Vzdělávací materiál. vytvořený v projektu OP VK CZ.1.07/1.5.00/ Anotace. Biosyntéza nukleových kyselin. VY_32_INOVACE_Ch0219.
|
|
- Antonie Štěpánková
- před 9 lety
- Počet zobrazení:
Transkript
1 Vzdělávací materiál vytvořený v projektu OP VK Název školy: Gymnázium, Zábřeh, náměstí Osvobození 20 Číslo projektu: Název projektu: Číslo a název klíčové aktivity: CZ.1.07/1.5.00/ Zlepšení podmínek pro výuku na gymnáziu III/2 - Inovace a zkvalitnění výuky prostřednictvím ICT Anotace Název tematické oblasti: Název učebního materiálu: Číslo učebního materiálu: Vyučovací předmět: Ročník: Autor: Biochemie Biosyntéza nukleových kyselin VY_32_INOVACE_Ch0219 Seminář z chemie 4. ročník čtyřletého studia, 8. ročník osmiletého studia Jana Drlíková Datum vytvoření: Datum ověření ve výuce: Druh učebního materiálu: Očekávaný výstup: Metodické poznámky: pracovní list Uplatnění dosud získaných znalostí z oblasti obecné, organické chemie, biochemie a biologie na vyvozování nového učiva v probíraném tématu. Pracovní list studenta je doplněn vypracovanou verzí pro učitele. Ve výuce je pracovní list používán jako text, na jehož základě je procvičováno již probrané učivo, jsou vyvozovány nové poznatky a řešeny drobné problémové úlohy ze zadaného tématu.
2 VY_32_INOVACE_Ch0219 Biosyntéza RNA, transkripce pracovní list Většinou se všechny typy RNA syntetizují v procesu transkripce. Transkripce u prokaryot Transkripce u eukaryot Katalýza 4 až 5 RNA-polymeras, každá katalyzuje syntézu jiného typu RNA RNA-polymerasa I : jadérko, r-rna RNA-polymerasa II: jádro, m-rna RNA-polymerasa III: jádro, r-rna, t-rna a další RNA-polymerasy v mitochondriích a chloroplastech. Iniciace Syntéza RNA je iniciována na specifických místech DNA. RNA-polymerasa se váže k určité oblasti na templátovém vlákně DNA, která se označuje jako promotor, což je sekvence asi 40 párů bází. Báze na 5 ) konci je často purin. Promotory RNA-polymeras jsou komplexní a rozmanité a nejsou příliš prozkoumány. Promotory mohou být umístěny v podstatě kdekoli v oblasti přepisovaných genů. Na molekule DNA rovněž existují místa, která fungují jako enhancery (zesilovače). Elongace = Rychlost a přesnost transkripce Rychlost je asi nukleotidů za sekundu při teplotě 37 0 C. Za RNA-polymerasou může další následovat hned, jak je to stericky možné. Chybovost je 1 chybný nukleotid na 10 4 přepsaných bází.
3 Terminace = U E.coli série 4-10 párů A-T s adeninovými zbytky na templátu a oblast bohatá na C-G, někdy je pro terminaci vyžadována přítomnost proteinu ρ. Inhibice Některá. aktinomycin D, rifamycin B Některé chemoterapeutika na léčbu nádorů (daunomycin, adriamycin) Amatoxiny ( ) Smrtelná dávka je asi 40g čerstvých hub, působí pomalu po odeznění vlivu jiných toxinů, smrt nastává obvykle v důsledku jaterního selhání. Posttranskripční úpravy = m-rna obvykle bez úprav m-rna: rozsáhlé úpravy, jsou v ní kódující oblasti (exony) odděleny poměrně rozsáhlými nekódujícími oblastmi (introny). Introny jsou vystřiženy a exony jsou velmi přesně pospojovány. r-rna jsou často methylovány Schéma transkripce:
4 Reverzní transkripce: RNA-viry ( např.: a další) obsahují enzym reverzní transkriptasu ( objev: Howard Temin a David Baltimore, 1970) který katalyzuje syntézu DNA na matrici, kterou je v-rna. Syntéza se děje ve směru 5 ) 3 ) na matricích opatřených RNA-primery, enzymaticky se pak odbourá templátové vlákno v-rna, replikuje se jednovláknová DNA, čímž vznikne dvoušroubovice DNA, která je zabudována do genomu hostitelské buňky, jež může podle podstrčené genetické informace produkovat viriony. Centrální dogma biochemie
5 Biosyntéza RNA, transkripce pracovní list vyplněná verze Většinou se všechny typy RNA syntetizují v procesu transkripce. Transkripce u prokaryot Transkripce u eukaryot Katalýza RNA-polymerasa 4 až 5 RNA-polymeras, každá katalyzuje syntézu jiného typu RNA RNA-polymerasa I : jadérko, r-rna RNA-polymerasa II: jádro, m-rna RNA-polymerasa III: jádro, r-rna, t-rna a jiné RNA-polymerasy v mitochondriích a chloroplastech (RNA) n + nukleosidtrifosfát (RNA) n+1 + PP i Reakce je poháněna uvolněním difosfátu a jeho následnou hydrolýzou. Iniciace Syntéza RNA je iniciována na specifických místech DNA. RNA-polymerasa se váže k určité oblasti na templátovém vlákně DNA, která se označuje jako promotor, což je sekvence asi 40 párů bází. Báze na 5 ) konci je často purin. Promotory RNA-polymeras jsou komplexní a rozmanité a nejsou příliš prozkoumány. Promotory mohou být umístěny v podstatě kdekoli v oblasti přepisovaných genů. Na molekule DNA rovněž existují místa, která fungují jako enhancery (zesilovače). Elongace = prodlužování řetězce RNA se vždy děje ve směru od 5 ) k 3 ). Dvouvláknový templát DNA musí být v místě transkripce otevřen, na jednom z vláken jsou k bázím DNA přikládány komplementární ribonukleotidy. Rychlost a přesnost transkripce Rychlost je asi nukleotidů za sekundu při teplotě 37 0 C. Za RNA-polymerasou může další následovat hned, jak je to stericky možné. Chybovost je 1 chybný nukleotid na 10 4 přepsaných bází.
6 Terminace = ukončení transkripce a uvolnění molekuly RNA od templátového vlákna DNA. U E.coli série 4-10 párů A-T s adeninovými zbytky na templátu a oblast bohatá na C-G, někdy je pro terminaci vyžadována přítomnost proteinu ρ. Inhibice Některá antibiotika: aktinomycin D, rifamycin B Některé chemoterapeutika na léčbu nádorů (daunomycin, adriamycin) Amatoxiny (jedy muchomůrky hlíznaté) Smrtelná dávka je asi 40g čerstvých hub, působí pomalu po odeznění vlivu jiných toxinů, smrt nastává obvykle v důsledku jaterního selhání. = změny ve struktuře a složení RNA po traskripci Posttranskripční úpravy m-rna obvykle bez úprav m-rna: rozsáhlé úpravy, jsou v ní kódující oblasti (exony) odděleny poměrně rozsáhlými nekódujícími oblastmi (introny). Introny jsou vystřiženy a exony jsou velmi přesně pospojovány. r-rna jsou často methylovány Schéma transkripce:
7 Reverzní transkripce: RNA-viry ( např.: některé onkoviry, virus HIV a další) obsahují enzym reverzní transkriptasu ( objev: Howard Temin a David Baltimore, 1970) který katalyzuje syntézu DNA na matrici, kterou je v-rna. Syntéza se děje ve směru 5 ) 3 ) na matricích opatřených RNA-primery, enzymaticky se pak odbourá templátové vlákno v-rna, replikuje se jednovláknová DNA, čímž vznikne dvoušroubovice DNA, která je zabudována do genomu hostitelské buňky, jež může podle podstrčené genetické informace produkovat viriony. Centrální dogma biochemie
8 Biosyntéza DNA replikace DNA pracovní list Dvoušroubovice DNA se replikuje semikonzervativně v replikačních vidličkách (očcích, bublinách).. U prokaryot se obvykle tvoří jedno replikační očko, u eukaryot je DNA rozsáhlejší a replikace paralelně probíhá v několika replikačních bublinách. Na oddálených vláknech DNA se jako na matrici syntetizuje komplementární vlákno DNA přikládáním vhodných (komplementárních) deoxynukleotidtrifosfátů. Reakce je poháněna eliminací anorganického difosfátu (PP i ) a jeho následnou hydrolýzou. nukleotidový řetězec-p + nukleotid-p-p-p nukleotidový řetězec o 1 nukleotid delší-p + PP i Vznikají tak v ideálním případě dvě identické dceřinné molekuly DNA, které obsahují jedno vlákno z původní molekuly a druhé nově nasyntetizované. Deoxyribonukleotidtrifosfáty mohou být přikládány pouze k 3 ) - hydroxylu deoxyribofuranosy narůstajícího polynukleotidového vlákna, takže řetězce DNA jsou prodlužovány pouze ve směru od 5 ) k 3 ). Vedoucí vlákno: nový řetězec roste ve směru od 5 ) k 3 ) ve směru pohybující se replikační vidličky, což je bod oddělení obou vláken v replikačním očku, a syntetizuje se kontinuálně. Opožděné vlákno: syntéza probíhá také ve směru od 5 ) k 3 ), ale diskontinuálně, ve formě kratších úseků (u prokaryot nukleotidů, u eukaryot nukleotidů), kterým říkáme Okazakiho fragmenty. DNA-polymerasy nejsou schopny katalyzovat iniciaci syntézy polynukleotidového řetězce. Iniciační úlohu hrají komplementární úseky RNA o několika nukleotidech (1-60), které označujeme jako RNA- -primery. Vznik těchto RNA-primerů katalyzuje enzym DNA-dependentní primasa, a to jak vytvoření jednoho RNA-primeru pro vedoucí vlákno, tak RNA-primery pro jednotlivé Okazakiho fragmenty. Enzymové zajištění replikace:
9 a) DNA-gyrasa, topoizomerasa Rozvolňuje šroubovicové vinutí DNA a zajišťuje, aby se DNA před replikační vidličkou nestáhla a nezamotala. b) Rep-protein, helikasa Pohybují se podél řetězce DNA a oddělují vlákna dvoušroubovice na způsob zipu. Děj spotřebovává ATP. c) SSB proteiny (single strand binding) Tetramerní bílkovina se váže na vlákna DNA za helikasou a rep-proteinem a brání opětovnému spárování bází. d) DNA-primasa Jde o enzym, který katalyzuje vznik RNA-primerů. e) DNA-polymerasy Katalyzují vznik komplementárního řetězce DNA na vedoucím vlákně i u úseků polynukleotidových řetězců Okazakuho fragmentů a navázání chybějících deoxyribonukleotidů v místech, kde byly odštěpeny RNA-primery. Podílejí se i na odstraňování chyb vznikajících při replikaci i na opravách poškozených úseků DNA. Polymerasa po syntéze řetězec DNA zkontroluje a opraví chyby. f) enzym odstraňující RNA-primery g) DNA-ligasa Katalyzuje zacelení mezer mezi Okazakiho fragmenty a jejich kovalentní spojení. Replikační rychlost u E. coli je asi 1000 nukleotidů za sekundu. U eukaryot je replikace asi 20x pomalejší, u člověka je rychlost polymerasy asi 50 zabudovaných nukleotidů za sekundu. Chybovost je u bakterií odhadována asi na 1 chybu na 10 9 navázaných nukleotidů.
10 Biosyntéza DNA replikace DNA pracovní list vyplněná verze Dvoušroubovice DNA se replikuje semikonzervativně v replikačních vidličkách (očcích, bublinách).v dceřinné molekule DNA je jedno vlákno z mateřské molekuly a jedno vlákno nové. U prokaryot se obvykle tvoří jedno replikační očko, u eukaryot je DNA rozsáhlejší a replikace paralelně probíhá v několika replikačních bublinách. Na oddálených vláknech DNA se jako na matrici syntetizuje komplementární vlákno DNA přikládáním vhodných (komplementárních) deoxynukleotidtrifosfátů. Reakce je poháněna eliminací anorganického difosfátu (PP i ) a jeho následnou hydrolýzou. nukleotidový řetězec-p + nukleotid-p-p-p nukleotidový řetězec o 1 nukleotid delší-p + PP i Vznikají tak v ideálním případě dvě identické dceřinné molekuly DNA, které obsahují jedno vlákno z původní molekuly a druhé nově vytvořené. Deoxyribonukleotidtrifosfáty mohou být přikládány pouze k 3 ) - hydroxylu deoxyribofuranosy narůstajícího polynukleotidového vlákna, takže řetězce DNA jsou prodlužovány pouze ve směru od 5 ) k 3 ). Vedoucí vlákno: nový řetězec roste ve směru od 5 ) k 3 ) ve směru pohybující se replikační vidličky, což je bod oddělení obou vláken v replikačním očku, a syntetizuje se kontinuálně. Opožděné vlákno: syntéza probíhá také ve směru od 5 ) k 3 ), ale diskontinuálně, ve formě kratších úseků (u prokaryot nukleotidů, u eukaryot nukleotidů), kterým říkáme Okazakiho fragmenty. DNA-polymerasy nejsou schopny katalyzovat iniciaci syntézy polynukleotidového řetězce. Iniciační úlohu hrají komplementární úseky RNA o několika nukleotidech (1-60), které označujeme jako RNA- -primery. Vznik těchto RNA-primerů katalyzuje enzym DNA-dependentní primasa, a to jak vytvoření jednoho RNA-primeru pro vedoucí vlákno, tak RNA-primery pro jednotlivé Okazakiho fragmenty. Enzymové zajištění replikace:
11 a) DNA-gyrasa, topoizomerasa Rozvolňuje šroubovicové vinutí DNA a zajišťuje, aby se DNA před replikační vidličkou nestáhla a nezamotala. b) Rep-protein, helikasa Pohybují se podél řetězce DNA a oddělují vlákna dvoušroubovice na způsob zipu. Děj spotřebovává ATP. c) SSB proteiny (single strand binding) Tetramerní bílkovina se váže na vlákna DNA za helikasou a rep-proteinem a brání opětovnému spárování bází. d) DNA-primasa Jde o enzym, který katalyzuje vznik RNA-primerů. e) DNA-polymerasy Katalyzují vznik komplementárního řetězce DNA na vedoucím vlákně i u úseků polynukleotidových řetězců Okazakiho fragmentů a navázání chybějících deoxyribonukleotidů v místech, kde byly odštěpeny RNA-primery. Podílejí se i na odstraňování chyb vznikajících při replikaci i na opravách poškozených úseků DNA. Polymerasa po syntéze řetězec DNA zkontroluje a opraví chyby. f) enzym odstraňující RNA-primery g) DNA-ligasa Katalyzuje zacelení mezer mezi Okazakiho fragmenty a jejich kovalentní spojení. Replikační rychlost u E. coli je asi 1000 nukleotidů za sekundu. U eukaryot je replikace asi 20x pomalejší, u člověka je rychlost polymerasy asi 50 zabudovaných nukleotidů za sekundu. Chybovost je u bakterií odhadována asi na 1 chybu na 10 9 navázaných nukleotidů. Zdroje: archiv autorky
Exprese genetické informace
Exprese genetické informace Stavební kameny nukleových kyselin Nukleotidy = báze + cukr + fosfát BÁZE FOSFÁT Nukleosid = báze + cukr CUKR Báze Cyklické sloučeniny obsahující dusík puriny nebo pyrimidiny
Nukleové kyseliny. DeoxyriboNucleic li Acid
Molekulární lární genetika Nukleové kyseliny DeoxyriboNucleic li Acid RiboNucleic N li Acid cukr (deoxyrobosa, ribosa) fosforečný zbytek dusíkatá báze Dusíkaté báze Dvouvláknová DNA Uchovává genetickou
Molekulární základy dědičnosti. Ústřední dogma molekulární biologie Struktura DNA a RNA
Molekulární základy dědičnosti Ústřední dogma molekulární biologie Struktura DNA a RNA Ústřední dogma molekulární genetiky - vztah mezi nukleovými kyselinami a proteiny proteosyntéza replikace DNA RNA
Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti. Vztah struktury a funkce nukleových kyselin. Replikace, transkripce
Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti Vztah struktury a funkce nukleových kyselin. Replikace, transkripce Nukleová kyselina gen základní jednotka informace v živých systémech,
Nukleové kyseliny Replikace Transkripce translace
Nukleové kyseliny Replikace Transkripce translace Figure 4-3 Molecular Biology of the Cell ( Garland Science 2008) Figure 4-4 Molecular Biology of the Cell ( Garland Science 2008) Figure 4-5 Molecular
Garant předmětu GEN: prof. Ing. Jindřich Čítek, CSc. Garant předmětu GEN1: prof. Ing. Václav Řehout, CSc.
Garant předmětu GEN: prof. Ing. Jindřich Čítek, CSc. Garant předmětu GEN1: prof. Ing. Václav Řehout, CSc. Další vyučující: Ing. l. Večerek, PhD., Ing. L. Hanusová, Ph.D., Ing. L. Tothová Předpoklady: znalosti
Molekulárn. rní. biologie Struktura DNA a RNA
Molekulárn rní základy dědičnosti Ústřední dogma molekulárn rní biologie Struktura DNA a RNA Ústřední dogma molekulárn rní genetiky - vztah mezi nukleovými kyselinami a proteiny proteosyntéza replikace
Nukleové kyseliny Replikace Transkripce, RNA processing Translace
Nukleové kyseliny Replikace Transkripce, RNA processing Translace Figure 6-2 Molecular Biology of the Cell ( Garland Science 2008) replikace Figure 4-8 Molecular Biology of the Cell ( Garland Science
ANOTACE vytvořených/inovovaných materiálů
ANOTACE vytvořených/inovovaných materiálů Číslo projektu Číslo a název šablony klíčové aktivity Tematická oblast Formát Druh učebního materiálu Druh interaktivity CZ.1.07/1.5.00/34.0722 III/2 Inovace a
Eva Benešová. Genetika
Eva Benešová Genetika Význam nukleotidů - Energetický metabolismus (oběh energie). - Propojení odpovědi buňky na hormony a další stimuly. - Komponenty enzymových kofaktorů a dalších metabolických intermediátů.
Základy molekulární a buněčné biologie. Přípravný kurz Komb.forma studia oboru Všeobecná sestra
Základy molekulární a buněčné biologie Přípravný kurz Komb.forma studia oboru Všeobecná sestra Genetický aparát buňky DNA = nositelka genetické informace - dvouvláknová RNA: jednovláknová mrna = messenger
Základy molekulární biologie KBC/MBIOZ
Základy molekulární biologie KBC/MBIOZ Čtvrtek 10:30 11:15 Struktura a replikace DNA (Mgr. M. Majeská Čudejková, Ph.D) Transkripce genu a její regulace (Mgr. M. Majeská Čudejková, Ph.D) Translace a tvorba
Nukleové kyseliny Replikace Transkripce translace
Nukleové kyseliny Replikace Transkripce translace Prokaryotická X eukaryotická buňka Hlavní rozdíl organizace genetického materiálu (u prokaryot není ohraničen) Život závisí na schopnosti buněk skladovat,
Inovace studia molekulární a buněčné biologie
Inovace studia molekulární a buněčné biologie I n v e s t i c e d o r o z v o j e v z d ě l á v á n í reg. č. CZ.1.07/2.2.00/07.0354 Tento projekt je spolufinancován Evropským sociálním fondem a státním
Exprese genetické informace
Exprese genetické informace Tok genetické informace DNA RNA Protein (výjimečně RNA DNA) DNA RNA : transkripce RNA protein : translace Gen jednotka dědičnosti sekvence DNA nutná k produkci funkčního produktu
Vzdělávací materiál. vytvořený v projektu OP VK CZ.1.07/1.5.00/34.0211. Anotace. Citrátový cyklus. VY_32_INOVACE_Ch0218.
Vzdělávací materiál vytvořený v projektu P VK ázev školy: Gymnázium, Zábřeh, náměstí svobození 20 Číslo projektu: ázev projektu: Číslo a název klíčové aktivity: CZ.1.07/1.5.00/34.0211 Zlepšení podmínek
2. Z následujících tvrzení, týkajících se prokaryotické buňky, vyberte správné:
Výběrové otázky: 1. Součástí všech prokaryotických buněk je: a) DNA, plazmidy b) plazmidy, mitochondrie c) plazmidy, ribozomy d) mitochondrie, endoplazmatické retikulum 2. Z následujících tvrzení, týkajících
19.b - Metabolismus nukleových kyselin a proteosyntéza
19.b - Metabolismus nukleových kyselin a proteosyntéza Proteosyntéza vyžaduje především zajištění primární struktury. Informace je uložena v DNA (ev. RNA u některých virů) trvalá forma. Forma uskladnění
ENZYMY A NUKLEOVÉ KYSELINY
ENZYMY A NUKLEOVÉ KYSELINY Autor: Mgr. Stanislava Bubíková Datum (období) tvorby: 28. 3. 2013 Ročník: devátý Vzdělávací oblast: Člověk a příroda / Chemie / Organické sloučeniny 1 Anotace: Žáci se seznámí
Základy molekulární biologie KBC/MBIOZ
Základy molekulární biologie KBC/MBIOZ Mária Čudejková 2. Transkripce genu a její regulace Transkripce genetické informace z DNA na RNA Transkripce dvou genů zachycená na snímku z elektronového mikroskopu.
Nukleové kyseliny (polynukleotidy) Nukleové kyseliny a nadmolekulové komplexy polynukleotidů buněčných struktur
Nukleové kyseliny (polynukleotidy) Nukleové kyseliny a nadmolekulové komplexy polynukleotidů buněčných struktur Objevitelem je Friedrich Miescher (1887) NK stojí v hierarchii látek potřebných k existenci
Základy molekulární biologie KBC/MBIOZ
Základy molekulární biologie KBC/MBIOZ Ivo Frébort 1. Struktura a replikace DNA Literatura: Alberts a kol.: Základy buněčné biologie Espero Publishing, 2000 Garrett & Grisham: Biochemistry 2nd ed., Saunders
1. Téma : Genetika shrnutí Název DUMu : VY_32_INOVACE_29_SPSOA_BIO_1_CHAM 2. Vypracovala : Hana Chamulová 3. Vytvořeno v projektu EU peníze středním
1. Téma : Genetika shrnutí Název DUMu : VY_32_INOVACE_29_SPSOA_BIO_1_CHAM 2. Vypracovala : Hana Chamulová 3. Vytvořeno v projektu EU peníze středním školám Genetika - shrnutí TL2 1. Doplň: heterozygot,
Proteiny Genová exprese. 2013 Doc. MVDr. Eva Bártová, Ph.D.
Proteiny Genová exprese 2013 Doc. MVDr. Eva Bártová, Ph.D. Bílkoviny (proteiny), 15% 1g = 17 kj Monomer = aminokyseliny aminová skupina karboxylová skupina α -uhlík postranní řetězec Znát obecný vzorec
Základy molekulární biologie KBC/MBIOZ
Základy molekulární biologie KBC/MBIOZ Čtvrtek 11:30 13:00 1. Struktura a replikace DNA (25.09.2014, Mgr. M. Čudejková, Ph.D) 2. Metody molekulární biologie I (09.10.2014, Doc. Mgr. P. Galuszka, Ph.D)
Genetika. Genetika. Nauka o dědid. dičnosti a proměnlivosti. molekulárn. rní buněk organismů populací
Genetika Nauka o dědid dičnosti a proměnlivosti Genetika molekulárn rní buněk organismů populací Dědičnost na úrovni nukleových kyselin Předávání vloh z buňky na buňku Předávání vlastností mezi jednotlivci
Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti. Translace, techniky práce s DNA
Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti Translace, techniky práce s DNA Translace překlad z jazyka nukleotidů do jazyka aminokyselin dá se rozdělit na 5 kroků aktivace aminokyslin
MOLEKULÁRNÍ BIOLOGIE PROKARYOT
Informační makromolekuly MOLEKULÁRNÍ BIOLOGIE PROKARYOT Funkce a syntéza informačních makromolekul Regulace metabolické aktivity Nukleové kyseliny Proteiny Pořadí monomerních jednotek nese genetickou informaci
6. Nukleové kyseliny a molekulová genetika
6. Nukleové kyseliny a molekulová genetika Obtížnost A Odhadněte celkové nukleotidové složení dvouvláknové DNA, u níž bylo experimentálně stanoveno, že ze 100 deoxynukleotidů tvoří průměrně 22 deoxyadenosin-5
Struktura a funkce biomakromolekul
Struktura a funkce biomakromolekul KBC/BPOL 7. Interakce DNA/RNA - protein Ivo Frébort Interakce DNA/RNA - proteiny v buňce Základní dogma molekulární biologie Replikace DNA v E. coli DNA polymerasa a
4) pokračování struktury nukleových kyselin
Denaturace a renaturace DNA 4) pokračování struktury nukleových kyselin Genofor, chromozom, genom Genofor struktura nesoucí geny seřazené za sebou (DNA nebo RNA) a schopná replikace. U prokaryot, eukaryot
Struktura a funkce nukleových kyselin
Struktura a funkce nukleových kyselin ukleové kyseliny Deoxyribonukleová kyselina - DA - uchovává genetickou informaci Ribonukleová kyselina RA - genová exprese a biosyntéza proteinů Složení A stavební
ÚVOD. Úvod ke struktuře nukleových kyselin Struktura DNA Replikace DNA Opravy DNA
NUKLEVÉ KYSELINY ÚVD Úvod ke struktuře nukleových kyselin Struktura DNA Replikace DNA pravy DNA * Základní pojmy struktury nukleových kyselin Nukleotidy mohou být spojovány do řetězců ve formě ribonukleové
REPLIKACE A REPARACE DNA
REPLIKACE A REPARACE DNA 1 VÝZNAM REPARACE DNA V MEDICÍNĚ Příklad: Reparace DNA: enzymy reparace nukleotidovou excizí Onemocnění: xeroderma pigmentosum 2 3 REPLIKACE A REPARACE DNA: Replikace DNA: 1. Podstata
Syntéza a postranskripční úpravy RNA
Syntéza a postranskripční úpravy RNA 2016 1 Transkripce Proces tvorby RNA na podkladu struktury DNA Je přepisován pouze jeden řetězec dvoušroubovice DNA templátový řetězec Druhý řetězec se nazývá kódující
Přednáška kurzu Bi4010 Základy molekulární biologie, 2016/17 Replikace DNA
Přednáška kurzu Bi4010 Základy molekulární biologie, 2016/17 Replikace DNA Jan Šmarda Ústav experimentální biologie, PřF MU 1 Buněčné dělení a reprodukce každá buňka potřebuje svou úplnou sadu genů: rodičovská
Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti NUKLEOVÉ KYSELINY
Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti NUKLEOVÉ KYSELINY 3 složky Nukleotidy dusík obsahující báze (purin či pyrimidin) pentosa fosfát Fosfodiesterová vazba. Vyskytuje se mezi
Nukleové kyseliny a nadmolekulové komplexy polynukleotidů buněčných struktur
Nukleové kyseliny a nadmolekulové komplexy polynukleotidů buněčných struktur Nukleové kyseliny (polynukleotidy) Objevitelem je Friedrich Miescher (1887) NK stojí v hierarchii látek potřebných k existenci
Přípravný kurz z biologie MUDr. Jana Kolářová, CSc. témata 1 Mgr. Kateřina Caltová témata 3-5 doc. PharmDr. Emil Rudolf, Ph.D. 2 + 6-10 materiály k
Přípravný kurz z biologie MUDr. Jana Kolářová, CSc. témata 1 Mgr. Kateřina Caltová témata 3-5 doc. PharmDr. Emil Rudolf, Ph.D. 2 + 6-10 materiály k přípravnému kurzu: stránka Ústavu lékařské biologie a
Úvod do studia biologie. Základy molekulární genetiky
Úvod do studia biologie Základy molekulární genetiky Katedra biologie PdF MU, 2010 Mendel - podobor Genetiky (Genetika je obecnější) Genetika: - nauka o dědičnosti a proměnlivosti - věda 20. století Johann
Globální pohled na průběh replikace dsdna
Globální pohled na průběh replikace dsdna 3' 5 3 vedoucí řetězec 5 3 prodlužování vedoucího řetězce (polymerace ) DNA-ligáza směr pohybu enzymů DNA-polymeráza I DNA-polymeráza III primozom 5' 3, 5, hotový
Centrální dogma molekulární biologie
řípravný kurz LF MU 2011/12 Centrální dogma molekulární biologie Nukleové kyseliny 1865 zákony dědičnosti (Johann Gregor Mendel) 1869 objev nukleových kyselin (Miescher) 1944 genetická informace v nukleových
Úvod do studia biologie. Základy molekulární genetiky
Úvod do studia biologie Základy molekulární genetiky Katedra biologie PdF MU, 2011 - podobor genetiky (genetika je obecnější) Genetika: - nauka o dědičnosti a proměnlivosti - věda 20. století Johann Gregor
REPLIKACE, BUNĚČNÝ CYKLUS, ZÁNIK BUNĚK
Molekulární základy dědičnosti - rozšiřující učivo REPLIKACE, BUNĚČNÝ CYKLUS, ZÁNIK BUNĚK REPLIKACE deoxyribonukleové kyseliny (zdvojení DNA) je děj, při kterém se tvoří z jedné dvoušoubovice DNA dvě nová
DUM č. 10 v sadě. 37. Bi-2 Cytologie, molekulární biologie a genetika
projekt GML Brno Docens DUM č. 10 v sadě 37. Bi-2 Cytologie, molekulární biologie a genetika Autor: Martin Krejčí Datum: 26.06.2014 Ročník: 6AF, 6BF Anotace DUMu: Procesy následující bezprostředně po transkripci.
15. Základy molekulární biologie
15. Základy molekulární biologie DNA je zkratka pro kyselinu deoxyribonukleovou, která je nositelkou genetické informace všech živých buněčných organismů. Je tedy nezbytná pro život pomocí svých informací
Typy nukleových kyselin. deoxyribonukleová (DNA); ribonukleová (RNA).
Typy nukleových kyselin Existují dva typy nukleových kyselin (NA, z anglických slov nucleic acid): deoxyribonukleová (DNA); ribonukleová (RNA). DNA je lokalizována v buněčném jádře, RNA v cytoplasmě a
a) Primární struktura NK NUKLEOTIDY Monomerem NK jsou nukleotidy
1 Nukleové kyseliny Nukleové kyseliny (NK) sice tvoří malé procento hmotnosti buňky ale významem v kódování genetické informace a její expresí zcela nezbytným typem biopolymeru všech živých soustav a)
Vzdělávací materiál. vytvořený v projektu OP VK. Anotace. Název školy: Gymnázium, Zábřeh, náměstí Osvobození 20. Číslo projektu:
Vzdělávací materiál vytvořený v projektu VK ázev školy: Gymnázium, Zábřeh, náměstí svobození 20 Číslo projektu: ázev projektu: Číslo a název klíčové aktivity: CZ.1.07/1.5.00/34.0211 Zlepšení podmínek pro
Deriváty karboxylových kyselin, aminokyseliny, estery
Deriváty karboxylových kyselin, aminokyseliny, estery Zpracovala: Ing. Štěpánka Janstová 29.1.2012 Určeno pro 9. ročník ZŠ V/II,EU-OPVK,42/CH9/Ja Přehled a využití derivátů organických kyselin, jejich
NUKLEOVÉ KYSELINY. Základ života
NUKLEOVÉ KYSELINY Základ života HISTORIE 1. H. Braconnot (30. léta 19. století) - Strassburg vinné kvasinky izolace matiére animale. 2. J.F. Meischer - experimenty z hnisem štěpení trypsinem odstředěním
GENETIKA dědičností heredita proměnlivostí variabilitu Dědičnost - heredita podobnými znaky genetickou informací Proměnlivost - variabilita
GENETIKA - věda zabývající se dědičností (heredita) a proměnlivostí (variabilitu ) živých soustav - sleduje rozdílnost a přenos dědičných znaků mezi rodiči a potomky Dědičnost - heredita - schopnost organismu
MOLEKULÁRNÍ BIOLOGIE. 2. Polymerázová řetězová reakce (PCR)
MOLEKULÁRNÍ BIOLOGIE 2. Polymerázová řetězová reakce (PCR) Náplň praktik 1. Izolace DNA z buněk bukální sliznice - izolační kit MACHEREY-NAGEL 2. PCR polymerázová řetězová reakce (templát gdna) 3. Restrikční
Genetika zvířat - MENDELU
Genetika zvířat DNA - primární struktura Několik experimentů ve 40. a 50. letech 20. století poskytla důkaz, že genetický materiál je tvořen jedním ze dvou typů nukleových kyselin: DNA nebo RNA. DNA je
Přenos genetické informace: Centrální dogma. Odstranění intronů sestřihem RNA
Transkripce a úpravy RNA Osnova přednášky Přenos genetické informace: Centrální dogma Proces genové exprese Transkripce u prokaryot Transkripce a úpravy RNA u eukaryot Přerušované geny u eukaryot: exony
Masarykova univerzita v Brně, Fakulta lékařská
Masarykova univerzita v Brně, Fakulta lékařská Obor: Všeobecné lékařství Biologie Testy předpokládají znalost středoškolské biologie. Hlavním podkladem při jejich přípravě byl "Přehled biologie" (Rosypal,
Kontrola genové exprese
Základy biochemie KBC/BC Kontrola genové exprese Inovace studia biochemie prostřednictvím e-learningu CZ.04.1.03/3.2.15.3/0407 Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem
ve srovnání s eukaryoty (životnost v řádu hodin) u prokaryot kratší (životnost v řádu minut) na životnost / stabilitu molekuly mají vliv
Urbanová Anna ve srovnání s eukaryoty (životnost v řádu hodin) u prokaryot kratší (životnost v řádu minut) na životnost / stabilitu molekuly mají vliv strukturní rysy mrna proces degradace každá mrna v
v raném stádiu se embryo rozpadlo do dvou skupin buněk správná odpověď: dvojčata obsahují kopie stejných rodičovských
Replikace DNA Jsou monozygotní dvojčata identická? vyvinula se z jednoho oplozeného vajíčka v raném stádiu se embryo rozpadlo do dvou skupin buněk obě skupiny buněk prodělaly úplný vývoj a dozrály do úplných
Chemie nukleotidů a nukleových kyselin. Centrální dogma molekulární biologie (existují vyjímky)
Chemie nukleotidů a nukleových kyselin Centrální dogma molekulární biologie (existují vyjímky) NH 2 N N báze O N N -O P O - O H 2 C H H O H H cukr OH OH nukleosid nukleotid Nukleosidy vznikají buď syntézou
Propojení výuky oborů Molekulární a buněčné biologie a Ochrany a tvorby životního prostředí. Reg. č.: CZ.1.07/2.2.00/
Propojení výuky oborů Molekulární a buněčné biologie a Ochrany a tvorby životního prostředí Reg. č.: CZ.1.07/2.2.00/28.0032 Molekulární genetika (Molekulární základy dědičnosti) 0 Gen - historie 1909 Johanssen
Lesnická genetika. Dušan Gömöry, Roman Longauer
Lesnická genetika Dušan Gömöry, Roman Longauer Brno 2014 1 Tento studijní materiál byl vytvořen v rámci projektu InoBio Inovace biologických a lesnických disciplín pro vyšší konkurence schopnost, registrační
Molekulární základ dědičnosti
Molekulární základ dědičnosti Dědičná informace je zakódována v deoxyribonukleové kyselině, která je uložena v jádře buňky v chromozómech. Zlomovým objevem pro další rozvoj molekulární genetiky bylo odhalení
Genetika - maturitní otázka z biologie (2)
Genetika - maturitní otázka z biologie (2) by jx.mail@centrum.cz - Ned?le, B?ezen 01, 2015 http://biologie-chemie.cz/genetika-maturitni-otazka-z-biologie-2/ Otázka: Genetika I P?edm?t: Biologie P?idal(a):
Exprese genetického kódu Centrální dogma molekulární biologie DNA RNA proteinu transkripce DNA mrna translace proteosyntéza
Exprese genetického kódu Centrální dogma molekulární biologie - genetická informace v DNA -> RNA -> primárního řetězce proteinu 1) transkripce - přepis z DNA do mrna 2) translace - přeložení z kódu nukleových
jedné aminokyseliny v molekule jednoho z polypeptidů hemoglobinu
Translace a genetický kód Srpkovitý tvar červených krvinek u srpkovité anémie: důsledek záměny Srpkovitý tvar červených krvinek u srpkovité anémie: důsledek záměny jedné aminokyseliny v molekule jednoho
Odvětví genetiky zkoumající strukturu a funkci genů na molekulární úrovni
Otázka: Molekulární genetika a biologie Předmět: Biologie Přidal(a): Tomáš Pfohl Odvětví genetiky zkoumající strukturu a funkci genů na molekulární úrovni Zakladatel klasické genetiky - Johan Gregor Mendel
Molekulární genetika (Molekulární základy dědičnosti)
Molekulární genetika (Molekulární základy dědičnosti) Struktura nukleové kyseliny Cukerná pentóza: 2-deoxy-D-ribóza D-ribóza Fosfátový zbytek: PO 4 3- Purin Pyrimidin Dusíkatá báze Adenin Guanin Tymin
Genetický polymorfismus
Genetický polymorfismus Za geneticky polymorfní je považován znak s nejméně dvěma geneticky podmíněnými variantami v jedné populaci, které se nachází v takových frekvencích, že i zřídkavá má frekvenci
Těsně před infarktem. Jak předpovědět infarkt pomocí informatických metod. Jan Kalina, Marie Tomečková
Těsně před infarktem Jak předpovědět infarkt pomocí informatických metod Jan Kalina, Marie Tomečková Program, osnova sdělení 13,30 Úvod 13,35 Stručně o ateroskleróze 14,15 Měření genových expresí 14,00
MOLEKULÁRNÍ ZÁKLADY DĚDIČNOSTI
Maturitní téma č. 33 MOLEKULÁRNÍ ZÁKLADY DĚDIČNOSTI NUKLEOVÉ KYSELINY - jsou to makromolekuly tvořené řetězci vzájemně spojených nukleotidů. Molekula nukleotidu sestává z : - pětiuhlíkatého monosacharidu
REKOMBINACE Přestavby DNA
REKOMBINACE Přestavby DNA variace v kombinacích genů v genomu adaptace evoluce 1. Obecná rekombinace ( General recombination ) Genetická výměna mezi jakýmkoli párem homologních DNA sekvencí - často lokalizovaných
7. Regulace genové exprese, diferenciace buněk a epigenetika
7. Regulace genové exprese, diferenciace buněk a epigenetika Aby mohl mnohobuněčný organismus efektivně fungovat, je třeba, aby se jednotlivé buňky specializovaly na určité funkce. Nový jedinec přitom
Nukleové kyseliny. Nukleové kyseliny. Genetická informace. Gen a genom. Složení nukleových kyselin. Centrální dogma molekulární biologie
Centrální dogma molekulární biologie ukleové kyseliny 1865 zákony dědičnosti (Johann Gregor Transkripce D R Translace rotein Mendel) Replikace 1869 objev nukleových kyselin (Miescher) 1944 nukleové kyseliny
Klonování DNA a fyzikální mapování genomu
Klonování DNA a fyzikální mapování genomu. Terminologie Klonování je proces tvorby klonů Klon je soubor identických buněk (příp. organismů) odvozených ze společného předka dělením (např. jedna bakteriální
přepis genetické informace z DNA do RNA, při které DNA slouží jako matrice pro syntézu RNA. Reakci katalyzuje RNA-polymeráza (transkriptáza)
Transkripce přepis genetické informace z DNA do RNA, při které DNA slouží jako matrice pro syntézu RNA. Reakci katalyzuje RNA-polymeráza (transkriptáza) Zpětná transkripce (RT) - přepis genetické informace
Biosyntéza a metabolismus bílkovin
Bílkoviny Biosyntéza a metabolismus bílkovin lavní stavební materiál buněk a tkání Prakticky jediný zdroj dusíku pro heterotrofní organismy eexistují zásobní bílkoviny nutný dostatečný přísun v potravě
Digitální učební materiál
Digitální učební materiál Projekt CZ.1.07/1.5.00/34.0415 Inovujeme, inovujeme Šablona III/2 Inovace a zkvalitnění výuky prostřednictvím ICT (DUM) Tematická Odborná biologie, část biologie Společná pro
Inovace studia molekulární a buněčné biologie
Inovace studia molekulární a buněčné biologie Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky. MBIO1/Molekulární biologie 1 Tento projekt je spolufinancován
BAKTERIÁLNÍ GENETIKA. Lekce 12 kurzu GENETIKA Doc. RNDr. Jindřich Bříza, CSc.
BAKTERIÁLNÍ GENETIKA Lekce 12 kurzu GENETIKA Doc. RNDr. Jindřich Bříza, CSc. -dědičnost u baktérií principiálně stejná jako u komplexnějších organismů -genom haploidní a značně menší Bakteriální genom
Gymnázium, Brno, Elgartova 3
Gymnázium, Brno, Elgartova 3 Šablona: III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Název projektu: GE Vyšší kvalita výuky Číslo projektu: CZ.1.07/1.5.00/34.0925 Autor: Mgr. Hana Křivánková Téma:
-nukleové kyseliny jsou makromolekulární látky, jejichž základní stavební jednotkou je nukleotid každý nukleotid vzniká spojením:
Otázka: Molekulární základy dědičnosti Předmět: Biologie Přidal(a): Mulek NUKLEOVÉ KYSELINY -nositelkami genetické informace jsou molekuly nukleových kyselin tvořené řetězci vzájemně spojených nukleotidů,
Základy metod forenzní genetiky. Hana Šumberová, DiS
Základy metod forenzní genetiky Hana Šumberová, DiS Bakalářská práce 2011 PROHLÁŠENÍ AUTORA BAKALÁŘSKÉ PRÁCE Beru na vědomí, že odevzdáním bakalářské práce souhlasím se zveřejněním své práce podle zákona
Základy molekulární biologie KBC/MBIOZ
Základy molekulární biologie KBC/MBIOZ Mária Majeská Čudejková 3. Proteosyntéza Centrální dogma molekulární biologie Rozluštění genetického kódu in vitro Marshall Nirenberg a Heinrich Matthaei zjistili,
Schéma průběhu transkripce
Molekulární základy genetiky PROTEOSYNTÉZA A GENETICKÝ KÓD Proteosyntéza je složitý proces tvorby bílkovin, který zahrnuje proces přepisu genetické informace z DNA do kratšího zápisu v informační mrna
Translace (druhý krok genové exprese)
Translace (druhý krok genové exprese) Od RN k proteinu Milada Roštejnská Helena Klímová 1 enetický kód trn minoacyl-trn-synthetasa Translace probíhá na ribosomech Iniciace translace Elongace translace
Vzdělávací materiál. vytvořený v projektu OP VK CZ.1.07/1.5.00/34.0211. Anotace. Transformátory transformace napětí VY_32_INOVACE_F0219.
Vzdělávací materiál vytvořený v projektu OP VK Název školy: Gymnázium, Zábřeh, náměstí Osvobození 20 Číslo projektu: Název projektu: Číslo a název klíčové aktivity: CZ.1.07/1.5.00/34.0211 Zlepšení podmínek
BIOCHEMICKÉ PROCESY V LIDSKÉM
BIOCHEMICKÉ PROCESY V LIDSKÉM ORGANISMU Výukový program vytvořený v programu Microsoft PowerPoint Milada Roštejnská Helena Klímová UNIVERZITA KARLOVA V PRAZE Přírodovědecká fakulta Katedra učitelství a
Inovace studia molekulární a buněčné biologie reg. č. CZ.1.07/2.2.00/07.0354
I n v e s t i c e d o r o z v o j e v z d ě l á v á n í Inovace studia molekulární a buněčné biologie reg. č. CZ.1.07/2.2.00/07.0354 Tento projekt je spolufinancován Evropským sociálním fondem a státním
Molekulární biologie. 4. Transkripce
Molekulární biologie 4. Transkripce Transkripce (přepis) genetické informace z DNA do RNA Osnova 1. Transkripce (prokaryotického) bakteriálního genomu 2. Transkripce eukaryotického genomu 3. Posttranskripční
Inovace studia molekulární a buněčné biologie
Inovace studia molekulární a buněčné biologie Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky. MBIO1/Molekulární biologie 1 Tento projekt je spolufinancován
MOLEKULÁRNĚ BIOLOGICKÉ METODY V ENVIRONMENTÁLNÍ MIKROBIOLOGII. Martina Nováková, VŠCHT Praha
MOLEKULÁRNĚ BIOLOGICKÉ METODY V ENVIRONMENTÁLNÍ MIKROBIOLOGII Martina Nováková, VŠCHT Praha MOLEKULÁRNÍ BIOLOGIE V BIOREMEDIACÍCH enumerace FISH průtoková cytometrie klonování produktů PCR sekvenování
Principy bioorganické chemie ve vývoji antivirotik a cytostatik
Doc. RNDr. Antonína Holého, Dr.Sc., Dr.h.c. Principy bioorganické chemie ve vývoji antivirotik a cytostatik Obsah Kapitola 1 Úvod.. 1. Co jsou antimetabolity... 2. Co rozumíme chemickou obměnou metabolitu...
Inovace studia molekulární a buněčné biologie reg. č. CZ.1.07/2.2.00/
I n v e s t i c e d o r o z v o j e v z d ě l á v á n í I ti d j dělá á í Inovace studia molekulární a buněčné biologie reg. č. CZ.1.07/2.2.00/07.0354 Tento projekt je spolufinancován Evropským sociálním
6) Transkripce. Bakteriální RNA-polymeráza katalyzuje transkripci všech uvedených typů primárních transkriptů (na rozdíl od eukaryot).
6) Transkripce Transkripce bakteriálního genomu Jde o přenos genetické informace z DNA do RNA. Katalyzuje ji enzym RNA-polymeráza (transkriptáza). Další názvy:dna-řízená RNApolymeráza, DNA-řízená RNA-nukleotidyltransferáza,
Molekulárn. rní genetika
Molekulárn rní genetika Centráln lní dogma molekulárn rní biologie cesta přenosu genetické informace: DNA RNA proteiny výjimkou reverzní transkripce retrovirů: RNA DNA Chemie nukleových kyselin dusíkaté
Inovace studia molekulární a buněčné biologie
Inovace studia molekulární a buněčné biologie Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky. MBIO1/Molekulární biologie 1 Tento projekt je spolufinancován
Inovace studia molekulární a buněčné biologie
Inovace studia molekulární a buněčné biologie Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky. OBVSB/Obecná virologie Tento projekt je spolufinancován Evropským
1 Biochemické animace na internetu
1 Biochemické animace na internetu V dnešní době patří internet mezi nejužívanější zdroje informací. Velmi často lze pomocí internetu legálně stáhnout řadu již vytvořených výukových materiálů sloužících