Svět RNA a bílkovin. RNA svět, 1. polovina. RNA svět. Doporučená literatura. Struktura RNA. Transkripce. Regulace transkripce.
|
|
- Štěpánka Havlíčková
- před 7 lety
- Počet zobrazení:
Transkript
1 RNA svět, 1. polovina Struktura RNA Regulace transkripce Zrání pre-mrna Svět RNA a bílkovin Sestřih pre-mrna Transport a lokalizace RNA Stabilita RNA Doporučená literatura RNA svět Alberts B., et al.: Molecular Biology of the Cell. Garland Science Publishing Inc., 2002, ISBN Buchanan B.B., et al.: Biochemistry and Molecular Biology of Plants. Courier Companies, Inc., 2000, ISBN Lewin B.: Genes VII, Oxford University Press, 2000, ISBN Latchman D.S.: Eukaryotic Transcription Factors, 4th edition, Elsevier Academic Press, 2004, ISBN Gesteland R.F., Cech T.R., Atkins J.F.: The RNA World, 2nd edition, Cold Spring Harbor Laboratory Press, 1999, ISBN
2 RNA svět Purinové a pyrimidinové báze Nukleotidy, základní stavební kameny nukleových kyselin Nukleové kyseliny Neobvyklé párování bazí Šroubovice -1řetězec Dvoušroubovice 2 komplementární řetězce spojené vodíkovými můstky mezi spárovanými bazemi Polymery nukleotidů spojených 5-3 fosfodiesterovou vazbou Vícečetné párování bazí 2
3 Rozdíly mezi RNA a DNA: Ribosa (2 -OH skupina) Uracil místo thyminu (absence methylu v poloze 5) Chemická struktura RNA Důsledky: Většinou jednořetězcová šroubovice s kratšími dvouřetězcovými úseky Variabilita prostorové organizace druhého a dalších řádů Komplexní trojrozměrná struktura RNA může mít i strukturní a katalytickou funkci Hierarchická organizace struktury RNA Primární struktura sekvence nukleotidů Sekundární struktura Watson-Crickovské párování bazí, úseky dvoušroubovice Terciální struktura organizace vyššího řádu jednotlivých sekundárních strukturních motivů vedoucí ke konečné trojrozměrné struktuře molekuly Kvartérní struktura interakce mezi molekulami RNA vedoucí ke vzniku supramoleulárních komplexů Sekundární strukturní motivy Sekundární strukturní motivy Terciální strukturní motivy Terciální strukturní motivy 3
4 Funkční domény 23S rrna RNA svět 4
5 RNA svět Ribozymy molekuly RNA oplývající katalytickou aktivitou obecně analogy bílkovinných enzymů aktivní v několika základních reakcích metabolismu RNA a syntézy bílkovin pozůstatek z RNA světa? Objev Thomas Cech intron I. typu v 26S rrna u Tetrahymena, samosestřih Sydney Altman RNasa P u Escherichia coli, zrání trna 1989 Nobelova cena za chemii Reakce katalyzované ribozymy Katalyzované reakce substrátem většinou RNA nejčastěji místně specifická hydrolýza fosfodiesterových vazeb endonukleasa cis-reakce ribozym i substrát původně součástí jediné molekuly trans-reakce ribozym i substrát původně různé molekuly obrácený směr syntéza fosfodiesterových vazeb RNA ligasa, RNA polymerasa, nukleotidyltrasnsferasa transesterifikace sestřih, editace (hypoteticky) Substrátem není RNA! hydrolýza aminoacylesterových vazeb syntéza peptidové vazby 28S rrna 5
6 Dělení ribozymů 3 archetypy 1. Hammerhead ribozym Aktivita v cis Odvozené typy: Vlásenkové ribozymy Hepatitis δ ribozym replikace genomové RNA rostlinných viroidů (vlásenkové ribozymy) a viru hepatitidy δ u savců mechanismem valivé kružnice VS ribozym (Neurospora crassa) vznik monomerů ssrna, templátů pro reverzní transkripci RNA 2. Introny I. typu Aktivita v cis Odvozené typy: Introny II. typu samosestřih U6 snrna spliceosomální sestřih 3. M1 RNA (RNA složka RNasy P) Aktivita v trans Odvozené typy: RNA složka RNasy P jiných organismů Hammerhead ribozym Tři dvoušroubovice stýkající se v konzervovaném jádře 13 nukleotidů Nejjednodušší popsaná forma katalytické RNA Popsán v ssrna genomech rostlinných patogenů, viroidů a virusoidů replikace mechanismem valivé kružnice Štěpení konkatemerů Katalyzují i opačný směr reakce - ligaci Přirozená aktivita v cis, v umělých molekulách i v trans Introny I. typu Samosestřih, mechanismus transesterifikace, nukleofilem GMP RNasa P E. coli RNA + jedna bílkovina, katalytická aktivita čisté RNA prokázána H. sapiens RNA + tři bílkoviny, katalytická aktivita RNA neprokázána Zrání trna odštěpení 5 -leaderu za vzniku zralé trna Specifické vlastnosti Skutečný enzym opakovaná aktivita v trans Rozpoznání substrátu není na základě párování bazí, ale podle struktury a tvaru Nukleofilem je hydroxylový ion OH - 6
7 RNA svět Centrální dogma molekulární biologie Úrovně regulace genové exprese eukaryot RNA svět 7
8 Narušení procesu transkripce činí další kroky genové exprese a regulační úrovně redundantními Katalyzována multiproteinovým komplexem RNA polymerasy Dvě základní regulační úrovně: Aktivita RNA polymerasy a s ní kooperujících bílkovin První krok exprese genetické informace Přepis genetické informace z DNA do sekvence nukleotidů v RNA Základní a klíčová regulační úroveň kontroly exprese genů RNA svět Transkripční regulace genové exprese přítomnost regulačních sekvencí v DNA a s nimi interagujících bílkovin přístupnost sekvenčních motivů pro regulační bílkoviny struktura DNA umožňující rychlý a lokalizovaný přístup transkripčního aparátu Chromatin - nukleosomy Nukleosom Základní strukturní jednotka chromatinu 1,65 závitu DNA kolem bílkovinného jádra 8 histonů (dvakrát H2A, H2B, H3 a H4) Nukleosomy přemostěny H1 Chromatin: komplex DNA a asociovaných bílkovin histony a nehistonové bílkoviny hmotnostní poměr histonů a DNA přibližně 1:1 8
9 Histony Malé basické bílkoviny aa Extrémně konzervované Základní struktura: Histone fold (HLHLH) formování nukleosomu, rigidní strukturní oblast N-terminal tail kovalentní modifikace, regulační oblast Dynamika skládaní histonového jádra nukleosomu Další uspořádání chromatinu 30 nm vlákno Účast H1 a N-konců ostatních histonů Variabilita struktury 30 nm vlákna různý stupeň kondenzace chromatinu Regulace struktury 30 nm vlákna Histon H1 Největší histon Nejméně konzervovaný Několik genů, nejsou esenciální N-konce histonů Interakce s dalšími nukleosomy Modifikace - regulace Komplexy remodelující chromatin 9
10 Komplexy remodelující chromatin Nehistonové bílkoviny Cyklický mechanismus remodelace a zpětného zformování nukleosomů Hydrolýza ATP - změna struktury nukleosomů Důsledky: Přístupnost DNA pro další bílkoviny Změna pozice nukleosomů podél řetězce DNA Několik typů komplexů Více než 10 podjednotek Specializace Regulace fosforylací Teorie histonového kódu Kovalentní modifikace N- a C-konců histonů Teorie histonového kódu Acetylace (Lysin) Methylace (Lysin) Fosforylace (Serin) Ubiquitinace (Lysin) H3K9 Více možných modifikací na jednom místě Řada enzymových komplexů HATs, HDACs Precizně regulované komplexy množství podjednotek 10
11 Komplex remodelující chromatin Původně popsán u kvasinek Multiproteinový komplex Využívá energii z ATP Tři způsoby modifikace struktury chromatinu: Komplex SWI/SNF Vztah struktury chromatinu a modifikací histonů při regulaci transkripce Swi6 součást komplexu SWI/SNF Remodelace chromatinu Přeskupení histonů uvnitř nukleosomů změna jejich schopnosti vzájemně interagovat H3mK9 methylace => transkripční silencing; heterochromatin Sklouznutí nukleosomu (nucleosome sliding) Posunutí celého nukleosomu po řetězci DNA Přemístění nukleosomu (nucleosome displacement) Celý nukleosom opustí regulované vlákno DNA a naváže se jinam Euchromatin Heterochromatin H3mK4 methylace => transkripční aktivace; euchromatin Epigenetická kontrola formování heterochromatinu Globální struktura chromatinu Postupná aktivita histon deacetylas a methylas histonový kód pro heterochromatin Vazba Swi6 na H3mK9 Multimerizace Swi6 platforma pro vazbu dalších bílkovin Snad forma buněčné paměti a dědičnosti heterochromatinových struktur při dělení Další kondenzace solenoidů smyčky napojené na jadernou matrix MAR specifické sekvence DNA 11
12 Struktura chromosomu v interfázi Smyčky: kb Dekondenzovaná oblast; struktura 30 nm vlákna Centromera Přítomnost specializovaných nukleosomů a specifických bílkovin Kinetochorové bílkoviny Specifický histon H3 Jaderná matrix Fosforylace H3 12
Typy nukleových kyselin. deoxyribonukleová (DNA); ribonukleová (RNA).
Typy nukleových kyselin Existují dva typy nukleových kyselin (NA, z anglických slov nucleic acid): deoxyribonukleová (DNA); ribonukleová (RNA). DNA je lokalizována v buněčném jádře, RNA v cytoplasmě a
Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti. Vztah struktury a funkce nukleových kyselin. Replikace, transkripce
Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti Vztah struktury a funkce nukleových kyselin. Replikace, transkripce Nukleová kyselina gen základní jednotka informace v živých systémech,
Nukleové kyseliny Replikace Transkripce, RNA processing Translace
ukleové kyseliny Replikace Transkripce, RA processing Translace Prokaryotická X eukaryotická buňka Hlavní rozdíl organizace genetického materiálu (u prokaryot není ohraničen) Život závisí na schopnosti
2. Z následujících tvrzení, týkajících se prokaryotické buňky, vyberte správné:
Výběrové otázky: 1. Součástí všech prokaryotických buněk je: a) DNA, plazmidy b) plazmidy, mitochondrie c) plazmidy, ribozomy d) mitochondrie, endoplazmatické retikulum 2. Z následujících tvrzení, týkajících
NUKLEOVÉ KYSELINY. Základ života
NUKLEOVÉ KYSELINY Základ života HISTORIE 1. H. Braconnot (30. léta 19. století) - Strassburg vinné kvasinky izolace matiére animale. 2. J.F. Meischer - experimenty z hnisem štěpení trypsinem odstředěním
Exprese genetické informace
Exprese genetické informace Tok genetické informace DNA RNA Protein (výjimečně RNA DNA) DNA RNA : transkripce RNA protein : translace Gen jednotka dědičnosti sekvence DNA nutná k produkci funkčního produktu
Inovace studia molekulární a buněčné biologie
Inovace studia molekulární a buněčné biologie Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky. MBIO1/Molekulární biologie 1 Tento projekt je spolufinancován
Centrální dogma molekulární biologie
řípravný kurz LF MU 2011/12 Centrální dogma molekulární biologie Nukleové kyseliny 1865 zákony dědičnosti (Johann Gregor Mendel) 1869 objev nukleových kyselin (Miescher) 1944 genetická informace v nukleových
Exprese genetického kódu Centrální dogma molekulární biologie DNA RNA proteinu transkripce DNA mrna translace proteosyntéza
Exprese genetického kódu Centrální dogma molekulární biologie - genetická informace v DNA -> RNA -> primárního řetězce proteinu 1) transkripce - přepis z DNA do mrna 2) translace - přeložení z kódu nukleových
Základy molekulární a buněčné biologie. Přípravný kurz Komb.forma studia oboru Všeobecná sestra
Základy molekulární a buněčné biologie Přípravný kurz Komb.forma studia oboru Všeobecná sestra Genetický aparát buňky DNA = nositelka genetické informace - dvouvláknová RNA: jednovláknová mrna = messenger
Molekulární základy dědičnosti. Ústřední dogma molekulární biologie Struktura DNA a RNA
Molekulární základy dědičnosti Ústřední dogma molekulární biologie Struktura DNA a RNA Ústřední dogma molekulární genetiky - vztah mezi nukleovými kyselinami a proteiny proteosyntéza replikace DNA RNA
Nukleosidy, nukleotidy, nukleové kyseliny, genetická informace
Nukleosidy, nukleotidy, nukleové kyseliny, genetická informace Centrální dogma Nukleové kyseliny Fosfátem spojené nukleotidy (cukr s navázanou bází a fosfátem) Nukleotidy Nukleotidy stavební kameny nukleových
Základy molekulární biologie KBC/MBIOZ
Základy molekulární biologie KBC/MBIOZ Mária Čudejková 2. Transkripce genu a její regulace Transkripce genetické informace z DNA na RNA Transkripce dvou genů zachycená na snímku z elektronového mikroskopu.
Exprese genetické informace
Exprese genetické informace Stavební kameny nukleových kyselin Nukleotidy = báze + cukr + fosfát BÁZE FOSFÁT Nukleosid = báze + cukr CUKR Báze Cyklické sloučeniny obsahující dusík puriny nebo pyrimidiny
Struktura, vlastnosti a funkce nukleových kyselin, DNA v jádře, chromatin.
Struktura, vlastnosti a funkce nukleových kyselin, DNA v jádře, chromatin. Nukleové base - purinové a pyrimidinové Ribonukleosidy - base + ribosa Deoxyribonukleosidy base + 2 - deoxyribosa Nukleotidy,
NUKLEOVÉ KYSELINY. Složení nukleových kyselin. Typy nukleových kyselin:
NUKLEOVÉ KYSELINY Deoxyribonukleová kyselina (DNA, odvozeno z anglického názvu deoxyribonucleic acid) Ribonukleová kyselina (RNA, odvozeno z anglického názvu ribonucleic acid) Definice a zařazení: Nukleové
Struktura a funkce biomakromolekul
Struktura a funkce biomakromolekul KBC/BPOL 7. Interakce DNA/RNA - protein Ivo Frébort Interakce DNA/RNA - proteiny v buňce Základní dogma molekulární biologie Replikace DNA v E. coli DNA polymerasa a
Nukleové kyseliny. Nukleové kyseliny. Genetická informace. Gen a genom. Složení nukleových kyselin. Centrální dogma molekulární biologie
Centrální dogma molekulární biologie ukleové kyseliny 1865 zákony dědičnosti (Johann Gregor Transkripce D R Translace rotein Mendel) Replikace 1869 objev nukleových kyselin (Miescher) 1944 nukleové kyseliny
Struktura a funkce nukleových kyselin
Struktura a funkce nukleových kyselin ukleové kyseliny Deoxyribonukleová kyselina - DA - uchovává genetickou informaci Ribonukleová kyselina RA - genová exprese a biosyntéza proteinů Složení A stavební
DUM č. 3 v sadě. 37. Bi-2 Cytologie, molekulární biologie a genetika
projekt GML Brno Docens DUM č. 3 v sadě 37. Bi-2 Cytologie, molekulární biologie a genetika Autor: Martin Krejčí Datum: 02.06.2014 Ročník: 6AF, 6BF Anotace DUMu: chromatin - stavba, organizace a struktura
Bílkoviny a rostlinná buňka
Bílkoviny a rostlinná buňka Bílkoviny Rostliny --- kontinuální diferenciace vytváření orgánů: - mitotická dělení -zvětšování buněk a tvorba buněčné stěny syntéza bílkovin --- fotosyntéza syntéza bílkovin
Molekulárn. rní. biologie Struktura DNA a RNA
Molekulárn rní základy dědičnosti Ústřední dogma molekulárn rní biologie Struktura DNA a RNA Ústřední dogma molekulárn rní genetiky - vztah mezi nukleovými kyselinami a proteiny proteosyntéza replikace
ENZYMY A NUKLEOVÉ KYSELINY
ENZYMY A NUKLEOVÉ KYSELINY Autor: Mgr. Stanislava Bubíková Datum (období) tvorby: 28. 3. 2013 Ročník: devátý Vzdělávací oblast: Člověk a příroda / Chemie / Organické sloučeniny 1 Anotace: Žáci se seznámí
Struktura a funkce biomakromolekul
Struktura a funkce biomakromolekul KBC/BPOL 6. Struktura nukleových kyselin Ivo Frébort Struktura nukleových kyselin Primární struktura: sekvence nukleotidů Sekundární struktura: vzájemná poloha nukleotidů
Základy molekulární biologie KBC/MBIOZ
Základy molekulární biologie KBC/MBIOZ Ivo Frébort 1. Struktura a replikace DNA Literatura: Alberts a kol.: Základy buněčné biologie Espero Publishing, 2000 Garrett & Grisham: Biochemistry 2nd ed., Saunders
Genetika zvířat - MENDELU
Genetika zvířat DNA - primární struktura Několik experimentů ve 40. a 50. letech 20. století poskytla důkaz, že genetický materiál je tvořen jedním ze dvou typů nukleových kyselin: DNA nebo RNA. DNA je
Nukleové kyseliny Replikace Transkripce translace
Nukleové kyseliny Replikace Transkripce translace Figure 4-3 Molecular Biology of the Cell ( Garland Science 2008) Figure 4-4 Molecular Biology of the Cell ( Garland Science 2008) Figure 4-5 Molecular
Schéma průběhu transkripce
Molekulární základy genetiky PROTEOSYNTÉZA A GENETICKÝ KÓD Proteosyntéza je složitý proces tvorby bílkovin, který zahrnuje proces přepisu genetické informace z DNA do kratšího zápisu v informační mrna
REPLIKACE A REPARACE DNA
REPLIKACE A REPARACE DNA 1 VÝZNAM REPARACE DNA V MEDICÍNĚ Příklad: Reparace DNA: enzymy reparace nukleotidovou excizí Onemocnění: xeroderma pigmentosum 2 3 REPLIKACE A REPARACE DNA: Replikace DNA: 1. Podstata
Nukleové kyseliny Replikace Transkripce, RNA processing Translace
Nukleové kyseliny Replikace Transkripce, RNA processing Translace Figure 6-2 Molecular Biology of the Cell ( Garland Science 2008) replikace Figure 4-8 Molecular Biology of the Cell ( Garland Science
POLYPEPTIDY. Provitaminy = organické sloučeniny bez vitaminózního účinku, které se v živočišném těle mění působením ÚV záření nebo enzymů na vitaminy.
POLYPEPTIDY Provitaminy = organické sloučeniny bez vitaminózního účinku, které se v živočišném těle mění působením ÚV záření nebo enzymů na vitaminy. Hormony = katalyzátory v živočišných organismech (jsou
Nukleové kyseliny. DeoxyriboNucleic li Acid
Molekulární lární genetika Nukleové kyseliny DeoxyriboNucleic li Acid RiboNucleic N li Acid cukr (deoxyrobosa, ribosa) fosforečný zbytek dusíkatá báze Dusíkaté báze Dvouvláknová DNA Uchovává genetickou
Nukleové kyseliny Replikace Transkripce translace
Nukleové kyseliny Replikace Transkripce translace Prokaryotická X eukaryotická buňka Hlavní rozdíl organizace genetického materiálu (u prokaryot není ohraničen) Život závisí na schopnosti buněk skladovat,
6. Nukleové kyseliny
6. ukleové kyseliny ukleové kyseliny jsou spolu s proteiny základní a nezbytnou složkou živé hmoty. lavní jejich funkce je uchování genetické informace a její přenos do dceřinné buňky. ukleové kyseliny
Základy molekulární biologie KBC/MBIOZ
Základy molekulární biologie KBC/MBIOZ Čtvrtek 10:30 11:15 Struktura a replikace DNA (Mgr. M. Majeská Čudejková, Ph.D) Transkripce genu a její regulace (Mgr. M. Majeská Čudejková, Ph.D) Translace a tvorba
7. Regulace genové exprese, diferenciace buněk a epigenetika
7. Regulace genové exprese, diferenciace buněk a epigenetika Aby mohl mnohobuněčný organismus efektivně fungovat, je třeba, aby se jednotlivé buňky specializovaly na určité funkce. Nový jedinec přitom
Chemická reaktivita NK.
Chemické vlastnosti, struktura a interakce nukleových kyselin Bi7015 Chemická reaktivita NK. Hydrolýza NK, redukce, oxidace, nukleofily, elektrofily, alkylační činidla. Mutageny, karcinogeny, protinádorově
Biologie buňky. systém schopný udržovat se a rozmnožovat
Biologie buňky 1665 - Robert Hook (korek, cellulae = buňka) Cytologie - věda zabývající se studiem buňek Buňka ozákladní funkční a stavební jednotka živých organismů onejmenší známý uspořádaný dynamický
Struktura biomakromolekul
Struktura biomakromolekul ejvýznamnější biomolekuly proteiny nukleové kyseliny polysacharidy lipidy... měli bychom znát stavební kameny života Proteiny Aminokyseliny tvořeny aminokyselinami L-α-aminokyselinami
Chromatin. Struktura a modifikace chromatinu. Chromatinové domény
Chromatin Struktura a modifikace chromatinu Chromatinové domény 2 DNA konsensus 5 3 3 DNA DNA 4 RNA 5 ss RNA tvoří sekundární strukturu s ds vlásenkami ds forms 6 of nucleic acids Forma točivost bp/turn
Inovace studia molekulární a buněčné biologie
Inovace studia molekulární a buněčné biologie I n v e s t i c e d o r o z v o j e v z d ě l á v á n í reg. č. CZ.1.07/2.2.00/07.0354 Tento projekt je spolufinancován Evropským sociálním fondem a státním
19.b - Metabolismus nukleových kyselin a proteosyntéza
19.b - Metabolismus nukleových kyselin a proteosyntéza Proteosyntéza vyžaduje především zajištění primární struktury. Informace je uložena v DNA (ev. RNA u některých virů) trvalá forma. Forma uskladnění
Chemie nukleotidů a nukleových kyselin. Centrální dogma molekulární biologie (existují vyjímky)
Chemie nukleotidů a nukleových kyselin Centrální dogma molekulární biologie (existují vyjímky) NH 2 N N báze O N N -O P O - O H 2 C H H O H H cukr OH OH nukleosid nukleotid Nukleosidy vznikají buď syntézou
ve srovnání s eukaryoty (životnost v řádu hodin) u prokaryot kratší (životnost v řádu minut) na životnost / stabilitu molekuly mají vliv
Urbanová Anna ve srovnání s eukaryoty (životnost v řádu hodin) u prokaryot kratší (životnost v řádu minut) na životnost / stabilitu molekuly mají vliv strukturní rysy mrna proces degradace každá mrna v
Projekt SIPVZ č.0636p2006 Buňka interaktivní výuková aplikace
Nukleové kyseliny Úvod Makromolekulární látky, které uchovávají a přenášejí informaci. Jsou to makromolekulární látky uspořádané do dlouhých. Řadí se mezi tzv.. Jsou přítomny ve buňkách a virech. Poprvé
4) pokračování struktury nukleových kyselin
Denaturace a renaturace DNA 4) pokračování struktury nukleových kyselin Genofor, chromozom, genom Genofor struktura nesoucí geny seřazené za sebou (DNA nebo RNA) a schopná replikace. U prokaryot, eukaryot
Garant předmětu GEN: prof. Ing. Jindřich Čítek, CSc. Garant předmětu GEN1: prof. Ing. Václav Řehout, CSc.
Garant předmětu GEN: prof. Ing. Jindřich Čítek, CSc. Garant předmětu GEN1: prof. Ing. Václav Řehout, CSc. Další vyučující: Ing. l. Večerek, PhD., Ing. L. Hanusová, Ph.D., Ing. L. Tothová Předpoklady: znalosti
EPIGENETIKA reverzibilních změn funkce genů, Epigenetické faktory ovlivňují fenotyp bez změny genotypu. Epigenetická
EPIGENETIKA Epigenetika se zabývá studiem reverzibilních změn funkce genů, aniž by při tom došlo ke změnám v sekvenci jaderné DNA. Epigenetické faktory ovlivňují fenotyp bez změny genotypu. Epigenetická
Struktura nukleových kyselin Vlastnosti genetického materiálu
Struktura nukleových kyselin Vlastnosti genetického materiálu V předcházejících kapitolách bylo konstatováno, že geny jsou uloženy na chromozomech a kontrolují fenotypové vlastnosti a že chromozomy se
Přenos genetické informace: Centrální dogma. Odstranění intronů sestřihem RNA
Transkripce a úpravy RNA Osnova přednášky Přenos genetické informace: Centrální dogma Proces genové exprese Transkripce u prokaryot Transkripce a úpravy RNA u eukaryot Přerušované geny u eukaryot: exony
Gymnázium, Brno, Elgartova 3
Gymnázium, Brno, Elgartova 3 Šablona: III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Název projektu: GE Vyšší kvalita výuky Číslo projektu: CZ.1.07/1.5.00/34.0925 Autor: Mgr. Hana Křivánková Téma:
Nukleové kyseliny. Jsou universální složky živých organismů. Jsou odpovědné za uchování a přenos genetické informace.
Nukleové kyseliny Jsou universální složky živých organismů. Jsou odpovědné za uchování a přenos genetické informace. Richard Vytášek 2012 Nukleové kyseliny objeveny v 19.století v mlíčí (rybí sperma) a
Nukleové kyseliny Milan Haminger BiGy Brno 2017
ukleové kyseliny Milan aminger BiGy Brno 2017 ukleové kyseliny jsou spolu s proteiny základní a nezbytnou složkou živé hmoty. lavní jejich funkce je uchování genetické informace a její přenos do dceřinné
Základy molekulární biologie KBC/MBIOZ
Základy molekulární biologie KBC/MBIOZ Čtvrtek 11:30 13:00 1. Struktura a replikace DNA (25.09.2014, Mgr. M. Čudejková, Ph.D) 2. Metody molekulární biologie I (09.10.2014, Doc. Mgr. P. Galuszka, Ph.D)
Předmět: KBB/BB1P; KBB/BUBIO
Předmět: KBB/BB1P; KBB/BUBIO Chemické složení buňky Cíl přednášky: seznámit posluchače se složením buňky po chemické stránce Klíčová slova: biogenní prvky, chemické vazby a interakce, uhlíkaté sloučeniny,
Vzdělávací materiál. vytvořený v projektu OP VK. Anotace. Název školy: Gymnázium, Zábřeh, náměstí Osvobození 20. Číslo projektu:
Vzdělávací materiál vytvořený v projektu VK ázev školy: Gymnázium, Zábřeh, náměstí svobození 20 Číslo projektu: ázev projektu: Číslo a název klíčové aktivity: CZ.1.07/1.5.00/34.0211 Zlepšení podmínek pro
Nukleové kyseliny příručka pro učitele. Obecné informace:
Obecné informace: Nukleové kyseliny příručka pro učitele Téma Nukleové kyseliny je završením základních kapitol z popisné chemie a je tedy zařazeno až na její závěr. Probírá se v rámci jedné, eventuálně
Rich Jorgensen a kolegové vložili gen produkující pigment do petunií (použili silný promotor)
RNAi Rich Jorgensen a kolegové vložili gen produkující pigment do petunií (použili silný promotor) Místo silné pigmentace se objevily rostliny variegované a dokonce bílé Jorgensen pojmenoval tento fenomén
Proteiny Genová exprese. 2013 Doc. MVDr. Eva Bártová, Ph.D.
Proteiny Genová exprese 2013 Doc. MVDr. Eva Bártová, Ph.D. Bílkoviny (proteiny), 15% 1g = 17 kj Monomer = aminokyseliny aminová skupina karboxylová skupina α -uhlík postranní řetězec Znát obecný vzorec
Úvod do studia biologie. Základy molekulární genetiky
Úvod do studia biologie Základy molekulární genetiky Katedra biologie PdF MU, 2011 - podobor genetiky (genetika je obecnější) Genetika: - nauka o dědičnosti a proměnlivosti - věda 20. století Johann Gregor
Přírodní polymery proteiny
Přírodní polymery proteiny Funkční úloha bílkovin 1. Funkce dynamická transport kontrola metabolismu interakce (komunikace, kontrakce) katalýza chemických přeměn 2. Funkce strukturální architektura orgánů
Funkční specializace dnes: nukleové kyseliny uchovávají genet. informaci bílkoviny mají strukturní a katalytickou fci
Evoluce RNA Funkční specializace dnes: nukleové kyseliny uchovávají genet. informaci bílkoviny mají strukturní a katalytickou fci Po určité období měl obě funkce jeden typ sloučenin, RNA - informační i
"Učení nás bude více bavit aneb moderní výuka oboru lesnictví prostřednictvím ICT ". Molekulární základy genetiky
"Učení nás bude více bavit aneb moderní výuka oboru lesnictví prostřednictvím ICT ". Molekulární základy genetiky 1/76 GENY Označení GEN se používá ve dvou základních významech: 1. Jako synonymum pro vlohu
Eva Benešová. Genetika
Eva Benešová Genetika Význam nukleotidů - Energetický metabolismus (oběh energie). - Propojení odpovědi buňky na hormony a další stimuly. - Komponenty enzymových kofaktorů a dalších metabolických intermediátů.
Genetika. Genetika. Nauka o dědid. dičnosti a proměnlivosti. molekulárn. rní buněk organismů populací
Genetika Nauka o dědid dičnosti a proměnlivosti Genetika molekulárn rní buněk organismů populací Dědičnost na úrovni nukleových kyselin Předávání vloh z buňky na buňku Předávání vlastností mezi jednotlivci
Syntéza a postranskripční úpravy RNA
Syntéza a postranskripční úpravy RNA 2016 1 Transkripce Proces tvorby RNA na podkladu struktury DNA Je přepisován pouze jeden řetězec dvoušroubovice DNA templátový řetězec Druhý řetězec se nazývá kódující
DUM č. 10 v sadě. 37. Bi-2 Cytologie, molekulární biologie a genetika
projekt GML Brno Docens DUM č. 10 v sadě 37. Bi-2 Cytologie, molekulární biologie a genetika Autor: Martin Krejčí Datum: 26.06.2014 Ročník: 6AF, 6BF Anotace DUMu: Procesy následující bezprostředně po transkripci.
Nukleové kyseliny. obecný přehled
Nukleové kyseliny obecný přehled Nukleové kyseliny objeveny r.1868, izolovány koncem 19.stol., 1953 objasněno jejich složení Watsonem a Crickem (1962 Nobelova cena) biopolymery nositelky genetické informace
Úvod do studia biologie. Základy molekulární genetiky
Úvod do studia biologie Základy molekulární genetiky Katedra biologie PdF MU, 2010 Mendel - podobor Genetiky (Genetika je obecnější) Genetika: - nauka o dědičnosti a proměnlivosti - věda 20. století Johann
VÝZNAM FUNKCE PROTEINŮ V MEDICÍNĚ
FUNKCE PROTEINŮ 1 VÝZNAM FUNKCE PROTEINŮ V MEDICÍNĚ Příklad: protein: dystrofin onemocnění: Duchenneova svalová dystrofie 2 3 4 FUNKCE PROTEINŮ: 1. Vztah struktury a funkce proteinů 2. Rodiny proteinů
BUŇEČNÝ CYKLUS A JEHO KONTROLA
BUŇEČNÝ CYKLUS A JEHO KONTROLA MITOSA - fáze: Profáze - kondensace chromosomů - 30 nm chromatine fibres vázané na matrix Rozpad Metafáze - párové ( sesterské ) chromatidy - vázané centromerou, seřazené
Translace (druhý krok genové exprese)
Translace (druhý krok genové exprese) Od RN k proteinu Milada Roštejnská Helena Klímová 1 enetický kód trn minoacyl-trn-synthetasa Translace probíhá na ribosomech Iniciace translace Elongace translace
Buněčný cyklus. Replikace DNA a dělení buňky
Buněčný cyklus Replikace DNA a dělení buňky 2 Regulace buněčného dělení buněčný cyklus: buněčné dělení buněčný růst kontrola kvality potomstva (dceřinných buněk) bránípřenosu nekompletně zreplikovaných
a) Primární struktura NK NUKLEOTIDY Monomerem NK jsou nukleotidy
1 Nukleové kyseliny Nukleové kyseliny (NK) sice tvoří malé procento hmotnosti buňky ale významem v kódování genetické informace a její expresí zcela nezbytným typem biopolymeru všech živých soustav a)
Základy molekulární biologie KBC/MBIOZ
Základy molekulární biologie KBC/MBIOZ Mária Majeská Čudejková 3. Proteosyntéza Centrální dogma molekulární biologie Rozluštění genetického kódu in vitro Marshall Nirenberg a Heinrich Matthaei zjistili,
GENETIKA dědičností heredita proměnlivostí variabilitu Dědičnost - heredita podobnými znaky genetickou informací Proměnlivost - variabilita
GENETIKA - věda zabývající se dědičností (heredita) a proměnlivostí (variabilitu ) živých soustav - sleduje rozdílnost a přenos dědičných znaků mezi rodiči a potomky Dědičnost - heredita - schopnost organismu
Struktura biomakromolekul
Struktura biomakromolekul ejvýznamnější biomakromolekuly l proteiny l nukleové kyseliny l polysacharidy l lipidy... měli bychom znát stavební kameny života Biomolekuly l proteiny l A DA, RA l lipidy l
Inovace studia molekulární a buněčné biologie
Inovace studia molekulární a buněčné biologie Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky. OBVSB/Obecná virologie Tento projekt je spolufinancován Evropským
Globální pohled na průběh replikace dsdna
Globální pohled na průběh replikace dsdna 3' 5 3 vedoucí řetězec 5 3 prodlužování vedoucího řetězce (polymerace ) DNA-ligáza směr pohybu enzymů DNA-polymeráza I DNA-polymeráza III primozom 5' 3, 5, hotový
Vzdělávací materiál. vytvořený v projektu OP VK CZ.1.07/1.5.00/34.0211. Anotace. Biosyntéza nukleových kyselin. VY_32_INOVACE_Ch0219.
Vzdělávací materiál vytvořený v projektu OP VK Název školy: Gymnázium, Zábřeh, náměstí Osvobození 20 Číslo projektu: Název projektu: Číslo a název klíčové aktivity: CZ.1.07/1.5.00/34.0211 Zlepšení podmínek
6. Nukleové kyseliny a molekulová genetika
6. Nukleové kyseliny a molekulová genetika Obtížnost A Odhadněte celkové nukleotidové složení dvouvláknové DNA, u níž bylo experimentálně stanoveno, že ze 100 deoxynukleotidů tvoří průměrně 22 deoxyadenosin-5
Přípravný kurz z biologie MUDr. Jana Kolářová, CSc. témata 1 Mgr. Kateřina Caltová témata 3-5 doc. PharmDr. Emil Rudolf, Ph.D. 2 + 6-10 materiály k
Přípravný kurz z biologie MUDr. Jana Kolářová, CSc. témata 1 Mgr. Kateřina Caltová témata 3-5 doc. PharmDr. Emil Rudolf, Ph.D. 2 + 6-10 materiály k přípravnému kurzu: stránka Ústavu lékařské biologie a
Struktura chromatinu. Co je to chromatin?
Struktura chromatinu Buněčné jádro a genová exprese Lenka Rossmeislová struktura-význam-modifikace Co je to chromatin? hmota, ze které jsou vytvořeny chromozomy DNA asociovaná s proteiny, které napomáhají
Inovace studia molekulární a buněčné biologie
Inovace studia molekulární a buněčné biologie Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky. MBIO1/Molekulární biologie 1 Tento projekt je spolufinancován
Nukleové kyseliny Replikace Transkripce, RNA processing Translace
ukleové kyseliny Replikace Transkripce, RA processing Translace Život závisí na schopnosti buněk skladovat, získávat a překládat genetickou informaci, která je nezbytná pro udržení života organismů. Prokaryotická
(molekulární) biologie buňky
(molekulární) biologie buňky Buňka základní principy Molecules of life Centrální dogma membrány Metody GI a MB Interakce Struktura a funkce buňky - principy proteiny, nukleové kyseliny struktura, funkce
Buňky, tkáně, orgány, soustavy
Lidská buňka buněčné organely a struktury: Jádro Endoplazmatické retikulum Goldiho aparát Mitochondrie Lysozomy Centrioly Cytoskelet Cytoplazma Cytoplazmatická membrána Buněčné jádro Jadérko Karyoplazma
Inovace studia molekulární a buněčné biologie reg. č. CZ.1.07/2.2.00/07.0354
I n v e s t i c e d o r o z v o j e v z d ě l á v á n í Inovace studia molekulární a buněčné biologie reg. č. CZ.1.07/2.2.00/07.0354 Tento projekt je spolufinancován Evropským sociálním fondem a státním
Přednáška kurzu Bi4010 Základy molekulární biologie, 2016/17 Transkripce DNA a sestřih
Přednáška kurzu Bi4010 Základy molekulární biologie, 2016/17 Transkripce DNA a sestřih Jan Šmarda Ústav experimentální biologie, PřF MU Genová exprese: cesta od DNA k RNA a proteinu fenotyp je výsledkem
- ovlivnění pepsinem (proteolytickým enzymem izolovaným z žaludku prasat) - funkce nukleinu zůstala dlouho nejasná (polynukleotidové řetězce a
Přednáška 2 DNA a molekulární struktura chromozomů Osnova přednášky funkce genetického materiálu důkaz, že DNA je nositelkou genetické informace struktura DNA a RNA struktura chromozomů prokayot a virů
Inovace studia molekulární a buněčné biologie
Inovace studia molekulární a buněčné biologie I n v e s t i c e d o r o z v o j e v z d ě l á v á n í reg. č. CZ.1.07/2.2.00/07.0354 Tento projekt je spolufinancován Evropským sociálním fondem a státním
Bioinformatika a výpočetní biologie KFC/BIN. I. Přehled
Bioinformatika a výpočetní biologie KFC/BIN I. Přehled RNDr. Karel Berka, Ph.D. Univerzita Palackého v Olomouci Definice bioinformatiky (Molecular) bio informatics: bioinformatics is conceptualising biology
44 somatických chromozomů pohlavní hormony (X,Y) 46 chromozomů
Buněčný cyklus MUDr.Kateřina Kapounková Inovace studijního oboru Regenerace a výţiva ve sportu (CZ.107/2.2.00/15.0209) 1 DNA,geny genom = soubor všech genů a všechna DNA buňky; kompletní genetický materiál
Jsme tak odlišní. Co nás spojuje..? Nukleové kyseliny
Jsme tak odlišní Co nás spojuje..? ukleové kyseliny 1 UKLEVÉ KYSELIY = K anj = A ositelky genetických informací Základní význam pro všechny organismy V buňkách a virech Identifikace v buněčném jádře (nucleos)
Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti. Translace, techniky práce s DNA
Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti Translace, techniky práce s DNA Translace překlad z jazyka nukleotidů do jazyka aminokyselin dá se rozdělit na 5 kroků aktivace aminokyslin
AUG STOP AAAA S S. eukaryontní gen v genomové DNA. promotor exon 1 exon 2 exon 3 exon 4. kódující oblast. introny
eukaryontní gen v genomové DNA promotor exon 1 exon 2 exon 3 exon 4 kódující oblast introny primární transkript (hnrna, pre-mrna) postranskripční úpravy (vznik maturované mrna) syntéza čepičky AUG vyštěpení
GENETIKA. zkoumá dědičnost a proměnlivost organismů
GENETIKA zkoumá dědičnost a proměnlivost organismů Dědičnost: schopnost organismů uchovávat informace o své struktuře a funkčních schopnostech a předávat je svým potomkům Proměnlivost (variabilita) je
Inovace studia molekulární a buněčné biologie reg. č. CZ.1.07/2.2.00/
I n v e s t i c e d o r o z v o j e v z d ě l á v á n í I ti d j dělá á í Inovace studia molekulární a buněčné biologie reg. č. CZ.1.07/2.2.00/07.0354 Tento projekt je spolufinancován Evropským sociálním