Hyperbola, jejíž střed S je totožný s počátkem soustavy souřadnic a jejíž hlavní osa je totožná

Rozměr: px
Začít zobrazení ze stránky:

Download "Hyperbola, jejíž střed S je totožný s počátkem soustavy souřadnic a jejíž hlavní osa je totožná"

Transkript

1 Hyperol Hyperol je množin odů, které mjí tu vlstnost, že solutní hodnot rozdílu jejich vzdáleností od dvou dných různých odů E, F je rovn kldné konstntě. Zkráceně: Hyperol = {X ; EX FX = }; kde symolem znčíme rovinu. Konstnty,, e jsou po řdě velikost hlvní poloosy, velikost vedlejší poloosy excentricit hyperoly. Pltí pro ně vzth: e = +. Body A, B jsou vrcholy hyperoly, ody E, F nzýváme ohnisk hyperoly. Střed úsečky EF je středem hyperoly S. Přímky p, q zveme symptoty hyperoly. Oě procházejí středem hyperoly S nemjí s hyperolou žádný společný od. Jejich směrnice jsou (u hyperoly n orázku výše) resp. (u hyperoly n orázku níže). Hyperol, jejíž střed S je totožný s počátkem soustvy souřdnic jejíž hlvní os je totožná x y s osou x, má rovnici: 1, kde je velikost hlvní poloosy hyperoly, velikost vedlejší poloosy hyperoly. Tento přípd je vyorzen n orázku nhoře. Zde konkrétně =, =, e = 1, S = [; ], E = [ 1 ; ], F = [ 1 ; ], A = [ ; ], B = [; ]. Přímk p je dán rovnicí x y =, přímk q je dán rovnicí x + y =.

2 Hyperol, jejíž střed S je totožný s počátkem soustvy souřdnic jejíž hlvní os je totožná x y s osou y, má rovnici: 1, kde je velikost hlvní poloosy hyperoly, velikost vedlejší poloosy hyperoly. Tento přípd je vyorzen n orázku níže. Zde konkrétně =, =, e = 1, S = [; ], E = [; 1 ], F = [; 1 ], A = [; ], B = [; ]. Přímk p je dán rovnicí x y =, přímk q je dán rovnicí x + y =. Hyperol se středem S = [m; n], jejíž hlvní os je rovnoěžná s osou x má rovnici: x m y n 1 kde je velikost hlvní poloosy hyperoly, velikost vedlejší poloosy hyperoly. Hyperol se středem S = [m; n], jejíž hlvní os je rovnoěžná s osou y má rovnici: x m y n 1 kde je velikost hlvní poloosy hyperoly, velikost vedlejší poloosy hyperoly. Výše uvedené čtyři rovnice zveme osové rovnice hyperoly. Př. 1. Zjistěte velikosti poloos souřdnice středu ohnisek hyperoly H. Dále npište oecné rovnice symptot této hyperoly. H: 9x 16y 9x 96y 95

3 Řešení: Rovnici uprvíme n osový tvr (viz příkld 7). Z oecné rovnice lze totiž rozeznt pouze fkt, že se jedná o hyperolu. 9x 16y 9x 96y 95 Přerovnáme. 9x 9x 16y 96y 95 Vytkneme. 9 x 1x16y 6y 95 Doplníme. 1x 516y 6y x Slíme y 576 x 5 y x Vydělíme zkrátíme S = [5; ], = 8, = 6, hlvní os rovnoěžná s osou x Nyní určíme výstřednost elipsy ze vzthu: e = +. Výstřednost e = 1. Jestliže je hlvní os hyperoly rovnoěžná s osou x, udou mít ohnisk stejné y ové souřdnice jko střed S hyperoly. Tedy E = [x 1 ; ], F = [x ; ]. X ové souřdnice ohnisek dopočítáme sndno, víme totiž, že ohnisk mjí od středu S vzdálenost rovnu e. x 1 = 5 1 = 5 x = = 15 Ohnisk mjí tedy souřdnice E = [ 5; ], F = [1; ]. Nyní přikročíme k určení rovnic symptot hyperoly. K tomu potřeujeme znát jejich liovolný od (tím je od S) jejich směrové vektory (resp. směrnice k). Směrnice symptot určíme ze vzthu k. 6 k 8 Asymptot 1 ude mít rovnici: y x q. Koeficient q vypočítáme doszením souřdnic středu S = [5; ] hyperoly. 7 5 q q 1 : 7 y x Tuto rovnici převedeme do oecného tvru: 1 : x y 7 = Asymptot ude mít rovnici: y x q. Koeficient q vypočítáme doszením souřdnic středu S = [5; ] hyperoly. 5 q q : y x Tuto rovnici vyjádříme v oecném tvru: : x + y =

4 Vzájemná poloh přímky hyperoly Vzájemnou polohu přímky hyperoly zjišťujeme řešením soustvy jejich rovnic. Postupujeme vždy tk, že z rovnice přímky doszujeme do rovnice hyperoly. Přímku, která má s hyperolou společné ody, zveme sečnou hyperoly. Přímku, která má s hyperolou jeden společný od, zveme ) tečnou hyperoly, pkliže není rovnoěžná s žádnou z symptot hyperoly, ) symptotickou sečnou hyperoly, je-li rovnoěžná s některou z symptot hyperoly. Přímku, která nemá s hyperolou společný od není její symptotou, zveme nesečnou hyperoly. y sečn nesečn x symptotická sečn tečn Př. 11. Zjistěte vzájemnou polohu přímky 1x y = hyperoly x y = 6. Řešení: Z rovnice přímky vyjádříme npř. proměnnou y dosdíme ji do rovnice hyperoly. 1x y = 1 y x 1 x x x x x x 1x 6x x 1x 6x x 6x 16 x 1x x x = 5 y 5 6

5 Přímk hyperol mjí jeden společný od [5; 6]. Čistě teoreticky se tedy může jednt o tečnu či symptotickou sečnu hyperoly. Jk si mezi nimi vyrt? Jednoduše. Zjistíme velikost hlvní vedlejší poloosy hyperoly porovnáme směrnici zdné přímky se směrnicí symptot. Rovnici hyperoly nejdříve uprvíme n osový tvr. Dostneme rovnici: x y 1 =, = 8, S = [; ], hlvní os hyperoly je totožná s osou x Směrnice symptot této hyperoly k. Směrnice zdné přímky k. Přímk je tedy tečnou hyperoly s odem dotyku T = [5; 6]. Pozn. Dospějeme-li při řešení soustvy rovnic přímky hyperoly ke kvdrtické rovnici, můžou nstt pouze tyto tři možnosti: přímk je tečn, sečn či nesečn hyperoly. V přípdě, že ychom dospěli k lineární rovnici, jednlo y se o symptotickou sečnu. Kdyy nám vyšel nějký nesmysl (npř. 5 = pod.), jednlo y se přímo o symptotu hyperoly. Př. Již víme, že npříkld přímk y = x + 5 ude symptotickou sečnou dné hyperoly, jelikož její směrnice k =. Zkusíme dosdit do rovnice hyperoly uvidíme, co se stne. x y = 6 x (x + 5) = 6 x (x + x + 5) = 6 x = 89 Toto je lineární rovnice, přímk je symptotickou sečnou hyperoly x y 5 Průsečík přímky s hyperolou P 1 ; 1. Př. Již víme, že přímk y = x je symptotou dné hyperoly, jelikož její směrnice k = prochází odem S = [; ]. Zkusíme dosdit uvidíme. x y = 6 x (x) = 6 x x = 6 = 6 to je nesmysl Pozn. Všimněte si, že u zdné hyperoly pltí nerovnost <. To y se u elipsy stát nemohlo. N závěr pro úplnost dodávám rovnice tečen k hyperole (v tomto textu jsme je nepoužili). HYPERBOLA TEČNA s odem dotyku T = [x ; y ] x m y n x mx m y n y n 1 x m y n x mx m y n y n 1 1 1

6 Prol Prol je množin všech odů roviny, které mjí od dného odu F roviny dné přímky d roviny, která neprochází odem F, stejnou vzdálenost. Prol je nestředová kuželosečk. Zkráceně: Prol = {X ; FX = v(d;x); F d }; kde symolem znčíme rovinu. Bod F se nzývá ohnisko proly, přímk d řídící přímk proly. Přímk o vedená ohniskem F kolmo k řídící přímce d se zve os proly. Vzdálenost ohnisk F od řídící přímky d se nzývá prmetr proly, p = FD, kde od D je průsečík přímek o d. Vrchol V proly je střed úsečky FD. Prol s prmetrem p, která má vrchol v počátku soustvy souřdnic ohnisko n ose x, má rovnici: y = px (leží-li ohnisko n kldné poloose x viz or. níže) y = px (leží-li ohnisko n záporné poloose x) Prol s prmetrem p, která má vrchol v počátku soustvy souřdnic ohnisko n ose y, má rovnici: x = py (leží-li ohnisko n kldné poloose y) x = py (leží-li ohnisko n záporné poloose y) Prol s prmetrem p, která má vrchol V = [m; n] jejíž os je rovnoěžná s osou x, má rovnici: I. (y n) = p(x m) (leží-li ohnisko nprvo od vrcholu V ) II. (y n) = p(x m) (leží-li ohnisko nlevo od vrcholu V ) Prol s prmetrem p, která má vrchol V = [m; n] jejíž os je rovnoěžná s osou y, má rovnici: III. (x m) = p(y n) (leží-li ohnisko nd vrcholem V ) IV. (x m) = p(y n) (leží-li ohnisko pod vrcholem V ). Tyto rovnice oznčujeme jko vrcholové tvry rovnice proly (viz přehled n konci textu). Př. 1. Npište rovnici proly rovnici řídící přímky proly, jestliže: ) vrchol V = [ ; 1], prol prochází odem A = [; ] má osu rovnoěžnou s osou y, ) vrchol V = [; ], ohnisko F = [; ], 7 c) prol prochází ody A = ;, B = ;, C = 1; 7.

7 Řešení: ) Má-li mít prol osu rovnoěžnou s osou y, ude mít rovnici uď (x + ) = p(y 1) neo (x + ) = p(y 1). Jestliže má prol procházet odem A, jehož y ová souřdnice je větší než 1 (tj. od A leží výš než vrchol proly ), musí mít logicky rovnici (x + ) = p(y 1) (typ III.). Prmetr p určíme, když do této rovnice dosdíme souřdnice odu A. ( + ) = p( 1) p = 1 Prol má rovnici (x + ) = (y 1). p Řídící přímk proly III. typu má rovnici y n resp. p y n (viz přehled n konci textu). 1 Prmetr proly p = 1, n = 1. Řídící přímk d proly má tedy rovnici y. y x d... ) V = [; ], F = [; ] Vrchol i ohnisko leží ve stejné výšce. Prol ude tedy nležto jelikož ohnisko leží vlevo od vrcholu, ude mít rovnici: (y ) = p(x ) (II. typ). Zývá dořešit prmetr p. Pro ten pltí: p = VF = 6. Prol má tedy rovnici: (y ) = 1(x ). Řídící přímk proly II. typu má rovnici p x m resp.. p x m p = 6, m = Rovnice řídící přímky je x 6 =.

8 7 1 c) A = ;, B = ;, C = 1; 7. Nejdřív si ody A, B, C zkreslíme do krtézské soustvy souřdnic. Když se tk n orázek vprvo zdíváme, připdjí v úvhu dvě možnosti: 1) prol tvru kopečku s vrcholem někde v I. kvdrntu (typ IV.) ) prol nležto s vrcholem někde ve III. kvdrntu (typ I.) d1) Prol má rovnici (x m) = p(y n). Body A, B, C leží n této prole, čili jejich souřdnice musejí vyhovovt rovnici proly. Po jejich doszení održíme rovnice o třech neznámých m, n, p. m p, 5 n A: B: m p, 5 n C: 1 m p 7 n Nejdřív odečteme druhou rovnici od první. m m p,5 n p, 5 n m 16 8m m 7 p p 8m 16 8p p = m Teď odečteme třetí rovnici od druhé. m 1 m p,5 n p 7 n 16 8m m 1 m m p np 1 p np 1m m 15 p p m 1 15 Pořád se jedná o týž prmetr p, tkže je dáme do rovnosti. m 1 m m m 6 = m Dopočítáme prmetr p. p = m = 1 Z liovolné rovnice dopočítáme n. m p, 5 n 9, 5 n 9 7 n n = 1 Prol má rovnici (x ) = (y 1). p Řídící přímk proly typu IV. má rovnici y n resp.. p y n p = 1, n = 1 Řídící přímk d 1 má rovnici y 1,5 =.

9 d) Prol má rovnici (y n) = p(x m). Body A, B, C leží n této prole, čili jejich souřdnice musejí vyhovovt rovnici proly. Po jejich doszení održíme rovnice o třech neznámých m, n, p.,5 n p m A: B:,5 n p m C: 7 n p1 m Postupovt udeme úplně stejně jko v prvním přípdě. Nejdřív odečteme druhou rovnici od první.,5 n,5 n p m p m 1,5 7n n,5 n n pm 8p pm 1 8n 8p p = n 1,5 Teď odečteme třetí rovnici od druhé.,5 n 7 n p m p 1 m,5 n n 9 1n n 8p pm p pm 8,75 15n 1 p p 1,5n, 875 Pořád se jedná o týž prmetr p, tkže je dáme do rovnosti. n 1,5 1,5 n,875,5n,75 n = 6,75 Dopočítáme prmetr p. p = n 1,5 = 5,5 Z liovolné rovnice dopočítáme m.,5 n p m 1,565 1,5m m = Prol má rovnici 7 y 1,565 = 1, x. 168 Řídící přímk proly I. typu má rovnici p x m resp.. p x m p = 5,5 = ; m = Řídící přímk d má rovnici x =, čili x. 8

10 Př. 1. Určete všechny prmetry proly y + 6x + 8y + =. Řešení: Rovnici uprvíme n vrcholový tvr. y + 6x + 8y + = y + 8y = 6x Přičteme co je tře. y + 8y + 16 = 6x + 16 Vlevo slíme, vprvo sečteme vytkneme. y 6x Z vrcholové rovnice přímo plyne: V = [ ; ], p =, prol ude nležto s ohniskem F = [x; ] vlevo od vrcholu. p p = x =,5 ohnisko F = [,5; ] Řídící přímk d je rovnoěžná s osou y, její rovnice má tvr x =. Leží vprvo od proly. p = + 1,5 d: x + 1,5 = Vzájemná poloh přímky proly Vzájemnou polohu přímky proly zjišťujeme řešením soustvy jejich rovnic. Přímku, která má s prolou společné ody, zveme sečnou proly. Přímku, která má s prolou jeden společný od, zveme ) tečnou proly, pkliže není rovnoěžná s osou proly, ) symptotickou sečnou proly, pkliže je rovnoěžná s osou proly. Přímku, která nemá s prolou společný od, nzýváme nesečnou proly. PARABOLA TEČNA s odem dotyku T = [x ; y ] y = px yy px px y = px yy px px x = py xx py py x = py xx py py (y n) = p(x m) y n y n px m px m (y n) = p(x m) y n y n px m px m (x m) = p(y n) x mx m py n py n (x m) = p(y n) x mx m py n py n Př. 1. Určete vzájemnou polohu přímky y = proly y = x. Řešení: Řešíme soustvu jejich rovnic. Postupujeme stejně jko u osttních kuželoseček. y = y = Dosdíme do rovnice proly. y = x 9 9 = x x = 9 Prol přímk mjí jeden společný od [ ; ]. Přímk tedy může ýt uď tečnou neo symptotickou sečnou proly. Vrchol proly má souřdnice V = [; ], osou proly je

11 tudíž přímo os x. Vzhledem k tomu, že přímk y = je rovnoěžná s osou x, je tedy symptotickou sečnou proly. Pozn. Podoně jko u hyperoly přímky, i zde pltí: dospějeme-li při řešení soustvy rovnic přímky proly k lineární rovnici, je přímk utomticky symptotickou sečnou proly. Př. 15. Bodem M = [; 1] veďte tečnu k prole (y + 1) = x. Prol má vrchol V = [; 1], její os je rovnoěžná s osou x, p = 1, ohnisko proly má souřdnice F = [,5; 1]. Zřejmě od M je vnějším odem proly lze jím vést tečny k prole. Ty udou mít rovnice y 1 y 1 x x, kde T = [x ; y ] je odem dotyku tečny s prolou. Bod M je odem tečny, jeho souřdnice musí vyhovovt rovnici tečny. 1 1 y 1 x y 1 x x y T je odem proly, jeho souřdnice musí vyhovovt rovnici proly. (y + 1) = x Z x dosdíme výrz y. (y + 1) = ( y ) y y 1 y 8 y y 7 D =, D y 1 Pro oě y dopočítáme x. 6 x y 1 1 Získli jsme dv ody dotyku: T 6 ;1, 6 ;1 1 T. Jejich souřdnice dosdíme zpět do rovnice tečny získáme rovnice tečen t 1 t : t 1 : y 11 1 x 6 y 1 x 6 y y x 6 x y

12 t : y 11 1 x 6 y 1 x 6 y y x 6 x y Pro ilustrci je celá situce znázorněn n orázku nhoře (od T 1 se n orázek nevešel). Prolický přehled: I. II. III. IV.

Hledání hyperbol

Hledání hyperbol 759 Hledání hyperol Předpokldy: 756, 757, 758 Pedgogická poznámk: Některé příkldy jsou zdlouhvější, pokud mám dosttek čsu proírám tuto následující hodinu ěhem tří vyučovcích hodin Př : Npiš rovnici hyperoly,

Více

14 Kuželosečky v základní poloze

14 Kuželosečky v základní poloze 4 Kuželosečk v zákldní poloze Následující tet 4 7 se týkjí geometrie v rovině. Až dosud jsme studovli útvr lineární (v nltickém vjádření l vžd proměnné,, z v první mocnině). Nní se udeme zývt některými

Více

Hyperbola a přímka

Hyperbola a přímka 7.5.8 Hperol přímk Předpokld: 75, 75, 755, 756 N orázku je nkreslen hperol = se středem v počátku soustv souřdnic. Jká je vzájemná poloh této hperol přímk, která prochází počátkem soustv souřdnic? E B

Více

Analytická geometrie kvadratických útvarů v rovině

Analytická geometrie kvadratických útvarů v rovině Analytická geometrie kvadratických útvarů v rovině V následujícím textu se budeme postupně zabývat kružnicí, elipsou, hyperbolou a parabolou, které souhrnně označujeme jako kuželosečky. Současně budeme

Více

ANALYTICKÁ GEOMETRIE V PROSTORU

ANALYTICKÁ GEOMETRIE V PROSTORU ANALYTICKÁ GEOMETRIE V PROSTORU 3. přednášk Vektorová lger Prvoúhlé souřdnice odu v prostoru Poloh odu v prostoru je vzhledem ke třem osám k soě kolmým určen třemi souřdnicemi, které tvoří uspořádnou trojici

Více

7.5.8 Středová rovnice elipsy

7.5.8 Středová rovnice elipsy 758 Středová rovnice elips Předpokld: 7501, 7507 Př 1: Vrchol elips leží v odech A[ 1;1], [ 3;1], [ 1;5], [ 1; 3] elips souřdnice jejích ohnisek Urči prmetr Zdné souřdnice už n první pohled vpdjí podezřele,

Více

( t) ( t) ( t) Nerovnice pro polorovinu. Předpoklady: 7306

( t) ( t) ( t) Nerovnice pro polorovinu. Předpoklady: 7306 7.3.8 Nerovnice pro polorovinu Předpokldy: 736 Pedgogická poznámk: Příkld 1 není pro dlší průěh hodiny důležitý, má smysl pouze jko opkování zplnění čsu při zpisování do třídnice. Nemá smysl kvůli němu

Více

obecná rovnice kružnice a x 2 b y 2 c x d y e=0 1. Napište rovnici kružnice, která má střed v počátku soustavy souřadnic a prochází bodem A[-3;2].

obecná rovnice kružnice a x 2 b y 2 c x d y e=0 1. Napište rovnici kružnice, která má střed v počátku soustavy souřadnic a prochází bodem A[-3;2]. Kružnice množina bodů, které mají od středu stejnou vzdálenost pojmy: bod na kružnici X [x, y]; poloměr kružnice r pro střed S[0; 0]: SX =r x 0 2 y 0 2 =r x 2 y 2 =r 2 pro střed S[m; n]: SX =r x m 2 y

Více

56. ročník Matematické olympiády. b 1,2 = 27 ± c 2 25

56. ročník Matematické olympiády. b 1,2 = 27 ± c 2 25 56. ročník Mtemtické olympiády Úlohy domácí části I. kol ktegorie 1. Njděte všechny dvojice (, ) celých čísel, jež vyhovují rovnici + 7 + 6 + 5 + 4 + = 0. Řešení. Rovnici řešíme jko kvdrtickou s neznámou

Více

DUM č. 11 v sadě. Ma-2 Příprava k maturitě a PZ geometrie, analytická geometrie, analýza, komlexní čísla

DUM č. 11 v sadě. Ma-2 Příprava k maturitě a PZ geometrie, analytická geometrie, analýza, komlexní čísla projekt GML Brno Docens DUM č. v sdě M- Příprv k mturitě PZ geometrie, nltická geometrie, nlýz, komlení čísl 4. Autor: Mgd Krejčová Dtum: 3.8.3 Ročník: mturitní ročník Anotce DUMu: Anltická geometrie v

Více

Výpočet obsahu rovinného obrazce

Výpočet obsahu rovinného obrazce Výpočet oshu rovinného orzce Pro výpočet oshu čtverce, odélník, trojúhelník, kružnice, dlších útvrů, se kterými se můžeme setkt v elementární geometrii, máme k dispozici vzorce Kdchom chtěli vpočítt osh

Více

Lineární nerovnice a jejich soustavy

Lineární nerovnice a jejich soustavy teorie řešené úlohy cvičení tipy k mturitě výsledky Lineární nerovnice jejich soustvy Víš, že pojem nerovnice není opkem pojmu rovnice? lineární rovnice má většinou jediné řešení, kdežto lineární nerovnice

Více

1.1 Napište středovou rovnici kružnice, která má střed v počátku soustavy souřadnic a prochází bodem

1.1 Napište středovou rovnici kružnice, která má střed v počátku soustavy souřadnic a prochází bodem Analytická geometrie - kružnice Napište středovou rovnici kružnice, která má střed v počátku soustavy souřadnic a prochází bodem A = ; 5 [ ] Napište středový i obecný tvar rovnice kružnice, která má střed

Více

Středová rovnice hyperboly

Středová rovnice hyperboly 757 Středová rovnice hperol Předpokld: 7508, 75, 756 Př : Nkresli orázek, vpočti souřdnice vrcholů, ecentricitu urči rovnice smptot hperol se středem v počátku soustv souřdnic, pokud je její hlvní os totožná

Více

7 Analytická geometrie

7 Analytická geometrie 7 Anlytiká geometrie 7. Poznámk: Když geometriké prolémy převedeme pomoí modelu M systému souřdni n lgeriké ritmetiké prolémy pk mluvíme o nlytiké geometrii neo též o metodě souřdni užité v geometrii.

Více

10. Analytická geometrie kuželoseček 1 bod

10. Analytická geometrie kuželoseček 1 bod 10. Analytická geometrie kuželoseček 1 bod 10.1. Kružnice opsaná obdélníku ABCD, kde A[2, 3], C[8, 3], má rovnici a) x 2 10x + y 2 + 7 = 0, b) (x 3) 2 + (y 3) 2 = 36, c) x 2 + 10x + y 2 18 = 0, d) (x 10)

Více

Při výpočtu obsahu takto omezených rovinných oblastí mohou nastat následující základní případy : , osou x a přímkami. spojitá na intervalu

Při výpočtu obsahu takto omezených rovinných oblastí mohou nastat následující základní případy : , osou x a přímkami. spojitá na intervalu Geometrické plikce určitého integrálu Osh rovinné olsti Je-li ploch ohrničen křivkou f () osou Při výpočtu oshu tkto omezených rovinných olstí mohou nstt následující zákldní přípd : Nechť funkce f () je

Více

x + F F x F (x, f(x)).

x + F F x F (x, f(x)). I. Funkce dvou více reálných proměnných 8. Implicitně dné funkce. Budeme se zbývt úlohou, kdy funkce není zdná přímo předpisem, který vyjdřuje závislost její hodnoty n hodnotách proměnných. Jeden z možných

Více

MATEMATIKA PŘÍKLADY NA PROCVIČENÍ Kuželosečky

MATEMATIKA PŘÍKLADY NA PROCVIČENÍ Kuželosečky MATEMATIKA PŘÍKLADY NA PROCVIČENÍ Kuželosečk 1 Rozhodněte, jká kuželosečk je popsán rovnií Npište prmetriký popis této křivk. + 6++6=0. Npište oené rovnie tečen křivk v jejíh průsečííh s osou. Provedemeúprvurovnienúplnýčtverevproměnné

Více

KVADRATICKÁ FUNKCE (vlastnosti, grafy)

KVADRATICKÁ FUNKCE (vlastnosti, grafy) KVADRATICKÁ FUNKCE (vlstnosti, gr) Teorie Kvdrtikou unkí se nzývá kždá unke dná předpisem ; R,, R; D( ) je proměnná z příslušného deiničního ooru unke (nejčstěji množin R),, jsou koeiient kvdrtiké unke,

Více

7.5.8 Středová rovnice elipsy

7.5.8 Středová rovnice elipsy 758 Středová rovnice elips Předpokld: 750, 7507 Př : Vrchol elips leží v odech A[ ;], B [ 3;], [ ;5], [ ; 3] elips souřdnice jejích ohnisek Urči prmetr Zdné souřdnice už n první pohled vpdjí podezřele,

Více

ANALYTICKÁ GEOMETRIE HYPERBOLY

ANALYTICKÁ GEOMETRIE HYPERBOLY Projekt ŠABLONY NA GVM Gymnázium Velké Meziříčí registrační číslo projektu: CZ.1.07/1.5.00/34.0948 IV-2 Inovace a zkvalitnění výuky směřující k rozvoji matematické gramotnosti žáků středních škol ANALYTICKÁ

Více

Jsou to rovnice, které obsahují neznámou nebo výraz s neznámou jako argument logaritmické funkce.

Jsou to rovnice, které obsahují neznámou nebo výraz s neznámou jako argument logaritmické funkce. Logritmické rovnice Jsou to rovnice, které oshují neznámou neo výrz s neznámou jko rgument ritmické funkce. Zákldní rovnice, 0 řešíme pomocí vzthu. Složitější uprvit n f g potom f g (protože ritmická funkce

Více

3. APLIKACE URČITÉHO INTEGRÁLU

3. APLIKACE URČITÉHO INTEGRÁLU APLIKACE URČITÉHO INTEGRÁLU APLIKACE URČITÉHO INTEGRÁLU V mtemtice, le zejmén v přírodních technických vědách, eistuje nepřeerné množství prolémů, při jejichž řešení je nutno tím či oním způsoem použít

Více

VZOROVÝ TEST PRO 3. ROČNÍK (3. A, 5. C)

VZOROVÝ TEST PRO 3. ROČNÍK (3. A, 5. C) VZOROVÝ TEST PRO 3. ROČNÍK (3. A, 5. C) max. 3 body 1 Zjistěte, zda vektor u je lineární kombinací vektorů a, b, je-li u = ( 8; 4; 3), a = ( 1; 2; 3), b = (2; 0; 1). Pokud ano, zapište tuto lineární kombinaci.

Více

17 Kuželosečky a přímky

17 Kuželosečky a přímky 17 Kuželosečky a přímky 17.1 Poznámka: Polára bodu M ke kuželosečce Nechť X = [x 0,y 0 ] je bod. Zavedeme následující úpravy: x x 0 x y y 0 y xy (x 0 y + xy 0 )/ x (x 0 + x)/ y (y 0 + y)/ (x m) (x 0 m)(x

Více

KVADRATICKÉ FUNKCE. + bx + c, největší hodnotu pro x = a platí,

KVADRATICKÉ FUNKCE. + bx + c, největší hodnotu pro x = a platí, KVADRATICKÉ FUNKCE Definice Kvadratická funkce je každá funkce na množině R (tj. o definičním ooru R), daná ve tvaru y = ax + x + c, kde a je reálné číslo různé od nuly,, c, jsou liovolná reálná čísla.

Více

Gymnázium, Brno, Elgartova 3

Gymnázium, Brno, Elgartova 3 Gymnázium, Brno, Elgartova 3 GE - Vyšší kvalita výuky CZ.1.07/1.5.00/34.0925 IV/2 Inovace a zkvalitnění výuky směřující k rozvoji matematické gramotnosti žáků středních škol Téma: Analytická geometrie

Více

X = A + tu. Obr x = a 1 + tu 1 y = a 2 + tu 2, t R, y = kx + q, k, q R (6.1)

X = A + tu. Obr x = a 1 + tu 1 y = a 2 + tu 2, t R, y = kx + q, k, q R (6.1) .6. Analtická geometrie lineárních a kvadratických útvarů v rovině. 6.1. V této kapitole budeme studovat geometrické úloh v rovině analtick, tj. lineární a kvadratické geometrické útvar vjádříme pomocí

Více

Logaritmická funkce teorie

Logaritmická funkce teorie Výukový mteriál pro předmět: MATEMATIKA reg. č. projektu CZ..07/..0/0.0007 Logritmická funkce teorie Eponenciální funkce je funkce prostá, proto k ní eistuje inverzní funkce. Tto inverzní funkce se nzývá

Více

MENDELOVA UNIVERZITA V BRNĚ MATEMATIKA K PŘIJÍMACÍM ZKOUŠKÁM NA PEF

MENDELOVA UNIVERZITA V BRNĚ MATEMATIKA K PŘIJÍMACÍM ZKOUŠKÁM NA PEF MENDELOVA UNIVERZITA V BRNĚ MATEMATIKA K PŘIJÍMACÍM ZKOUŠKÁM NA PEF RNDr. Petr Rádl RNDr. Bohumil Černá RNDr. Ludmil Strá 0 Petr Rádl, 0 ISBN 97-0-77-9- OBSAH Předmluv... Poždvky k přijímcí zkoušce z mtemtiky..

Více

( t) ( t) ( ( )) ( ) ( ) ( ) Vzdálenost bodu od přímky I. Předpoklady: 7308

( t) ( t) ( ( )) ( ) ( ) ( ) Vzdálenost bodu od přímky I. Předpoklady: 7308 731 Vzdálenost odu od římky I Předokldy: 7308 Pedgogiká oznámk: Pokud máte málo čsu, můžete odvodit vzore ez smosttné ráe studentů oužít některý z říkldů z dlší hodiny Tím jednu ze dvou hodin ro vzdálenost

Více

Funkce jedné proměnné

Funkce jedné proměnné Funkce jedné proměnné Lineární funkce f: y = kx + q, D f = R, H f = R, grf je přímk množin odů [x, y], x D f, y = f(x) q úsek n ose y, tj. od [0, q], k směrnice, k = tn φ = 2 2 1 1, A[ 1, 2 ], B[ 1, 2

Více

Michal Zamboj. December 23, 2016

Michal Zamboj. December 23, 2016 Meziřádky mezi kuželosečkami - doplňkový materiál k přednášce Geometrie Michal Zamboj December 3, 06 Pozn. Najdete-li chybu, neváhejte mi napsat, může to ušetřit tápání Vašich kolegů. Pozn. v dokumentu

Více

ANALYTICKÁ GEOMETRIE LINEÁRNÍCH ÚTVARŮ V ROVINĚ

ANALYTICKÁ GEOMETRIE LINEÁRNÍCH ÚTVARŮ V ROVINĚ ANALYTICKÁ GEOMETRIE LINEÁRNÍCH ÚTVARŮ V ROVINĚ Parametrické vyjádření přímky v rovině Máme přímku p v rovině určenou body A, B. Sestrojíme vektor u = B A. Pro bod B tím pádem platí: B = A + u. Je zřejmé,

Více

Michal Zamboj. January 4, 2018

Michal Zamboj. January 4, 2018 Meziřádky mezi kuželosečkami - doplňkový materiál k přednášce Geometrie Michal Zamboj January 4, 018 Pozn. Najdete-li chybu, neváhejte mi napsat, může to ušetřit tápání Vašich kolegů. Pozn. v dokumentu

Více

3.1.3 Vzájemná poloha přímek

3.1.3 Vzájemná poloha přímek 3.1.3 Vzájemná poloh přímek Předpokldy: 3102 Dvě různé přímky v rovině mximálně jeden společný od Jeden společný od průsečík různoěžné přímky (různoěžky) P Píšeme: P neo = { P} Žádný společný od rovnoěžné

Více

Definice: Kružnice je množina bodů v rovině, které mají od daného bodu (střed S) stejnou vzdálenost

Definice: Kružnice je množina bodů v rovině, které mají od daného bodu (střed S) stejnou vzdálenost Kuželosečky Kružnice Definice: Kružnice je množina bodů v rovině, které mají od daného bodu (střed S) stejnou vzdálenost (poloměr r).?! Co získáme, když v definici výraz stejnou nahradíme stejnou nebo

Více

(1) přičemž všechny veličiny uvažujeme absolutně. Její úpravou získáme vztah + =, (2) Přímé zvětšení Z je dáno vztahem Z = =, a a

(1) přičemž všechny veličiny uvažujeme absolutně. Její úpravou získáme vztah + =, (2) Přímé zvětšení Z je dáno vztahem Z = =, a a Úloh č. 3 Měření ohniskové vzdálenosti tenkých čoček 1) Pomůcky: optická lvice, předmět s průhledným milimetrovým měřítkem, milimetrové měřítko, stínítko, tenká spojk, tenká rozptylk, zdroj světl. ) Teorie:

Více

6. a 7. března Úloha 1.1. Vypočtěte obsah obrazce ohraničeného parabolou y = 1 x 2 a osou x.

6. a 7. března Úloha 1.1. Vypočtěte obsah obrazce ohraničeného parabolou y = 1 x 2 a osou x. KMA/MAT Přednášk cvičení č. 4, Určitý integrál 6. 7. březn 17 1 Aplikce určitého integrálu 1.1 Počáteční úvhy o výpočtu obshu geometrických útvrů v rovině Úloh 1.1. Vypočtěte obsh obrzce ohrničeného prbolou

Více

2.cvičení. 1. Polopřímka: bod O dělí přímku na dvě navzájem opačné polopřímky.

2.cvičení. 1. Polopřímka: bod O dělí přímku na dvě navzájem opačné polopřímky. 2.cvičení 1. Polopřímk: od O dělí přímku n dvě nvzájem opčné polopřímky. Úsečk: průnik dvou polopřímek,. Polorovin: přímk dělí rovinu n dvě nvzájem opčné poloroviny. Úhel: průnik polorovin (pozor n speciální

Více

Komplexní čísla. Pojem komplexní číslo zavedeme při řešení rovnice: x 2 + 1 = 0

Komplexní čísla. Pojem komplexní číslo zavedeme při řešení rovnice: x 2 + 1 = 0 Komplexní čísl Pojem komplexní číslo zvedeme př řešení rovnce: x 0 x 0 x - x Odmocnn ze záporného čísl reálně neexstuje. Z toho důvodu se oor reálných čísel rozšíří o dlší číslo : Všechny dlší odmocnny

Více

Větu o spojitosti a jejich užití

Větu o spojitosti a jejich užití 0..7 Větu o spojitosti jejich užití Předpokldy: 706, 78, 006 Pedgogická poznámk: Při proírání této hodiny je tře mít n pměti, že všechny věty, které studentům sdělujete z jejich pohledu neuvěřitelně složitě

Více

Digitální učební materiál

Digitální učební materiál Digitální učení mteriál Číslo projektu CZ.1.07/1.5.00/34.080 Název projektu Zkvlitnění výuky prostřednictvím ICT Číslo název šlony klíčové ktivity III/ Inovce zkvlitnění výuky prostřednictvím ICT Příjemce

Více

2.8.5 Lineární nerovnice s parametrem

2.8.5 Lineární nerovnice s parametrem 2.8.5 Lineární nerovnice s prmetrem Předpokldy: 2208, 2802 Pedgogická poznámk: Pokud v tom necháte studenty vykoupt (což je, zdá se, jediné rozumné řešení) zere tto látk tk jednu půl vyučovcí hodiny (první

Více

4.4.3 Kosinová věta. Předpoklady:

4.4.3 Kosinová věta. Předpoklady: 443 Kosinová vět Předpokldy 44 Př Rozhodni zd dokážeme spočítt zývjíí strny úhly u všeh trojúhelníků zdnýh pomoí trojie prvků (délek strn velikostí úhlů) V sinové větě vystupují dvě dvojie strn-protější

Více

Křivkový integrál prvního druhu verze 1.0

Křivkový integrál prvního druhu verze 1.0 Křivkový integrál prvního druhu verze. Úvod Následující text popisuje výpočet křivkového integrálu prvního druhu. Měl by sloužit především studentům předmětu MATEMAT k příprvě n zkoušku. Mohou se v něm

Více

Konstrukce na základě výpočtu II

Konstrukce na základě výpočtu II 3.3.1 Konstruke n zákldě výpočtu II Předpokldy: 030311 Př. 1: Jsou dány úsečky o délkáh,,. Sestroj úsečku o déle =. Njdi oený postup, jk sestrojit ez měřítk poždovnou úsečku pro liovolné konkrétní délky

Více

GEOMETRICKÉ APLIKACE INTEGRÁLNÍHO POČTU

GEOMETRICKÉ APLIKACE INTEGRÁLNÍHO POČTU Integální počet funkcí jedné eálné poměnné - 4. - GEOMETRICKÉ APLIKACE INTEGRÁLNÍHO POČTU PŘÍKLAD Učete plochu pod gfem funkce f ( x) = sinx n intevlu,. Ploch pod gfem nezáponé funkce f(x) se n intevlu,

Více

Kapitola 5. Seznámíme se ze základními vlastnostmi elipsy, hyperboly a paraboly, které

Kapitola 5. Seznámíme se ze základními vlastnostmi elipsy, hyperboly a paraboly, které Kapitola 5 Kuželosečky Seznámíme se ze základními vlastnostmi elipsy, hyperboly a paraboly, které společně s kružnicí jsou známy pod společným názvem kuželosečky. Říká se jim tak proto, že každou z nich

Více

Konstrukce na základě výpočtu I

Konstrukce na základě výpočtu I .4.11 Konstruke n zákldě výpočtu I Předpokldy: Pedgogiká poznámk: Je důležité si uvědomit, že následujíí sled příkldů neslouží k tomu, y si žái upevnili mehniký postup n dělení úseček. Jediné, o y si měli

Více

ANALYTICKÁ GEOMETRIE INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ

ANALYTICKÁ GEOMETRIE INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ ANALYTICKÁ GEOMETRIE Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro vyšší gymnázia Autoři projektu Student na prahu 21. století - využití ICT ve vyučování matematiky na gymnáziu

Více

Definice Tečna paraboly je přímka, která má s parabolou jediný společný bod,

Definice Tečna paraboly je přímka, která má s parabolou jediný společný bod, 5.4 Parabola Parabola je křivka, která vznikne řezem rotační kuželové plochy rovinou, jestliže odchylka roviny řezu od osy kuželové plochy je stejná jako odchylka povrchových přímek plochy a rovina řezu

Více

Matematické metody v kartografii

Matematické metody v kartografii Mtemtické metody v krtogrfii. Přednášk Referenční elipsoid zákldní vzthy. Poloměry křivosti. Délky poledníkového rovnoběžkového oblouku. 1. Zákldní vzthy n rotčním elipoidu Rotční elipsoid dán následujícími

Více

ANALYTICKÁ GEOMETRIE

ANALYTICKÁ GEOMETRIE Technická niverzit v Liberci Fklt přírodovědně-hmnitní pedgogická Ktedr mtemtiky didktiky mtemtiky NLYTICKÁ GEOMETRIE Pomocný čební text Petr Pirklová Liberec, listopd 2015 NLYTICKÁ GEOMETRIE LINEÁRNÍCH

Více

2.1 - ( ) ( ) (020201) [ ] [ ]

2.1 - ( ) ( ) (020201) [ ] [ ] - FUNKCE A ROVNICE Následující zákldní znlosti je nezbytně nutné umět od okmžiku probrání ž do konce studi mtemtiky n gymnáziu. Vyždováno bude porozumění schopnost plikovt ne pouze mechnicky zopkovt. Některé

Více

May 31, Rovnice elipsy.notebook. Elipsa 2. rovnice elipsy. SOŠ InterDact Most, Mgr.Petra Mikolášková

May 31, Rovnice elipsy.notebook. Elipsa 2. rovnice elipsy. SOŠ InterDact Most, Mgr.Petra Mikolášková Elipsa 2 rovnice elipsy SOŠ InterDact Most, Mgr.Petra Mikolášková 1 Název školy Autor Název šablony Číslo projektu Předmět SOŠ InterDACT s.r.o. Most Mgr. Petra Mikolášková III/2_Inovace a zkvalitnění výuky

Více

Říkáme, že přímka je tečnou elipsy. p T Přímka se protíná s elipsou právě v jednom bodě.

Říkáme, že přímka je tečnou elipsy. p T Přímka se protíná s elipsou právě v jednom bodě. 7.5. Elips přímk Předpokldy: 7504, 7505, 7508 Př. : epiš všechny možné vzájemné polohy elipsy přímky. Ke kždému přípdu nkresli obrázek. Z obrázků je zřejmé, že existují tři přípdy vzájemné polohy kružnice

Více

Příklady k analytické geometrii kružnice a vzájemná poloha kružnice a přímky

Příklady k analytické geometrii kružnice a vzájemná poloha kružnice a přímky Příklady k analytické geometrii kružnice a vzájemná poloha kružnice a přímky Př. 1: Určete rovnice všech kružnic, které procházejí bodem A = * 6; 9+, mají střed na přímce p: x + 3y 18 = 0 a jejich poloměr

Více

1. LINEÁRNÍ ALGEBRA 1.1. Matice

1. LINEÁRNÍ ALGEBRA 1.1. Matice Lineární lgebr LINEÁRNÍ LGEBR Mtice Zákldní pojmy Mticí typu m/n nzýváme schém mn prvků, které jsou uspořádány do m řádků n sloupců: n n m/n = = = ( ij ) m m mn V tomto schémtu pro řádky sloupce užíváme

Více

4. cvičení z Matematiky 2

4. cvičení z Matematiky 2 4. cvičení z Mtemtiky 2 14.-18. březn 2016 4.1 Njděte ity (i (ii (iii (iv 2 +(y 1 2 +1 1 2 +(y 1 2 z 2 y 2 z yz 1 2 y 2 (,y (0,0 2 +y 2 2 y 2 (,y (0,0 2 +y 3 (i Pro funkci f(, y = 2 +(y 1 2 +1 1 2 +(y

Více

8. cvičení z Matematiky 2

8. cvičení z Matematiky 2 8. cvičení z Mtemtiky 2 11.-1. dubn 2016 8.1 Njděte tři pozitivní čísl jejichž součin je mximální, jejichž součet je roven 100. Zdání příkldu lze interpretovt tké tk, že hledáme mximální objem kvádru,

Více

13. Exponenciální a logaritmická funkce

13. Exponenciální a logaritmická funkce @11 1. Eponenciální logritmická funkce Mocninná funkce je pro r libovolné nenulové reálné číslo dán předpisem f: y = r, r R, >0 Eponent r je konstnt je nezávisle proměnná. Definičním oborem jsou pouze

Více

5.1.5 Základní vztahy mezi body přímkami a rovinami

5.1.5 Základní vztahy mezi body přímkami a rovinami 5.1.5 Zákldní vzthy mezi body přímkmi rovinmi Předpokldy: 510 Prostor má tři rozměry, skládá se z bodů. Přímk - jednorozměrná podmnožin prostoru (množin bodů) Rovin - dvojrozměrná podmnožin prostoru (množin

Více

( ) 7.3.16 Další metrické úlohy II. Předpoklady: 7315. Př. 1: Najdi přímku rovnoběžnou s osou I a III kvadrantu vzdálenou od bodu A[ 1;2 ] 2 2.

( ) 7.3.16 Další metrické úlohy II. Předpoklady: 7315. Př. 1: Najdi přímku rovnoběžnou s osou I a III kvadrantu vzdálenou od bodu A[ 1;2 ] 2 2. 76 Další metriké úlohy II Předpoklady: 7 Př : Najdi přímku rovnoěžnou s osou I a III kvadrantu vzdálenou od odu A[ ; ] Osou I a III kvadrantu je přímka y = x přímky s ní rovnoěžné mají rovnii x y + = 0

Více

9 Axonometrie ÚM FSI VUT v Brně Studijní text. 9 Axonometrie

9 Axonometrie ÚM FSI VUT v Brně Studijní text. 9 Axonometrie 9 Axonometrie Mongeov projekce má řdu předností: jednoduchost, sndná měřitelnost délek úhlů. Je všk poměrně nenázorná. Podsttnou část technických výkresů proto tvoří kromě půdorysu, nárysu event. bokorysu

Více

Komplexní čísla tedy násobíme jako dvojčleny s tím, že použijeme vztah i 2 = 1. = (a 1 + ia 2 )(b 1 ib 2 ) b 2 1 + b2 2.

Komplexní čísla tedy násobíme jako dvojčleny s tím, že použijeme vztah i 2 = 1. = (a 1 + ia 2 )(b 1 ib 2 ) b 2 1 + b2 2. 7 Komplexní čísl 71 Komplexní číslo je uspořádná dvojice reálných čísel Komplexní číslo = 1, ) zprvidl zpisujeme v tzv lgebrickém tvru = 1 + i, kde i je imginární jednotk, pro kterou pltí i = 1 Číslo 1

Více

SYLABUS PŘEDNÁŠKY 7 Z GEODÉZIE 1

SYLABUS PŘEDNÁŠKY 7 Z GEODÉZIE 1 SYLABUS PŘEDNÁŠKY 7 Z GEODÉZIE 1 (Souřdnicové výpočty) 1 ročník bklářského studi studijní progrm G studijní obor G doc Ing Jromír Procházk CSc listopd 2015 1 Geodézie 1 přednášk č7 VÝPOČET SOUŘADNIC JEDNOHO

Více

Jaký vliv na tvar elipsy má rozdíl mezi délkou provázku mezi body přichycení a vzdáleností těchto bodů.

Jaký vliv na tvar elipsy má rozdíl mezi délkou provázku mezi body přichycení a vzdáleností těchto bodů. 7.5.7 lips Přdpokldy: 7501 lips = rozšlápnutá kružnic. Jk ji sstrojit? Zhrdnická konstrukc lipsy (tkto s vytyčují záhony): Vzmm provázk n koncích ho přidělám tk, y nyl npnutý. Klcíkm provázk npnm tk, y

Více

Odraz na kulové ploše

Odraz na kulové ploše Odz n kulové ploše Duté zcdlo o.. os zcdl V.. vchol zcdl S.. střed zcdl (kul. ploch).. polomě zcdl (kul. ploch) Ppsek vchází z odu A n ose zcdl po odzu n zcdle dopdá do nějkého odu B n ose. tojúhelníků

Více

+ c. n x ( ) ( ) f x dx ln f x c ) a. x x. dx = cotgx + c. A x. A x A arctgx + A x A c

+ c. n x ( ) ( ) f x dx ln f x c ) a. x x. dx = cotgx + c. A x. A x A arctgx + A x A c ) INTEGRÁLNÍ POČET FUNKCE JEDNÉ PROMĚNNÉ ) Pojem neurčitého integrálu Je dán funkce Pltí všk tké F tk, y pltilo F ( ) f ( ) Zřejmě F ( ), protože pltí, 5,, oecně c, kde c je liovolná kon- stnt f ( ) nším

Více

II. 5. Aplikace integrálního počtu

II. 5. Aplikace integrálního počtu 494 II Integrální počet funkcí jedné proměnné II 5 Aplikce integrálního počtu Geometrické plikce Určitý integrál S b fx) dx lze geometricky interpretovt jko obsh plochy vymezené grfem funkce f v intervlu

Více

Důkazy vybraných geometrických konstrukcí

Důkazy vybraných geometrických konstrukcí Gymnázium Christiana Dopplera, Zborovská 45, Praha 5 Ročníková práce Důkazy vybraných geometrických konstrukcí Vypracovala: Ester Sgallová Třída: 8.M Školní rok: 015/016 Seminář : Deskriptivní geometrie

Více

4.4.1 Sinová věta. Předpoklady: Trigonometrie: řešení úloh o trojúhelnících.

4.4.1 Sinová věta. Předpoklady: Trigonometrie: řešení úloh o trojúhelnících. 4.4. Sinová vět Předpokldy Trigonometrie řešení úloh o trojúhelnííh. Prktiké využití změřování měření vzdáleností, tringulční síť Tringulční síť je prolém měřit vzdálenosti dvou odů v krjině změříme velmi

Více

Digitální učební materiál. III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Příjemce podpory Gymnázium, Jevíčko, A. K.

Digitální učební materiál. III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Příjemce podpory Gymnázium, Jevíčko, A. K. Digitálí učeí mteriál Číslo projektu CZ.1.07/1.5.00/34.080 Název projektu Zkvlitěí výuk prostředictvím ICT Číslo ázev šlo klíčové ktivit III/ Iovce zkvlitěí výuk prostředictvím ICT Příjemce podpor Gmázium,

Více

3 Algebraické výrazy. 3.1 Mnohočleny Mnohočleny jsou zvláštním případem výrazů. Mnohočlen (polynom) proměnné je výraz tvaru

3 Algebraické výrazy. 3.1 Mnohočleny Mnohočleny jsou zvláštním případem výrazů. Mnohočlen (polynom) proměnné je výraz tvaru Algerické výrz V knize přírod může číst jen ten, kdo zná jzk, ve kterém je npsán. Jejím jzkem je mtemtik jejím písmem jsou mtemtické vzorce. (Glileo Glilei) Algerickým výrzem rozumíme zápis, ve kterém

Více

5.1.5 Základní vztahy mezi body, přímkami a rovinami

5.1.5 Základní vztahy mezi body, přímkami a rovinami 5.1.5 Zákldní vzthy mezi body, přímkmi rovinmi Předpokldy: 510 Prostor má tři rozměry, skládá se z bodů přímk - jednorozměrná podmnožin prostoru (množin bodů), rovin - dvojrozměrná podmnožin prostoru (množin

Více

je pravoúhlý BNa ose y najděte bod, který je vzdálený od bodu A = [ 4;

je pravoúhlý BNa ose y najděte bod, který je vzdálený od bodu A = [ 4; 1 BUAnlytická geometrie - bod, souřdnice bodu, vzdálenost bodů 11 1BRozhodněte, zd trojúhelník s vrcholy A [ ; ], B [ 1; 1] C [ 11; 6] je prvoúhlý 1 1BN ose y njděte bod, který je vzdálený od bodu A [

Více

M - Analytická geometrie pro třídu 4ODK

M - Analytická geometrie pro třídu 4ODK M - Analytická geometrie pro třídu 4ODK Autor: Mgr. Jaromír Juřek Kopírování a jakékoliv další využití výukového materiálu je dovoleno pouze s uvedením odkazu na www.jarjurek.cz. VARIACE Tento dokument

Více

Obsah rovinného obrazce

Obsah rovinného obrazce Osh rovinného orzce Nejjednodušší plikcí určitého integrálu je výpočet oshu rovinného orzce. Zčneme větou. Vět : Je-li funkce f spojitá nezáporná n n orázku níže roven f ( ) d. ;, je osh rovinného orzce

Více

JIHOČESKÁ UNIVERZITA V ČESKÝCH BUDĚJOVICÍCH KUŽELOSEČKY. Pavel Pech

JIHOČESKÁ UNIVERZITA V ČESKÝCH BUDĚJOVICÍCH KUŽELOSEČKY. Pavel Pech JIHOČESKÁ UNIVERZITA V ČESKÝCH BUDĚJOVICÍCH KUŽELOSEČKY Pvel Pech České Budějovice 004 JIHOČESKÁ UNIVERZITA V ČESKÝCH BUDĚJOVICÍCH KUŽELOSEČKY Pvel Pech České Budějovice 004 Recenzenti: doc Ing Ld Vňtová,

Více

5.2. Určitý integrál Definice a vlastnosti

5.2. Určitý integrál Definice a vlastnosti Určitý intgrál Dfinic vlstnosti Má-li spojitá funkc f() n otvřném intrvlu I primitivní funkci F(), pk pro čísl, I j dfinován určitý intgrál funkc f() od do vzthm [,, 7: [ F( ) = F( ) F( ) f ( ) d = (6)

Více

Analytická geometrie přímky, roviny (opakování středoškolské látky) = 0. Napište obecnou rovnici. 8. Jsou dány body A [ 2,3,

Analytická geometrie přímky, roviny (opakování středoškolské látky) = 0. Napište obecnou rovnici. 8. Jsou dány body A [ 2,3, Analytická geometrie přímky roviny opakování středoškolské látk Jsou dány body A [ ] B [ 5] a C [ 6] a) přímky AB b) osy úsečky AB c) přímky na které leží výška vc trojúhelníka ABC d) přímky na které leží

Více

Konstrukce na základě výpočtu I

Konstrukce na základě výpočtu I ..11 Konstrukce n zákldě výpočtu I Předpokldy: Pedgogická poznámk: Původně yl látk rozepsnou do dvou hodin, v první ylo kromě dělení úseček zřzen i čtvrtá geometrická úměrná. Právě její prorání se nestíhlo,

Více

Úlohy školní klauzurní části I. kola kategorie C

Úlohy školní klauzurní části I. kola kategorie C 52. ročník mtemtické olympiády Úlohy školní kluzurní části I. kol ktegorie 1. Odtrhneme-li od libovolného lespoň dvojmístného přirozeného čísl číslici n místě jednotek, dostneme číslo o jednu číslici krtší.

Více

63. ročník matematické olympiády III. kolo kategorie A. Ostrava, března 2014

63. ročník matematické olympiády III. kolo kategorie A. Ostrava, března 2014 63. ročník mtemtické olympiády III. kolo ktegorie Ostrv, 23. 26. řezn 204 MO . Nechť n je celé kldné číslo. Oznčme všechny jeho kldné dělitele d, d 2,..., d k tk, y pltilo d < d 2

Více

( ) ( ) Sinová věta II. β je úhel z intervalu ( 0;π ). Jak je vidět z jednotkové kružnice, úhly, pro které platí. Předpoklady:

( ) ( ) Sinová věta II. β je úhel z intervalu ( 0;π ). Jak je vidět z jednotkové kružnice, úhly, pro které platí. Předpoklady: 4.4. Sinová vět II Předpokldy 44 Kde se stl hy? Námi nlezené řešení je správné, le nenšli jsme druhé hy ve hvíli, kdy jsme z hodnoty sin β určovli úhel β. β je úhel z intervlu ( ;π ). Jk je vidět z jednotkové

Více

7.3.7 Přímková smršť. Předpoklady: 7306

7.3.7 Přímková smršť. Předpoklady: 7306 737 Přímkoá smršť Předpokldy 7306 Pedgogiká poznámk Hodin znikl jko reke n prní průhod učenií Třeoni se třídou 42011 Ukázlo se, že studenti mjí prolémy s přiřzením spráného ektoru k různým druhům roni

Více

KFC/SEM, KFC/SEMA Elementární funkce

KFC/SEM, KFC/SEMA Elementární funkce Elementární funkce Požadované dovednosti: lineární funkce kvadratická funkce mocniná funkce funkce s asolutní hodnotou lineárně lomená funkce exponenciální a logaritmická funkce transformace grafu Lineární

Více

Odraz na kulové ploše Duté zrcadlo

Odraz na kulové ploše Duté zrcadlo Odz n kulové ploše Duté zcdlo o.. os zcdl V.. vchol zcdl S.. střed zcdl (kul. ploch).. polomě zcdl (kul. ploch) Ppsek vchází z odu A n ose zcdl po odzu n zcdle dopdá do nějkého odu B n ose. Podle oázku

Více

MECHANIKA STATIKA. + y. + x. - x. F 4y F4. - y. FRBy. FRAy. Ing. Radek Šebek 2012 A B C D. I a III 3 5 7 D II. B C a b c F1Z F2Z. a 2. a 3. a 4.

MECHANIKA STATIKA. + y. + x. - x. F 4y F4. - y. FRBy. FRAy. Ing. Radek Šebek 2012 A B C D. I a III 3 5 7 D II. B C a b c F1Z F2Z. a 2. a 3. a 4. h MECHNIK + y 2 F Vy F 2y 1 FV V F 1y F 3y F3 3 - x F 1x F 3x F 4x 0 F 2x F 4y F4 F Vx + x F FRy 4 - y FRy F l FRy C D FRy I 2 III 6 V 1 3 5 7 D II 4 IV C c Z Z Ing. Rdek Šeek 2012 MECHNIK 1. OSH 2. MECHNIK

Více

Analytická geometrie lineárních útvarů

Analytická geometrie lineárních útvarů ) Na přímce: a) Souřadnice bodu na přímce: Analtická geometrie lineárních útvarů Bod P nazýváme počátek - jeho souřadnice je P [0] Nalevo od počátku leží čísla záporná, napravo čísla kladná. Každý bod

Více

Analytická geometrie v rovině

Analytická geometrie v rovině nltická geometrie v rovině Souřdnicová soustv v rovině Zvolme v rovině dvě nvájem kolmé přímk číselné os. růsečík O těchto přímek nveme počátek souřdnic. Vodorovnou přímku ončíme osou svislou ončíme osou

Více

5. Konstrukce trojúhelníků Konstrukce trojúhelníků podle vět sss, sus, usu, Ssu (ssu):

5. Konstrukce trojúhelníků Konstrukce trojúhelníků podle vět sss, sus, usu, Ssu (ssu): 5. Konstruke trojúhelníků Konstruke trojúhelníků podle vět sss, sus, usu, Ssu (ssu): 1. Nrýsuj trojúhelník ABC, je-li dáno: AB = 7,6 m, BC = 4,2 m, AC = 5,6 m Řešení: Pro strny trojúhelníku musí pltit

Více

Odvození středové rovnice kružnice se středem S [m; n] a o poloměru r. Bod X ležící na kružnici má souřadnice [x; y].

Odvození středové rovnice kružnice se středem S [m; n] a o poloměru r. Bod X ležící na kružnici má souřadnice [x; y]. Konzultace č. 6: Rovnice kružnice, poloha přímky a kružnice Literatura: Matematika pro gymnázia: Analytická geometrie, kap. 5.1 a 5. Sbírka úloh z matematiky pro SOŠ a studijní obory SOU. část, kap. 6.1

Více

LINEÁRNÍ DIFERENCIÁLNÍ ROVNICE 2.ŘÁDU

LINEÁRNÍ DIFERENCIÁLNÍ ROVNICE 2.ŘÁDU LINEÁRNÍ DIFERENCIÁLNÍ ROVNICE 2.ŘÁDU ZDENĚK ŠIBRAVA 1. Obecné řešení lin. dif. rovnice 2.řádu s konstntními koeficienty 1.1. Vrice konstnt. Příkld 1.1. Njděme obecné řešení diferenciální rovnice (1) y

Více

ANALYTICKÁ GEOMETRIE INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ. Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky

ANALYTICKÁ GEOMETRIE INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ. Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky ANALYTICKÁ GEOMETRIE Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro vyšší gymnázia Autoři projektu Student na prahu 21. století - využití ICT ve vyučování matematiky na gymnáziu

Více

37. PARABOLA V ANALYTICKÉ GEOMETRII

37. PARABOLA V ANALYTICKÉ GEOMETRII 37.. Napiš rovnici paraboly, která má osu rovnoběžnou s osou y a prochází body A 0; 60, B 4; 8, C 8;36. 0m p60n 4m p8n 8m p36n m p pn 0 6 8 6 mm p pn 64 6 7 3 mm p pn 6 8m64 p 3 64 6m9 p Je-li osa rovnoběžná

Více

Inovace a zkvalitnění výuky prostřednictvím ICT (III/2)

Inovace a zkvalitnění výuky prostřednictvím ICT (III/2) Projekt: Příjemce: Digitální učební materiál ve škole, registrační číslo projektu CZ..07/.5.00/3.057 Střední zdravotnická škola a Všší odborná škola zdravotnická, Husova 3, 37 60 České Budějovice Název

Více

2. INTEGRÁLNÍ POČET FUNKCE JEDNÉ PROMĚNNÉ

2. INTEGRÁLNÍ POČET FUNKCE JEDNÉ PROMĚNNÉ . INTEGRÁLNÍ POČET FUNKE JEDNÉ PROMĚNNÉ Při řešení technických prolémů, ve fyzice pod. je velmi čsto tře řešit orácenou úlohu k derivování. K zdné funkci f udeme hledt funkci F tkovou, y pltilo F f. Budeme

Více