5. Konstrukce trojúhelníků Konstrukce trojúhelníků podle vět sss, sus, usu, Ssu (ssu):

Rozměr: px
Začít zobrazení ze stránky:

Download "5. Konstrukce trojúhelníků Konstrukce trojúhelníků podle vět sss, sus, usu, Ssu (ssu):"

Transkript

1 5. Konstruke trojúhelníků Konstruke trojúhelníků podle vět sss, sus, usu, Ssu (ssu): 1. Nrýsuj trojúhelník ABC, je-li dáno: AB = 7,6 m, BC = 4,2 m, AC = 5,6 m Řešení: Pro strny trojúhelníku musí pltit trojúhelníková nerovnost: + = 9,8 m + > + = 11,8 m + > + = 13,2 m + > Trojúhelník lze nrýsovt. = 7,6 m = 5,6 m = 4,2 m ) konstruke: k C l postup: 1. AB ; AB 7,6 m 2. k ; ka (, 5,6 m) 3. l ; lb (, 4,2 m) 4. C ; C k l 5. trojúhelník ABC A B ) Ověření diskuse: Trojúhelník vyhovuje zdání v polorovině je právě 1 řešení

2 2. Nrýsuj trojúhelník ABC, je-li dáno: = AB = 3,2 m, = BC = 4,6 m, = AC = 3,9 m Řešení: Pro strny trojúhelníku musí pltit trojúhelníková nerovnost: + = 8,5 m + = 7,8 m + = 7,1 m Trojúhelník lze nrýsovt. + > + > + > ) konstruke: k C l postup: 1. AB ; AB 3,2 m 2. k ; ka (, 3,9 m) 3. l ; lb (, 4,6 m) 4. C ; C k l 5. trojúhelník ABC A B ) Ověření diskuse: Trojúhelník vyhovuje zdání v polorovině je právě 1 řešení

3 3. Nrýsuj trojúhelník KLM, je-li dáno: m = KL = 7,5 m, k = LM = 6,1 m, l = KM = 2,5 m Řešení: Pro strny trojúhelníku musí pltit trojúhelníková nerovnost: k + l = 8,6 m k + m = 13,6 m l + m =10,0 Trojúhelník lze nrýsovt. k+ l> m k+ m> l l+ m> k ) konstruke: k M l postup: 1. KL; KL 7,5 m 2. k ; kk (, 2,5 m) 3. l ; ll (, 6,1 m) 4. M; M k l 5. trojúhelník KLM K L ) Ověření diskuse: Trojúhelník vyhovuje zdání v polorovině je právě 1 řešení

4 4. Nrýsuj trojúhelník KLM, je-li dáno: m = KL = 5,5 m, k = LM = 6,1 m, l = KM = 3,5 m Řešení: Pro strny trojúhelníku musí pltit trojúhelníková nerovnost: k + l = 9,6 m k + m = 11,6 m l + m = 9,0 Trojúhelník lze nrýsovt. k+ l> m k+ m> l l+ m> k ) konstruke: k M l postup: 1. KL; KL 5,5 m 2. k ; kk (, 3,5 m) 3. l ; ll (, 6,1 m) 4. M; M k l 5. trojúhelník KLM K L ) Ověření diskuse: Trojúhelník vyhovuje zdání v polorovině je právě 1 řešení

5 5. Nrýsuj trojúhelník KLM, je-li dáno: m = KL = 2,1 m, k = LM = 3,0 m, l = KM = 4,8 m Řešení: Pro strny trojúhelníku musí pltit trojúhelníková nerovnost: k + l = 7,8 m k + m = 5,1 m l + m = 6,9 Trojúhelník lze nrýsovt. k+ l> m k+ m> l l+ m> k ) konstruke: k M postup: 1. KL; KL 2,1 m 2. k ; kk (, 4,8 m) 3. l ; ll (, 3 m) 4. M; M k l 5. trojúhelník KLM l K L ) Ověření diskuse: Trojúhelník vyhovuje zdání v polorovině je právě 1 řešení

6 6. Nrýsuj trojúhelník ABC, je-li dáno: AB = 9,9 m, BC = 4,2 m, AC = 5,6 m Řešení: Pro strny trojúhelníku musí pltit trojúhelníková nerovnost: + = 9,8 m + > NEPLATÍ + = 14,1 m + > + =15,5 m + > Trojúhelník NELZE nrýsovt

7 7. Nrýsuj trojúhelník ABC, je-li dáno: AB = 7,6 m, BC = 4,2 m, 35 Řešení: Vrhol C leží n polopříme BX n kružnii k (B, 4,2 m). ) konstruke: C k X postup: 1. AB ; AB 7,6 m 2. k; k( B, 4,2 m) 3.; ABX ; ABX C; C k BX 5. trojúhelník ABC A B ) Ověření diskuse: Polopřímk BX má s kružnií k právě 1 společný od, proto má úloh v polorovině právě 1 řešení, které vyhovuje zdání úlohy. (Je to podle věty sus.) - 7 -

8 8. Nrýsuj trojúhelník ABC, je-li dáno: AB = 4,5 m, AC = 4,2 m, 84 Řešení: Vrhol C leží n polopříme AX n kružnii k (A, 4,2 m). ) konstruke: X C k postup: 1. AB ; AB 4,5 m 2. k; k( A, 4,2 m) 3.; BAX ; BAX C; C k AX 5. trojúhelník ABC A B ) Ověření diskuse: Polopřímk AX má s kružnií k právě 1 společný od, proto má úloh v polorovině právě 1 řešení, které vyhovuje zdání úlohy. (Je to podle věty sus.) - 8 -

9 9. Nrýsuj trojúhelník ABC, je-li dáno: AC = 5,3 m, BC = 4,1 m, 111 Řešení: Vrhol B leží n polopříme CX n kružnii k (C, 4,1 m). ) konstruke: C X B postup: 1. AC; AC 5,3 m 2. k; k( C, 4,1 m) 3.; ACX ; ACX B; Bk CX 5. trojúhelník ABC A k ) Ověření diskuse: Polopřímk CX má s kružnií k právě 1 společný od, proto má úloh v polorovině právě 1 řešení, které vyhovuje zdání úlohy. (Je to podle věty sus.) - 9 -

10 10. Nrýsuj trojúhelník ABC, je-li dáno: AB = 7,6 m, 37, 58 Vrhol B leží n polopříme CX n kružnii k (C, 4,1 m). Pro velikosti úhlů musí pltit, že velikost součtu dvou úhlů je menší než Trojúhelník lze nrýsovt. ) konstruke: X C Y postup: 1. AB; AB 7,6 m 2. BAX ; BAX ABY ; ABY C; C AX BY 5. trojúhelník ABC A B ) Ověření diskuse: Polopřímky se protínjí právě v jednom odě. Proto má úloh právě jedno řešení, které vyhovuje zdání úlohy. (Je to podle věty usu)

11 11. Nrýsuj trojúhelník ABC, je-li dáno: AB = 8,4 m, 112, 15 Řešení: Pro velikosti úhlů musí pltit, že velikost součtu dvou úhlů je menší než Trojúhelník lze nrýsovt. ) konstruke: X C Y postup: 1. AB; AB 8,4 m 2. BAX ; BAX ABY; ABY C; C AX BY 5. trojúhelník ABC A B ) Ověření diskuse: Polopřímky se protínjí právě v jednom odě. Proto má úloh právě jedno řešení, které vyhovuje zdání úlohy. (Je to podle věty usu)

12 12. Sestroj trojúhelník ABC, je-li Řešení: AB AC 0 5 m, 4,6 m, 58. Vrhol C leží: n ka (, 4,6 m) BX n ) konstruke: k C X postup: 1. AB ; AB 5 m 2. ABX ; 0 ABX k ; ka (, 4,6 m) 4. C ; C k BX 5. trojúhelník ABC C A B ) Ověření diskuse: Polopřímk BX má s kružnií k právě 2 společné ody, proto má úloh v polorovině právě 2 řešení: ABC, ABC '. O trojúhelníky vyhovují zdání úlohy. (Je to podle věty ssu.)

13 Konstruke s využitím dlšíh prvků: Příkldy jsou dány oeně. 1. trojúhelník ABC,, v ) : Řešení: ( C leží n: p ve vzdálenosti v AX, XAB ) konstruke (oeně pouze postup, konkrétní příkldy viz níže): postup: 1. AB ; AB 2. XAB; XAB 3. p; p p, vc 4. C ; C p AX 5. trojúhelník ABC ) Diskuse ověření: Polopřímk AX protíná přímku p právě v jednom odě, úloh má v polorovině právě 1 řešení

14 1. Sestrojte trojúhelník ABC, je-li dáno: = 3,8 m, v = 3 m, α = 100 o. C leží n: p ve vzdálenosti v AX, XAB ) konstruke: X C p postup: 1. AB; AB 3,8 m 2. XAB; XAB p; p p, 3 m 4. C; C AX p 5. ABC A B ) Diskuse ověření: Polopřímk AX protíná přímku p právě v jednom odě, úloh má v polorovině právě 1 řešení

15 2. Sestrojte trojúhelník ABC, je-li dáno: α = 87, = 3 m, v = 2,7 m. Řešení: C leží n: p ve vzdálenosti v AX, XAB ) konstruke X C p postup: 1. AB; AB 3 m 2. XAB; XAB p; p p, 2,7 m 4. C; C AX p 5. ABC A B ) Diskuse ověření: Polopřímk AX protíná přímku p právě v jednom odě, úloh má v polorovině právě 1 řešení

16 2. trojúhelník ABC,, t ) : Řešení: ( C leží n: AX, XAB k ; k( C0, t ), C0 je střed strny AB ) konstruke (oeně pouze postup, konkrétní příkldy viz níže): postup: 1. AB ; AB 2. XAB; XAB 3. C 0 ; C0 AB, C0 A C0B 4. k ; k ( C0, t ) 5. C ; C AX k 6. trojúhelník ABC ) Diskuse ověření: Oeně kružnie přímk mjí 0, 1 neo 2 společné ody. Pokud k neprotíná AX, není žádné řešení, dotýká-li se AX, je právě 1 řešení protíná-li k AX, jsou právě 2 řešení v polorovině

17 1. Sestrojte trojúhelník ABC, je-li dáno: = 3,8 m, t = 2,7 m, α = 52. Řešení: C leží n: AX, XAB k ; k( C0, t ), C0 je střed strny AB ) konstruke: C postup: 1. AB; AB 3,8 m A X C 0 B k 2. XAB; XAB C0; C0 AB AC0 BC0 4. k; k( C 0, 2,7 m) 5. C; C AX k 6. ABC ) Diskuse ověření: Kružnie k polopřímk jeden trojúhelník. AX má právě 1 společný od. Správným řešením je právě

18 2. Sestrojte trojúhelník ABC, je-li dáno: = 5 m, t = 3,4 m, α = 110. Řešení: C leží n: AX, XAB k ; k( C0, t ), C0 je střed strny AB ) konstruke: postup: 1. AB; AB 5 m C X A C 0 B k 2. XAB; XAB 110 C ; C AB AC BC k; k( C 0, 3,4 m) 5. C; C AX k 6. ABC ) Diskuse ověření: Kružnie k polopřímk jeden trojúhelník. AX má právě 1 společný od. Správným řešením je právě

19 3. Sestrojte trojúhelník ABC, je-li dáno: = 4,2 m, α = 75, t = 4,3 m. Řešení: C leží n: AX, XAB k ; k( C0, t ), C0 je střed strny AB ) konstruke: C k postup: 1. AB; AB 4,2 m 2. XAB; XAB 75 C ; C AB AC BC k; k( C 0, 4,3 m) 5. C; C AX k 6. ABC X A C 0 B ) Diskuse ověření: Kružnie k polopřímk jeden trojúhelník. AX má právě 1 společný od. Správným řešením je právě

20 4.Sestrojte trojúhelník ABC, je-li dáno: = 4,2 m, α = 75, t = 4,3 m. Řešení: C leží n: AX, AX AB0 AB CB 0 0 K sestrojení je nutné využít středovou souměrnost se středem v odě B 0, která od A zorzí jko od C. ) konstruke: X B 0 C k postup: 1. AB; AB 4,2 m 2. XAB; XAB k; k( B, 4,3 m) 4. B0; B0 AX k 5. C; S : A C B0 6. ABC A B ) Diskuse ověření: Kružnie k polopřímk jeden trojúhelník. AX má právě 1 společný od. Správným řešením je právě

21 3. trojúhelník ABC(, v, t ) : Řešení: C leží n: p //, p, v k ; k( C0, t ), C0 je střed strny ) konstruke (oeně pouze postup, konkrétní příkldy viz níže): postup: 1. AB ; AB 2. p ; p, v 3. C 0 ; C0 AB, C0 A C0B 4. k ; k ( C0, t ) 5. C ; C p k 6. trojúhelník ABC ) Diskuse ověření: Oeně kružnie přímk mjí 0, 1 neo 2 společné ody. Pokud t < v, není žádní řešení (kružnie přímk se neprotnou), když t = v, je v polorovině právě 1 řešení (kružnie se přímky dotýká) pokud t > v, jsou v polorovině právě 2 řešení (kružnie přímk se protínjí ve dvou odeh.)

22 1. Sestrojte trojúhelník ABC, je-li dáno: = 5 m, t = 3,4 m, v = 3 m. Řešení: C leží n: p //, p, k ; k( C0, t ), C0 je střed strny v ) konstruke: k C C p postup: 1. AB; AB 5 m 2. p; p p, 3 m C ; C AB AC BC k; k( C 0, 3,4 m) 5. C; C p k 6. ABC A C 0 B ) Diskuse ověření: Kružnie přímk mjí 2 společné ody. V polorovině jsou právě 2 řešení

23 2. Sestrojte trojúhelník ABC, je-li dáno: = 4,5 m, v = 2,5 m, t = 3 m. Řešení: C leží n: p //, p, v k ; k( C0, t ), C0 je střed strny ) konstruke: A k C C C 0 B p postup: 1. AB; AB 4,5 m 2. p; p p, 2,5 m C ; C AB AC BC k; k( C 0, 3 m) 5. C; C p k 6. ABC ) Diskuse ověření: Kružnie přímk mjí 2 společné ody. V polorovině jsou právě 2 řešení

24 3. Sestrojte trojúhelník ABC, je-li dáno: = 3,6 m, v = 3,3 m, t = 6 m. Řešení: C leží n: BA1, kde A 1 je pt kolmie, A1 BC, (tzn. v AA1 ) k ; k( C0, t ), C0 je střed strny Bod A 1 leží n Thletově kružnii nd strnou AB. ) konstruke: C k postup: 1. AB; AB 4,5 m C ; C AB AC BC l A 1 t t; t( C, r C A) l; l( A, 3,3 m) 5. A1; A1t l 6. k; k( C 0, 6 m) 7. C; C BA1 k 8. ABC A C 0 B ) Diskuse ověření: Kružnie l kružnie t mjí právě 1 společný od A 1. Polopřímk BA 1 kružnie k mjí právě 1 společný od. V polorovině je právě 1 trojúhelník, který splňuje zdání úlohy

25 4. trojúhelník ABC, v, v ) : Řešení: ( C leží n: BA1, A1 je pt v p // ve vzdálenosti v ) konstruke (oeně pouze postup, konkrétní příkldy viz níže): postup: 1. AB; AB 2. p; p p, v C ; C AB C A C B ttc ; ( 0, ) 2 5. k; k( A, v ) 6. A1; A1t k 7. C; C p BA1 8. ABC ) Diskuse ověření: Dvě kružnie k h mohou mít dv ( v < ), jeden ( v = prvoúhlý), neo žádný společný od A 1 ( v > ). A1 B, trojúhelník je

26 1. Sestrojte trojúhelník ABC, je-li dáno: = 4,5 m, v = 3,4 m, v = 4 m. Řešení: B leží n: CA1, A1 je pt v p // ve vzdálenosti v ) konstruke: C postup: 1. AC; AC 4,5 m k t 2. p; p p, 4 m B ; B AC B A B C A B 0 A 1 B p t; t( B, r B A) k; k( A, 3,4 m) 6. A1; A1t k 7. B; B CA1 p 8. ABC ) Diskuse ověření: Dvě kružnie k t mjí v polorovině 1 společný od A 1. Polopřímk CA 1 přímk p mjí 1 společný od B. Řešením je právě jeden trojúhelník v polorovině

27 2. Sestrojte trojúhelník ABC, je-li dáno: = 5,2 m, v = 4,1 m, v = 3,8 m. Řešení: C leží n: BA1, A1 je pt v p // ve vzdálenosti v ) konstruke: k C p postup: 1. AB; AB 5,2 m 2. p; p p, 4,1 m C ; C AB C A C B A C 0 A 1 t B t; t( C, C A ) k; k( A, 3,8 m) 6. A1; A1t k 7. C; C p BA1 8. ABC ) Diskuse ověření: Dvě kružnie k t mjí v polorovině 1 společný od A 1. Polopřímk BA 1 přímk p mjí 1 společný od C. Řešením je právě jeden trojúhelník v polorovině

28 3. Sestrojte trojúhelník ABC, je-li dáno: = 6,3 m, v = 4,6 m, v = 5,4 m. Řešení: C leží n: BA1, A1 je pt v p // ve vzdálenosti v ) konstruke: k C p postup: 1. AB; AB 6,3 m 2. p; p p, 4,6 m C ; C AB C A C B A 1 t t; t( C, C A ) k; k( A, 5,4 m) 6. A1; A1t k 7. C; C p BA1 8. ABC A C 0 B ) Diskuse ověření: Dvě kružnie k t mjí v polorovině 1 společný od A 1. Polopřímk BA 1 přímk p mjí 1 společný od C. Řešením je právě jeden trojúhelník v polorovině

29 5. trojúhelník ABC, t, v ) Řešení: ( Doplníme n rovnoěžník ABDC : D leží n: p // k ( A,2. t ) Neo využijeme vlstnosti, že střední příčk spojuje středy strn ( půlí příslušnou výšku n 2 shodné části): C leží n: BA1, A1 je pt v, l ( A, t ) ) konstruke (oeně pouze postup, konkrétní příkldy viz níže): postup: jsou 2 různé 1. AB; AB 2. p; p p, v 3. k; k( A,2 t ) 4. D; Dk p A ; A AD A A A D C; C BA1 p 7. ABC 1. AB ; AB 2. n ; n, 3. l ; l A, t ) ( v 2 4. A 1 ; A1 k n, BA1 5.C ; S( A 1 ) : B C 6. ABC ) Diskuse ověření: Kružnie přímk mjí dv, jeden neo žádný společný od. Jestliže je 2.t > v, kružnie k protíná přímku p ve dvou odeh jsou v polorovině právě 2 řešení, když 2.t = v, kružnie k se dotýká přímky p je právě 1 řešení když 2.t < v, kružnie k neprotíná přímku p není žádné řešení

30 1. Sestrojte trojúhelník ABC, je-li dáno: = 5 m, v = 4 m, t = 3,5 m Řešení: Doplníme n rovnoěžník ABDC : D leží n: p // k A,2. t ) ( ) konstruke: postup: 1. AB; AB 5 m C l p D k 2. p; p p, 4 m 3. k; k( A, 7 m) 4. D; Dk p 5. l; l( D, 5 m) 6. C; C l p 8. ABC A B ) Diskuse ověření: Kružnie k přímk p mjí dv společné ody. Dostáváme 2 řešení v polorovině

31 2. Sestrojte trojúhelník ABC, je-li dáno: = 4,2 m, v = 4,3 m, t = 4,7 m Řešení: Doplníme n rovnoěžník ABDC : D leží n: p // k A,2. t ) ( ) konstruke: p C l k D postup: 1. AB; AB 4,2 m 2. p; p p, 4,3 m 3. k; k( A, 9,4 m) 4. D; Dk p 5. l; l( D, 4,2 m) 6. C; C l p 8. ABC A B ) Diskuse ověření: Kružnie k přímk p mjí dv společné ody. Dostáváme 2 řešení v polorovině

32 3. Sestrojte trojúhelník ABC, je-li dáno: = 3,8 m, v = 3,8 m, t = 1,7 m Řešení: Doplníme n rovnoěžník ABDC : D leží n: p k A,2. t ) ( ) konstruke: A p k B postup: 1. AB; AB 3,8 m 2. p; p p, 3,8 m 3. k; k( A, 3,4 m) 4. D; Dk p 5. l; l( D, 3,8 m) 6. C; C l p 8. ABC ) Diskuse ověření: Kružnie k přímk p nemjí společný od. Tto úloh nemá řešení

33 6. trojúhelník ABC, v, v ) Řešení: ( Bod C leží n: AB1 BA 1 ) konstruke (oeně pouze postup, konkrétní příkldy viz níže): postup: 1. AB; AB C ; C AB C A C B t; t( C, r C B ) k; k( A, v ) 5. A1; A1k t 6. l; l( B, v ) 7. B1; B1l t C; C BA AB 9. ABC ) Diskuse ověření: Jestliže délky výšek udou větší než délk strny, neude mít úloh žádné řešení. Kružnie se neprotnou. Jestliže délky oou výšek udou rovny déle strny, oě pty y yly ve vrholeh A B neude žádné řešení. Jestliže délk jedné výšky ude rovn délk druhé ude menší než, ude v polorovině právě jedno řešení. Jestliže délky oou výšek ude menší než délk, udou v polorovině právě 2 řešení

34 1. Sestrojte trojúhelník ABC, je-li dáno: = 3,6 m, v = 3,3 m, v = 2,8 m Řešení: Bod C leží n: AB1 BA 1 ) konstruke: C postup: 1. AB; AB 3,6 m A t B 1 k C 0 A 1 B l C ; C AB C A C B t; t( C, r C B ) k; k( A, 3,6 m) 5. A1; A1k t 6. l; l( B, 2,8 m) 7. B1; B1l t C; C BA AB 8. ABC ) Diskuse ověření: Jestliže délk jedné výšky ude rovn délk druhé ude menší než, ude v polorovině právě jedno řešení

35 2. Sestrojte trojúhelník ABC, je-li dáno: = 7,2 m, v = 6,3 m, v = 5,8 m. Řešení: Bod C leží n: AB1 BA 1 ) konstruke: k C l postup: 1. AB; AB 7,2 m C ; C AB C A C B t B 1 A 1 t; t( C, r C B ) k; k( A, 6,3 m) 5. A1; A1k t 6. l; l( B, 5,8 m) 7. B1; B1l t C; C BA AB 8. ABC A ) Diskuse ověření: C 0 B Jestliže délky oou výšek ude menší než délk, udou v polorovině právě 2 řešení

36 3. Sestrojte trojúhelník ABC, je-li dáno: = 5 m, v = 4,5 m, v = 3,8 m Řešení: Bod C leží n: AB1 BA 1 ) konstruke: k C l postup: 1. AB; AB 5 m C ; C AB C A C B A t B 1 C 0 A 1 B t; t( C, r C B ) k; k( A, 4,5 m) 5. A1; A1k t 6. l; l( B, 3,8 m) 7. B1; B1l t C; C BA AB 8. ABC ) Diskuse ověření: Jestliže délky oou výšek ude menší než délk, udou v polorovině právě 2 řešení

37 7. trojúhelník ABC(, v, t ) Vrhol C leží n: BA1 l ( C0, t ) ) konstruke: postup: 1. AB; AB C ; C AB AC BC t; t( C, r AC ) k; k( A, v ) 5. A1; A1t k 6. l; l( C0, t ) 7. C; C l BA1 8. ABC ) Diskuse ověření: Jestliže v >, úloh nemá řešení. Jestliže v =, ude trojúhelník prvoúhlý v rovině ude právě 1 řešení. Jestliže v <, udou mít kružnie h k 2 společné ody v rovině udou právě 2 řešení

38 1. Sestrojte trojúhelník ABC, je-li dáno: = 5 m, v = 3,5 m, t = 3 m Řešení: Vrhol C leží n: BA1 l C, t ) ( 0 ) konstruke: postup: 1. AB; AB 5 m C ; C AB AC BC t; t( C, r AC ) k; k( A,3,5 m) 5. A1; A1t k 6. llc ; ( 0,3 m) 7. C; C l BA1 8. ABC A k C A 1 C 0 t B l ) Diskuse ověření: Kružnie t k mjí v polorovině právě 1 společný od. Vznikne právě jedn polopřímk BA 1 t se protne s kružnií l právě v 1 odě. Řešením je právě 1 trojúhelník ABC

39 2. Sestrojte trojúhelník ABC, je-li dáno: = 7,4 m, v = 2,8 m, t = 3,4 m Řešení: Vrhol C leží n: BA1 l C, t ) ( 0 ) konstruke: postup: 1. AB; AB 7,4 m C ; C AB AC BC t; t( C, r AC ) k; k( A,2,8 m) 5. A1; A1t k 6. llc ; ( 0,3,4 m) 7. C; C l BA1 8. ABC A k A 1 C C 0 t l B ) Diskuse ověření: Kružnie t k mjí v polorovině právě 1 společný od. Vznikne právě jedn polopřímk BA 1 t se protne s kružnií l právě v 1 odě. Řešením je právě 1 trojúhelník ABC

40 3. Sestrojte trojúhelník ABC, je-li dáno: = 4,2 m, v = 4,3 m, t = 4,2 m Řešení: Vrhol C leží n: BA1 l C, t ) ( 0 ) konstruke: postup: 1. AB; AB 4,2 m k C ; C AB AC BC t; t( C, r AC ) k; k( A,4,3 m) 5. A1; A1t k 6. llc ; ( 0,4,2 m) 7. C; C l BA1 8. ABC A C 0 t B l ) Diskuse ověření: Kružnie t k nemjí v polorovině společný od. Zdná úloh nemá řešení

41 8. Sestrojte trojúhelník ABC, t, t ) ( Těžiště T získáme podle věty sss Pltí: 2TB0 TB Vrhol C leží n: BA0 S( A0 ) : B C ) konstruke: postup: 1. AB; AB 2. 2 k; k( A, r t ) l; l( B, r t ) 3 4. T; T k l 5. A0 ; A0 AT AA0 t 6. C; S( A0 ) : B C 7. ABC ) Diskuse ověření: Jestliže trojúhelník ABT existuje (trojúhelníková nerovnost), potom je v polorovině právě 1 řešení

42 1. Sestrojte trojúhelník ABC, je-li dáno: = 5 m, t = 4,5 m, t = 3,6 m Těžiště T získáme podle věty sss Pltí: 2TB0 TB Vrhol C leží n: BA0 S( A0 ) : B C ) konstruke: postup: 1. AB; AB 5 m 2 2. k; k( A, r t 3 m) l; l( B, r t 2,4 m) 3 4. T; T k l A ; A AT AA t 4,5 m B ; B BT BB t 3,6 m k B 0 T C A0 l C; C AB BA 8. ABC A B ) Diskuse ověření: Jestliže trojúhelník ABT existuje (trojúhelníková nerovnost), potom je v polorovině právě 1 řešení

43 2. Sestrojte trojúhelník ABC, je-li dáno: = 6,2 m, t = 4,2 m, t = 4,8 m Řešení: Těžiště T získáme podle věty sss Pltí: 2TB0 TB Vrhol C leží n: BA0 S( A0 ) : B C ) konstruke: postup: 1. AB; AB 6,2 m 2 2. k; k( A, r t 2,8 m) l; l( B, r t 3,2 m) 3 4. T; T k l A ; A AT AA t 4,2 m B ; B BT BB t 4,8 m C; C AB BA 8. ABC ) Diskuse ověření: A k B l Trojúhelník ABT NELZE sestrojit podle trojúhelníkové nerovnosti: 2,8 + 3,2 = 6,0 6,0 < 6,2 (součet dvou strn trojúhelníku musí ýt větší než strn třetí). Trojúhelník ABC nemá řešení

44 3. Sestrojte trojúhelník ABC, je-li dáno: = 7 m, t = 6,9 m, t = 8,1 m Řešení: Těžiště T získáme podle věty sss Pltí: 2TB0 TB Vrhol C leží n: BA0 S( A0 ) : B C ) konstruke: postup: 1. AB; AB 7 m 2 2. k; k( A, r t 4,6 m) l; l( B, r t 5,4 m) 3 4. T; T k l 5. A0 ; A0 AT AA0 t 6,9 m 6. B0 ; B0 BT BB0 t 8,1 m 7. C; C AB0 BA0 8. ABC k B 0 C T A 0 l A B ) Diskuse ověření: Jestliže trojúhelník ABT existuje (trojúhelníková nerovnost), potom je v polorovině právě 1 řešení

45 9. Sestrojte trojúhelník ABC (, t, t ) Těžiště T získáme podle věty sss. Vrhol C leží n: l ( C0, t ) ) konstruke: postup: 1. AB; AB C 0 T C ; C AB AC BC k; k( A, r t ) l; l( C0, r t ) 5. T; T k l 3 6. C; C C0T CC0 t 7. ABC ) Diskuse ověření: Jestliže trojúhelník ABT existuje (trojúhelníková nerovnost), potom je v polorovině právě 1 řešení

46 1. Sestrojte trojúhelník ABC, je-li dáno: = 5 m, t = 4,5 m, t = 3,6 m Těžiště T získáme podle věty sss. Vrhol C leží n: C 0 T l ( C0, t ) ) konstruke: postup: 1. AB; AB 5 m C ; C AB AC BC k; k( A, r t 3 m) l; l( C0, r t 1,2 m) 5. T; T k l 3 C; C C T CC t 3,6 m ABC ) Diskuse ověření: Jestliže trojúhelník ABT existuje (trojúhelníková nerovnost), potom je v polorovině právě 1 řešení. A C 0 T C B 3,01 m 1,21 m 3,61 m

47 2. Sestrojte trojúhelník ABC, je-li dáno: = 7,2 m, t = 6,9 m, t = 6,3 m Řešení: Těžiště T získáme podle věty sss. Vrhol C leží n: T l ( C0, t ) C 0 ) konstruke: postup: 1. AB; AB 7,2 m C ; C AB AC BC k; k( A, r t 4,6 m) l; l( C0, r t 2,1 m) 5. T; T k l 3 C; C C T CC t 6,3 m ABC T C A C 0 B ) Diskuse ověření: Jestliže trojúhelník ABT existuje (trojúhelníková nerovnost), potom je v polorovině právě 1 řešení ,63 m 2,11 m 6,31 m

48 3. Sestrojte trojúhelník ABC, je-li dáno: = 6,3 m, t = 5,1 m, t = 5,7 m Řešení: Těžiště T získáme podle věty sss. Vrhol C leží n: T l ( C0, t ) C 0 ) konstruke: postup: 1. AB; AB 6,3 m C C ; C AB AC BC k; k( A, r t 3,4 m) l; l( C0, r t 1,9 m) 5. T; T k l 3 C; C C T CC t 5,7 m ABC k T l ) Diskuse ověření: Jestliže trojúhelník ABT existuje (trojúhelníková nerovnost), potom je v polorovině právě 1 řešení. A C 0 B 3,40 m- 48-1,91 m 5,71 m

49 10. Sestrojte trojúhelník ABC ( t, t, t ) Budeme řešit pomoí pomoného trojúhelníku ADT (podle věty sss): AT t, AD t, TD t ) konstruke: postup: AT; AT 2 t 3 2 k; k( A, r t ) l; l( T, r t ) 3 4. D; Dk l 5. C; S( T) : D C C ; C DT DC TC B; S( C0) : A B 8. ABC ) Diskuse ověření: Jestliže trojúhelník ADT existuje (trojúhelníková nerovnost), potom je v polorovině právě 1 řešení

50 1. Sestrojte trojúhelník ABC, je-li dáno: t = 3 m, t = 4,5 m, t = 6 m Budeme řešit pomoí pomoného trojúhelníku ADT (podle věty sss): AT t, AD t, TD t ) konstruke: postup: 2 1. AT; AT t 2 m k; k( A, r t 3 m) l; l( T, r t 4 m) 3 4. D; Dk l 5. C; S( T) : D C C ; C DT DC TC B; S( C0) : A B 8. ABC A C 0 T C B ) Diskuse ověření: Jestliže trojúhelník ADT existuje (trojúhelníková nerovnost), potom je v polorovině právě 1 řešení. D 3,02 m 1,99 m

51 2. Sestrojte trojúhelník ABC, je-li dáno: t = 6,3 m, t = 5,1 m, t = 5,7 m Řešení: Budeme řešit pomoí pomoného trojúhelníku ADT (podle věty sss): AT t, AD t, TD t ) konstruke: postup: 2 1. AT; AT t 4,2 m k; k( A, r t 3,4 m) l; l( T, r t 3,8 m) 3 4. D; Dk l 5. C; S( T) : D C C ; C DT DC TC B; S( C0) : A B 8. ABC A T B ) Diskuse ověření: Jestliže trojúhelník ADT existuje (trojúhelníková nerovnost), potom je v polorovině právě 1 řešení. k l 3,40 m 4,17 m

52 3. Sestrojte trojúhelník ABC, je-li dáno: t = 6,9 m, t = 8,1 m, t = 3,3 m Řešení: Budeme řešit pomoí pomoného trojúhelníku ADT (podle věty sss): AT t, AD t, TD t ) konstruke: postup: 2 1. AT; AT t 4,6 m k; k( A, r t 5,4 m) l; l( T, r t 2,2 m) 3 4. D; Dk l 5. C; S( T) : D C C ; C DT DC TC A T k l B 7. B; S( C0) : A B 8. ABC ) Diskuse ověření: Jestliže trojúhelník ADT existuje (trojúhelníková nerovnost), potom je v polorovině právě 1 řešení. 5,42 m 4,58 m 2,23 m

53 11. Sestrojte trojúhelník ABC( 6 m, v 4,5 m, 60 ) Řešení: Tuto úlohu můžeme řešit pomoí posunutí neo pomoí úsekového úhlu. Hledáme množinu vrholů úhlu 0 o velikosti 60, pod kterou vidíme dnou úsečku AB. Vrhol C leží n: AB1 n příslušném olouku k ( S, SA) Jinou možností je využití množiny odů dné vlstnosti. Konstruki trojúhelníku zčínáme sestrojením úhlu γ. ) konstruke: Postup 1: 1. XAY; XAY p; p CX ; Xp 4,5 m C 3. B; B p CY 4. k; k ; 6 m 5. A; A k CX 6. ABC X Y B p k A ) Diskuse ověření: Průnikem polopřímky přímky p je právě jeden od B. Kružnie k polopřímk CX má právě jeden společný od A. Řešením úlohy je právě jeden trojúhelník ABC

54 Postup 2 (úsekový úhel): 1. AB; AB 6 m C ; C AB AC BC oab; C0 oab oab AB 4. BAX ; BAX 60 (úsekový úhel) 5. XAY ; XAY S; S oab AY 7. k; k( S, SA ) k o AB B 1 Y S C t l 8. t; t( C0, C0A 3 m) 9. l; l( B,4,5 m) 10. B1; B1t l 11. C; C AB1 k 12. ABC ) Diskuse ověření: A X C 0 B V polorovině ABY existuje právě jeden střed S. Polopřímk 1 AB protíná olouk kružnie k v jediném odě C. V polorovině je právě 1 řešení

55 1. Sestrojte trojúhelník ABC, je-li dáno: = 5 m, v = 4,5 m, γ = 50 Řešení: Tuto úlohu můžeme řešit pomoí úsekového úhlu. Hledáme množinu vrholů úhlu 0 o velikosti 60, pod kterou vidíme dnou úsečku AB. Vrhol C leží n: AB1 n příslušném olouku k ( S, SA) ) konstruke: postup 1: 1. XCY; XCY p, p CX p, C v 4,5 m 3. B; B CY p 4. k; k( B,5 m) 5. A; Ak CX 6. ABC

56 1. AB; AB 5 m C ; C AB AC BC oab; C0 oab oab AB 4. BAX ; BAX 50 (úsekový úhel) 5. XAY ; XAY S; S oab AY 7. k; k( S, SA ) 8. t; t( C0, C0A 2,5 m) 9. l; l( B,4,5 m) 10. B1; B1t l 11. C; C AB1 k 12. ABC ) Diskuse ověření: V polorovině ABY existuje právě jeden střed S. Polopřímk AB 1 protíná olouk kružnie k v jediném odě C. V polorovině je právě 1 řešení. A k Y X C o AB S C 0 t l B

57 2. Sestrojte trojúhelník ABC, je-li dáno: = 4 m, v = 3,5 m, γ = 30 Řešení: Tuto úlohu můžeme řešit pomoí posunutí neo pomoí úsekového úhlu. Hledáme množinu vrholů úhlu 0 o velikosti 50, pod kterou vidíme dnou úsečku AB. Vrhol C leží n: p; p p, v n příslušném olouku k ( S, SA) ) konstruke: postup: 1. AB; AB 4 m C C ; C AB AC BC k 3. oab; C0 oab oab AB 4. BAX ; BAX 30 (úsekový úhel) 5. XAY ; XAY S; S oab AY S o AB Y l 7. k; k( S, SA ) t; t( C, C A ) l; l( B,3,5 m) 10. B1; B1t l 11. C; C AB1 k 12. ABC A C 0 t B X ) Diskuse ověření: V polorovině ABY existuje právě jeden střed S. Polopřímk 1 AB protíná olouk kružnie k v jediném odě C. V polorovině je právě 1 řešení

58 3. Sestrojte trojúhelník ABC, je-li dáno: = 4 m, v = 4,3 m, γ = 40 Řešení: Tuto úlohu můžeme řešit pomoí posunutí neo pomoí úsekového úhlu. Hledáme množinu vrholů úhlu o 0 velikosti 50, pod kterou vidíme dnou úsečku AB. Vrhol C leží n: p; p p, v n příslušném olouku k ( S, SA) ) konstruke: postup: 1. AB; AB 4 m C ; C AB AC BC oab; C0 oab oab AB 4. BAX ; BAX 40 (úsekový úhel) k o AB l Y 5. XAY ; XAY S; S oab AY S 7. k; k( S, SA ) t; t( C, C A ) l; l( B,4,3 m) 10. B1; B1t l 11. C; C AB1 k 12. ABC A C 0 X t B ) Diskuse ověření: V polorovině ABY existuje právě jeden střed S. Polopřímk 1 AB neprotíná olouk kružnie k. V polorovině není řešení

59 12. trojúhelník ABC t, t, v ) ( Využijeme vlstnosti výšky v potom uď zvolíme C 0 pomoí t sestrojíme C neo 2 nopk. Njdeme T pomoí t njdeme A podle S( C 0 ) : A B. 3 ) konstruke: 1. CC ; CC t X ; X CC XC XC 3. t; t ( X ; XC ) 4. k; k ( C; v ) 5. C ; C k t T; T CC0 TC t l; l ( T, t 3 8. A; Al C C B; S( C ) : A B 10. ABC ) diskuse:

60 1. Sestrojte trojúhelník ABC, je-li dáno: t 3 m, t 4,5 m, v 4 m Řešení: ) rozor Využijeme vlstnosti výšky v potom uď zvolíme C 0 pomoí t sestrojíme C neo nopk. Njdeme T pomoí 2 t njdeme 3 A podle S( C 0 ) : A B. ) konstruke: Postup: 1. CC ; CC t 4,5 m X ; X CC XC XC 3. t; t ( X ; XC ) 0 0 C t k 4. k; k ( C; v 4 m) 5. C ; C k t T; T CC0 TC t 3 m l; l ( T, t 2 m) 3 8. A; Al C C B; S( C ) : A B 10. ABC A C 1 B' X A' B ) diskuse: Kružnie k t mjí 2 společné ody. Řešením jsou 2 ody C 1. Kružnie k přímk CC 1 mjí 2 společné ody A, A. V polorovině jsou 2 různá řešení, v rovině elkem 4 různá řešení

61 2. Sestrojte trojúhelník ABC, je-li dáno: t 7,5 m, t 6 m, v 3 m Řešení: Využijeme vlstnosti výšky potom uď zvolíme C 0 v pomoí t sestrojíme C neo nopk. 2 Njdeme T pomoí t njdeme 3 A podle S C ) : A B. ( 0 ) konstruke: Postup: 1. CC ; CC t 6 m X ; X CC XC XC 3. t; t ( X ; XC ) k; k ( C; v 3 m) 5. C ; C k t 2 6. T; T CC0 TC t 4 m l; l ( T, t 5 m) 3 8. A; Al C C B; S( C ) : A B 10. ABC A C 1 B' C X t k A' ) diskuse: B Kružnie k t mjí 2 společné ody. Řešením jsou 2 ody C 1. Kružnie k přímk CC 1 mjí 2 společné ody A, A. V polorovině jsou 2 různá řešení, v rovině elkem 4 různá řešení

62 3. Sestrojte trojúhelník ABC, je-li dáno: t 7,5 m, t 6 m, v 6,5 m Řešení: Využijeme vlstnosti výšky v potom uď zvolíme C 0 pomoí t sestrojíme C neo nopk. Njdeme T 2 pomoí t njdeme A podle 3 S( C 0 ) : A B. ) konstruke: Postup: 1. CC ; CC t 6 m X ; X CC XC XC 3. t; t ( X ; XC ) k; k ( C; v 6,5 m) 5. C ; C k t 2 6. T; T CC0 TC t 4 m l; l ( T, t 5 m) 3 8. A; Al C C B; S( C ) : A B 10. ABC C X t k ) diskuse: Kružnie k t nemjí společné ody. Úloh nemá řešení

63 13. trojúhelník ABC (, v, r ) Buď zčneme rýsovt od strny (řešení v polorovině), neo od kružnie (řešení v rovině). Musíme řešit vzth mezi r ( smozřejmě i s v ). ) konstruke Postup: 1. AB; AB 2. k; k ( B, r) 3. k '; k ' ( A; r) 4. S; S k k ' 5. o; o ( S; r) 6. p; p AB; Ap v 7. C; C p o 8. ABC ) diskuse: Kružnie k, k mohou mít společné 0, 1 neo 2 ody.kružnie o přímk p mohou mít společné 0, 1 neo 2 ody. Potom můžeme dostt 0, 2 neo 4 řešení v rovině

64 1. Sestrojte trojúhelník ABC: = 5 m, v = 2,5 m, r = 3 m Řešení: Buď zčneme rýsovt od strny (řešení v polorovině), neo od kružnie (řešení v rovině). Musíme řešit vzth mezi r ( smozřejmě i s v ). ) konstruke Postup: 1. AB; AB 5 m 2. k; k ( B, 3 m) 3. k '; k ' ( A; 3 m) 4. S; S k k ' 5. o; o ( S; 3 m) 6. p; p AB; Ap 2,5 m 7. C; C p o 8. ABC ) diskuse Kružnie k k mjí 2 společné ody, vzniknou 2 středy kružni opsnýh v rovině. Kružnie o přímk p mjí 2 společné ody C C. Úloh má 2 řešení v polorovině, 4 řešení (osově souměrné) v rovině. A k' k o B

65 2. Sestrojte trojúhelník ABC: = 5 m, v = 6 m, r = 3,5 m Řešení: ) rozor Buď zčneme rýsovt od strny (řešení v polorovině), neo od kružnie (řešení v rovině). Musíme řešit vzth mezi r ( smozřejmě i s v ). ) konstruke Postup: 1. AB; AB 5 m 2. k; k ( B, 3,5 m) 3. k '; k ' ( A; 3,5 m) 4. S; S k k ' 5. o; o ( S; 3,5 m) 6. p; p AB; Ap 6 m 7. C; C p o 8. ABC k' C S k A B ) diskuse Kružnie k k mjí 2 společné ody, vzniknou 2 středy kružni opsnýh v rovině. Kružnie o přímk p mjí 2 společné ody C C. Úloh má 2 řešení v polorovině, 4 řešení (osově souměrné s osou AB) v rovině. o

66 3. Sestrojte trojúhelník ABC: = 5 m, v = 3,8 m, r = 2,6 m Řešení: ) rozor Buď zčneme rýsovt od strny (řešení v polorovině), neo od kružnie (řešení v rovině). Musíme řešit vzth mezi r ( smozřejmě i s v ). ) konstruke Postup: 1. AB; AB 5 m 2. k; k ( B, 2,6 m) 3. k '; k ' ( A; 2,6 m) 4. S; S k k ' 5. o; o ( S; 2,6 m) k' k 6. p; p AB; Ap 3,8 m 7. C; C p o 8. ABC A S B o ) diskuse Kružnie k k mjí 2 společné ody, vzniknou 2 středy kružni opsnýh v rovině. Kružnie o přímk p mjí 0 společnýh odů. Úloh nemá řešení

( ) 7.3.16 Další metrické úlohy II. Předpoklady: 7315. Př. 1: Najdi přímku rovnoběžnou s osou I a III kvadrantu vzdálenou od bodu A[ 1;2 ] 2 2.

( ) 7.3.16 Další metrické úlohy II. Předpoklady: 7315. Př. 1: Najdi přímku rovnoběžnou s osou I a III kvadrantu vzdálenou od bodu A[ 1;2 ] 2 2. 76 Další metriké úlohy II Předpoklady: 7 Př : Najdi přímku rovnoěžnou s osou I a III kvadrantu vzdálenou od odu A[ ; ] Osou I a III kvadrantu je přímka y = x přímky s ní rovnoěžné mají rovnii x y + = 0

Více

TROJÚHELNÍK. JAN MALÝ UK v Praze a UJEP v Ústí n. L. sin α = b a.

TROJÚHELNÍK. JAN MALÝ UK v Praze a UJEP v Ústí n. L. sin α = b a. TROJÚHELNÍK JAN MALÝ UK v Prze UJEP v Ústí n. L. 1. Zn ení. Uvºujme trojúhelník ABC, jeho strny i jejih délky jsou,,, úhly α, β, γ. Osh trojúhelník zn íme P. Vý²k spu²t ná z odu C n strnu se zn í v její

Více

Projekt OP VK č. CZ.1.07/1.5.00/34.0420. Šablony Mendelova střední škola, Nový Jičín

Projekt OP VK č. CZ.1.07/1.5.00/34.0420. Šablony Mendelova střední škola, Nový Jičín Projekt OP VK č. CZ.1.07/1.5.00/34.0420 Šblony Mendelov střední škol, Nový Jičín NÁZEV MATERIÁLU: Trojúhelník zákldní pozntky Autor: Mgr. Břetislv Mcek Rok vydání: 2014 Tento projekt je spolufinncován

Více

Geometrie. Mgr. Jarmila Zelená. Gymnázium, SOŠ a VOŠ Ledeč nad Sázavou

Geometrie. Mgr. Jarmila Zelená. Gymnázium, SOŠ a VOŠ Ledeč nad Sázavou Geometrie Mgr. Jrmil Zelená Gymnázium, SOŠ VOŠ Ledeč nd Sázvou Výpočty v prvoúhlém trojúhelníku VY_3_INOVACE_05_3_1_M Gymnázium, SOŠ VOŠ Ledeč nd Sázvou PRAVOÚHLÝ TROJÚHELNÍK 1 Pojmy oznčení:,.odvěsny

Více

3.2.11 Obvody a obsahy obrazců I

3.2.11 Obvody a obsahy obrazců I ..11 Obvody obshy obrzců I Předpokldy: S pomocí vzorců v uvedených v tbulkách řeš následující příkldy Př. 1: Urči výšku lichoběžníku o obshu 54cm zákldnách 7cm 5cm. + c Obsh lichoběžníku: S v Výšk lichoběžníku

Více

5.1.5 Základní vztahy mezi body přímkami a rovinami

5.1.5 Základní vztahy mezi body přímkami a rovinami 5.1.5 Zákldní vzthy mezi body přímkmi rovinmi Předpokldy: 510 Prostor má tři rozměry, skládá se z bodů. Přímk - jednorozměrná podmnožin prostoru (množin bodů) Rovin - dvojrozměrná podmnožin prostoru (množin

Více

Máme tři různé body A, B, C. Trojúhelník ABC je průnik polorovin ABC, BCA a CAB.

Máme tři různé body A, B, C. Trojúhelník ABC je průnik polorovin ABC, BCA a CAB. 8. Trojúhelník 6. ročník 8. Trojúhelník 8.1. Základní pojmy 8.1.1. Trojúhelník Máme tři různé body A, B, C. Trojúhelník ABC je průnik polorovin ABC, BCA a CAB. Trojúhelník popisujeme proti chodu hodinových

Více

VY_32_INOVACE_04_Shodnost trojúhelníků -věta sss_02. Škola: Základní škola Slušovice, okres Zlín, příspěvková organizace

VY_32_INOVACE_04_Shodnost trojúhelníků -věta sss_02. Škola: Základní škola Slušovice, okres Zlín, příspěvková organizace VY_32_INOVACE_04_Shodnost trojúhelníků -věta sss_02 Autor: Růžena Krupičková Škola: Základní škola Slušovice, okres Zlín, příspěvková organizace Název projektu: Zkvalitnění ICT ve slušovské škole Číslo

Více

Trojúhelník a čtyřúhelník výpočet jejich obsahu, konstrukční úlohy

Trojúhelník a čtyřúhelník výpočet jejich obsahu, konstrukční úlohy 5 Trojúhelník a čtyřúhelník výpočet jejich obsahu, konstrukční úlohy Trojúhelník: Trojúhelník je definován jako průnik tří polorovin. Pojmy: ABC - vrcholy trojúhelníku abc - strany trojúhelníku ( a+b>c,

Více

O P A K O V Á N Í A P R O H L O U B E N Í U I V A O J E D N O D U C H Ý C H K O N S T R U K C Í C H 1,5 HODINY

O P A K O V Á N Í A P R O H L O U B E N Í U I V A O J E D N O D U C H Ý C H K O N S T R U K C Í C H 1,5 HODINY O P A K O V Á N Í A P R O H L O U B E N Í U I V A O J E D N O D U C H Ý C H K O N S T R U K C Í C H 1,5 HODINY Díve, než spolen pikroíme k uivu o množinách bod, pokusíme se zopakovat nkteré jednoduché

Více

3.2.7 Příklady řešené pomocí vět pro trojúhelníky

3.2.7 Příklady řešené pomocí vět pro trojúhelníky ..7 Příkldy řešené pomocí ět pro trojúhelníky Předpokldy:, 6 Pedgogická poznámk: U následujících příkldů ( u mnoh dlších příkldů z geometrie) pltí, že nedílnou součástí řešení je nápd (který se tké nemusí

Více

Digitální učební materiál

Digitální učební materiál Digitální učební materiál Projekt: Digitální učební materiály ve škole, registrační číslo projektu CZ.1.07/1.5.00/34.0527 Příjemce: Střední zdravotnická škola a Vyšší odborná škola zdravotnická, Husova

Více

3.4.3 Množiny bodů dané vlastnosti I

3.4.3 Množiny bodů dané vlastnosti I 3.4.3 Množiny odů dné vlstnosti I Předpoldy: 3401 Něteé z těchto množin už známe. J je definován užnice ( ; )? Množin všech odů oviny, teé mjí od středu vzdálenost. Předchozí vět znmená dvě věci: Vzdálenost

Více

TROJÚHELNÍK 180. Definice. C neleží v přímce. Potom trojúhelníkem ABC nazveme průnik polorovin ABC, BCA, Nechť body. Viz příloha: obecny_trojuhelnik

TROJÚHELNÍK 180. Definice. C neleží v přímce. Potom trojúhelníkem ABC nazveme průnik polorovin ABC, BCA, Nechť body. Viz příloha: obecny_trojuhelnik TROJÚHELNÍK Definice Nechť body A, B, C neleží v přímce. Potom trojúhelníkem ABC nazveme průnik polorovin ABC, BCA, CAB. Viz příloha: obecny_trojuhelnik Definice trojúhelníku Uzavřená, jednoduchá (neprotínající

Více

Různostranný (obecný) žádné dvě strany nejsou stějně dlouhé. Rovnoramenný dvě strany (ramena) jsou stejně dlouhé, třetí strana je základna

Různostranný (obecný) žádné dvě strany nejsou stějně dlouhé. Rovnoramenný dvě strany (ramena) jsou stejně dlouhé, třetí strana je základna 16. Trojúhelník, Mnohoúhelník, Kružnice (typy trojúhelníků a jejich vlastnosti, Pythagorova věta, Euklidovy věty, čtyřúhelníky druhy a jejich vlastnosti, kružnice obvodový a středový, úsekový úhel, vzájemná

Více

ŘEŠENÉ PŘÍKLADY DESKRIPTIVNÍ GEOMETRIE. ONDŘEJ MACHŮ a kol.

ŘEŠENÉ PŘÍKLADY DESKRIPTIVNÍ GEOMETRIE. ONDŘEJ MACHŮ a kol. ŘEŠENÉ PŘÍKLADY Z DESKRIPTIVNÍ GEOMETRIE ONDŘEJ MACHŮ a kol. Předmluva Otevíráte sbírku, která vznikla z příkladů zadaných studentům pátého ročníku PřF UP v Olomouci, učitelů matematiky a deskriptivní

Více

Digitální učební materiál

Digitální učební materiál Digitální učení mteriál Projekt: Digitální učení mteriály e škole registrční číslo projektu CZ.1.07/1..00/4.07 Příjeme: Střední zdrotniká škol Vyšší odorná škol zdrotniká Huso 71 60 České Budějoie Náze

Více

Přehled učiva matematiky 7. ročník ZŠ

Přehled učiva matematiky 7. ročník ZŠ Přehled učiva matematiky 7. ročník ZŠ I. ARITMETIKA 1. Zlomky a racionální čísla Jestliže rozdělíme něco (= celek) na několik stejných dílů, nazývá se každá část celku zlomkem. Zlomek tři čtvrtiny = tři

Více

4.2.1 Goniometrické funkce ostrého úhlu

4.2.1 Goniometrické funkce ostrého úhlu .. Goniometriké funke ostrého úhlu Předpokldy: 7 Dnešní látku opkujeme už potřetí (poprvé n zčátku mtemtiky, podruhé ve fyzie) je to oprvdu důležité. C C C C C C Všehny prvoúhlé trojúhelníky s úhlem α

Více

PRACOVNÍ SEŠIT PLANIMETRIE. 6. tematický okruh: Připrav se na státní maturitní zkoušku z MATEMATIKY důkladně, z pohodlí domova a online.

PRACOVNÍ SEŠIT PLANIMETRIE. 6. tematický okruh: Připrav se na státní maturitní zkoušku z MATEMATIKY důkladně, z pohodlí domova a online. Připrav se na státní maturitní zkoušku z MATEMATIKY důkladně, z pohodlí domova a online PRACOVNÍ SEŠIT 6. tematický okruh: PLANIMETRIE vytvořila: RNDr. Věra Effenberger expertka na online přípravu na SMZ

Více

53. ročník matematické olympiády. q = 65

53. ročník matematické olympiády. q = 65 53. ročník matematické olympiády! 1. V rovině je dán obdélník ABCD, kde AB = a < b = BC. Na jeho straně BC eistuje bod K a na straně CD bod L tak, že daný obdélník je úsečkami AK, KL a LA rozdělen na čtyři

Více

LINEÁRNÍ DIFERENCIÁLNÍ ROVNICE 2.ŘÁDU

LINEÁRNÍ DIFERENCIÁLNÍ ROVNICE 2.ŘÁDU LINEÁRNÍ DIFERENCIÁLNÍ ROVNICE 2.ŘÁDU ZDENĚK ŠIBRAVA 1. Obecné řešení lin. dif. rovnice 2.řádu s konstntními koeficienty 1.1. Vrice konstnt. Příkld 1.1. Njděme obecné řešení diferenciální rovnice (1) y

Více

{ } ( ) ( ) 2.5.8 Vztahy mezi kořeny a koeficienty kvadratické rovnice. Předpoklady: 2301, 2508, 2507

{ } ( ) ( ) 2.5.8 Vztahy mezi kořeny a koeficienty kvadratické rovnice. Předpoklady: 2301, 2508, 2507 58 Vzth mezi kořen koefiient kvdrtiké rovnie Předpokld:, 58, 57 Pedgogiká poznámk: Náplň zřejmě přeshuje možnost jedné vučoví hodin, příkld 8 9 zůstvjí n vičení neo polovinu hodin při píseme + + - zákldní

Více

PLANIMETRIE, KONSTRUKČNÍ ÚLOHY V ROVINĚ

PLANIMETRIE, KONSTRUKČNÍ ÚLOHY V ROVINĚ PLANIMETRIE, KONSTRUKČNÍ ÚLOHY V ROVINĚ Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro vyšší gymnázia Autoři projektu Student na prahu 21. století - využití ICT ve vyučování matematiky

Více

Doučování sekunda. měsíc Probírané učivo Základní učivo září Opakování učiva z primy

Doučování sekunda. měsíc Probírané učivo Základní učivo září Opakování učiva z primy Doučování sekunda měsíc Probírané učivo Základní učivo září Opakování učiva z primy Desetinná čísla Krychle a kvádr Prvočísla a čísla složená Společný násobek a dělitel Prvočísla a čísla složená Trojúhelník

Více

8. ročník 6. Podobnost. Geometrické funkce v pravoúhlém trojúhelníku 6. Podobnost. Goniometrické funkce v pravoúhlém trojúhelníku

8. ročník 6. Podobnost. Geometrické funkce v pravoúhlém trojúhelníku 6. Podobnost. Goniometrické funkce v pravoúhlém trojúhelníku 6. Podobnost. Goniometrické funkce v pravoúhlém trojúhelníku 6.1. Podobnost geometrických útvarů. Podobností ( podobným zobrazením ) nazýváme takové geometrické zobrazení, je-li každému bodu X přiřazen

Více

6. Úhel a jeho vlastnosti

6. Úhel a jeho vlastnosti 6. Úhel a jeho vlastnosti 6.1 Úhel, osa úhlu 6.1.1 Úhel Úhel je část roviny ohraničená dvěma polopřímkami se společným počátkem. Polopřímkám říkáme ramena úhlu. Jejich společný počátek nazýváme vrchol

Více

4. Model M1 syntetická geometrie

4. Model M1 syntetická geometrie 4. Model M1 sytetiká geometrie V této kapitole se udeme zaývat vektory, jejih vlastostmi a využitím v geometrii. Neudeme přitom rozlišovat, jestli se jedá je o roviu (dvě dimeze) eo prostor (tři dimeze).

Více

Polibky kružnic: Intermezzo

Polibky kružnic: Intermezzo Polibky kružnic: Intermezzo PAVEL LEISCHNER Pedagogická fakulta JU, České Budějovice Věta 21 z Archimedovy Knihy o dotycích kruhů zmíněná v předchozím dílu seriálu byla inspirací k tomuto původně neplánovanému

Více

Trojúhelník - určují tři body které neleţí na jedné přímce. Trojúhelník je rovněţ moţno povaţovat za průnik tří polorovin nebo tří konvexních úhlů.

Trojúhelník - určují tři body které neleţí na jedné přímce. Trojúhelník je rovněţ moţno povaţovat za průnik tří polorovin nebo tří konvexních úhlů. Trojúhelník Trojúhelník - určují tři body které neleţí na jedné přímce. Trojúhelník je rovněţ moţno povaţovat za průnik tří polorovin nebo tří konvexních úhlů. C Body se nazývají vrcholy trojúhelníku Úsečky

Více

Úterý 8. ledna. Cabri program na rýsování. Základní rozmístění sad nástrojů na panelu nástrojů

Úterý 8. ledna. Cabri program na rýsování. Základní rozmístění sad nástrojů na panelu nástrojů Úterý 8. ledna Cabri program na rýsování program umožňuje rýsování základních geometrických útvarů, měření délky úsečky, velikosti úhlu, výpočet obvodů a obsahů. Je vhodný pro rýsování geometrických míst

Více

Trojúhelník. MATEMATIKA pro 1. ročníky tříletých učebních oborů. Ing. Miroslav Čapek srpen 2011

Trojúhelník. MATEMATIKA pro 1. ročníky tříletých učebních oborů. Ing. Miroslav Čapek srpen 2011 MATEMATIKA pro 1. ročníky tříletých učebních oborů Trojúhelník Ing. Miroslav Čapek srpen 2011 Projekt Využití e-learningu k rozvoji klíčových kompetencí reg. č.: CZ.1.07/1.1.10/03.0021 je spolufinancován

Více

M - Planimetrie pro studijní obory

M - Planimetrie pro studijní obory M - Planimetrie pro studijní obory Autor: Mgr. Jaromír Juřek Kopírování a jakékoliv další využití výukového materiálu je dovoleno pouze s uvedením odkazu na www.jarjurek.cz. VARIACE 1 Tento dokument byl

Více

Zobrazení v rovině je předpis, který každému bodu X roviny připisuje právě jeden bod X roviny. Bod X se nazývá vzor, bod X se nazývá obraz.

Zobrazení v rovině je předpis, který každému bodu X roviny připisuje právě jeden bod X roviny. Bod X se nazývá vzor, bod X se nazývá obraz. 7. Shodná zobrazení 6. ročník 7. Shodná zobrazení 7.1. Shodnost geometrických obrazců Zobrazení v rovině je předpis, který každému bodu X roviny připisuje právě jeden bod X roviny. Bod X se nazývá vzor,

Více

c 2 b 2 a 2 2.8.20 Důkazy Pythagorovy věty Předpoklady: 020819

c 2 b 2 a 2 2.8.20 Důkazy Pythagorovy věty Předpoklady: 020819 .8.0 Důkzy Pythgorovy věty Předpokldy: 00819 Pedgogická poznámk: V řešení kždého příkldu jsou uvedeny rdy, které dávám postupně žákům, bych jim pomohl. Pedgogická poznámk: Diskuse o následujícím příkldu

Více

METODICKÉ LISTY Z MATEMATIKY pro gymnázia a základní vzdělávání

METODICKÉ LISTY Z MATEMATIKY pro gymnázia a základní vzdělávání METODICKÉ LISTY Z MATEMATIKY pro gymnázi zákldní vzdělávání Jroslv Švrček kolektiv Rámcový vzdělávcí progrm pro zákldní vzdělávání Vzdělávcí oblst: Mtemtik její plikce Temtický okruh: Nestndrdní plikční

Více

Odraz na kulové ploše Duté zrcadlo

Odraz na kulové ploše Duté zrcadlo Odz n kulové ploše Duté zcdlo o.. os zcdl V.. vchol zcdl S.. střed zcdl (kul. ploch).. polomě zcdl (kul. ploch) Ppsek vchází z odu A n ose zcdl po odzu n zcdle dopdá do nějkého odu B n ose. Podle oázku

Více

Výraz. podmínky (B) 1 (E) (A) 56 (B) 144 (C) 512 (D) 2 011 (E) Taková čísla neexistují. Počet všech přirozených čísel, která vyhovují

Výraz. podmínky (B) 1 (E) (A) 56 (B) 144 (C) 512 (D) 2 011 (E) Taková čísla neexistují. Počet všech přirozených čísel, která vyhovují . Posloupnost ( ) =, n+ = 3 =, n+ n = 3 3 =, n+ = = 3, n+ = n +. = = n+ 3, 3n + n je totožná s posloupností: n n n = Dvid hrje kždý všední den fotbl v sobotu i v neděli chodí do posilovny. Dnes se sportovně

Více

Jihočeská univerzita v Českých Budějovicích. Pedagogická fakulta

Jihočeská univerzita v Českých Budějovicích. Pedagogická fakulta Jihočeská unierzit Českýh Budějoiíh Pedgogiká fkult Geometriké konstruke řešené s yužitím lgebrikého ýpočtu Bklářská práe Jméno příjmení: Studijní progrm: Studijní obor: Vedouí bklářské práe: Jn ZOBALOVÁ

Více

MATEMATIKA 6. ročník II. pololetí

MATEMATIKA 6. ročník II. pololetí Úhel a jeho velikost: MATEMATIKA 6. ročník II. pololetí 26A Převeď na stupně a minuty: 126 = 251 = 87 = 180 = 26B Převeď na stupně a minuty: 92 = 300 = 146 = 248 = 27A Převeď na minuty: 3 0 = 1 0 25 =

Více

PLANIMETRIE, KONSTRUKČNÍ ÚLOHY V ROVINĚ

PLANIMETRIE, KONSTRUKČNÍ ÚLOHY V ROVINĚ PLANIMETRIE, KONSTRUKČNÍ ÚLOHY V ROVINĚ Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro vyšší gymnázia Autoři projektu Student na prahu 21. století - využití ICT ve vyučování matematiky

Více

Sčítání a odčítání Jsou-li oba sčítanci kladní, znaménko výsledku je + +421 +23 = + 444

Sčítání a odčítání Jsou-li oba sčítanci kladní, znaménko výsledku je + +421 +23 = + 444 ARITMETIKA CELÁ ČÍSLA Celá čísla jsou. -6, -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, 6, Celá čísla rozdělujeme na záporná (-1, -2, -3, ) kladná (1, 2, 3,.) nula 0 (není číslo kladné ani záporné) absolutní

Více

STEREOMETRIE ZÁKLADNÍ POJMY, METRICKÉ VLASTNOSTI, ODCHYLKY, VZDÁLENOSTI. STEREOMETRIE geometrie v prostoru

STEREOMETRIE ZÁKLADNÍ POJMY, METRICKÉ VLASTNOSTI, ODCHYLKY, VZDÁLENOSTI. STEREOMETRIE geometrie v prostoru Předmět: Ročník: Vytvořil: Datum: MATEMATIKA DRUHÝ Mgr. Tomáš MAŇÁK 4. května 2014 Název zpracovaného celku: STEREOMETRIE ZÁKLADNÍ POJMY, METRICKÉ VLASTNOSTI, ODCHYLKY, VZDÁLENOSTI STEREOMETRIE geometrie

Více

Výukový materiál zpracován v rámci projektu EU peníze školám

Výukový materiál zpracován v rámci projektu EU peníze školám Výukový materiál zpracován v rámci projektu EU peníze školám Registrační číslo projektu: CZ.1.07/1.4.00/21.3476 Název materiálu: VY_42_INOVACE_181 Vzdělávací oblast: Matematika a její aplikace Vzdělávací

Více

PLANIMETRIE, SHODNOST A PODOBNOST

PLANIMETRIE, SHODNOST A PODOBNOST PLANIMETRIE, SHODNOST A PODOBNOST Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro nižší gymnázia Autoři projektu Student na prahu 21. století - využití ICT ve vyučování matematiky

Více

Vzorce počítačové grafiky

Vzorce počítačové grafiky Vektorové operace součet vektorů rozdíl vektorů opačný vektor násobení vektoru skalárem úhel dvou vektorů velikost vektoru a vzdálenost dvojice bodů v rovině (v prostoru analogicky) u = B A= b a b a u

Více

= 8 25 + 19 12 = 32 43 32 = 11. 2 : 1 k > 0. x k + (1 x) 4k = 2k x + 4 4x = 2 x = 2 3. 1 x = 3 1 2 = 2 : 1.

= 8 25 + 19 12 = 32 43 32 = 11. 2 : 1 k > 0. x k + (1 x) 4k = 2k x + 4 4x = 2 x = 2 3. 1 x = 3 1 2 = 2 : 1. 4 4 = 8 8 8 = 5 + 19 1 = 4 = 11 : 1 k > 0 k 4k x 1 x x k + (1 x) 4k = k x + 4 4x = x = x 1 x = 1 = : 1. v h h s 75 v 50 h s v v 50 s h 75 180 v h 90 v 50 h 180 90 50 = 40 s 65 v 80 60 80 80 65 v 50 s 50

Více

ANALYTICKÁ GEOMETRIE INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ

ANALYTICKÁ GEOMETRIE INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ ANALYTICKÁ GEOMETRIE Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro vyšší gymnázia Autoři projektu Student na prahu 21. století - využití ICT ve vyučování matematiky na gymnáziu

Více

Komplexní čísla. Pojem komplexní číslo zavedeme při řešení rovnice: x 2 + 1 = 0

Komplexní čísla. Pojem komplexní číslo zavedeme při řešení rovnice: x 2 + 1 = 0 Komplexní čísl Pojem komplexní číslo zvedeme př řešení rovnce: x 0 x 0 x - x Odmocnn ze záporného čísl reálně neexstuje. Z toho důvodu se oor reálných čísel rozšíří o dlší číslo : Všechny dlší odmocnny

Více

Výukový materiál zpracovaný v rámci projektu Výuka moderně Registrační číslo projektu: CZ.1.07/1.5.00/34.0205

Výukový materiál zpracovaný v rámci projektu Výuka moderně Registrační číslo projektu: CZ.1.07/1.5.00/34.0205 Střední průmyslová škola strojnická Olomouc, tř.17. listopadu 49 Výukový materiál zpracovaný v rámci projektu Výuka moderně Registrační číslo projektu: CZ.1.07/1.5.00/34.0205 Šablona: III/2 Přírodovědné

Více

3.4.12 Konstrukce na základě výpočtu II

3.4.12 Konstrukce na základě výpočtu II 3.4. Konstruk n záklě výpočtu II Přpokly: 34 Př. : J án úsčk o jnotkové él úsčky o élkáh,, >. Nrýsuj: ) úsčku o él = +, ) úsčku o él Při rýsování si élky úsčk, vhoně zvol. =. Prolém: O výrzy ni náhoou

Více

METODICKÉ LISTY Z MATEMATIKY pro gymnázia a základní vzdělávání

METODICKÉ LISTY Z MATEMATIKY pro gymnázia a základní vzdělávání METODICKÉ LISTY Z MATEMATIKY pro gymnázia a základní vzdělávání Jaroslav Švrček a kolektiv Rámcový vzdělávací program pro základní vzdělávání Vzdělávací oblast: Matematika a její aplikace Tematický okruh:

Více

Shodná zobrazení Zobrazení Z v rovin shodné zobrazení nep ímou shodnost shodnost p ímou

Shodná zobrazení Zobrazení Z v rovin shodné zobrazení nep ímou shodnost shodnost p ímou Shodná zobrazení Zobrazení Z v rovině je předpis, který každému bodu X roviny přiřazuje právě jeden bod X roviny. Bod X se nazývá vzor, bod X jeho obraz; zapisujeme Z: X X. Zobrazení v rovině je shodné

Více

Goniometrické funkce obecného úhlu

Goniometrické funkce obecného úhlu 0 Goniometrické funkce oecného úhlu V prvoúhlém trojúhelníku ABC jsou definovány funkce,, tg, cotg liovolného úhlu tkto: α α tg α cotg α Význmné hodnoty gon. funkcí 0 0 60 90 α 0 α 0 tg α 0 nedef. cotg

Více

Základní pojmy: Objemy a povrchy těles Vzájemná poloha bodů, přímek a rovin Opakování: Obsahy a obvody rovinných útvarů

Základní pojmy: Objemy a povrchy těles Vzájemná poloha bodů, přímek a rovin Opakování: Obsahy a obvody rovinných útvarů 1/13 Základní pojmy: Objemy a povrchy těles Vzájemná poloha bodů, přímek a rovin Opakování: Obsahy a obvody rovinných útvarů STEREOMETRIE Stereometrie - geometrie v prostoru - zabývá se vzájemnou polohou

Více

Maturitní příklady 2011/2012

Maturitní příklady 2011/2012 Mturitní příkldy 0/0 Výroková logik, množiny, důkzy Ve třídě je 0 dívek 5 hohů Jedn čtvrtin dívek nosí rýle elkem 0% žáků ve třídě má rýle Kolik hohů nenosí rýle? Ze 00 studentů se 0 učí němeky, 8 špnělsky

Více

Součin matice A a čísla α definujeme jako matici αa = (d ij ) typu m n, kde d ij = αa ij pro libovolné indexy i, j.

Součin matice A a čísla α definujeme jako matici αa = (d ij ) typu m n, kde d ij = αa ij pro libovolné indexy i, j. Kapitola 3 Počítání s maticemi Matice stejného typu můžeme sčítat a násobit reálným číslem podobně jako vektory téže dimenze. Definice 3.1 Jsou-li A (a ij ) a B (b ij ) dvě matice stejného typu m n, pak

Více

Návody k domácí části I. kola kategorie A

Návody k domácí části I. kola kategorie A Návody k domácí části I. kola kategorie A 1. Najděte všechny dvojice prvočísel p, q, pro které existuje přirozené číslo a takové, že pq p + q = a + 1 a + 1. 1. Nechť p a q jsou prvočísla. Zjistěte, jaký

Více

B A B A B A B A A B A B B

B A B A B A B A A B A B B AB ABA BA BABA B AB A B B A A B A B AB A A B B B B ABA B A B A A A A A B A A B A A B A A B A BA B A BA B D A BC A B C A B A B C C ABA B D D ABC D A A B A B C D C B B A A B A B A B A A AB B A AB A B A A

Více

Střední škola obchodu, řemesel, služeb a Základní škola, Ústí nad Labem, příspěvková organizace Vzdělávací středisko Trmice

Střední škola obchodu, řemesel, služeb a Základní škola, Ústí nad Labem, příspěvková organizace Vzdělávací středisko Trmice Střední škol ohodu, řemesel, služe Zákldní škol, Ústí nd Lem, příspěvková orgnize Vzděláví středisko Trmie MATURITNÍ TÉMATA Předmět: Mtemtik Oor vzdělání: Ekonomik podnikání Školní rok: 0/06 Tříd: EKP

Více

3. APLIKACE URČITÉHO INTEGRÁLU

3. APLIKACE URČITÉHO INTEGRÁLU APLIKACE URČITÉHO INTEGRÁLU APLIKACE URČITÉHO INTEGRÁLU V mtemtice, le zejmén v přírodních technických vědách, eistuje nepřeerné množství prolémů, při jejichž řešení je nutno tím či oním způsoem použít

Více

Obecná rovnice kvadratické funkce : y = ax 2 + bx + c Pokud není uvedeno jinak, tak definičním oborem řešených funkcí je množina reálných čísel.

Obecná rovnice kvadratické funkce : y = ax 2 + bx + c Pokud není uvedeno jinak, tak definičním oborem řešených funkcí je množina reálných čísel. 5. Funkce 9. ročník 5. Funkce ZOPAKUJTE SI : 8. ROČNÍK KAPITOLA. Funkce. 5.. Kvadratická funkce Obecná rovnice kvadratické funkce : y = ax + bx + c Pokud není uvedeno jinak, tak definičním oborem řešených

Více

v z t sin ψ = Po úpravě dostaneme: sin ψ = v z v p v p v p 0 sin ϕ 1, 0 < v z sin ϕ < 1.

v z t sin ψ = Po úpravě dostaneme: sin ψ = v z v p v p v p 0 sin ϕ 1, 0 < v z sin ϕ < 1. Řešení S-I-4-1 Hledáme vlastně místo, kde se setkají. A to tak, aby nemusel pes na zajíce čekat nebo ho dohánět. X...místo setkání P...místo, kde vybíhá pes Z...místo, kde vybíhá zajíc ZX = v z t P X =

Více

(1) přičemž všechny veličiny uvažujeme absolutně. Její úpravou získáme vztah + =, (2) Přímé zvětšení Z je dáno vztahem Z = =, a a

(1) přičemž všechny veličiny uvažujeme absolutně. Její úpravou získáme vztah + =, (2) Přímé zvětšení Z je dáno vztahem Z = =, a a Úloh č. 3 Měření ohniskové vzdálenosti tenkých čoček 1) Pomůcky: optická lvice, předmět s průhledným milimetrovým měřítkem, milimetrové měřítko, stínítko, tenká spojk, tenká rozptylk, zdroj světl. ) Teorie:

Více

METODICKÉ LISTY Z MATEMATIKY pro gymnázia a základní vzdělávání

METODICKÉ LISTY Z MATEMATIKY pro gymnázia a základní vzdělávání METODICKÉ LISTY Z MATEMATIKY pro gymnázia a základní vzdělávání Jaroslav Švrček a kolektiv Rámcový vzdělávací program pro gymnázia Vzdělávací oblast: Matematika a její aplikace Tematický okruh: Geometrie

Více

16. Trojúhelník vlastnosti, prvky, konstrukční úlohy Vypracovala: Ing. Ludmila Všetulová, prosinec 2013

16. Trojúhelník vlastnosti, prvky, konstrukční úlohy Vypracovala: Ing. Ludmila Všetulová, prosinec 2013 16. Trojúhelník vlastnosti, prvky, konstrukční úlohy Vypracovala: Ing. Ludmila Všetulová, prosinec 2013 Název školy Obchodní akademie a Střední odborné učiliště Veselí nad Moravou Název a číslo OP OP Vzdělávání

Více

7.2.10 Skalární součin IV

7.2.10 Skalární součin IV 7.2.10 Sklární sočin IV Předpokld: 7209 Pedgogiká poznámk: Tto hodin je kontet čebnie zláštní. Obshje d důkz jeden příkld z klsiké čebnie. Všehn tři zdání jso znčně obtížná ždjí nápd, proto je řeším normálně

Více

Úlohy domácí části I. kola kategorie B

Úlohy domácí části I. kola kategorie B 6. ročník Matematické olympiády Úlohy domácí části I. kola kategorie B. Mezi všemi desetimístnými čísly dělitelnými jedenácti, v nichž se žádná číslice neopakuje, najděte nejmenší a největší. Řešení. Uvažovaná

Více

Kuželosečky. Copyright c 2006 Helena Říhová

Kuželosečky. Copyright c 2006 Helena Říhová Kuželosečk Copright c 2006 Helena Říhová Obsah 1 Kuželosečk 3 1.1 Kružnice... 3 1.1.1 Tečnakekružnici..... 3 1.2 lipsa.... 4 1.2.1 Rovniceelips...... 5 1.2.2 Tečnakelipse... 7 1.2.3 Konstrukceelips.....

Více

Tlačné pružiny. Všechny rozměry pružin uvedených v katalogu jsou standardizovány. Také jsou zde uvedena potřebná technická data.

Tlačné pružiny. Všechny rozměry pružin uvedených v katalogu jsou standardizovány. Také jsou zde uvedena potřebná technická data. Tlačné pružiny Všechny rozměry pružin uvedených v katalogu jsou standardizovány. Také jsou zde uvedena potřebná technická data. Každá pružina má své vlastní katalogové číslo. Při objednávce udávejte prosím

Více

( ) 1.5.2 Mechanická práce II. Předpoklady: 1501

( ) 1.5.2 Mechanická práce II. Předpoklady: 1501 1.5. Mechnická práce II Předpokldy: 1501 Př. 1: Těleso o hmotnosti 10 kg bylo vytženo pomocí provzu do výšky m ; poprvé rovnoměrným přímočrým pohybem, podruhé pohybem rovnoměrně zrychleným se zrychlením

Více

Opakování k maturitě matematika 4. roč. TAD 2 <

Opakování k maturitě matematika 4. roč. TAD 2 < 8.. Otázka číslo Mocniny a odmocniny. b.) Zjednodušte: 6 b. b Opakování k maturitě matematika. roč. TAD : 6.) Zjednodušte: 6 6.) Vypočtěte: a. y : ( a. y ) =.) Usměrněte zlomek =.. Otázka číslo Lineární

Více

Mgr. Monika Urbancová. a vepsané trojúhelníku

Mgr. Monika Urbancová. a vepsané trojúhelníku Název projektu Život jako leporelo Registrační číslo CZ.1.07/1.4.00/21.3763 Autor Mgr. Monika Urbancová Datum 28. 8. 2014 Ročník 6. ročník Vzdělávací oblast MATEMATIKA A JEJÍ APLIKACE Vzdělávací obor MATEMATIKA

Více

14/10/2015 Z Á K L A D N Í C E N Í K Z B O Ž Í Strana: 1

14/10/2015 Z Á K L A D N Í C E N Í K Z B O Ž Í Strana: 1 14/10/2015 Z Á K L A D N Í C E N Í K Z B O Ž Í Strana: 1 S Á ČK Y NA PS Í E XK RE ME N TY SÁ ČK Y e xk re m en t. p o ti sk P ES C Sá čk y P ES C č er né,/ p ot is k/ 12 m y, 20 x2 7 +3 c m 8.8 10 bl ok

Více

Sedlová plocha (hyperbolický paraboloid)

Sedlová plocha (hyperbolický paraboloid) Sedlová plocha (hyperbolický paraboloid) v kosoúhlém promítání do nárysny Řešené úlohy Příklad: osoúhlém promítání do nárysny ν (ω =, q = /2) sestrojte vrchol V, osu o a tečnou rovinu τ v bodě T hyperbolického

Více

METODICKÉ LISTY Z MATEMATIKY pro gymnázia a základní vzdělávání

METODICKÉ LISTY Z MATEMATIKY pro gymnázia a základní vzdělávání METODICKÉ LISTY Z MATEMATIKY pro gymnázia a základní vzdělávání Jaroslav Švrček a kolektiv Rámcový vzdělávací program pro základní vzdělávání Vzdělávací oblast: Matematika a její aplikace Tematický okruh:

Více

Planimetrie pro studijní obory

Planimetrie pro studijní obory Variace 1 Planimetrie pro studijní obory Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. 1. Planimetrie Planimetrie

Více

5.2. Funkce, definiční obor funkce a množina hodnot funkce

5.2. Funkce, definiční obor funkce a množina hodnot funkce 5. Funkce 8. ročník 5. Funkce 5.. Opakování - Zobrazení a zápis intervalů a) uzavřený interval d) otevřený interval čísla a,b krajní body intervalu číslo a patří do intervalu (plné kolečko) číslo b patří

Více

Wichterlovo gymnázium, Ostrava-Poruba, příspěvková organizace

Wichterlovo gymnázium, Ostrava-Poruba, příspěvková organizace Wichterlovo gymnázium, Ostrava-Poruba, příspěvková organizace STUDIJNÍ OPOR DISTNČNÍHO VZDĚLÁVÁNÍ ŘEŠENÍ PLNIMETRICKÝCH ÚLOH - KONSTRUKČNÍ POČETNÍ ÚLOHY EV DVIDOVÁ Ostrava 2006 Zpracovala: RNDr. Eva Davidová

Více

Ročníková práce Konstrukce kuželosečky zadané pěti body

Ročníková práce Konstrukce kuželosečky zadané pěti body Gymnázium Christiana Dopplera, Zborovská 45, Praha 5 Ročníková práce Konstrukce kuželosečky zadané pěti body Jakub Borovanský 4. C 2011/2012 Zadavatel: Mgr. Ondřej Machů Přísahám, že jsem zadanou ročníkovou

Více

2. Zapište daná racionální čísla ve tvaru zlomku a zlomek uveďte v základním tvaru. 4. Upravte a stanovte podmínky, za kterých má daný výraz smysl:

2. Zapište daná racionální čísla ve tvaru zlomku a zlomek uveďte v základním tvaru. 4. Upravte a stanovte podmínky, za kterých má daný výraz smysl: KVINTA úlohy k opakování 1. Jsou dány množiny: = {xr; x - 9 5} B = {xr; 1 - x } a) zapište dané množiny pomocí intervalů b) stanovte A B, A B, A - B, B A. Zapište daná racionální čísla ve tvaru zlomku

Více

8. Slovní úlohy na extrémy

8. Slovní úlohy na extrémy 8. Slovní úlohy na extrémy Vtétokapitolenaznačíme,jakřešitněkteré praktické (většinougeometrické) úlohy související s extrémy funkcí jedné proměnné. Novým prvkem bude nutnost slovně zadanou úlohu nejdříve

Více

ROTAČNÍ KVADRIKY. Definice, základní vlastnosti, tečné roviny a řezy, průsečíky přímky s rotační kvadrikou

ROTAČNÍ KVADRIKY. Definice, základní vlastnosti, tečné roviny a řezy, průsečíky přímky s rotační kvadrikou ROTAČNÍ KVADRIKY Definice, základní vlastnosti, tečné roviny a řezy, průsečíky přímky s rotační kvadrikou Rotační kvadriky jsou rotační plochy, které vzniknou rotací kuželosečky kolem některé její osy.

Více

OSOVÁ SOUMĚRNOST. Lekce je navržená pro dvě vyučovací hodiny, 90 minut. Průběh lekce:

OSOVÁ SOUMĚRNOST. Lekce je navržená pro dvě vyučovací hodiny, 90 minut. Průběh lekce: OSOVÁ SOUMĚRNOST Lekce je navržená pro dvě vyučovací hodiny, 90 minut. Průběh lekce: EVOKACE Metoda: volné psaní Každý žák obdrží obrázek zámku Červená Lhota. Obrázek je také možné promítnout na interaktivní

Více

3 Algebraické výrazy. 3.1 Mnohočleny Mnohočleny jsou zvláštním případem výrazů. Mnohočlen (polynom) proměnné je výraz tvaru

3 Algebraické výrazy. 3.1 Mnohočleny Mnohočleny jsou zvláštním případem výrazů. Mnohočlen (polynom) proměnné je výraz tvaru Algerické výrz V knize přírod může číst jen ten, kdo zná jzk, ve kterém je npsán. Jejím jzkem je mtemtik jejím písmem jsou mtemtické vzorce. (Glileo Glilei) Algerickým výrzem rozumíme zápis, ve kterém

Více

Petriho sítě PES 2007/2008. ceska@fit.vutbr.cz. Doc. Ing. Tomáš Vojnar, Ph.D. vojnar@fit.vutbr.cz

Petriho sítě PES 2007/2008. ceska@fit.vutbr.cz. Doc. Ing. Tomáš Vojnar, Ph.D. vojnar@fit.vutbr.cz PES Petriho sítě p. 1/34 Petriho sítě PES 2007/2008 Prof. RNDr. Miln Češk, CS. esk@fit.vutr.z Do. Ing. Tomáš Vojnr, Ph.D. vojnr@fit.vutr.z Sz: Ing. Petr Novosd, Do. Ing. Tomáš Vojnr, Ph.D. (verze 06.04.2010)

Více

Úlohy domácí části I. kola kategorie C

Úlohy domácí části I. kola kategorie C 62. ročník Matematické olympiády Úlohy domácí části I. kola kategorie C 1. Čtvercová tabulka je rozdělena na 16 16 políček. Kobylka se po ní pohybuje dvěma směry: vpravo nebo dolů, přičemž střídá skoky

Více

v trojúhelníku P QC sestrojíme vý¹ky na základnu a jedno rameno, patu vý¹ky na rameno oznaèíme R a patu na základnu S

v trojúhelníku P QC sestrojíme vý¹ky na základnu a jedno rameno, patu vý¹ky na rameno oznaèíme R a patu na základnu S Øe¹ení 5. série IV. roèníku kategorie JUNIOR RS-IV-5-1 Pro na¹e úvahy bude vhodné upravit si na¹í rovnici do tvaru 3 jx 1 4 j+2 = 5 + 4 sin 2x: Budeme uva¾ovat o funkci na pravé stranì na¹í rovnice, tj.

Více

Vzdálenosti. Copyright c 2006 Helena Říhová

Vzdálenosti. Copyright c 2006 Helena Říhová Vzdálenosti Copyright c 2006 Helena Říhová Obsah 1 Vzdálenosti 3 1.1 Vzdálenostivrovině... 3 1.1.1 Vzdálenostdvoubodů..... 3 1.1.2 Vzdálenostboduodpřímky..... 4 1.1.3 Vzdálenostdvourovnoběžek.... 5 1.2

Více

Teorie sférické trigonometrie

Teorie sférické trigonometrie Teorie sférické trigonometrie Trigonometrie (z řeckého trigónon = trojúhelník a metrein= měřit) je oblast goniometrie zabývající se praktickým užitím goniometrických funkcí při řešení úloh o trojúhelnících.

Více

Pedagogická poznámka: Celý obsah se za hodinu stihnout nedá. z ] leží na kulové ploše, právě když platí = r. Dosadíme vzorec pro vzdálenost:

Pedagogická poznámka: Celý obsah se za hodinu stihnout nedá. z ] leží na kulové ploše, právě když platí = r. Dosadíme vzorec pro vzdálenost: 753 Kulová plocha Předpoklady: 750 Pedagogická poznámka: Celý obsah se za hodinu stihnout nedá Kulová plocha = kružnice v prostoru Př : Vyslov definici kulové plochy Kulová plocha je množina všech bodů

Více

Planimetrie úvod, základní pojmy (teorie)

Planimetrie úvod, základní pojmy (teorie) Planimetrie úvod, základní pojmy (teorie) Geometrie (původně zeměměřictví) nyní část matematiky, zabývající se studiem geometrických objektů Planimetrie rovinná geometrie Stereometrie prostorová geometrie

Více

Sférická trigonometrie v matematické geografii a astronomii

Sférická trigonometrie v matematické geografii a astronomii Sférická trigonometrie v matematické geografii a astronomii Mgr. Hana Lakomá, Ph.D., Mgr. Veronika Douchová 00 Tento učební materiál vznikl v rámci grantu FRVŠ F1 066. 1 Základní pojmy sférické trigonometrie

Více

Gymnázium Christiana Dopplera, Zborovská 45, Praha 5. Technické Osvětlení

Gymnázium Christiana Dopplera, Zborovská 45, Praha 5. Technické Osvětlení Gymnázium Christiana Dopplera, Zborovská 45, Praha 5 ROČNÍKOVÁ PRÁCE Technické Osvětlení Vypracoval: Zbyšek Sedláček Třída: 8.M Školní rok: 2013/2014 Seminář: Deskriptivní geometrie Prohlašuji, že jsem

Více

2.9.11 Logaritmus. Předpoklady: 2909

2.9.11 Logaritmus. Předpoklady: 2909 .9. Logritmus Předpokld: 909 Pedgogická poznámk: Následující příkld vždují tk jeden půl vučovcí hodin. V přípdě potřeb všk stčí dojít k příkldu 6 zbtek jen ukázt, což se dá z jednu hodinu stihnout (nedoporučuji).

Více

Seznámíte se s další aplikací určitého integrálu výpočtem objemu rotačního tělesa.

Seznámíte se s další aplikací určitého integrálu výpočtem objemu rotačního tělesa. .. Ojem rotčního těles Cíle Seznámíte se s dlší plikcí určitého integrálu výpočtem ojemu rotčního těles. Předpokládné znlosti Předpokládáme, že jste si prostudovli zvedení pojmu určitý integrál (kpitol.).

Více

ŠROUBOVÉ PLOCHY. 1. Základní úlohy na šroubových plochách.

ŠROUBOVÉ PLOCHY. 1. Základní úlohy na šroubových plochách. ŠROUBOVÉ PLOCHY 1. Základní úlohy na šroubových plochách. Šroubová plocha Φ vzniká šroubovým pohybem křivky k, která není trajektorií daného šroubového pohybu. Je-li pohyb levotočivý (pravotočivý je i

Více

Vybrané kapitoly z matematiky Geometrie na 2. stupni ZŠ

Vybrané kapitoly z matematiky Geometrie na 2. stupni ZŠ ZŠ a MŠ Ostrava Zábřeh, Kosmonautů 15, příspěvková organizace Mgr. Jan Pavelka Vybrané kapitoly z matematiky Geometrie na 2. stupni ZŠ Poznámka autora Následující studijní materiál slouží jako pomůcka

Více

18. Shodnost a podobnost trojúhelníků Vypracovala: Ing. Všetulová Ludmila, prosinec 2013

18. Shodnost a podobnost trojúhelníků Vypracovala: Ing. Všetulová Ludmila, prosinec 2013 18. Shodnost a podobnost trojúhelníků Vypracovala: Ing. Všetulová Ludmila, prosinec 2013 Název školy Obchodní akademie a Střední odborné učiliště Veselí nad Moravou Název a číslo OP OP Vzdělávání pro konkurenceschopnost,

Více