelník 2.3. Tečnový čtyřúhelník 2.4. Rovnoběžník 2.4.1. Základní vlastnosti 2.4.2. Výšky

Více

Máme tři různé body A, B, C. Trojúhelník ABC je průnik polorovin ABC, BCA a CAB.

Máme tři různé body A, B, C. Trojúhelník ABC je průnik polorovin ABC, BCA a CAB. 8. Trojúhelník 6. ročník 8. Trojúhelník 8.1. Základní pojmy 8.1.1. Trojúhelník Máme tři různé body A, B, C. Trojúhelník ABC je průnik polorovin ABC, BCA a CAB. Trojúhelník popisujeme proti chodu hodinových

Více

Návody k domácí části I. kola kategorie C

Návody k domácí části I. kola kategorie C Návody k domácí části I. kola kategorie C 1. Dokažte, že pro libovolné reálné číslo a platí nerovnost Určete, kdy nastane rovnost. a 2 + 1 a 2 a + 1 a + 1. 1. Dokažte, že pro libovolná reálná čísla x,

Více

Předmět: Ročník: Vytvořil: Datum: MATEMATIKA DRUHÝ MGR. JÜTTNEROVÁ Název zpracovaného celku: PODOBNOST A STEJNOLEHLOST PODOBNOST

Předmět: Ročník: Vytvořil: Datum: MATEMATIKA DRUHÝ MGR. JÜTTNEROVÁ Název zpracovaného celku: PODOBNOST A STEJNOLEHLOST PODOBNOST Předmět: Ročník: Vytvořil: Datum: MATEMATIKA DRUHÝ MGR. JÜTTNEROVÁ 7. 5. 0 Název zpracovaného celku: PODOBNOST A STEJNOLEHLOST PODOBNOST Je každé zobrazení v rovině takové, že pro libovolné body roviny

Více

ROTAČNÍ KVADRIKY V PŘÍKLADECH

ROTAČNÍ KVADRIKY V PŘÍKLADECH Univerzit Plckého v Olomouci Rozšíření kreditce učitelství mtemtiky učitelství deskriptivní geometrie n PřF UP v Olomouci o formu kombinovnou CZ..07/..00/8.003 ROTAČNÍ KVADRIKY V PŘÍKLADECH Mrie OŠLEJŠKOVÁ,

Více

Svobodná chebská škola, základní škola a gymnázium s.r.o. Astaloš Dušan. frontální, fixační. samostatná práce, skupinová práce

Svobodná chebská škola, základní škola a gymnázium s.r.o. Astaloš Dušan. frontální, fixační. samostatná práce, skupinová práce METODICKÝ LIST DA34 Název tématu: Autor: Předmět: Ročník: Metody výuky: Formy výuky: Cíl výuky: Získané dovednosti: Stručný obsah: Trojúhelník I. obecný trojúhelník Astaloš Dušan Matematika šestý frontální,

Více

PLANIMETRIE 2 mnohoúhelníky, kružnice a kruh

PLANIMETRIE 2 mnohoúhelníky, kružnice a kruh PLANIMETRIE 2 mnohoúhelníky, kružnice a kruh Lomená čára A 0 A 1 A 2 A 3..., A n (n 2) se skládá z úseček A 0 A 1, A 1 A 2, A 2 A 3,..., A n 1 A n, z nichž každé dvě sousední mají společný jeden krajní

Více

3. APLIKACE URČITÉHO INTEGRÁLU

3. APLIKACE URČITÉHO INTEGRÁLU APLIKACE URČITÉHO INTEGRÁLU APLIKACE URČITÉHO INTEGRÁLU V mtemtice, le zejmén v přírodních technických vědách, eistuje nepřeerné množství prolémů, při jejichž řešení je nutno tím či oním způsoem použít

Více

Opakování ZŠ - Matematika - část geometrie - konstrukce

Opakování ZŠ - Matematika - část geometrie - konstrukce Opakování ZŠ - Matematika - část geometrie - konstrukce Základní útvary v rovině Bod je nejzákladnější geometrický pojem. Body zapisujeme písmeny velké abecedy: A, B, N, H, Přímka Přímky zapisujeme písmeny

Více

5.2.9 Vzdálenost bodu od roviny

5.2.9 Vzdálenost bodu od roviny 5..9 zdálenost bodu od roiny ředpokldy: 508 Opkoání z minulé hodiny (definice zdálenosti bodu od přímky): Je dán přímk p bod. zdáleností bodu od přímky p rozumíme zdálenost bodu od bodu, který je ptou

Více

4.4.3 Další trigonometrické věty

4.4.3 Další trigonometrické věty 443 Další trigonometriké věty Předpoklady: 440 Věty, které ojevíme v této hodině, mohou usnadnit některé výpočty, ale je možné se ez nih (na rozdíl od kosinové a sinové věty) oejít Pedagogiká poznámka:

Více

2.9.14 Věty o logaritmech I

2.9.14 Věty o logaritmech I .9.1 Věty o itmech I Předpokldy: 910 Pedgogická poznámk: Tto náledující hodin e djí tihnout njednou, pokud oželíte počítání v tbulce někteé příkldy n konci příští hodiny. Přijde mi to tochu škod, nžím

Více

Syntetická geometrie I

Syntetická geometrie I Shodnost Pedagogická fakulta 2016 www.karlin.mff.cuni.cz/~zamboj/ Vzdálenost dvou bodů Necht A, B, C ρ. Vzdálenost dvou bodů A, B v rovině je číslo AB a platí AB 0 AB = 0 A = B AB = BA pozitivně definitní

Více

KVADRATICKÁ FUNKCE (vlastnosti, grafy)

KVADRATICKÁ FUNKCE (vlastnosti, grafy) KVADRATICKÁ FUNKCE (vlstnosti, gr) Teorie Kvdrtikou unkí se nzývá kždá unke dná předpisem ; R,, R; D( ) je proměnná z příslušného deiničního ooru unke (nejčstěji množin R),, jsou koeiient kvdrtiké unke,

Více

[obr. 1] Rozbor S 3 S 2 S 1. o 1. o 2 [obr. 2]

[obr. 1] Rozbor S 3 S 2 S 1. o 1. o 2 [obr. 2] Příklad Do dané kruhové výseče s ostrým středovým úhlem vepište kružnici (obr. ). M k l V N [obr. ] Rozbor Oblouk l a hledaná kružnice k se dotýkají v bodě T, mají proto v tomto bodě společnou tečnu t.

Více

DIDAKTIKA MATEMATIKY

DIDAKTIKA MATEMATIKY DIDAKTIKA MATEMATIKY GEOMETRIE PLANIMETRIE Úlohy k rozvoji geometrické představivosti Úlohy početní a důkazové Růžena Blažková, Irena Budínová Brno 2007 1 1. Základní pojmy 1. Zvolte si čtyři různé body

Více

Planimetrie. Obsah. Stránka 668

Planimetrie. Obsah. Stránka 668 Obsh 3. Plnimetrie... 669 3.. Úhel... 669 3.. Prvidelné mnohoúhelníky... 67 3.3. Pythgorov vět Eukleidovy věty konstruke úseček... 678 3.4. Euklidovy věty, prvoúhlý trojúhelník... 683 3.5. Obvody obshy

Více

c 2 b 2 a 2 2.8.20 Důkazy Pythagorovy věty Předpoklady: 020819

c 2 b 2 a 2 2.8.20 Důkazy Pythagorovy věty Předpoklady: 020819 .8.0 Důkzy Pythgorovy věty Předpokldy: 00819 Pedgogická poznámk: V řešení kždého příkldu jsou uvedeny rdy, které dávám postupně žákům, bych jim pomohl. Pedgogická poznámk: Diskuse o následujícím příkldu

Více

GEOMETRIE PLANIMETRIE Úlohy k rozvoji geometrické představivosti Úlohy početní. Růžena Blažková

GEOMETRIE PLANIMETRIE Úlohy k rozvoji geometrické představivosti Úlohy početní. Růžena Blažková GEOMETRIE PLANIMETRIE Úlohy k rozvoji geometrické představivosti Úlohy početní Růžena Blažková 1. Základní pojmy 1. Zvolte si čtyři různé body v rovině. Kolik různých přímek je těmito body určeno? Jak

Více

Nosné stavební konstrukce Výpočet reakcí

Nosné stavební konstrukce Výpočet reakcí Stvení sttik 1.ročník klářského studi Nosné stvení konstrukce Výpočet rekcí Reálné ztížení nosných stveních konstrukcí Prut geometrický popis vnější vzy nehynost silové ztížení složky rekcí Ktedr stvení

Více

= prostorová geometrie, geometrie v prostoru část M zkoumající vlastnosti prostor. útvarů vychází z tzv. axiómů, využívá věty

= prostorová geometrie, geometrie v prostoru část M zkoumající vlastnosti prostor. útvarů vychází z tzv. axiómů, využívá věty STROMTRI STROMTRI = prostorová geometrie, geometrie v prostoru část M zkoumající vlastnosti prostor. útvarů vychází z tzv. axiómů, využívá věty xióm je jednoduché názorné tvrzení, které se nedokazuje.

Více

INTEGRACE KOMPLEXNÍ FUNKCE KŘIVKOVÝ INTEGRÁL

INTEGRACE KOMPLEXNÍ FUNKCE KŘIVKOVÝ INTEGRÁL INTEGRAE KOMPLEXNÍ FUNKE KŘIVKOVÝ INTEGRÁL N konci kpitoly o derivci je uveden souvislost existence derivce s potenciálním polem. Existuje dlší chrkterizce potenciálného pole, která nebyl v kpitole o derivci

Více

Konstrukční úlohy. Růžena Blažková, Irena Budínová. Milé studentky, milí studenti,

Konstrukční úlohy. Růžena Blažková, Irena Budínová. Milé studentky, milí studenti, Konstrukční úlohy Růžena Blažková, Irena Budínová Milé studentky, milí studenti, zadání konstrukčních úloh si vylosujete v semináři nebo na přednášce, u každé konstrukční úlohy proveďte: - rozbor obsahuje

Více

MECHANIKA STATIKA. + y. + x. - x. F 4y F4. - y. FRBy. FRAy. Ing. Radek Šebek 2012 A B C D. I a III 3 5 7 D II. B C a b c F1Z F2Z. a 2. a 3. a 4.

MECHANIKA STATIKA. + y. + x. - x. F 4y F4. - y. FRBy. FRAy. Ing. Radek Šebek 2012 A B C D. I a III 3 5 7 D II. B C a b c F1Z F2Z. a 2. a 3. a 4. h MECHNIK + y 2 F Vy F 2y 1 FV V F 1y F 3y F3 3 - x F 1x F 3x F 4x 0 F 2x F 4y F4 F Vx + x F FRy 4 - y FRy F l FRy C D FRy I 2 III 6 V 1 3 5 7 D II 4 IV C c Z Z Ing. Rdek Šeek 2012 MECHNIK 1. OSH 2. MECHNIK

Více

= + = + = 105,3 137, ,3 137,8 cos37 46' m 84,5m Spojovací chodba bude dlouhá 84,5 m. 2 (úhel, který spolu svírají síly obou holčiček).

= + = + = 105,3 137, ,3 137,8 cos37 46' m 84,5m Spojovací chodba bude dlouhá 84,5 m. 2 (úhel, který spolu svírají síly obou holčiček). 4.4.4 Trigonometrie v praxi Předpoklady: 443 Nejdřív něco jednoduchého na začátek. Př. : vě přímé důlní chodby ústící do stejného místa svírají úhel α = 37 46' mají být spojeny chodbou, spojující bodu

Více

Syntetická geometrie I

Syntetická geometrie I Podobnost Pedagogická fakulta 2016 www.karlin.mff.cuni.cz/~zamboj/ Úhel Zvolíme-li na přímce bod, rozdělí ji na dvě polopřímky. Definice (Úhel) Systém dvou polopřímek ÝÑ VA, ÝÑ VB se společným počátečním

Více

VY_32_INOVACE_04_Shodnost trojúhelníků -věta sss_02. Škola: Základní škola Slušovice, okres Zlín, příspěvková organizace

VY_32_INOVACE_04_Shodnost trojúhelníků -věta sss_02. Škola: Základní škola Slušovice, okres Zlín, příspěvková organizace VY_32_INOVACE_04_Shodnost trojúhelníků -věta sss_02 Autor: Růžena Krupičková Škola: Základní škola Slušovice, okres Zlín, příspěvková organizace Název projektu: Zkvalitnění ICT ve slušovské škole Číslo

Více

Přírodovědecká fakulta Masarykovy univerzity. na trigonometrii pravoúhlého a obecného trojúhelníku

Přírodovědecká fakulta Masarykovy univerzity. na trigonometrii pravoúhlého a obecného trojúhelníku Přírodovědecká fakulta Masarykovy univerzity Řešení složitějších úloh na trigonometrii pravoúhlého a obecného trojúhelníku Bakalářská práce BRNO. května 006 Barbora Kamencová Prohlašuji, že jsem svou bakalářskou

Více

Vedlejší a vrcholové úhly

Vedlejší a vrcholové úhly 1.5.13 Vedlejší a vrcholové úhly Předpoklady: 010512 Pedagogická poznámka: Předem je dobré upozornit, že hlavním oříškem hodiny není zavedení pojmu a odvození pravidel. Obojí žáci zvládnou bez problémů

Více