Aplikované nanotechnologie

Rozměr: px
Začít zobrazení ze stránky:

Download "Aplikované nanotechnologie"

Transkript

1 Katedra experimentální fyziky Univerzita Palackého v Olomouci Nanotechnologie Prezentace k přednášce Aplikované nanotechnologie Nanoelektronika MEMS a NEMS Aplikované nanotechnologie

2 Omezení současné elektroniky Elektronické nanosystémy Bioinspirace Technologie nanosystémů Omezení současné elektroniky CMOS elektronika založená na využití polovodičů převážně CMOS technologie planární technologie ztrátový tepelný výkon dotování polovodičů spínací doby délka a počet vodičů prodlení, větší odpor (průřez) Aplikované nanotechnologie Nanoelektronika 2

3 Omezení současné elektroniky Elektronické nanosystémy Bioinspirace Technologie nanosystémů Škálování CMOS tranzistoru CMOS elektronika MOS tranzistor průchod proudu ovlivnitelný polem (napětím) důležitým parametrem je délka hradla L G CMOS použití PMOS a NMOS zmenšení rozměrů vede ke snížení L G vliv na I on, I off přiblížení vyprázdněných oblastí snížení potenciálové bariéry vliv tloušťky oxidové vrstvy e redukce rozměrů problémy s propojením Aplikované nanotechnologie Nanoelektronika 3

4 Omezení současné elektroniky Elektronické nanosystémy Bioinspirace Technologie nanosystémů Rychlost a ztráty na invertoru vybíjecí proud I D = C U t τ D CU DD I D 2L2 µu DD ztráty p = v 0 i D = v 0 C d v 0 d t CMOS elektronika ztráta při přechodu H-L W HL = τ d 0 p d t = 1 2 CU2 DD ztrátový výkon P = fcu 2 DD Aplikované nanotechnologie Nanoelektronika 4

5 NanoMOS Omezení současné elektroniky Elektronické nanosystémy Bioinspirace Technologie nanosystémů CMOS elektronika rozměry až L G = 16 nm problémy s vrstvou oxidu získání homogenních vlastností na čipu vznik slabých míst omezení nepříznivého vlivu drsnosti průchod dopantů z jedné oblasti do druhé tunelování proudu jiné technologie než CMOS HEMT supravodiče molekulární elektronika jiné architektury (optické, kapacitní) Aplikované nanotechnologie Nanoelektronika 5

6 Omezení současné elektroniky Elektronické nanosystémy Bioinspirace Technologie nanosystémů Adaptace pro nanosystémy velký počet velmi malých prvků problém s propojováním vodiči (adresace, programování apod.) vhodná lokální struktura prvek interaguje jen se svým okolím opakování stejného motivu velká chybovost mnoho prvků bude vadných i klasické polovodiče mají velký rozptyl parametrů jediný vadný prvek v CMOS způsobí nefunkčnost, redundance je drahá nutná robustnost citlivost na okolní podmínky projevy kvantového světa samokonfigurování, samooptimalizování, samoléčení tolerance k defektům schopnost pracovat i bez fyzické opravy Aplikované nanotechnologie Nanoelektronika 6

7 Omezení současné elektroniky Elektronické nanosystémy Bioinspirace Technologie nanosystémů Rozložené a odolné úložiště asociativní paměť nevyužívá adresu asociativní matice váha buď jedna nebo nula ve fázi učení se nastaví jedna v uzlu, kde x = 1 a y = 1 při vybavování se vstup X pronásobí s každým sloupcem vah, výsledky se sečtou a prahují volba prahu určuje věrohodnost snížení prahu toleruje chyby každá informace je uložena v celém objemu matice funguje jen pro řídké matice Aplikované nanotechnologie Nanoelektronika 7

8 Omezení současné elektroniky Elektronické nanosystémy Bioinspirace Technologie nanosystémů Rozložené a odolné úložiště asociativní paměť nevyužívá adresu asociativní matice váha buď jedna nebo nula ve fázi učení se nastaví jedna v uzlu, kde x = 1 a y = 1 při vybavování se vstup X pronásobí s každým sloupcem vah, výsledky se sečtou a prahují volba prahu určuje věrohodnost snížení prahu toleruje chyby každá informace je uložena v celém objemu matice funguje jen pro řídké matice Σ Y Σ Y Aplikované nanotechnologie Nanoelektronika 7

9 Omezení současné elektroniky Elektronické nanosystémy Bioinspirace Technologie nanosystémů Speciální hradla vícehodnotová logika (např. i ukládání do pamětí) Fredkinova hradla běžná hradla vedou ke ztrátě informace spojení s entropií a disipací energie ohřev E = k B T ln 2 H tři vstupy (u, x 1, x 2 ) a výstupy (v = u, y 1 = ux 1 + ux 2, y 2 = ux 1 + ux 2 ) použije se jen jeden žádoucí výstup, ostatní jdou do odpadu k ohřevu dojde až mimo hradlo ohřev významný u molekulárních procesů (obtížné chlazení) využití např. u = a, x 1 = b, x 2 = 0 získáme AND y 1 = ab většinová hradla výstup je roven převažující hodnotě na vstupu např. x 1 = 0, x 2 = 0, x 3 = 1 dává y = 0 zároveň univerzální hradlo: 1 1 je-li řídící signál 0, realizuje AND 0 0 je-li řidící signál 1, realizuje OR důležité pro chybující nanosystémy AND OR potřeba rozhraní s konvenční Boolovou algebrou Aplikované nanotechnologie Nanoelektronika 8

10 DNA počítače Omezení současné elektroniky Elektronické nanosystémy Bioinspirace Technologie nanosystémů Biologické koncepty probíhají chemické reakce s DNA, které řeší nějaký problém masivní paralelizace, velká kapacita paměti data jsou zakódována do posloupnosti A, C, T, G v DNA biochemické laboratorní techniky imitují aritmetické operace hustota informace (4 stavy) je 1 bit/nm 3, 1 litr asi bází DNA výpočty nejsou bezchybné je třeba vybrat správné řešení DNA musí být redundantní, přírodní většinou není aplikace: různé vyhledávací problémy, hledáme jeden řetězec v konkurenci se zrychlujícími PC nemusí uspět aplikace funkce f na neznámý fragment DNA použití PC by vyžadovalo sekvencování a digitalizaci Aplikované nanotechnologie Nanoelektronika 9

11 Omezení současné elektroniky Elektronické nanosystémy Bioinspirace Technologie nanosystémů Problém obchodního cestujícího Biologické koncepty klasický případ hledání hamiltonovské cesty známé algoritmy pro rozhodnutí, zda hamiltonovská cesta existuje nebo ne exponeciální náročnost v nejhorším případě neexistuje polynomiální algoritmus nedeterministický přístup vytvořit náhodné cesty skrz graf ponechat pouze ty cesty, které začínají v počátečním a končí v koncovém bodě má-li graf n bodů, ponechat pouze cesty s délkou n ponechat pouze ty cesty, které každým uzlem projdou alespoň (jen) jednou zůstala-li alespoň jedna cesta, problém má řešení lze potvrdit existenci cesty, ale nelze vyvrátit Aplikované nanotechnologie Nanoelektronika 10

12 Omezení současné elektroniky Elektronické nanosystémy Bioinspirace Technologie nanosystémů Realizace DNA počítače Biologické koncepty realizace: 10 merů pro kód vrcholu O i, 20-mer pro hranu O i j, syntéza řetězců, smíchání s O i a O i j, dojde ke sloučení a vytvoření DNA náhodných cest PCR s využitím O in a O out, jen tyto cesty se zesílí průchod gelem, vyříznutí pásu 140 bp ( 7 vrcholů), získá se DNA, zesílí se PCR a vyčistí vyčištění pomocí mag. separace převede se dsdna ssdna inkubuje se s O 1 s navázanými mag. kuličkami magneticky se odseparuje opakuje se postupně s O 2,... nejnáročnější část PCR zesílení a identifikace Aplikované nanotechnologie Nanoelektronika 11

13 Omezení současné elektroniky Elektronické nanosystémy Bioinspirace Technologie nanosystémů Zhodnocení DNA počítače Biologické koncepty Adleman 1994: 6 vrcholů/měst výpočet asi 7 dnů (1 den mag. separace), operací hmotnostní problém pro 200 měst množství DNA převýší hmotnost Země využití dalších algoritmů, např. neuronových sítí, genetických algoritmů atd. z 1 J lze získat operací termodynamický limit , konvenční počítač Aplikované nanotechnologie Nanoelektronika 12

14 Bioelektronika Omezení současné elektroniky Elektronické nanosystémy Bioinspirace Technologie nanosystémů Biologické koncepty inspirace biologickými systémy, wet electronics molekulární procesory: zpracování informace pomocí enzymů receptory převedou vstup na molekuly pokud se molekuly vážou s enzymy, lze aktivovat daný výstup program závisí na receptorech a read-out enzymech jako nosiče dat slouží molekuly pohybují se tepelně, velmi pomalu, rozumná rychlost paralelizace Aplikované nanotechnologie Nanoelektronika 13

15 Omezení současné elektroniky Elektronické nanosystémy Bioinspirace Technologie nanosystémů Přehled nanoelektroniky Biologické koncepty Buňková pole Tolerantní k chybám Inspirovaná biologií Kvantové počítání Architektura RSFQ 1D struktury Rezonanční tunelování Jednoelektronová zařízení Molekulární QCA Spinové tranzistory Logika Fázová změna Floating body DRAM Nano FG Jednoelektronová Insulator resistance change Molekulární Paměti Aplikované nanotechnologie Nanoelektronika 14

16 Omezení současné elektroniky Elektronické nanosystémy Bioinspirace Technologie nanosystémů Požadavky na technologii Molekulární elektronika Kvantová elektronika vztah k současné technologii krátkodobý horizont: nejde o nahrazení CMOS, ale o integraci nových technologií dlouhodobý horizont: kompletně nová technologie požadavky na vhodnou technologii schopnost masové produkce dobré odstínění vstupů a výstupů funkce obvodu nezávisí na stavu obvodů připojených k jeho výstupu možnost rozvětvení výstupu dobrá průchodnost signálu přes tisíce a více modulů velký zisk odolnost vůči malým odchylkám v prostředí či výrobě Aplikované nanotechnologie Nanoelektronika 15

17 Omezení současné elektroniky Elektronické nanosystémy Bioinspirace Technologie nanosystémů Molekulární elektronika Molekulární elektronika Kvantová elektronika Jednoelektronová zařízení realizace zařízení z jednoho nebo několika objektů o velikosti molekuly funkci mohou vykonávat: molekuly připravené chemií ve velkých množstvích, reprodukovatelně, mají definované diskrétní spektrum, mohou být bistabilní, self-assembly biomolekuly nanočástice kvantované úrovně vlivem prostorového omezení, robustnější a méně citlivé než molekuly nanotrubičky a nanodráty ideálně celou funkci vykoná jedna molekula obecně problém kontaktu mezi obvody Aplikované nanotechnologie Nanoelektronika 16

18 Omezení současné elektroniky Elektronické nanosystémy Bioinspirace Technologie nanosystémů Kontaktování molekul Molekulární elektronika Kvantová elektronika Jednoelektronová zařízení STM nebo AFM hrot SAM, ale i jediná molekula velmi univerzální proměnná vzdálenost nestabilní mechanicky řízený zlom opět lze řídit vzálenost planární nanomezera vertikální nanomezera pospojované nanočástice Aplikované nanotechnologie Nanoelektronika 17

19 Vlastnosti molekul Omezení současné elektroniky Elektronické nanosystémy Bioinspirace Technologie nanosystémů Molekulární elektronika Kvantová elektronika Jednoelektronová zařízení diskrétní energetické spektrum vazbou se hladiny: posunou dolů rozšíří na Γ = Γ L + Γ R předpoklad, že se struktura příliš nezmění nedojde k narušení identity molekuly procházející proud dán polohou LUMO a HOMO HOMO typicky 7 ev E F 5 ev pro vzácné kovy Aplikované nanotechnologie Nanoelektronika 18

20 Molekulární drát Omezení současné elektroniky Elektronické nanosystémy Bioinspirace Technologie nanosystémů Molekulární elektronika Kvantová elektronika Jednoelektronová zařízení v řetězcích s jednoduchou vazbou jsou saturované vazby izolátory vodivé mohou být násobné vazby prokládané jednoduchými, π oligomery vodivost souvisí s délkou G = G 0 e βl základem je tunelování, nezávisí na teplotě druhý mechanismus hopping vodivostní histogram teplotní aktivace I Ue φ k B T Aplikované nanotechnologie Nanoelektronika 19

21 Omezení současné elektroniky Elektronické nanosystémy Bioinspirace Technologie nanosystémů Molekulární dioda a RD logika Molekulární elektronika Kvantová elektronika Jednoelektronová zařízení nesymetrická VACH: nesymetrická molekula nebo vazba důležitý poměr proudů v obou směrech nejlepší výsledky C 16 H 33 Q 3CNQ bez řetízku C 16 H 33 nefunguje realizace diody a odporu stačí k logickým funkcím Aplikované nanotechnologie Nanoelektronika 20

22 Omezení současné elektroniky Elektronické nanosystémy Bioinspirace Technologie nanosystémů Molekulární tranzistor Molekulární elektronika Kvantová elektronika Jednoelektronová zařízení tranzistor typu FET molekula benzen-1,4-dithiolat hradlo posouvá energetické úrovně Aplikované nanotechnologie Nanoelektronika 21

23 Omezení současné elektroniky Elektronické nanosystémy Bioinspirace Technologie nanosystémů Bistabilní molekuly Molekulární elektronika Kvantová elektronika Jednoelektronová zařízení konfigurace molekul závisí na podmínkách může být více stavů zpravidla přepínání světlem aplikace v pamětích Aplikované nanotechnologie Nanoelektronika 22

24 Omezení současné elektroniky Elektronické nanosystémy Bioinspirace Technologie nanosystémů Elektromechanické zesilovače Molekulární elektronika Kvantová elektronika Jednoelektronová zařízení využití C 60 a STM aplikace 20 mv modulace na piezo vede k modulaci 100 mv na zátěžovém rezistoru Aplikované nanotechnologie Nanoelektronika 23

25 Omezení současné elektroniky Elektronické nanosystémy Bioinspirace Technologie nanosystémů Molekulární hradla Molekulární elektronika Kvantová elektronika Jednoelektronová zařízení invertor: derivát pyrazolu, vstup koncentrace H +, výstup intenzita optické emise. Změna koncentrace H + z nízké na vysokou způsobí, že intenzita emise klesne z vysoké na nízkou hodnotu. Aplikujeme-li pozitivní logiku na oba signály, získáme funkci NOT. OR: derivát antracenu, chemické vstupy (koncentrace Na + a K + ), optický výstup (intenzita emise) ekvivalentů Na + /K + dává 0,053/0,14, současně dávají 0,14. Změny v koncentraci Na + a/nebo K + z nízké na vysokou změní intenzitu emise z nízké na vysokou. Použije-li se na všechny signály pozitivní logika, dostáváme hradlo typu OR. AND: derivát antracenu, chemické vstupy (koncentrace H + a Na + ), optický výstup, pozitivní logika Aplikované nanotechnologie Nanoelektronika 24

26 Omezení současné elektroniky Elektronické nanosystémy Bioinspirace Technologie nanosystémů Molekulární přepínače Molekulární elektronika Kvantová elektronika Jednoelektronová zařízení dvoustavový přepínač oranžový (422 nm) azopyridin 8 po H + přechází na červeno-fialový (556 nm) azopyridinium po přidání zásady se vrací zpět třístavový přepínač tři vstupy UV světlo (I1), viditelné světlo (I2) a koncentrace H + dva výstupy absorbance na 401 nm (O1): vysoká pro zelenožlutý stav 6 absorbance na 563 nm (O2): vysoká pro fialový stav 7 funkce spínače: bezbarvý spiropyran 5 po ozáření UV merocyanin 7 stav 7 izomeruje zpět na 5 ve tmě nebo po ozáření viditelným světlem alternativně přechází 7 na 6 po zpracování H + barevný stav 6 přechází na 5 po ozáření viditelným světlem, 7 po odstranění H + Aplikované nanotechnologie Nanoelektronika 25

27 Omezení současné elektroniky Elektronické nanosystémy Bioinspirace Technologie nanosystémů Molekulární systémy Molekulární elektronika Kvantová elektronika Jednoelektronová zařízení současný stav pro každou funkci nová molekula teoretický návrh s pomocí modelů chemická syntéza ověření vlastností potřeba vhodné (a náhodné) volby vstupů do budoucna modulární koncepce: bloky AND, OR, NOT potřeba digitálního rozhraní mezi nimi zjednodušení návrhu Aplikované nanotechnologie Nanoelektronika 26

28 Omezení současné elektroniky Elektronické nanosystémy Bioinspirace Technologie nanosystémů Přenos informace mezi bloky Molekulární elektronika Kvantová elektronika Jednoelektronová zařízení v běžné elektronice pomocí vodičů chemická komunikace optické schéma komunikace pomocí procházejícího svazku 563 nm realizace třívstupého hradla NOR 3 kyvety s třístavovými přepínači, každý nezávislý UV vstup jedna přepnutá kyveta sníží intenzitu na 4 %, dvě na 0 zapnutí UV přepne do 7, po zhasnutí UV návrat na 5 Aplikované nanotechnologie Nanoelektronika 27

29 Omezení současné elektroniky Elektronické nanosystémy Bioinspirace Technologie nanosystémů Rozdělení nanozařízení Molekulární elektronika Kvantová elektronika Jednoelektronová zařízení Kvantová nanoelektronická zařízení Pevnolátková Molekulární Kvantové tečky Rezonanční tunelovací Jednoelektronové Hybridní mikro nano Aplikované nanotechnologie Nanoelektronika 28

30 Kvantové prvky Omezení současné elektroniky Elektronické nanosystémy Bioinspirace Technologie nanosystémů Molekulární elektronika Kvantová elektronika Jednoelektronová zařízení založené na úpravě klasických prvků jednoelektronové tranzistory pn přechod nahrazen tunelovacím přechodem nové realizace např. QCA, kvantová interference bohatší I-V charakteristiky, např. záporný odpor elektron-vlnový tranzistor kolmo ke kanálu, protékanému elektrony, je zářez efektivní délku zářezu l lze řídit napětím je-li l = Nλ/2 zkrat, elektrony dále neprojdou je-li l = (2N + 1)λ/4 volně prochází dva sériově zapojené tranzistory mohou být AND hradlo Aplikované nanotechnologie Nanoelektronika 29

31 Omezení současné elektroniky Elektronické nanosystémy Bioinspirace Technologie nanosystémů Tranzistor s děleným hradlem Molekulární elektronika Kvantová elektronika Jednoelektronová zařízení hradlo rozdělené na dvě oblasti mezi nimi kanál kvantová jáma změna napětí mění tvar jámy změna vodivosti s růstem hloubky skokově roste vodivost velikost skoku z relací neurčitosti E t h energie úměrná U a 2e každý stav pod E F dva elektrony čas transportu náboje je e/i pak G = I U = 2e2 h jiná varianta využívá interference pozor: double-gate tranzistor D G S G G G G D G S U g D G S Aplikované nanotechnologie Nanoelektronika 30

32 Omezení současné elektroniky Elektronické nanosystémy Bioinspirace Technologie nanosystémů Molekulární elektronika Kvantová elektronika Jednoelektronová zařízení Rezonanční tunelovací dioda (RTD) heterostruktury s dvojitou tunelovou bariérou vytvoří záporný dif. odpor podobně jako Esakiho dioda princip větší mezní frekvence (THz)/krátké sp. časy vliv tunelovacího času a efektivní kapacity kontaktní odpor, časové zpoždění v A kontaktu velmi malý výstupní výkon µw technologicky velmi malé parabolická struktura ekvidistantní aplikace: frekv. násobiče, oscilátory, směšovače, spínače lze i jako molekulární Aplikované nanotechnologie Nanoelektronika 31

33 Technologie RTD Omezení současné elektroniky Elektronické nanosystémy Bioinspirace Technologie nanosystémů Molekulární elektronika Kvantová elektronika Jednoelektronová zařízení konstrukce RTD teoreticky stačí 3 vrstvy, okolní vrstvy pro stabilitu jiná konstrukce 3 vrstvy VACH závisí na vzdálenosti QW Slovo 0 1 aplikace paměť pomocí 2 RTD Paměťový logická hradla uzel invertor, OR RTD díky velkému zisku dodává Bit rychlost spínání InGaAs AlAs InGaAs InAs InGaAs AlAs InGaAs Invertor OR U in U out U in1 U out U in2 dynamická logická hradla MOBILE stabilita zaručena vlastní bistabilitou necitlivost na únik náboje necitlivost na fluktuace parametrů jednotlivých prvků Aplikované nanotechnologie Nanoelektronika 32

34 Omezení současné elektroniky Elektronické nanosystémy Bioinspirace Technologie nanosystémů Další aplikace RTD Molekulární elektronika Kvantová elektronika Jednoelektronová zařízení lineární prahová hradla y(χ) = sign(χ θ), χ = N i=1 w ix i 6 RTD, 4 FET práh se zadá úpravou anody poslední RTD vícehodnotová logika diody mají různé polohy píků x 1 x 2 CLK y U U out RTD 1 x 3 x 4 Práh θ RTD 2 Aplikované nanotechnologie Nanoelektronika 33

35 Omezení současné elektroniky Elektronické nanosystémy Bioinspirace Technologie nanosystémů Molekulární elektronika Kvantová elektronika Jednoelektronová zařízení Rezonanční tunelovací tranzistory trojvývodové rezonanční tunelovací zařízení oddělení řízení od výstupu větší možnost rozvětvení vhodnější pro velké obvody realizace RTBT integrace do emitorové větve bipolárního tranzistoru Gated RTD integrace s FET, sériově/paralelně IC RTD-HEMT integrace s CMOS zvýšení rychlost a snížení disipace menší složitost obvodů: 1b komparátor CMOS: 18 zařízení RTD-CMOS: 6 zařízení UCE Aplikované nanotechnologie Nanoelektronika 34

36 Omezení současné elektroniky Elektronické nanosystémy Bioinspirace Technologie nanosystémů Problémy RT zařízení Molekulární elektronika Kvantová elektronika Jednoelektronová zařízení nevhodné materiály většinou polovodiče III V, dobře definovaná rozhraní multivrstev lepší je Si technika (Si/SiGe/Si) zvláště výhodné vlastnosti SiO 2 pro izolaci integrace s CMOS rok 2003 proudy v minimech jen snížení proudu na I v 0, architektura to musí tolerovat vliv hlavně pro nízké f, u vysokých nabíjení/vybíjení par. kapacit citlivost na fluktuace vstupních proudů a napětí klasický FET citlivý není teplotní rozmezí většinou nízké teploty, ale i pokojové extrémní citlivost na šířku bariéry problém homogenní přípravy Aplikované nanotechnologie Nanoelektronika 35

37 Omezení současné elektroniky Elektronické nanosystémy Bioinspirace Technologie nanosystémů Laser s kvantovou jámou (QWL) Molekulární elektronika Kvantová elektronika Jednoelektronová zařízení princip stejný jako u objemových laserů v kvantové jámě rekombinují díry a elektrony snížení dimenzí vede k vylepšení některých charakteristik nízký prahový proud, úzké spektrum, vysoká char. teplota DOS má v QW stejnou hodnotu pro všechny energie, což vede k vyšší emisi a snížení teplotní závislosti E F struktura: materiál s malou šířkou zakázaného pásu (např. GaAs, 10 nm) je obklopen dvěma vrstvami s větší šířkou (Ga x Al 1 x As) šířka zak. pásma souvisí s indexem lomu, rozdíl asi 10 % omezení vln, Fabry-Perotův rezonátor problémy: A B C B C B C B C B A nedokonalé omezení záření mají také lepší využití elektronů vícenásobné kvantové jámy faktor omezení je vynásoben n 2 Aplikované nanotechnologie Nanoelektronika 36

38 Omezení současné elektroniky Elektronické nanosystémy Bioinspirace Technologie nanosystémů Molekulární elektronika Kvantová elektronika Jednoelektronová zařízení Laser s kvantovou kaskádou (QCL) unipolární lasery, elektronický vodopád srovnání: běžný polovodičový laser: k emisi dochází při rekombinaci elektron díra, tj. při přechodu mezi vodivostním a valenčním pásem QCL: uvnitř jednoho pásu se vytvoří podpásová struktura struktura: Aplikované nanotechnologie Nanoelektronika 37

39 Omezení současné elektroniky Elektronické nanosystémy Bioinspirace Technologie nanosystémů Molekulární elektronika Kvantová elektronika Jednoelektronová zařízení Laser s kvantovou kaskádou (QCL) unipolární lasery, elektronický vodopád srovnání: běžný polovodičový laser: k emisi dochází při rekombinaci elektron díra, tj. při přechodu mezi vodivostním a valenčním pásem QCL: uvnitř jednoho pásu se vytvoří podpásová struktura struktura: prokládání materiálů vytvoří periodickou strukturu (kvantové jámy) vznikne periodické elektrické pole vznik podpásů (K-P model) modulace pravděpodobnosti obsazení elektronem vhodný návrh inverze populace mezi dvěma sousedními podpásy nutnost depopulační hladiny vlnová délka závisí na rozdílu energií v jámě nezávisí na materiálu, lze více λ z jednoho v každém kroku emituje jeden foton větší výkon Aplikované nanotechnologie Nanoelektronika 37

40 Omezení současné elektroniky Elektronické nanosystémy Bioinspirace Technologie nanosystémů Molekulární elektronika Kvantová elektronika Jednoelektronová zařízení Detektory infrazáření s kvantovou jámou (QWID) detektory pro IR důležité v řadě aplikaci QW jako alternativa k HgCdTe technologii princip: taková šířka a složení, aby dvě energetické úrovně byly vzdáleny o energii detekovaného fotonu horní energie je buď v oblasti kontinua, nebo přímo pod bariérovou hladinou po přiložení napětí po ozáření přejdou elektrony na vyšší hladinu a pak buď volně odejdou, nebo protunelují vnějším polem účinnost závisí na absorpci záření, proudu vytvořeném nosiči, temném proudu a šumu. Aplikované nanotechnologie Nanoelektronika 38

41 Omezení současné elektroniky Elektronické nanosystémy Bioinspirace Technologie nanosystémů Jednofotonová dioda Molekulární elektronika Kvantová elektronika Jednoelektronová zařízení rozšíření LED technologie pomocí nanoteček základem PIN dioda v neprůhledné vrstvě je malý otvor, který odkrývá jen jednu tečku po vybuzení energetických hladin dojde k vyzáření jediného fotonu ostatní zdroje vytvářejí spíše shluky fotonů sled proudových pulzů vede na sled fotonů při malých proudech emise na 1,394 ev, při vyšších proudech druhá čára 1,399 ev (biexcitony) Aplikované nanotechnologie Nanoelektronika 39

42 Omezení současné elektroniky Elektronické nanosystémy Bioinspirace Technologie nanosystémů Fotonové detektory z nanoteček Molekulární elektronika Kvantová elektronika Jednoelektronová zařízení při malé vzdálenosti či vysokém poli dochází k rezonančnímu tunelování elektrony s vyšší energií mají větší pravděpodobnost zvýšení tunelování vlivem fotogenerace elektronů vhodná volba vzdálenosti dá tranzistorovou charakteristiku velká vzdálenost bez ozáření netuneluje po ozáření proud vzroste Aplikované nanotechnologie Nanoelektronika 40

43 Omezení současné elektroniky Elektronické nanosystémy Bioinspirace Technologie nanosystémů Jednofotonový detektor Molekulární elektronika Kvantová elektronika Jednoelektronová zařízení založen na tranzistoru vrstva QD pár nm od vodivého kanálu vlastnosti kanálu jsou citlivé na změnu obsazení QD jediným elektronem foton vytvoří pár elektron díra elektron je zachycen tečkou změní se odpor kanálu a tím i proud výhody oproti: fotonásobičům: jednoduchá konstrukce, snadná výroba, robustní, nízké napětí, bez chlazení, vyšší účinnost lavinovým detektorům: menší vliv šumu počítání fotonů odstraní amplitudový šum Aplikované nanotechnologie Nanoelektronika 41

44 Omezení současné elektroniky Elektronické nanosystémy Bioinspirace Technologie nanosystémů Molekulární elektronika Kvantová elektronika Jednoelektronová zařízení Kvantové celulární automaty (QCA) základní princip (Notre Dame) výpočty nevyužívají proud elektronů, ale polohu čtyři (5) kvantové tečky, režim coulombovské blokády dva elektrony, vzájemně se odpuzují dva vzájemně odlišné stavy logické stavy základní prvky: drát, invertor, rozvětvení pokročilé obvody: RS klopný obvod vyžaduje složité časování 1 0 drát invertor rozvětvení S 1 Q R 0 majoritní Aplikované nanotechnologie Nanoelektronika 42

45 Omezení současné elektroniky Elektronické nanosystémy Bioinspirace Technologie nanosystémů Programování QCA Molekulární elektronika Kvantová elektronika Jednoelektronová zařízení programování vstupů QCA pomocí snížení bariéry snížením napětí + původní stav + snížení napětí odebrání původního vstupu + + přiložení nového vstupu zvýšení napětí problémy chyba 10 nm u buňky velké 100 nm znemožní činnost omezení teploty slabost dipolové interakce Aplikované nanotechnologie Nanoelektronika 43

46 Omezení současné elektroniky Elektronické nanosystémy Bioinspirace Technologie nanosystémů Základy SE zařízení Kvantová elektronika Jednoelektronová zařízení Supravodivá elektronika využití Coulombovy blokády průchod/udržení po jednom elektronu jednoelektronový tranzistor struktura velmi podobná MOSFETu proud protéká jen tehdy, je-li počet elektronů v ostrůvku polovinový proud osciluje v závislosti na U g Source U g Gate Island SET U g Gate Drain U d U d Source Channel Drain MOSFET příprava šikmá depozice Aplikované nanotechnologie Nanoelektronika 44

47 Omezení současné elektroniky Elektronické nanosystémy Bioinspirace Technologie nanosystémů Logické aplikace SET Kvantová elektronika Jednoelektronová zařízení Supravodivá elektronika invertor dva sériově zapojené SET vícehradlé SET jeden ostrůvek ovliňuje několik hradel I D může být v nízkém nebo vysokém stavu např. pro realizaci XOR sudý počet hradel v log. 1 I D nízké Aplikované nanotechnologie Nanoelektronika 45

48 Omezení současné elektroniky Elektronické nanosystémy Bioinspirace Technologie nanosystémů Vícehodnotové aplikace SET Kvantová elektronika Jednoelektronová zařízení Supravodivá elektronika paměťový prvek uchovává počet elektronů výstupní napětí je multistabilní jednoelektronový kvantizátor Aplikované nanotechnologie Nanoelektronika 46

49 Omezení současné elektroniky Elektronické nanosystémy Bioinspirace Technologie nanosystémů AD převodník se SET Kvantová elektronika Jednoelektronová zařízení Supravodivá elektronika Aplikované nanotechnologie Nanoelektronika 47

50 Další SE zařízení Omezení současné elektroniky Elektronické nanosystémy Bioinspirace Technologie nanosystémů Kvantová elektronika Jednoelektronová zařízení Supravodivá elektronika jednoelektronový oscilátor Ostrůvek R f SE = I e, R s R R Q obtížná praktická realizace (rezistor) standard stejnosměrného proudu Tunelový přechod (C,R) využití fázového závěsu mezi SE oscilátorem a přesným rf zdrojem při průchodu m elektronů za jednu periodu je I = mef velmi malý proud (pa) problém realizace SED požadavek E > 100k B T vyžaduje velmi malé rozměry (sub-nm pro RT) vliv náhodného náboje na pozadí Aplikované nanotechnologie Nanoelektronika 48

51 Omezení současné elektroniky Elektronické nanosystémy Bioinspirace Technologie nanosystémů Supravodivá elektronika Jednoelektronová zařízení Supravodivá elektronika Nové součástky a přístupy výhody supravodivých prvků: přenosové linky nejsou disperzní i krátké 1ps pulzy projdou bez zkreslení spínací časy až 1 ps, tj. vysoké frekvence velmi malý disipovaný výkon nevýhody: obtížnější konstrukce a miniaturizace nízké teploty stará konstrukce: přechod mezi supravodivým a normálním stavem nemá praktické využití (omezená rychlost tepelného přechodu) logická zařízení cryotron nové aplikace využívají kvantum magnetického toku celulární automaty jako QCA, místo elektronů kvanta Φ 0 Aplikované nanotechnologie Nanoelektronika 49

52 Omezení současné elektroniky Elektronické nanosystémy Bioinspirace Technologie nanosystémů Jednoelektronová zařízení Supravodivá elektronika Nové součástky a přístupy Logika s jedním kvantem magnetického toku (SFQ) využívají Josephsonova přechodu a rezistoru I B I je-li I in in = 0, prochází pouze I B < I C systém je v supravodivém stavu, logický stav 0 zvýšení I in vede k I in + I B > I C přechází do normálního stavu, logický stav 1 po odeznění I in se vrátí do stavu blízkého logické 0, úplně přejde až po vypnutí I B to omezuje rychlost spínání I I C I B U U C 0 1 U C krátký vstupní impulz nutné jediné kvantum magnetického toku t Φ 0 = h 2e = 2, Wb informace je kódována napětím Aplikované nanotechnologie Nanoelektronika 50

53 Omezení současné elektroniky Elektronické nanosystémy Bioinspirace Technologie nanosystémů Jednoelektronová zařízení Supravodivá elektronika Nové součástky a přístupy Rapid Single Flux Devices (RSFQ) využívají dynamického chování informaci kóduje přítomnost nebo nepřítomnost Φ 0 Josephsonův přechod je zkratován natolik, že nemá hysterezi využívají se dva přechody místo vodivého spojení je vložena cívka díky cívce má druhý přechod časové zpoždění zabraňuje úplnému přepnutí prvního přechodu po odeznění impulzu se vrátí do původního stavu trvale supravodivý stav velmi rychlé při vhodných rozměrech právě jedno Φ 0 zpracovávají se napěťové pulzy technologie: výchozí materiál Nb (4 6 K) nebo vysokoteplotní YBaCuO (40 77 K) izolační vrstvy z SiO nebo SiO 2 izolace Josephsonova přechodu z Al 2 O 3 taktovací frekvence až 900 GHz I in I B U U C Φ 0 t Aplikované nanotechnologie Nanoelektronika 51

54 Memristor Omezení současné elektroniky Elektronické nanosystémy Bioinspirace Technologie nanosystémů Supravodivá elektronika Nové součástky a přístupy Paměti rezistor s pamětí chybějící prvek elektrotechniky (R, L, C) doplňuje symetrii, memristance M(q) = d Φm d q = V(t) I(t) hysterezní smyčka procházející počátkem s f klesá plocha části smyčky, pro nekonečnou frekvenci přímka také memkapacitor Aplikované nanotechnologie Nanoelektronika 52

55 Memcomputing Omezení současné elektroniky Elektronické nanosystémy Bioinspirace Technologie nanosystémů Supravodivá elektronika Nové součástky a přístupy Paměti klasické architektury harvardská von Neumannova problém s přenosem dat odstranění: paměť přímo počítá inspirace předpokládánou funkcí mozku Aplikované nanotechnologie Nanoelektronika 53

56 Moderní paměti Omezení současné elektroniky Elektronické nanosystémy Bioinspirace Technologie nanosystémů Supravodivá elektronika Nové součástky a přístupy Paměti již dříve uvedené: pomocí technologií RTD, SET, RSFQ, molekulární feroelektrické paměti (FeRAM) využívají hystereze u feroelektrických materiálů magnetické paměti (MRAM) využívají magnetorezistanci, celá řada principů: anizotropní, GMR, spinová chlopeň, magnetické tunelovací přechody, Hallův jev zdokonalení současných principů integrace nanoteček, SET apod. další technologie polymerové chalkogenidové (S, Se, Te) nanotrubičkové lze i jako nanomechanické fotonické Aplikované nanotechnologie Nanoelektronika 54

57 Mikroelektromechanické systémy Úvod Aplikace MEMS Mikronosník Mikroelektromechanické systémy definice MEMS/MST miniaturní rozměry většina zařízení do stovek µm, tloušťky do desítek integrovaná konstrukce přeměna jednoho typu energie na druhý obecněji: alespoň část cesty musí být neelektrická většinou vyžadována mechanická energie pohybové členy, mikrosenzory volnost definice mech. pohybu: rms senzory technologie tvorba malých rozměrů s velkou přesností, volnost návrhu (složitější než IO) rozhraní s mikroelektronikou velká výtěžnost, nízká cena, spolehlivost Aplikované nanotechnologie MEMS a NEMS 55

58 Mikroelektromechanické systémy Úvod Aplikace MEMS Mikronosník Mikroelektromechanické systémy definice MEMS/MST miniaturní rozměry MEMS je hromadně vyrobený integrovaný mikroskopický systém, který: většina zařízení do stovek µm, tloušťky do desítek převádí integrovaná fyzikální konstrukce podněty, události a parametry na elektrické, optické přeměna a mechanické jednoho signály typu energie a opačně; na druhý vytváří obecněji: pohyb, snímá alespoň nebo část vykonává cesty musí jinou býtfunkci; neelektrická většinou zahrnuje vyžadována řízení, diagnostiku, mechanická zpracování energie signálů a sběr dat a zároveň pohybové jsou mikroskopické členy, mikrosenzory vlastnosti elektromechanických, elektronických, optických volnost definice a biologických mech. složek, pohybu: architektur rms senzory a operačních principů základem funkce, návrhu, analýzy a výroby MEMS. technologie tvorba malých rozměrů s velkou přesností, volnost návrhu (složitější než IO) rozhraní s mikroelektronikou velká výtěžnost, nízká cena, spolehlivost Aplikované nanotechnologie MEMS a NEMS 55

59 Mikroelektromechanické systémy Integrace s elektronikou Úvod Aplikace MEMS Mikronosník dvě možné cesty MEMS je na samostatném čipu snadná a levná výměna MEMS je integrován s elektronikou vyžaduje CMOS kompatibilní proces spojená technologie CMOS první CMOS poslední: vytvoření ostrůvků, MEMS, ochranná pasivace, vytvoření roviny, CMOS vzájemné propojení, odleptání pasivace vyšší počáteční náklady jediná možnost při náročných požadavcích zapouzdření složitější než u IO, každý MEMS vyžaduje něco jiného potřebujeme interakci s okolním světem pouzdro zvyšuje rozměry a může zhoršit výkonnost CMOS poslední Aplikované nanotechnologie MEMS a NEMS 56

60 Napájení MEMS Mikroelektromechanické systémy Úvod Aplikace MEMS Mikronosník zajímavé zvláště u autonomních systémů různé způsoby dodávání energie: lokální uložení elektrická (kondenzátor, supravodivé smyčky) nebo elektrochemická (baterie) energie; problém s velikostí palivové články přenos optické a elektromagnetické energie laser a fotodioda, radiofrekvenční záření a antény (RFID) získávání energie z prostředí vibrační energie např. piezoelektricky tepelná energie termoelektrické jevy jaderná energie rozpad, např. β Aplikované nanotechnologie MEMS a NEMS 57

61 Materiály Mikroelektromechanické systémy Úvod Aplikace MEMS Mikronosník dva typy materiálů objemové krystaly (bulk) dobře známé tabulkové parametry snadná charakterizace tenké vrstvy každá vrstva je unikát různé vlastnosti podle způsobu a podmínek přípravy obtížné zjišťování vlastností např. Youngův modul velmi tenká vrstva je ovlivněna podložkou odebrání od podložky ovlivní rozložení napětí Aplikované nanotechnologie MEMS a NEMS 58

62 Křemík Mikroelektromechanické systémy Úvod Aplikace MEMS Mikronosník monokrystalický Si výborné mechanické vlastnosti, E srovnatelné s ocelí; membrány apod. propracovaný technologický proces přípravy Si a struktur na něm polykrystalický Si jako strukturální materiál pro povrchové zpracování depozice pomocí LPCVD, lze dopovat (přítomnost B 2 H 6 či PH 3 ) zbytkové pnutí, žíhání, multivrstvy s tahovým a tlakovým napětím porézní Si elektrochemickým leptáním Si v HF aktivní adsorpční a obětované vrstvy oxid křemičitý SiO 2 používá se jako leptací maska i jako obětovaná vrstva krystalická forma křemen (piezoelektrický) nitrid křemíku Ni 3 Si 4 pro elektrickou izolaci, pasivaci a mechanický materiál PECVD leptatelný v HF, LPCVD chemicky odolný, tahové napětí Aplikované nanotechnologie MEMS a NEMS 59

63 Křemík a kovy Mikroelektromechanické systémy Úvod Aplikace MEMS Mikronosník polykrystalické Ge mechanické vlastnosti srovnatelné s poly-si lze tvořit Ge membrány na Si, nelze nanést na SiO 2 polykrystalický SiGe nižší teploty pro depozici než poly-si dopovatelné lze nanést na SiO 2 leptání v H 2 O 2 : poly-sige odolné, poly-ge není kovové materiály kovové filmy pro tvorbu elektrod nejčastěji Al a Au, i pro propojení kovové slitiny s tvarovou pamětí, TiNi pro magnetické aplikace, NiFe, Ni začínají se používat i složitější slitiny Aplikované nanotechnologie MEMS a NEMS 60

64 Mikroelektromechanické systémy Speciální materiály Úvod Aplikace MEMS Mikronosník polovodiče do drsných podmínek SiC polymorfní materiál, šířka zakázaného pásu od 2,3 ev Youngův modul dva- až třikrát větší než Si netaje, ale sublimuje nad C lze ho deponovat na velké množství povrchů mnoha způsoby obtížné objemové zpracování chemicky inertní leptací proces závisí na vodivosti, lze měnit implantací omezení geometrické složitosti lze vytvářet i sintrováním SiC prášku diamant velmi tvrdý, vhodný pro aplikace s otěrem samotný je izolant, lze dopovat B na typ p velmi vysoký Youngův modul vf aplikace polykrystalické nebo amorfní formy Aplikované nanotechnologie MEMS a NEMS 61

65 Mikroelektromechanické systémy Speciální materiály Úvod Aplikace MEMS Mikronosník feroelektrické materiály pro využití piezoelektrického jevu PZT (Pb(Zr x Ti 1 x )O 3 ) lze nanést na jiné vrstvy (membrány apod.) tvarování suchým leptáním s Cl 2 /CCl 4 nebo iontovým svazkem příprava naprašování, CVD, sol-gel, tlusté filmy lze tisknout polymery polyimidy pro ohebné součásti (membrány) obětované vrstvy biokompatibilita využití jako podložka pro implantovaná zařízení parylen biokompatibilní příprava CVD při RT i na předchozích strukturách Aplikované nanotechnologie MEMS a NEMS 62

66 Tlakové senzory Mikroelektromechanické systémy Úvod Aplikace MEMS Mikronosník využívají mechanizmy piezoelektrické, piezorezistivní, kapacitní a rezonanční piezorezistivní senzor čtyři piezorezistory na stranách membrány membrána jako mechanický zesilovač rozsahy Pa jednoduché na výrobu závislost na teplotě spotřeba energie omezení rozlišení: dlouhodobý drift tepelný šum rezistoru Aplikované nanotechnologie MEMS a NEMS 63

67 Mikroelektromechanické systémy Kapacitní akcelerometr Úvod Aplikace MEMS Mikronosník vertikální kapacitní akcelerometr těleso tvoří jednu elektrodu druhá je pod ním detekuje zrychlení kolmo k podložce otvory pro usnadnění leptání problémy s Brownovým pohybem Aplikované nanotechnologie MEMS a NEMS 64

68 Mikroelektromechanické systémy Kapacitní akcelerometr Úvod Aplikace MEMS Mikronosník laterální kapacitní akcelerometr hřebenová struktura elektrod jedna skupina je pevná druhá se pohybuje podél podložky Aplikované nanotechnologie MEMS a NEMS 65

69 Mikroelektromechanické systémy Úvod Aplikace MEMS Mikronosník Činnost kapacitního akcelerometru C 1 = ε S x 1 +x, C 2 = ε S x 1 x, C = C 1 C 2 = 2εS x x 2 x 2 1 z kvadratické rovnice Cx 2 2εSx Cx 2 1 = 0 určíme posunutí x pro malé x přibližně x x2 1 2εS C ideální pružina splňuje vztah F = kx z druhého Newtonova zákona je ma = kx, takže v případě reálné pružiny a = 1 m a = k m x = kx2 1 2mεS C ( k1 x + k 2 x 2 + k 3 x 3), x = x2 1 2εS C Aplikované nanotechnologie MEMS a NEMS 66

70 Mikroelektromechanické systémy Akcelometry ADXL Úvod Aplikace MEMS Mikronosník ADXL202, x 1 = 1,3 µm dvouosý akcelerometr ±2g struktura se rozkmitává, zrychlení způsobí rozvážení výstupem je střída, pro a = 0 je s = 50 % ADXL335 trojosý akcelerometr ±3g Aplikované nanotechnologie MEMS a NEMS 67

71 Gyroskopy Mikroelektromechanické systémy Úvod Aplikace MEMS Mikronosník měří úhlové zrychlení aplikace pro měření natáčení, stabilitu, virtuální realitu apod. využívají Coriolisovo zrychlení při úhlové rychlosti Ω je F C = Ω v vyžaduje dva kolmé pohyby kmitání v jednom horizontálním směru s konstantní amplitudou (elektrostatické buzení) otočení podél vertikální osy způsobí C. sílu a dojde k pohybu struktury v kolmém směru max. rychlost kmitání max. síla: rezonanční buzení posuv se projeví změnou kapacity detekce s ohledem na rezonanční frekvenci v druhém směru Aplikované nanotechnologie MEMS a NEMS 68

72 Gyroskopy Mikroelektromechanické systémy Úvod Aplikace MEMS Mikronosník duální gyroskopy sleduje rotaci ve dvou úhlech využívají rotující disk na 4 závěsech: závěsy uvádějí disk do rezonančního kmitání při pohybu má tvar vibračního módu tendenci zůstat stálý v prostoru vzniká prohyb kolmo k disku pod diskem je elektroda kapacitní detekce prohnutí Aplikované nanotechnologie MEMS a NEMS 69

73 Senzory SAW Mikroelektromechanické systémy Úvod Aplikace MEMS Mikronosník vytváření povrchových akustických vln (SAW) piezoelektrická vrstva (křemen, ZnO, LiTaO 3 ) prokládané elektrody jako generátor i senzor mechanických vln frekvence dána roztečí elektrod, MHz, až GHz šíření vln je povrchové citlivost na povrchové modifikace ovlivnění rychlosti šíření Aplikované nanotechnologie MEMS a NEMS 70

74 Aplikace SAW Mikroelektromechanické systémy Úvod Aplikace MEMS Mikronosník chemické senzory polymerní/kovová (absorbující) vrstva absorbce se projeví změnou frekvence f senzory hmotnosti senzory tlaku, mag. pole bezkontaktní senzory ID tagy Aplikované nanotechnologie MEMS a NEMS 71

75 Optické MEMS Mikroelektromechanické systémy Úvod Aplikace MEMS Mikronosník současné optické systémy velké, objemové materiály drahá výroba (kusová, přesnost) vysoká spotřeba výhody z použití MEMS Digital Micromirror Device (DMD) uvedl Texas Instruments pro využití v projektorech i jiné aplikace např. 11b optický zeslabovač lepší rozlišení, jas, kontrast než klasická obrazovka pole malých zrcadel každé zrcadlo se může nezávisle natáčet Aplikované nanotechnologie MEMS a NEMS 72

76 Mikroelektromechanické systémy Grating Light Valve Úvod Aplikace MEMS Mikronosník konkurent DMD, využívá difrakce rovné vodivé vysoce odrazivé pásky v klidovém stavu všechny pásky rovné zrcadlo napětím se některé prohnou, vzniká difrakční mřížka Aplikované nanotechnologie MEMS a NEMS 73

77 Autofokusace Mikroelektromechanické systémy Úvod Aplikace MEMS Mikronosník nutný pohyb čoček standardní řešení VCM (Voice Coil Motor) moderní řešení MEMS: tenčí, menší počet prvků menší spotřeba, rychlejší menší náklon, nižší teplota MEMS pro mobily/tablety: mikrofony, kamery, gyroskopy, akcelerometry deformovatelná optika - mechanický zoom Aplikované nanotechnologie MEMS a NEMS 74

78 Mikroelektromechanické systémy Spínání optických dat Úvod Aplikace MEMS Mikronosník komunikace přes optická vlákna vyžaduje možnost přepínání většinou pomocí opticko-elektronicko-optických přepínačů převedou světlo na elektrický signál, ten se přepíná a pak převádí zpět na optický mezikrok zavádí zpoždění, energetickou náročnost a složitost je žádoucí spínání bez přerušení optické cesty MEMS umožňuje spínání polem zrcadel vstupní svazek lze aktivací příslušného zrcadla přesměrovat do výstupního vlákna realizace až matice pohyb zrcadla je omezen dvěma zarážkami řízen digitálně není třeba přesného řízení Aplikované nanotechnologie MEMS a NEMS 75

79 Mikroelektromechanické systémy Spínání optických dat Úvod Aplikace MEMS Mikronosník realizace 2 2 vertikální torzní zrcadlo poly-si s Au vrstvou torzně uchyceno ve vertikální rámu vertikální zadní elektroda přiložení napětí přitáhne zrcadlo, světlo prochází magnetické zrcadlo změna polohy magnetickým polem spíše globální změna Aplikované nanotechnologie MEMS a NEMS 76

80 Mikroelektromechanické systémy Sofistikované přepínače Úvod Aplikace MEMS Mikronosník lze realizovat i 3D spínání 2D pole zrcadel analogové zpětnovazebné řízení zrcadel libovolný vstup lze přepnout na libovolný výstup mírně odlišné optické dráhy potřeba kvalitních zrcadel Aplikované nanotechnologie MEMS a NEMS 77

81 Mikroelektromechanické systémy Další optické MEMS Úvod Aplikace MEMS Mikronosník vlnové multiplexery světlo dopadá na mřížku difraktovaný svazek se fokuzuje na zrcátko dvě průchozí cesty dynamické spektrální ekvalizéry antireflexní přepínač vrstva nitridu tlustá 1 4 λ vzduchová mezera 3 4 λ odraznost 70 % po přiložení napětí a průhybu vrstvy klesne tloušťka mezery na λ/2 odraznost 0 % Aplikované nanotechnologie MEMS a NEMS 78

82 Mikroelektromechanické systémy Úvod Aplikace MEMS Mikronosník Výroba zvedlých ploch a využití využití mikropantu polarizační dělič svazku 1 Fresnelova difrakční čočka 2 tenký film dělí TE a TM módy (dopad pod Brewsterovým úhlem) Aplikované nanotechnologie MEMS a NEMS 79

83 Mikroelektromechanické systémy Mechanické ladění a modulace Úvod Aplikace MEMS Mikronosník mechanicky laditelný laser změna vzdálenosti volí λ změna 31 nm kolem 935 nm modulace fáze mezera < λ, dochází k penetraci evan. pole mění se efektivní n a tím fáze změna optické mřížky Aplikované nanotechnologie MEMS a NEMS 80

84 Mikroelektromechanické systémy Multiplexor a analyzátor Úvod Aplikace MEMS Mikronosník vlnový demultiplexor princip Fabry-Perot λ(v) = 2[nt + h 3V 2 L 4 /(h + t/n 2 )] integrace s detektory rozsah nm při 0 10 V spektrální analyzátor tlak záření ohýbá nosník pole nosníků, mřížka rozloží Aplikované nanotechnologie MEMS a NEMS 81

85 Mikroelektromechanické systémy Radiofrekvenční MEMS Úvod Aplikace MEMS Mikronosník aplikace pro bezdrátovou komunikaci přijímače, vysílače, opakovače současné konstrukce využívají mnoho neintegrovaných prvků MEMS umožní integraci na jediném čipu Proměnné kondenzátory proměnné kapacity pomocí PN přechodů a MOS nízké Q, omezený ladicí rozsah, nelineární MEMS kapacitory změna pomocí změny: vzdálenosti desek Al deska µm 3, mezera 1,5 µm Al má nízké ρ, proto lze dosáhnout vysoké Q na vf přiložení napětí přiblíží desku k podložce překrytí desek překrytí dielektrika Aplikované nanotechnologie MEMS a NEMS 82

86 Mikroinduktory Mikroelektromechanické systémy Úvod Aplikace MEMS Mikronosník běžné spirály na ploše desky mají nízké Q při vf vliv ztrát v podložce a rezistivity kovů při vf MEMS realizace: 3D induktor měděné pásky na izolujícím tělísku z Al 2 O 3 minimalizuje se plocha, která je blízko podložky 14 nh a Q = 16 při 1 GHz levitující induktor vytvořen z Cu, podpírán sloupky 14 nh, Q = 38 při 1,8 GHz svinutý induktor sbalí se sám vrstva pásků má vnitřní pnutí pásky se vzájemně protknou vrstva Cu pro lepší vodivost Aplikované nanotechnologie MEMS a NEMS 83

87 MEMS spínače Mikroelektromechanické systémy Úvod Aplikace MEMS Mikronosník kapacitní vodivá membrána podepřená sloupkem na spodní elektrodě izolační vrstva ve výchozím stavu je kapacita malá slabá vazba mezi elektrodami po přiložení velkého DC napětí se membrána přitáhne kapacita je velká (malá tloušťka dielektrika) silná vazba mezi elektrodami velmi malá spotřeba energie vyhovuje pro RF, nevhodné pro DC kovové jednostranně upevněný nosník s kontaktem na vnitřní části pomocná elektroda po přiložení pomocného napětí dojde k sepnutí doba odezvy 20 µs Aplikované nanotechnologie MEMS a NEMS 84

88 MEMS rezonátory Mikroelektromechanické systémy Úvod Aplikace MEMS Mikronosník hřebenové rezonátory elektricky je lze uvést do mechanické rezonance to se projeví změnou kapacity výstupní proud má frekvenci mech. rezonance páskový filtr dva rezonující pásky spojené pružinou prostřední elektroda indukuje vibrace diskový rezonátor poly-si disk podepřený ve středu elektrody kruhově obklopují disk přivede se DC napětí a AC signál proměnné pole vyvolá radiálně působící sílu při shodě frekvencí periodická změna průměru výstupní střídavý proud malé ztráty díky upevnění Aplikované nanotechnologie MEMS a NEMS 85

89 Mikronosník Mikroelektromechanické systémy Aplikace MEMS Mikronosník Vybrané měřicí aplikace nejjednodušší MEMS/NEMS tvořen jednostranně/oboustranně upnutým páskem obdélníkový průřez charakteristické vlastnosti závisí na geometrii (L, w, d) a materiálech (E) pro dynamické aplikace rezonanční frekvence f 0 činitel jakosti Q pro statické aplikace tuhost k široký rozsah velikostí senzor nebo pohybový člen základ mnoha měřicích metod (AFM) způsob přípravy vliv pnutí analýza vibračního stavu pomocí Euler-Bernoulliho rovnice L w Aplikované nanotechnologie MEMS a NEMS 86

90 Mikroelektromechanické systémy Snímání pohybu nosníku Aplikace MEMS Mikronosník Vybrané měřicí aplikace optická detekce vyžaduje vysokou odrazivost pokovení může vést k parazitním jevům rozliší až m nevyžaduje kontakty, jednoduché, lineární problém s narušením optické dráhy (průhlednost, víry, index lomu) piezorezistivní detekce Si s vhodně tvarovanou dopovanou vrstvou nebo ZnO nevhodné pro pomalé změny vyžaduje přívody kapacitní detekce parazitní vliv změny ε výhodná integrace s CMOS tunelování elektronů princip STM Aplikované nanotechnologie MEMS a NEMS 87

91 Mikroelektromechanické systémy Aplikace MEMS Mikronosník Vybrané měřicí aplikace MEMS nosník jako měřicí systém změna stavu nosníku vlivem externích podnětů statické nedojde k pohybu bez vnějšího podnětu ohnutí vlivem síly δ = FL3 3EI ohnutí vlivem zatížení δ = w 0L 4 w 0 síla na jednotku délky 8EI Stanleyho rovnice δ = 3L2 (1 ν) σ Ed 2 σ změna mechanického napětí dynamické nosník kmitá rezonanční frekvence ω = kef pro volné kmity f i = m ef β2 i 2π k 3 m Aplikované nanotechnologie MEMS a NEMS 88

92 Mikroelektromechanické systémy Určování parametrů nosníku Aplikace MEMS Mikronosník Vybrané měřicí aplikace tuhost nosníku důležité pro statické metody metody měření výpočtem: k = 3EI L 3 rozměry pomocí optického/elektronového mikroskopu složitější určení tloušťky přesný tvar hodnota E zatížení kuličkou: podle definice k, destruktivní tepelná metoda: tepelné vibrace nosníku střední kvadratická hodnota výchylky musí odpovídat tepelné rovnováze k z 2 = k B T zatížení známým nosníkem rezonanční frekvence důležité pro dynamické metody proměřením rezonanční křivky činitel kvality Q Aplikované nanotechnologie MEMS a NEMS 89

93 Vliv zatížení Mikroelektromechanické systémy Aplikace MEMS Mikronosník Vybrané měřicí aplikace pro dynamický systém zatížení hodnotou m fi m = β2 i k 2π 3 m + m pokud tvoří vrstvu dojde ke změně I a nosník je tužší fi k = β2 i k 2π 3 m + 3E adsi ads L 3 m obě změny f m,k i = β2 i 2π 3 k m + m + 3E adsi ads L 3 (m + m) Aplikované nanotechnologie MEMS a NEMS 90

94 Mikroelektromechanické systémy Aplikace MEMS Mikronosník Vybrané měřicí aplikace Statické zatížení chemické senzory bez vnějších vlivů ohnutí souvisí s gradientem mech. napětí chemické senzory: jedna strana nosníku je pasivní druhá je aktivní vzhledem k měřené sloučenině tři rozdílné modely Aplikované nanotechnologie MEMS a NEMS 91

95 Aplikace Mikroelektromechanické systémy Aplikace MEMS Mikronosník Vybrané měřicí aplikace senzor vlhkosti umělý nos Aplikované nanotechnologie MEMS a NEMS 92

96 Mikroelektromechanické systémy Citlivost dynamického režimu Aplikace MEMS Mikronosník Vybrané měřicí aplikace pro adsorbci na celé ploše nosníku platí f 0 2 f 1 2 f0 2 1 f citlivost S = lim m 0 f 0 m = 1 d f f 0 d m veličina m je normovaná k ploše povrchu pro případ nosníku: S = 1 ρ adsd ads f f 0 minimální detekovatelná hmotnost: m = 8 teoreticky až atomární rozlišení hmotnosti m m 2π 5 kk B TB f 5 0 Q Aplikované nanotechnologie MEMS a NEMS 93

97 Bioaplikace Mikroelektromechanické systémy Aplikace MEMS Mikronosník Vybrané měřicí aplikace detekce antigen antibody analýza enzymů detekce drog Aplikované nanotechnologie MEMS a NEMS 94

98 Mikroelektromechanické systémy Bioaplikace detekce v kapalině Aplikace MEMS Mikronosník Vybrané měřicí aplikace pro bioaplikace nutné kapalné prostředí klesá Q, klesá citlivost inverzní řešení dutý nosník s kanálkem analyzované prostředí proudí vnitřkem 1 detekuje se původní koncentrace 2 dochází k navázání uvnitř 3 měří se průchod částice př. určení E. coli (110 ± 30) fg Aplikované nanotechnologie MEMS a NEMS 95

99 Mikroelektromechanické systémy Měření lokálních potenciálů Mikronosník Vybrané měřicí aplikace MEMS pohybové členy volné kmity nosníku podléhají okolnímu prostředí princip rekonstrukce: pravděpodobnost polohy x je p(x) = p 0 e V(x)/k BT inverzí vztahu získáme V(x) = k B T ln p(x) p 0 1 sledujeme okamžité polohy nosníku 2 určujeme pravděpodobnosti p(x) 3 výpočtem určíme potenciál tepelné kmity s parabolickým potenciálem V n (x) = 1 2 kx2 přídavný elektrostatický potenciál větší odolnost buzení bílým šumem Aplikované nanotechnologie MEMS a NEMS 96

100 Mikroelektromechanické systémy Mikronosník Vybrané měřicí aplikace MEMS pohybové členy Měření viskozity rezonanční frekvence závisí na okolním prostředí ω = 1 ) ( 9(Kηρ) ω 20 3(Kηρ)2 K konstanta závislá na nosníku ρ hustota prostředí η viskozita u vodných roztoků se mění především viskozita sledování změny tepelných vibrací stejný efekt jako parazitní jev: vliv tlaku a viskozity vzduchu odlišná závislost poblíž povrchu Aplikované nanotechnologie MEMS a NEMS 97

101 Mikroelektromechanické systémy Nanotermogravimetrie Mikronosník Vybrané měřicí aplikace MEMS pohybové členy pracuje s množstvím ng, citlivost pg piezoelektrický nosník, zahřívání i detekce korekce na změnu teploty vzorek CuSO 4 5H 2 O Aplikované nanotechnologie MEMS a NEMS 98

102 Mikroelektromechanické systémy Měření molární susceptibility Mikronosník Vybrané měřicí aplikace MEMS pohybové členy modifikace Faradayova uspořádání, objem vzorku 100 µm 3 nejprve se známým materiálem určí intenzita a gradient pole poté se určuje poměr χ ref χ s např. χ ref χ s = msm refu s m ref M su ref U signál fotodektoru m hmotnost M molární hmotnost vyžaduje určení hmotnosti dynamicky nebo staticky Aplikované nanotechnologie MEMS a NEMS 99

103 IR detektor Mikroelektromechanické systémy Mikronosník Vybrané měřicí aplikace MEMS pohybové členy detekční mechanismus: velká absorpční plocha tenké nosníky (mech. podpora, tepelná izolace, bimetal SiN x + Al) skenování měřeným objektem nebo pole nosníků Aplikované nanotechnologie MEMS a NEMS 100

104 Mikronástroje Mikroelektromechanické systémy Vybrané měřicí aplikace MEMS pohybové členy Pokročilejší aplikace využití analogií z makrosvěta kleště problémy se silami (adheze) nůž řezání NT pomocí napětí přesnost polohy 50 nm Aplikované nanotechnologie MEMS a NEMS 101

105 Mikroelektromechanické systémy Aktuátory - další principy Vybrané měřicí aplikace MEMS pohybové členy Pokročilejší aplikace membrána zahřátí zvýší tlak plynu hydrogely dosahují velkých objemových změn při různých podnětech změn ph, koncentrace, osvětlení, teploty nevyžadují externí napájení mohou být zároveň senzory prostředí elektroaktivní polymery elektrostrikční materiály reverzibilní změna tvaru s el. polem vibrační motor vibrace motorků způsobují nárazy postupný pohyb táhla dva páry pro obousměrný pohyb Aplikované nanotechnologie MEMS a NEMS 102

106 Mikroelektromechanické systémy Výroba 3D MEMS struktur Vybrané měřicí aplikace MEMS pohybové členy Pokročilejší aplikace výroba pomocí řízení pnutí (microorigami) lze vyvářet např. nanotrubičky ve tvaru srolovaného papíru materiály GaAs/InGaAs nebo Si/SiGe Aplikované nanotechnologie MEMS a NEMS 103

107 Mikroelektromechanické systémy Aktuátor s řiditelnou tuhostí Vybrané měřicí aplikace MEMS pohybové členy Pokročilejší aplikace problém s přískokem při elektrostatickém řízení Aplikované nanotechnologie MEMS a NEMS 104

108 Mikroelektromechanické systémy Atomová kaligrafie MEMS pohybové členy Pokročilejší aplikace Mikrofluidní systémy apertura definuje místa nanášení kovu Aplikované nanotechnologie MEMS a NEMS 105

109 Mikroelektromechanické systémy MEMS pohybové členy Pokročilejší aplikace Mikrofluidní systémy Zařízení pro stimulaci sluchových orgánů dráždění sluchových orgánů a snímání odezvy Aplikované nanotechnologie MEMS a NEMS 106

110 Mikrofluidika Mikroelektromechanické systémy MEMS pohybové členy Pokročilejší aplikace Mikrofluidní systémy věda o chování tekutin na mikroúrovni a technika návrhu, simulace a výroby zařízení pro transport, doručení a práci s tekutinami aplikace: tiskové hlavy, analýza krve, biochemická detekce, chemické syntézy, sekvencování DNA malá množství rychle zreagují chemicky odolné materiály kanálky pro dopravu tekutin krystalický Si možnost anizotropního/izotropního leptání sklo pouze izotropní (není krystalické) povrchové mechanické napětí vede k anizotropii polymery pomocí formování hodně kopírují makroskopické systémy Aplikované nanotechnologie MEMS a NEMS 107

111 Ventily Mikroelektromechanické systémy MEMS pohybové členy Pokročilejší aplikace Mikrofluidní systémy pneumatické externí řízení vzduchem velmi rychlé, velké síly termopneumatické zahřívání tekutiny v dutině pomalé, ale velmi velká síla elektrostatické jednoduchá struktura, snadná výroba pr. membrána s přechodem typu S může mít velkou vzdálenost elektrod piezoelektrické nejrychlejší, ale malé pohyby obtížná integrace elektromagnetické elektroreologické změna viskozity s elektrickým polem jen vhodné kapaliny Aplikované nanotechnologie MEMS a NEMS 108

112 Pasivní ventily Mikroelektromechanické systémy MEMS pohybové členy Pokročilejší aplikace Mikrofluidní systémy funkce některých může být omezena na několik cyklů povrchové napětí dokud rozhraní neprojde přes ventil Aplikované nanotechnologie MEMS a NEMS 109

113 Čerpadla Mikroelektromechanické systémy MEMS pohybové členy Pokročilejší aplikace Mikrofluidní systémy většina pracuje na tlakování a nuceném toku membránové čerpadlo se zpětnými ventily deformace membrány zvětšuje čerpací prostor difuzerové čerpadlo geometricky definovaný směr toku mezi dvěma difuzery měnitelný čerpací prostor elektroosmotické čerpadlo dvojvrstva na rozhraní kapalina/kanál vytváří se ionty podélné elektrické pole způsobí jejich pohyb ionty strhávají ostatní tekutiny netradiční profil rychlosti téměr kolmý efektivní jen u velmi tenkých kanálků pasivní čerpadla bez externího napájení osmotické ohebná polopropustná membrána, pomalé povrchové napětí malá a velká kapka na dvou koncích kanálku Aplikované nanotechnologie MEMS a NEMS 110

114 Další zařízení Mikroelektromechanické systémy MEMS pohybové členy Pokročilejší aplikace Mikrofluidní systémy mixery makromixery používají turbulentní toky v mikrokanálech jsou toky laminární důležitá je difúze klikaté cesty pro zvýšení velikosti difúze nízké toky µl/min dávkovače periodické naplňování přesného objemu dva ventily první otevřený, druhý zavřený po naplnění se vzduchem rozdělí kapalina měřicí kanál umožní změření objemu kapaliny pomocí měřítka optofluidní zařízení např. laditelná čočka 2 nemísitelné kapaliny, hydrofobní stěny bez napětí sférický tvar napětí přitáhne ionty soli změna menisku Aplikované nanotechnologie MEMS a NEMS 111

115 Mikroelektromechanické systémy MEMS pohybové členy Pokročilejší aplikace Mikrofluidní systémy Srovnání pasivních a aktivních systémů pasivní prvky jsou řízeny tokem tekutiny nevyžadují externí napájení energie z tekutiny povrchové efekty snáze se realizují, levné nevyžadují řízení spolehlivější, pokud nemají pohyblivé části jsou specifické pro daný systém aktivní prvky vhodnější pro široký rozsah médií méně závisí na variacích výrobního procesu Aplikované nanotechnologie MEMS a NEMS 112

116 Měření kapalin Mikroelektromechanické systémy MEMS pohybové členy Pokročilejší aplikace Mikrofluidní systémy průtok jeden z nejčastějších průmyslových senzorů rychlost proudění Aplikované nanotechnologie MEMS a NEMS 113

117 Mikroelektromechanické systémy Biomimetické principy MEMS pohybové členy Pokročilejší aplikace Mikrofluidní systémy měření proudění vody/vzduchu u živých organizmů př. pavouk, cvrček velmi citlivé senzory průtok vede k deformaci Aplikované nanotechnologie MEMS a NEMS 114

118 Mikroelektromechanické systémy Digitální mikrofluidika MEMS pohybové členy Pokročilejší aplikace Mikrofluidní systémy pracuje na úrovni kapek Aplikované nanotechnologie MEMS a NEMS 115

119 NEMS Mikroelektromechanické systémy Úvod Uhlíkové NEMS Další NEMS zařízení srovnání NEMS a MEMS principy konvenčních zařízení a MEMS jsou stejné MEMS není třeba studovat na molekulární úrovni MEMS popisuje Newtonova mechanika a Maxwellova teorie NEMS popisuje kvantová fyzika MEMS jsou škálovatelné bottom up NEMS přechod k NEMS opět zvýrazňuje vliv povrchových efektů narušení zpracováním (plazma, mechanické napětí) využití nanotrubiček, fulerenů atd. Aplikované nanotechnologie MEMS a NEMS 116

120 Nanonosník Mikroelektromechanické systémy Úvod Uhlíkové NEMS Další NEMS zařízení výjimka je škálovatelný mohou se uplatňovat jiné mechanizmy ztrát velký poměr plochy povrchu k objemu nanometrové rozměry GHz rezonanční frekvence složitější detekce pohybu vysoká frekvence pohybu s malých rozsahem slabý kapacitní signál utopení v šumu výroba z Si dobře krystalicky definovaný oboustranně upevněné SiC nosníky Aplikované nanotechnologie MEMS a NEMS 117

121 Přenos náboje Mikroelektromechanické systémy Úvod Uhlíkové NEMS Další NEMS zařízení elektronové kyvadlo elektromechanický jednoelektronový nanotranzistor ostrůvek je na ohebném sloupku s polohou se mění pravděpodobnost tunelování na drain a source jiný způsob elektrostatický pohyb Aplikované nanotechnologie MEMS a NEMS 118

122 Mikroelektromechanické systémy Úvod Uhlíkové NEMS Další NEMS zařízení NEMS zařízení s nanotrubičkami CNT jako nosník náhrada klasického nosníku velká mechanická odolnost bistabilní zařízení vlivem napětí se ohne do rovnováhy je-li napětí velké U pull in, dojde k přískoku od 1 nm tunelovací proud snižuje úbytkem na R napětí stabilizace po poklesu pod U pull out odskočí senzor síly nanotrubička upevněná na dvou elektrodách síla působí přes nosník kolmo k rovině elektrod mechanická deformace změna odporu senzor tlaku NT na membráně změna odporu hradlo pro naladění trubičky Aplikované nanotechnologie MEMS a NEMS 119

123 Mikroelektromechanické systémy Úvod Uhlíkové NEMS Další NEMS zařízení Pohybová NEMS zařízení s nanotrubičkami lineární pohyb jednotlivých stěn MWNT realizace oscilátorů pohyb skoro bez tření Aplikované nanotechnologie MEMS a NEMS 120

124 Mikroelektromechanické systémy Nanopinzeta a nanorotor Úvod Uhlíkové NEMS Další NEMS zařízení nanopinzeta dvě CNT na společném hrotu napětí se přiblíží nanorotor MWNT s upevněnou destičkou rotace vnější části vůči upevněné vnitřní Aplikované nanotechnologie MEMS a NEMS 121

125 Mikroelektromechanické systémy Další NEMS zařízení Uhlíkové NEMS Další NEMS zařízení Nanofluidika which-path electron interferometer Aharonov-Bohmův kroužek s integrovanou QD nad QD kmitá nosník elektrické pole mezi QD a nosníkem přítomnost elektronu ovlivní vibrace dochází k modulaci interferenčních proužků Casimirův oscilátor demonstruje vliv Casimirovy síly možnost získat energii z kvantového vakua? Aplikované nanotechnologie MEMS a NEMS 122

126 NEMS spínače Mikroelektromechanické systémy Uhlíkové NEMS Další NEMS zařízení Nanofluidika spínání pomocí nosníku, nanorelé problémy s adhezí Aplikované nanotechnologie MEMS a NEMS 123

127 NEMS paměti Mikroelektromechanické systémy Uhlíkové NEMS Další NEMS zařízení Nanofluidika s neukotveným prvkem crossbar nanodráty, nanotrubičky Aplikované nanotechnologie MEMS a NEMS 124

128 Mikroelektromechanické systémy Teoreticky navržená zařízení Uhlíkové NEMS Další NEMS zařízení Nanofluidika Archimédův šroub z DWCNT proudění otáčení vznik proudu (cca 6 e /360 ) závisí na chiralitě, otáčí se vnější slupka kvantová čerpadla časově závislé rozptylovače elektronů pohybové prvky na bázi rotaxanů pohybový prvek z grafenoxidu Aplikované nanotechnologie MEMS a NEMS 125

129 Mikroelektromechanické systémy NEMS senzor vodíku Uhlíkové NEMS Další NEMS zařízení Nanofluidika využívá pronikání vodíku do paladia dojde k prodloužení elektrod a sepnutí matice sensozrů pro detekci ostrý přechod Aplikované nanotechnologie MEMS a NEMS 126

130 Mikroelektromechanické systémy Uhlíkové NEMS Další NEMS zařízení Nanofluidika Time-of-flight hmotnostní spektroskopie nanomembránový detektor Aplikované nanotechnologie MEMS a NEMS 127

131 NEMS hradla Mikroelektromechanické systémy Uhlíkové NEMS Další NEMS zařízení Nanofluidika CMOS logika nahrazená spínači jako zajímavost: kmitavé hradlo XOR Aplikované nanotechnologie MEMS a NEMS 128

132 Mikroelektromechanické systémy Fredkinovo NEMS hradlo Uhlíkové NEMS Další NEMS zařízení Nanofluidika Aplikované nanotechnologie MEMS a NEMS 129

133 Nanofluidika Mikroelektromechanické systémy Uhlíkové NEMS Další NEMS zařízení Nanofluidika chování kapalin blízko povrchu a při obtékání nanotěles strukturování vody kvazipevná látka síly normálové i tečné vliv drsnosti hodně drsný hydrofilní materiál je hydrofobní vliv povrchových jevů záporný tlak chování kapalin v nanokanálech (NT) superhydrofobní materiály Aplikované nanotechnologie MEMS a NEMS 130

Nanoelektronika a MEMS/NEMS Úvod. Nanoelektronika

Nanoelektronika a MEMS/NEMS Úvod. Nanoelektronika Úvod Nanoelektronika plynulý přechod z mikroelektroniky snaha o vyšší výpočetní výkon zmenšování + větší počet tranzistorů zvyšování frekvence nové zdroje energie nové směry: nositelná elektronika integrace

Více

Aplikované nanotechnologie

Aplikované nanotechnologie Katedra experimentální fyziky Univerzita Palackého v Olomouci Nanotechnologie Prezentace k přednášce Aplikované nanotechnologie Aplikace základních nanosystémů Nanoelektronika MEMS, NEMS a molekulární

Více

9. ČIDLA A PŘEVODNÍKY

9. ČIDLA A PŘEVODNÍKY Úvod do metrologie - 49-9. ČIDLA A PŘEVODNÍKY (V.LYSENKO) Čidlo (senzor, detektor, receptor) je em jedné fyzikální veličiny na jinou fyzikální veličinu. Snímač (senzor + obvod pro zpracování ) je to člen

Více

Aplikované nanotechnologie II

Aplikované nanotechnologie II Katedra experimentální fyziky Univerzita Palackého v Olomouci Aplikovaná fyzika Prezentace k přednášce Aplikované nanotechnologie Nanoelektronika MEMS, NEMS a molekulární stroje Nanoměření II Aplikované

Více

I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í. výstup

I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í. výstup ELEKTONIKA I N V E S T I C E D O O Z V O J E V Z D Ě L Á V Á N Í 1. Usměrňování a vyhlazování střídavého a. jednocestné usměrnění Do obvodu střídavého proudu sériově připojíme diodu. Prochází jí proud

Více

elektrické filtry Jiří Petržela filtry založené na jiných fyzikálních principech

elektrické filtry Jiří Petržela filtry založené na jiných fyzikálních principech Jiří Petržela filtry založené na jiných fyzikálních principech piezoelektrický jev při mechanickém namáhání krystalu ve správném směru na něm vzniká elektrické napětí po přiložení elektrického napětí se

Více

Měření na unipolárním tranzistoru

Měření na unipolárním tranzistoru Měření na unipolárním tranzistoru Teoretický rozbor: Unipolární tranzistor je polovodičová součástka skládající se z polovodičů tpu N a P. Oproti bipolárnímu tranzistoru má jednu základní výhodu. Bipolární

Více

Skenovací tunelová mikroskopie a mikroskopie atomárních sil

Skenovací tunelová mikroskopie a mikroskopie atomárních sil Skenovací tunelová mikroskopie a mikroskopie atomárních sil M. Vůjtek Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky v rámci projektu Vzdělávání výzkumných

Více

ELEKTRONIKA. Maturitní témata 2018/ L/01 POČÍTAČOVÉ A ZABEZPEČOVACÍ SYSTÉMY

ELEKTRONIKA. Maturitní témata 2018/ L/01 POČÍTAČOVÉ A ZABEZPEČOVACÍ SYSTÉMY ELEKTRONIKA Maturitní témata 2018/2019 26-41-L/01 POČÍTAČOVÉ A ZABEZPEČOVACÍ SYSTÉMY Řešení lineárních obvodů - vysvětlete postup řešení el.obvodu ohmovou metodou (postupným zjednodušováním) a vyřešte

Více

FYZIKA II. Petr Praus 6. Přednáška elektrický proud

FYZIKA II. Petr Praus 6. Přednáška elektrický proud FYZIKA II Petr Praus 6. Přednáška elektrický proud Osnova přednášky Elektrický proud proudová hustota Elektrický odpor a Ohmův zákon měrná vodivost driftová rychlost Pohyblivost nosičů náboje teplotní

Více

Oscilátory. Oscilátory s pevným kmitočtem Oscilátory s proměnným kmitočtem (laditelné)

Oscilátory. Oscilátory s pevným kmitočtem Oscilátory s proměnným kmitočtem (laditelné) Oscilátory Oscilátory Oscilátory s pevným kmitočtem Oscilátory s proměnným kmitočtem (laditelné) mechanicky laditelní elektricky laditelné VCO (Voltage Control Oscillator) Typy oscilátorů RC většinou neharmonické

Více

Profilová část maturitní zkoušky 2015/2016

Profilová část maturitní zkoušky 2015/2016 Střední průmyslová škola, Přerov, Havlíčkova 2 751 52 Přerov Profilová část maturitní zkoušky 2015/2016 TEMATICKÉ OKRUHY A HODNOTÍCÍ KRITÉRIA Studijní obor: 26-41-M/01 Elektrotechnika Zaměření: počítačové

Více

Tel-30 Nabíjení kapacitoru konstantním proudem [V(C1), I(C1)] Start: Transient Tranzientní analýza ukazuje, jaké napětí vytvoří proud 5mA za 4ms na ka

Tel-30 Nabíjení kapacitoru konstantním proudem [V(C1), I(C1)] Start: Transient Tranzientní analýza ukazuje, jaké napětí vytvoří proud 5mA za 4ms na ka Tel-10 Suma proudů v uzlu (1. Kirchhofův zákon) Posuvným ovladačem ohmické hodnoty rezistoru se mění proud v uzlu, suma platí pro každou hodnotu rezistoru. Tel-20 Suma napětí podél smyčky (2. Kirchhofův

Více

3. Vlastnosti skla za normální teploty (mechanické, tepelné, optické, chemické, elektrické).

3. Vlastnosti skla za normální teploty (mechanické, tepelné, optické, chemické, elektrické). PŘEDMĚTY KE STÁTNÍM ZÁVĚREČNÝM ZKOUŠKÁM V BAKALÁŘSKÉM STUDIU SP: CHEMIE A TECHNOLOGIE MATERIÁLŮ SO: MATERIÁLOVÉ INŽENÝRSTVÍ POVINNÝ PŘEDMĚT: NAUKA O MATERIÁLECH Ing. Alena Macháčková, CSc. 1. Souvislost

Více

ELT1 - Přednáška č. 6

ELT1 - Přednáška č. 6 ELT1 - Přednáška č. 6 Elektrotechnická terminologie a odborné výrazy, měřicí jednotky a činitelé, které je ovlivňují. Rozdíl potenciálů, elektromotorická síla, napětí, el. napětí, proud, odpor, vodivost,

Více

Mikrosenzory a mikroelektromechanické systémy. Odporové senzory

Mikrosenzory a mikroelektromechanické systémy. Odporové senzory Mikrosenzory a mikroelektromechanické systémy Odporové senzory Obecné vlastnosti odporových senzorů Odporové senzory kontaktové Měřící potenciometry Odporové tenzometry Odporové senzory teploty Odporové

Více

FET Field Effect Transistor unipolární tranzistory - aktivní součástky unipolární využívají k činnosti vždy jen jeden druh majoritních nosičů

FET Field Effect Transistor unipolární tranzistory - aktivní součástky unipolární využívají k činnosti vždy jen jeden druh majoritních nosičů FET Field Effect Transistor unipolární tranzistory - aktivní součástky unipolární využívají k činnosti vždy jen jeden druh majoritních nosičů (elektrony nebo díry) pracují s kanálem jednoho typu vodivosti

Více

Polovodičové prvky. V současných počítačových systémech jsou logické obvody realizovány polovodičovými prvky.

Polovodičové prvky. V současných počítačových systémech jsou logické obvody realizovány polovodičovými prvky. Polovodičové prvky V současných počítačových systémech jsou logické obvody realizovány polovodičovými prvky. Základem polovodičových prvků je obvykle čtyřmocný (obsahuje 4 valenční elektrony) krystal křemíku

Více

Profilová část maturitní zkoušky 2016/2017

Profilová část maturitní zkoušky 2016/2017 Tematické okruhy a hodnotící kritéria Střední průmyslová škola, 1/8 ELEKTRONICKÁ ZAŘÍZENÍ Přerov, Havlíčkova 2 751 52 Přerov Profilová část maturitní zkoušky 2016/2017 TEMATICKÉ OKRUHY A HODNOTÍCÍ KRITÉRIA

Více

1. Kvantové jámy. Tabulka 1: Efektivní hmotnosti nosičů v krystalech GaAs, AlAs, v jednotkách hmotnosti volného elektronu m o.

1. Kvantové jámy. Tabulka 1: Efektivní hmotnosti nosičů v krystalech GaAs, AlAs, v jednotkách hmotnosti volného elektronu m o. . Kvantové jámy Pokročilé metody růstu krystalů po jednotlivých vrstvách (jako MBE) dovolují vytvořit si v krystalu libovolný potenciál. Jeden z hojně používaných materiálů je: GaAs, AlAs a jejich ternární

Více

Optoelektronické senzory. Optron Optický senzor Detektor spektrální koherence Senzory se CCD prvky Foveon systém

Optoelektronické senzory. Optron Optický senzor Detektor spektrální koherence Senzory se CCD prvky Foveon systém Optoelektronické senzory Optron Optický senzor Detektor spektrální koherence Senzory se CCD prvky Foveon systém Optron obsahuje generátor světla (LED) a detektor optické prostředí změna prostředí změna

Více

Modulace vlnoplochy. SLM vytváří prostorově modulovaný koherentní optický signál

Modulace vlnoplochy. SLM vytváří prostorově modulovaný koherentní optický signál OPT/OZI L06 Modulace vlnoplochy prostorové modulátory světla (SLM) SLM vytváří prostorově modulovaný koherentní optický signál řízení elektronicky adresovaný SLM opticky adresovaný SLM technologie fotografická

Více

Nízkofrekvenční (do 1 MHz) Vysokofrekvenční (stovky MHz až jednotky GHz) Generátory cm vln (až desítky GHz)

Nízkofrekvenční (do 1 MHz) Vysokofrekvenční (stovky MHz až jednotky GHz) Generátory cm vln (až desítky GHz) Provazník oscilatory.docx Oscilátory Oscilátory dělíme podle několika hledisek (uvedené třídění není zcela jednotné - bylo použito vžitých názvů, které vznikaly v různém období vývoje a za zcela odlišných

Více

Polovodičové diody Elektronické součástky pro FAV (KET/ESCA)

Polovodičové diody Elektronické součástky pro FAV (KET/ESCA) Polovodičové diody varikap, usměrňovací dioda, Zenerova dioda, lavinová dioda, tunelová dioda, průrazy diod Polovodičové diody (diode) součástky s 1 PN přechodem varikap usměrňovací dioda Zenerova dioda

Více

FYZIKA II. Petr Praus 9. Přednáška Elektromagnetická indukce (pokračování) Elektromagnetické kmity a střídavé proudy

FYZIKA II. Petr Praus 9. Přednáška Elektromagnetická indukce (pokračování) Elektromagnetické kmity a střídavé proudy FYZIKA II Petr Praus 9. Přednáška Elektromagnetická indukce (pokračování) Elektromagnetické kmity a střídavé proudy Osnova přednášky Energie magnetického pole v cívce Vzájemná indukčnost Kvazistacionární

Více

ELEKTRICKÝ PROUD ELEKTRICKÝ ODPOR (REZISTANCE) REZISTIVITA

ELEKTRICKÝ PROUD ELEKTRICKÝ ODPOR (REZISTANCE) REZISTIVITA ELEKTRICKÝ PROD ELEKTRICKÝ ODPOR (REZISTANCE) REZISTIVITA 1 ELEKTRICKÝ PROD Jevem Elektrický proud nazveme usměrněný pohyb elektrických nábojů. Např.:- proud vodivostních elektronů v kovech - pohyb nabitých

Více

λ hc Optoelektronické součástky Fotorezistor, Laserová dioda

λ hc Optoelektronické součástky Fotorezistor, Laserová dioda Optoelektronické součástky Fotorezistor, Laserová dioda Úvod Optoelektronické součástky jsou založeny na interakci optického záření s elektricky nabitými částicemi v polovodičích. Vztah mezi energií fotonů

Více

Mikro a nanotribologie materiály, výroba a pohon MEMS

Mikro a nanotribologie materiály, výroba a pohon MEMS Tribologie Mikro a nanotribologie materiály, výroba a pohon MEMS vypracoval: Tomáš Píza Obsah - Co je to MEMS - Materiály pro MEMS - Výroba MEMS - Pohon MEMS Co to je MEMS - zkratka z anglických slov Micro-Electro-Mechanical-Systems

Více

Optoelektronika. elektro-optické převodníky - LED, laserové diody, LCD. Elektronické součástky pro FAV (KET/ESCA)

Optoelektronika. elektro-optické převodníky - LED, laserové diody, LCD. Elektronické součástky pro FAV (KET/ESCA) Optoelektronika elektro-optické převodníky - LED, laserové diody, LCD Elektro-optické převodníky žárovka - nejzákladnější EO převodník nevhodné pro optiku široké spektrum vlnových délek vhodnost pro EO

Více

SNÍMAČE PRO MĚŘENÍ TEPLOTY

SNÍMAČE PRO MĚŘENÍ TEPLOTY SNÍMAČE PRO MĚŘENÍ TEPLOTY 10.1. Kontaktní snímače teploty 10.2. Bezkontaktní snímače teploty 10.1. KONTAKTNÍ SNÍMAČE TEPLOTY Experimentální metody přednáška 10 snímač je připevněn na měřený objekt 10.1.1.

Více

ROZDĚLENÍ SNÍMAČŮ, POŽADAVKY KLADENÉ NA SNÍMAČE, VLASTNOSTI SNÍMAČŮ

ROZDĚLENÍ SNÍMAČŮ, POŽADAVKY KLADENÉ NA SNÍMAČE, VLASTNOSTI SNÍMAČŮ ROZDĚLENÍ SNÍMAČŮ, POŽADAVKY KLADENÉ NA SNÍMAČE, VLASTNOSTI SNÍMAČŮ (1.1, 1.2 a 1.3) Ing. Pavel VYLEGALA 2014 Rozdělení snímačů Snímače se dají rozdělit podle mnoha hledisek. Základním rozdělení: Snímače

Více

Mějme obvod podle obrázku. Jaké napětí bude v bodech 1, 2, 3 (proti zemní svorce)? Jaké mezi uzly 1 a 2? Jaké mezi uzly 2 a 3?

Mějme obvod podle obrázku. Jaké napětí bude v bodech 1, 2, 3 (proti zemní svorce)? Jaké mezi uzly 1 a 2? Jaké mezi uzly 2 a 3? TÉMA 1 a 2 V jakých jednotkách se vyjadřuje proud uveďte název a značku jednotky V jakých jednotkách se vyjadřuje napětí uveďte název a značku jednotky V jakých jednotkách se vyjadřuje odpor uveďte název

Více

Mikroskopie rastrující sondy

Mikroskopie rastrující sondy Mikroskopie rastrující sondy Metody charakterizace nanomateriálů I RNDr. Věra Vodičková, PhD. Metody mikroskopie rastrující sondy SPM (scanning( probe Microscopy) Metody mikroskopie rastrující sondy soubor

Více

Jiří Oswald. Fyzikální ústav AV ČR v.v.i.

Jiří Oswald. Fyzikální ústav AV ČR v.v.i. Jiří Oswald Fyzikální ústav AV ČR v.v.i. I. Úvod Polovodiče Zákládní pojmy Kvantově-rozměrový jev II. Luminiscence Si nanokrystalů III. Luminiscence polovodičových nanostruktur A III B V IV. Aplikace Pásová

Více

Vibrace atomů v mřížce, tepelná kapacita pevných látek

Vibrace atomů v mřížce, tepelná kapacita pevných látek Vibrace atomů v mřížce, tepelná kapacita pevných látek Atomy vázané v mřížce nejsou v klidu. Míru jejich pohybu vyjadřuje podobně jako u plynů a kapalin teplota. - Elastické vlny v kontinuu neatomární

Více

Zdroje optického záření

Zdroje optického záření Metody optické spektroskopie v biofyzice Zdroje optického záření / 1 Zdroje optického záření tepelné výbojky polovodičové lasery synchrotronové záření Obvykle se charakterizují zářivostí (zářivý výkon

Více

Úvod do moderní fyziky. lekce 9 fyzika pevných látek (vedení elektřiny v pevných látkách)

Úvod do moderní fyziky. lekce 9 fyzika pevných látek (vedení elektřiny v pevných látkách) Úvod do moderní fyziky lekce 9 fyzika pevných látek (vedení elektřiny v pevných látkách) krystalické pevné látky pevné látky, jejichž atomy jsou uspořádány do pravidelné 3D struktury zvané mřížka, každý

Více

SOUČÁSTKY ELEKTRONIKY

SOUČÁSTKY ELEKTRONIKY SOUČÁSTKY ELEKTRONIKY Učební obor: ELEKTRO bakalářské studium Počet hodin: 90 z toho 30 hodin v 1. semestru 60 hodin ve 2. semestru Předmět je zakončen zápočtem v 1. semestru a zápočtem a zkouškou ve 2.

Více

Osnova přípravného studia k jednotlivé zkoušce Předmět - Elektrotechnika

Osnova přípravného studia k jednotlivé zkoušce Předmět - Elektrotechnika Osnova přípravného studia k jednotlivé zkoušce Předmět - Elektrotechnika Garant přípravného studia: Střední průmyslová škola elektrotechnická a ZDVPP, spol. s r. o. IČ: 25115138 Učební osnova: Základní

Více

Mikrosenzory a mikroelektromechanické systémy

Mikrosenzory a mikroelektromechanické systémy Mikrosenzory a mikroelektromechanické systémy Ing. Jaromír Hubálek, Ph.D. Ústav mikroelektroniky U7/104 Tel. 54114 6163 hubalek@feec.vutbr.cz http://www.umel.feec.vutbr.cz/~hubalek Obsah Úvod do senzorové

Více

Fotoelektrické snímače

Fotoelektrické snímače Fotoelektrické snímače Úloha je zaměřena na měření světelných charakteristik fotoelektrických prvků (součástek). Pro měření se využívají fotorezistor, fototranzistor a fotodioda. Zadání 1. Seznamte se

Více

Kvantová informatika pro komunikace v budoucnosti

Kvantová informatika pro komunikace v budoucnosti Kvantová informatika pro komunikace v budoucnosti Antonín Černoch Regionální centrum pokročilých technologií a materiálů Společná laboratoř optiky University Palackého a Fyzikálního ústavu Akademie věd

Více

Polovodičové senzory. Polovodičové materiály Teplotní závislost polovodiče Piezoodporový jev Fotonové jevy Radiační jevy Magnetoelektrické jevy

Polovodičové senzory. Polovodičové materiály Teplotní závislost polovodiče Piezoodporový jev Fotonové jevy Radiační jevy Magnetoelektrické jevy Polovodičové senzory Polovodičové materiály Teplotní závislost polovodiče Piezoodporový jev Fotonové jevy Radiační jevy Magnetoelektrické jevy Polovodičové materiály elementární polovodiče Elementární

Více

Laserová technika prosince Katedra fyzikální elektroniky.

Laserová technika prosince Katedra fyzikální elektroniky. Laserová technika 1 Aktivní prostředí Šíření rezonančního záření dvouhladinovým prostředím Jan Šulc Katedra fyzikální elektroniky České vysoké učení technické jan.sulc@fjfi.cvut.cz 22. prosince 2016 Program

Více

Měřicí řetězec. měřicí zesilovač. převod na napětí a přizpůsobení rozsahu převodníku

Měřicí řetězec. měřicí zesilovač. převod na napětí a přizpůsobení rozsahu převodníku Měřicí řetězec fyzikální veličina snímač měřicí zesilovač A/D převodník počítač převod fyz. veličiny na elektrickou (odpor, proud, napětí, kmitočet...) převod na napětí a přizpůsobení rozsahu převodníku

Více

Fakulta biomedic ınsk eho inˇzen yrstv ı Teoretick a elektrotechnika Prof. Ing. Jan Uhl ıˇr, CSc. L eto 2017

Fakulta biomedic ınsk eho inˇzen yrstv ı Teoretick a elektrotechnika Prof. Ing. Jan Uhl ıˇr, CSc. L eto 2017 Fakulta biomedicínského inženýrství Teoretická elektrotechnika Prof. Ing. Jan Uhlíř, CSc. Léto 2017 8. Nelineární obvody nesetrvačné dvojpóly 1 Obvodové veličiny nelineárního dvojpólu 3. 0 i 1 i 1 1.5

Více

Fotonické nanostruktury (nanofotonika)

Fotonické nanostruktury (nanofotonika) Základy nanotechnologií KEF/ZANAN Fotonické nanostruktury (nanofotonika) Jan Soubusta 4.11. 2015 Obsah 1. ÚVOD 2. POHLED DO MIKROSVĚTA 3. OD ELEKTRONIKY K FOTONICE 4. FYZIKA PRO NANOFOTONIKU 5. PERIODICKÉ

Více

VY_32_INOVACE_ENI_3.ME_16_Unipolární tranzistor Střední odborná škola a Střední odborné učiliště, Dubno Ing. Miroslav Krýdl

VY_32_INOVACE_ENI_3.ME_16_Unipolární tranzistor Střední odborná škola a Střední odborné učiliště, Dubno Ing. Miroslav Krýdl Číslo projektu CZ.1.07/1.5.00/34.0581 Číslo materiálu VY_32_INOVACE_ENI_3.ME_16_Unipolární tranzistor Název školy Střední odborná škola a Střední odborné učiliště, Dubno Autor Ing. Miroslav Krýdl Tematická

Více

Fotoelektronová spektroskopie Instrumentace. Katedra materiálů TU Liberec

Fotoelektronová spektroskopie Instrumentace. Katedra materiálů TU Liberec Fotoelektronová spektroskopie Instrumentace RNDr. Věra V Vodičkov ková,, PhD. Katedra materiálů TU Liberec Obecné schéma metody Dopad rtg záření emitovaného ze zdroje na vzorek průnik fotonů několik µm

Více

teorie elektronických obvodů Jiří Petržela analýza šumu v elektronických obvodech

teorie elektronických obvodů Jiří Petržela analýza šumu v elektronických obvodech Jiří Petržela co je to šum? je to náhodný signál narušující zpracování a přenos užitečného signálu je to signál náhodné okamžité amplitudy s časově neměnnými statistickými vlastnostmi kde se vyskytuje?

Více

Manuální, technická a elektrozručnost

Manuální, technická a elektrozručnost Manuální, technická a elektrozručnost Realizace praktických úloh zaměřených na dovednosti v oblastech: Vybavení elektrolaboratoře Schématické značky, základy pájení Fyzikální principy činnosti základních

Více

Charakteristiky optoelektronických součástek

Charakteristiky optoelektronických součástek FYZIKÁLNÍ PRAKTIKUM Ústav fyziky FEKT VUT BRNO Spolupracoval Jan Floryček Jméno a příjmení Jakub Dvořák Ročník 1 Měřeno dne Předn.sk.-Obor BIA 27.2.2007 Stud.skup. 13 Odevzdáno dne Příprava Opravy Učitel

Více

VY_32_INOVACE_ENI_3.ME_15_Bipolární tranzistor Střední odborná škola a Střední odborné učiliště, Dubno Ing. Miroslav Krýdl

VY_32_INOVACE_ENI_3.ME_15_Bipolární tranzistor Střední odborná škola a Střední odborné učiliště, Dubno Ing. Miroslav Krýdl Číslo projektu CZ.1.07/1.5.00/34.0581 Číslo materiálu VY_32_INOVACE_ENI_3.ME_15_Bipolární tranzistor Název školy Střední odborná škola a Střední odborné učiliště, Dubno Autor Ing. Miroslav Krýdl Tematická

Více

Od kvantové mechaniky k chemii

Od kvantové mechaniky k chemii Od kvantové mechaniky k chemii Jan Řezáč UOCHB AV ČR 19. září 2017 Jan Řezáč (UOCHB AV ČR) Od kvantové mechaniky k chemii 19. září 2017 1 / 33 Úvod Vztah mezi molekulovou strukturou a makroskopickými vlastnostmi

Více

1 U Zapište hodnotu časové konstanty derivačního obvodu. Vyznačte měřítko na časové ose v uvedeném grafu.

1 U Zapište hodnotu časové konstanty derivačního obvodu. Vyznačte měřítko na časové ose v uvedeném grafu. v v 1. V jakých jednotkách se vyjadřuje proud uveďte název a značku jednotky. 2. V jakých jednotkách se vyjadřuje indukčnost uveďte název a značku jednotky. 3. V jakých jednotkách se vyjadřuje kmitočet

Více

Navrhované a skutečné rozměry. Návrhová pravidla pro návrh topologie (layoutu) čipu. Základní parametry návrhových pravidel

Navrhované a skutečné rozměry. Návrhová pravidla pro návrh topologie (layoutu) čipu. Základní parametry návrhových pravidel Navrhované a skutečné rozměry Změna skutečných rozměrů oproti navrhovaným Al spoje Kontaktní otvor v SiO Návrhová pravidla pro návrh topologie (layoutu) čipu Jiří Jakovenko Difuzní oblast N+ Vzájemné sesazení

Více

Senzory ionizujícího záření

Senzory ionizujícího záření Senzory ionizujícího záření Senzory ionizujícího záření dozimetrie α = β = He e 2+, e + γ, n X... elmag aktivita [Bq] (Becquerel) A = A e 0 λt λ...rozpadová konstanta dávka [Gy] (Gray) = [J/kg] A = 0.5

Více

Memristor. Úvod. Základní struktura mertistorů

Memristor. Úvod. Základní struktura mertistorů Memristor Úvod Vědcům společnosti HP (Hewlett-Packard) se skoro náhodou povedlo nanotechnologií prakticky realizovat nový typ součástky s vlastnostmi již dříve předvídaného prvku pojmenovaného jako memristor

Více

Netradiční světelné zdroje

Netradiční světelné zdroje Ing. Jiří Kubín, Ph.D. TECHNICKÁ UNIVERZITA V LIBERCI Fakulta mechatroniky, informatiky a mezioborových studií Tento materiál vznikl v rámci projektu ESF CZ.1.07/2.2.00/07.0247, který je spolufinancován

Více

Laserová technika prosince Katedra fyzikální elektroniky.

Laserová technika prosince Katedra fyzikální elektroniky. Laserová technika 1 Aktivní prostředí Šíření optických impulsů v aktivním prostředí Jan Šulc Katedra fyzikální elektroniky České vysoké učení technické jan.sulc@fjfi.cvut.cz. prosince 016 Program přednášek

Více

ELEKTRONICKÉ PRVKY TECHNOLOGIE VÝROBY POLOVODIČOVÝCH PRVKŮ

ELEKTRONICKÉ PRVKY TECHNOLOGIE VÝROBY POLOVODIČOVÝCH PRVKŮ ELEKTRONICKÉ PRVKY TECHNOLOGIE VÝROBY POLOVODIČOVÝCH PRVKŮ Polovodič - prvek IV. skupiny, v elektronice nejčastěji křemík Si, vykazuje vysokou čistotu (10-10 ) a bezchybnou strukturu atomové mřížky v monokrystalu.

Více

Obvodové prvky a jejich

Obvodové prvky a jejich Obvodové prvky a jejich parametry Ing. Martin Černík, Ph.D. Projekt ESF CZ.1.07/2.2.00/28.0050 Modernizace didaktických metod a inovace. Elektrický obvod Uspořádaný systém elektrických prvků a vodičů sloužící

Více

Neřízené polovodičové prvky

Neřízené polovodičové prvky Neřízené polovodičové prvky Výkonová elektronika - přednášky Projekt ESF CZ.1.07/2.2.00/28.0050 Modernizace didaktických metod a inovace výuky technických předmětů. Neřízené polovodičové spínače neobsahují

Více

c) vysvětlení jednotlivých veličin ve vztahu pro okamžitou výchylku, jejich jednotky

c) vysvětlení jednotlivých veličin ve vztahu pro okamžitou výchylku, jejich jednotky Harmonický kmitavý pohyb a) vysvětlení harmonického kmitavého pohybu b) zápis vztahu pro okamžitou výchylku c) vysvětlení jednotlivých veličin ve vztahu pro okamžitou výchylku, jejich jednotky d) perioda

Více

PROGRAMOVATELNÉ LOGICKÉ OBVODY

PROGRAMOVATELNÉ LOGICKÉ OBVODY PROGRAMOVATELNÉ LOGICKÉ OBVODY (PROGRAMMABLE LOGIC DEVICE PLD) Programovatelné logické obvody jsou číslicové obvody, jejichž logická funkce může být programována uživatelem. Výhody: snížení počtu integrovaných

Více

Témata profilové maturitní zkoušky z předmětu Souborná zkouška z odborných elektrotechnických předmětů (elektronická zařízení, elektronika)

Témata profilové maturitní zkoušky z předmětu Souborná zkouška z odborných elektrotechnických předmětů (elektronická zařízení, elektronika) ta profilové maturitní zkoušky z předmětu Souborná zkouška z odborných elektrotechnických předmětů (elektronická zařízení, elektronika) 1. Cívky - vlastnosti a provedení, řešení elektronických stejnosměrných

Více

U BR < 4E G /q -saturační proud ovlivňuje nárazovou ionizaci. Šířka přechodu: w Ge 0,7 w Si (pro N D,A,Ge N D,A,Si ); vliv U D.

U BR < 4E G /q -saturační proud ovlivňuje nárazovou ionizaci. Šířka přechodu: w Ge 0,7 w Si (pro N D,A,Ge N D,A,Si ); vliv U D. Napěťový průraz polovodičových přechodů Zvyšování napětí na přechodu -přechod se rozšiřuje, ale pouze s U (!!) - intenzita elektrického pole roste -překročení kritické hodnoty U (BR) -vzrůstu závěrného

Více

U01 = 30 V, U 02 = 15 V R 1 = R 4 = 5 Ω, R 2 = R 3 = 10 Ω

U01 = 30 V, U 02 = 15 V R 1 = R 4 = 5 Ω, R 2 = R 3 = 10 Ω B 9:00 hod. Elektrotechnika a) Definujte stručně princip superpozice a uveďte, pro které obvody platí. b) Vypočítejte proudy větvemi uvedeného obvodu metodou superpozice. 0 = 30 V, 0 = 5 V R = R 4 = 5

Více

Řešení: Nejdříve musíme určit sílu, kterou působí kladka proti směru pohybu padajícího vědra a napíná tak lano. Moment síly otáčení kladky je:

Řešení: Nejdříve musíme určit sílu, kterou působí kladka proti směru pohybu padajícího vědra a napíná tak lano. Moment síly otáčení kladky je: Přijímací zkouška na navazující magisterské studium - 16 Studijní program Fyzika - všechny obory kromě Učitelství fyziky-matematiky pro střední školy, Varianta A Příklad 1 (5 bodů) Jak dlouho bude padat

Více

1 Elektrotechnika 1. 14:00 hod. R 1 = R 2 = 5 Ω R 3 = 10 Ω U = 10 V I z = 1 A R R R U 1 = =

1 Elektrotechnika 1. 14:00 hod. R 1 = R 2 = 5 Ω R 3 = 10 Ω U = 10 V I z = 1 A R R R U 1 = = B 4:00 hod. Elektrotechnika Pomocí věty o náhradním zdroji vypočtěte hodnotu rezistoru tak, aby do něho byl ze zdroje dodáván maximální výkon. Vypočítejte pro tento případ napětí, proud a výkon rezistoru.

Více

Ing. Pavel Hrzina, Ph.D. - Laboratoř diagnostiky fotovoltaických systémů Katedra elektrotechnologie K13113

Ing. Pavel Hrzina, Ph.D. - Laboratoř diagnostiky fotovoltaických systémů Katedra elektrotechnologie K13113 Sluneční energie, fotovoltaický jev Ing. Pavel Hrzina, Ph.D. - Laboratoř diagnostiky fotovoltaických systémů Katedra elektrotechnologie K13113 1 Osnova přednášky Slunce jako zdroj energie Vlastnosti slunečního

Více

Základní pojmy. p= [Pa, N, m S. Definice tlaku: Síla působící kolmo na jednotku plochy. diference. tlaková. Přetlak. atmosférický tlak. Podtlak.

Základní pojmy. p= [Pa, N, m S. Definice tlaku: Síla působící kolmo na jednotku plochy. diference. tlaková. Přetlak. atmosférický tlak. Podtlak. Základní pojmy Definice tlaku: Síla působící kolmo na jednotku plochy F p= [Pa, N, m S 2 ] p Přetlak tlaková diference atmosférický tlak absolutní tlak Podtlak absolutní nula t 2 ozdělení tlakoměrů Podle

Více

ELEKTRONICKÉ SOUČÁSTKY

ELEKTRONICKÉ SOUČÁSTKY ELEKTRONICKÉ SOUČÁSTKY VZORY OTÁZEK A PŘÍKLADŮ K TUTORIÁLU 1 1. a) Co jsou polovodiče nevlastní. b) Proč je používáme. 2. Co jsou polovodiče vlastní. 3. a) Co jsou polovodiče nevlastní. b) Jakým způsobem

Více

Fyzika, maturitní okruhy (profilová část), školní rok 2014/2015 Gymnázium INTEGRA BRNO

Fyzika, maturitní okruhy (profilová část), školní rok 2014/2015 Gymnázium INTEGRA BRNO 1. Jednotky a veličiny soustava SI odvozené jednotky násobky a díly jednotek skalární a vektorové fyzikální veličiny rozměrová analýza 2. Kinematika hmotného bodu základní pojmy kinematiky hmotného bodu

Více

Základy elektrotechniky

Základy elektrotechniky Základy elektrotechniky Přednáška Tranzistory 1 BIPOLÁRNÍ TRANZISTOR - třívrstvá struktura NPN se třemi vývody (elektrodami): e - emitor k - kolektor b - báze Struktura, náhradní schéma a schematická značka

Více

PRINCIP MĚŘENÍ TEPLOTY spočívá v porovnání teploty daného tělesa s definovanou stupnicí.

PRINCIP MĚŘENÍ TEPLOTY spočívá v porovnání teploty daného tělesa s definovanou stupnicí. 1 SENZORY TEPLOTY TEPLOTA je jednou z nejdůležitějších veličin ovlivňujících téměř všechny stavy a procesy v přírodě Ke stanovení teploty se využívá závislosti určitých fyzikálních veličin na teplotě (A

Více

1 SENZORY V MECHATRONICKÝCH SOUSTAVÁCH

1 SENZORY V MECHATRONICKÝCH SOUSTAVÁCH 1 V MECHATRONICKÝCH SOUSTAVÁCH Senzor - důležitá součást většiny moderních elektronických zařízení. Účel: Zjišťovat přítomnost různých fyzikálních, většinou neelektrických veličin, a umožnit další zpracování

Více

11. Polovodičové diody

11. Polovodičové diody 11. Polovodičové diody Polovodičové diody jsou součástky, které využívají fyzikálních vlastností přechodu PN nebo přechodu kov - polovodič (MS). Nelinearita VA charakteristiky, zjednodušeně chápaná jako

Více

Univerzita Tomáše Bati ve Zlíně

Univerzita Tomáše Bati ve Zlíně Univerzita Tomáše Bati ve Zlíně Ústav elektrotechniky a měření Optoelektronika Přednáška č. 8 Milan Adámek adamek@ft.utb.cz U5 A711 +420576035251 Optoelektronika 1 Optoelektronika zabývá se přeměnou elektrické

Více

A8B32IES Úvod do elektronických systémů

A8B32IES Úvod do elektronických systémů A8B3IES Úvod do elektronických systémů..04 Ukázka činnosti elektronického systému DC/DC měniče a optické komunikační cesty Aplikace tranzistoru MOSFET jako spínače Princip DC/DC měniče zvyšujícího napětí

Více

15. Elektrický proud v kovech, obvody stejnosměrného elektrického proudu

15. Elektrický proud v kovech, obvody stejnosměrného elektrického proudu 15. Elektrický proud v kovech, obvody stejnosměrného elektrického proudu 1. Definice elektrického proudu 2. Jednoduchý elektrický obvod a) Ohmův zákon pro část elektrického obvodu b) Elektrický spotřebič

Více

Polovodičov. ové prvky. 4.přednáška

Polovodičov. ové prvky. 4.přednáška Polovodičov ové prvky 4.přednáška Polovodiče Základem polovodičových prvků je obvykle čtyřmocný (obsahuje 4 valenční elektrony) krystal křemíku (Si). Čisté krystaly křemíku mají za pokojové teploty jen

Více

popsat princip činnosti základních zapojení čidel napětí a proudu samostatně změřit zadanou úlohu

popsat princip činnosti základních zapojení čidel napětí a proudu samostatně změřit zadanou úlohu 9. Čidla napětí a proudu Čas ke studiu: 15 minut Cíl Po prostudování tohoto odstavce budete umět popsat princip činnosti základních zapojení čidel napětí a proudu samostatně změřit zadanou úlohu Výklad

Více

Elektromagnetický oscilátor

Elektromagnetický oscilátor Elektromagnetický oscilátor Již jsme poznali kmitání mechanického oscilátoru (závaží na pružině) - potenciální energie pružnosti se přeměňuje na kinetickou energii a naopak. T =2 m k Nejjednodušší elektromagnetický

Více

Základy Mössbauerovy spektroskopie. Libor Machala

Základy Mössbauerovy spektroskopie. Libor Machala Základy Mössbauerovy spektroskopie Libor Machala Rudolf L. Mössbauer 1958: jev bezodrazové rezonanční absorpce záření gama atomovým jádrem 1961: Nobelova cena Analogie s rezonanční absorpcí akustických

Více

VÝKONOVÉ TRANZISTORY MOS

VÝKONOVÉ TRANZISTORY MOS VÝKONOVÉ TANZSTOY MOS Pro výkonové aplikace mají tranzistory MOS přednosti: - vysoká vstupní impedance, - vysoké výkonové zesílení, - napěťové řízení, - teplotní stabilita PNP FNKE TANZSTO MOS Prahové

Více

Témata profilové maturitní zkoušky

Témata profilové maturitní zkoušky Obor: 18-20-M/01 Informační technologie Předmět: Databázové systémy Forma: praktická 1. Datový model. 2. Dotazovací jazyk SQL. 3. Aplikační logika v PL/SQL. 4. Webová aplikace. Obor vzdělání: 18-20-M/01

Více

4. Stanovení teplotního součinitele odporu kovů

4. Stanovení teplotního součinitele odporu kovů 4. Stanovení teplotního součinitele odporu kovů 4.. Zadání úlohy. Změřte teplotní součinitel odporu mědi v rozmezí 20 80 C. 2. Změřte teplotní součinitel odporu platiny v rozmezí 20 80 C. 3. Vyneste graf

Více

Základy elektrotechniky 2 (21ZEL2) Přednáška 1

Základy elektrotechniky 2 (21ZEL2) Přednáška 1 Základy elektrotechniky 2 (21ZEL2) Přednáška 1 Úvod Základy elektrotechniky 2 hodinová dotace: 2+2 (př. + cv.) zakončení: zápočet, zkouška cvičení: převážně laboratorní informace o předmětu, kontakty na

Více

Studijní opora pro předmět Technologie elektrotechnické výroby

Studijní opora pro předmět Technologie elektrotechnické výroby Studijní opora pro předmět Technologie elektrotechnické výroby Doc. Ing. Václav Kolář Ph.D. Předmět určen pro: Fakulta metalurgie a materiálového inženýrství, VŠB-TU Ostrava. Navazující magisterský studijní

Více

Jaký význam má kritický kmitočet vedení? - nejnižší kmitočet vlny, při kterém se vlna začíná šířit vedením.

Jaký význam má kritický kmitočet vedení? - nejnižší kmitočet vlny, při kterém se vlna začíná šířit vedením. Jaký význam má kritický kmitočet vedení? - nejnižší kmitočet vlny, při kterém se vlna začíná šířit vedením. Na čem závisí účinnost vedení? účinnost vedení závisí na činiteli útlumu β a na činiteli odrazu

Více

E g IZOLANT POLOVODIČ KOV. Zakázaný pás energií

E g IZOLANT POLOVODIČ KOV. Zakázaný pás energií Polovodiče To jestli nazýváme danou látku polovodičem, závisí především na jejích vlastnostech ve zvoleném teplotním oboru. Obecně jsou to látky s 0 ev < Eg < ev. KOV POLOVODIČ E g IZOLANT Zakázaný pás

Více

Zesilovače. Ing. M. Bešta

Zesilovače. Ing. M. Bešta ZESILOVAČ Zesilovač je elektrický čtyřpól, na jehož vstupní svorky přivádíme signál, který chceme zesílit. Je to tedy elektronické zařízení, které zesiluje elektrický signál. Zesilovač mění amplitudu zesilovaného

Více

13. Spektroskopie základní pojmy

13. Spektroskopie základní pojmy základní pojmy Spektroskopicky významné OPTICKÉ JEVY absorpce absorpční spektrometrie emise emisní spektrometrie rozptyl rozptylové metody Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti

Více

25 A Vypracoval : Zdeněk Žák Pyrometrie υ = -40 C.. +10000 C. Výhody termovize Senzory infračerveného záření Rozdělení tepelné senzory

25 A Vypracoval : Zdeněk Žák Pyrometrie υ = -40 C.. +10000 C. Výhody termovize Senzory infračerveného záření Rozdělení tepelné senzory 25 A Vypracoval : Zdeněk Žák Pyrometrie Bezdotykové měření Pyrometrie (obrázky viz. sešit) Bezdotykové měření teplot je měření povrchové teploty těles na základě elektromagnetického záření mezi tělesem

Více

Úvod do laserové techniky KFE FJFI ČVUT Praha Michal Němec, 2014. Plynové lasery. Plynové lasery většinou pracují v kontinuálním režimu.

Úvod do laserové techniky KFE FJFI ČVUT Praha Michal Němec, 2014. Plynové lasery. Plynové lasery většinou pracují v kontinuálním režimu. Aktivní prostředí v plynné fázi. Plynové lasery Inverze populace hladin je vytvářena mezi energetickými hladinami některé ze složek plynu - atomy, ionty nebo molekuly atomární, iontové, molekulární lasery.

Více

Univerzita Tomáše Bati ve Zlíně

Univerzita Tomáše Bati ve Zlíně Univerzita Tomáše Bati ve Zlíně Ústav elektrotechniky a měření Diody a usměrňova ovače Přednáška č. 2 Milan Adámek adamek@ft.utb.cz U5 A711 +420576035251 Diody a usměrňova ovače 1 Voltampérová charakteristika

Více

Základní pojmy z oboru výkonová elektronika

Základní pojmy z oboru výkonová elektronika Základní pojmy z oboru výkonová elektronika prezentace k přednášce 2013 Projekt ESF CZ.1.07/2.2.00/28.0050 Modernizace didaktických metod a inovace výuky technických předmětů. výkonová elektronika obor,

Více

Přednáška v rámci PhD. Studia

Přednáška v rámci PhD. Studia OBVODY SE SPÍNANÝMI KAPACITORY (Switched Capacitor Networks) Přednáška v rámci PhD. Studia Doc. Ing. Lubomír Brančík, CSc. UREL FEKT VUT v Brně ÚVOD DO PROBLEMATIKY Důsledek pokroku ve vývoji (miniaturizaci)

Více