Laserová technika prosince Katedra fyzikální elektroniky.
|
|
- Rudolf Havlíček
- před 6 lety
- Počet zobrazení:
Transkript
1 Laserová technika 1 Aktivní prostředí Šíření optických impulsů v aktivním prostředí Jan Šulc Katedra fyzikální elektroniky České vysoké učení technické jan.sulc@fjfi.cvut.cz. prosince 016
2 Program přednášek 1. Poloklasická teorie šíření rezonančního záření dvouhladinovým prostředím. Šíření stacionární rovinné vlny v aktivním prostředí 3. Šíření optických impulsů v aktivním prostředí 4. Laser v aproximaci rychlostních rovnic 5. Rychlostní rovnice pro Q-spínaný laser 6. Koherentní šíření impulzu a zesílená spontánní emise
3 Interakce rezonančního záření s prostředím Záření elektromagnetická vlna, popisují MR klasicky Prostředí soubor dvouhladinových kvantových soustav, popisuje SR Rezonanční záření rezonance s kvantovým přechodem ω 1 = (E E 1 )/ Interakce záření s hmotou prostřednictvím polarizace prostředí (dipólového momentu elementárních KS) Rovnice poloklasické teorie interakce hmoty a záření šíření záření v makroskopickém prostředí tvořeném souborem H KS E 1 E c = µ P 0 " ω1 T + 1 T 1 # N N 0 = P = ω 1 E d 1 N E ω P T Zahrnují všechny kvantové aspekty odezvy kvantové soustavy Umožňuji určit odezvu H rezonnačního prostředí obecně pro jakýkoliv průběh elektromagnetického pole
4 Šíření stacionární rovinné vlny v aktivním prostředí Rezonanční prostředí je disperzní susceptibilita χ (index lomu n = 1 + χ) je funkcí frekvence záření ( ω = ω ω 1 ) χ ( ω) = d 1 N 0 d ω 1 N 0 1 ε 0 ( ω) + ( 1 ), T χ ε ( ω) = 0 T ( ω) + ( 1 ). T Rezonanční prostředí je nelineární v blízkosti rezonanční frekvence může v závislosti na obsazení hladin docházet k pohlcení nebo zesílení záření (susceptibilita je komplexní), v závislosti na intenzitě záření dochází k saturaci zesílení (absorpce) I(z) = I 0 e g 0z g = g I I s 1 T g 0 (ω) = g 0 ( ω) + 1, g 0 = σn 0, I s = ω 1 T 1 σ, σ = ω 1 d 1 T cε 0 T
5 Impuls elektromagnetického pole s pomalu proměnnou obálkou Lineárně polarizovaná harmonická vlna Doba trvání pulsu T doba jednoho kmitu pole π/ω
6 Impuls elektromagnetického pole s pomalu proměnnou obálkou Předpokládáme následující průběh pole a polarizace (pomalu proměnná amplituda s harmonickou nosnou vlnou): Vektory makroskopické polarizace a elektromagnetického pole mají pomalu proměnné amplitudy (v čase i v prostoru) Předpokládáme následující průběh elektromagnetického pole a polarizace: E = i ye(z, t)cos [ωt kz + Φ(z, t)] P = i y {P 1 (z, t)cos [ωt kz + Φ(z, t)] + P (z, t)sin [ωt kz + Φ(z, t)]} Dosadíme toto očekávané řešení a postupně nalezneme rovnice pro pomalu proměnné amplitudy pole a polarizace
7 Rovnice pro pomalu proměnné amplitudy Φ z + 1 Φ + k E = µ 0ω 1 c P 1 c = µ 0ω 1 c z + 1 c P 1 P = P 1 T = P T + P ω + Φ ω + Φ P = 1 T 1 (N N 0 ) + 1 EP P 1 d 1 EN kde ω = ω ω 1 a k = ω/c k. Tato uzavřená soustava pěti parciálních diferenciálních rovnic prvního řádu je matematickým modelem koherentního šíření záření. Popisuje kooperativní chování celého souboru kvantových soustav pod vlivem elektrického pole elektromagnetického záření i zpětný vliv souboru kvantových soustav na elektromagnetické pole. V řadě zvláštních případů je možné tento model ještě dále zjednodušovat.
8 Signál v rezonanci a bez fázové modulace Další zjednodušení rovnic nastane, pokud se předpokládá šíření signálu bez fázové modulace s frekvencí odpovídající přesně frekvenci kvantového přechodu, tj. Φ = const., ω = 0 a k = 0: Φ z + 1 Φ + k c z + 1 c P 1 P z + 1 c P E = µ 0ω 1 c P 1 P 1 0 = µ 0ω 1 c = P 1 T = P T + P ω + Φ ω + Φ = 1 T 1 (N N 0 ) + 1 EP = µ 0ω 1 c P, P 1 0 = P d 1 T EN = (N N 0) T EP P 0 = 0 P 1 d 1 EN
9 Rovnice pro impuls elektromagnetického pole s pomalu proměnnou obálkou v rezonanci a bez fázové modulace Zavedeme tzv. lokální čas t = t z c, z = z Dostaneme: Rovnice nelineární z = µ 0ω 1 c P P = P d 1 T EN = N N T 1 EP Neplatí princip superpozice E (1) in E (1) out, E () in E () out E (1) in + E () in E (1) out + E () out Amplitudy pole a polarizace a také inverze populace hladin závisí na souřadnicích v prostoru i čase.
10 Šíření stacionárního rezonančního signálu bez fázové modulace Výchozí rovnice z = µ 0ω 1 c P P = P d 1 T EN = N N T 1 EP z = µ 0ω 1 c P P = P d 1 T EN = N N T 1 EP Stacionární signál položíme časové derivace 0 Získáme rovnice pro P (z), N(z) 0 = P d 1 T EN P (z) = d 1 T EN 0 = (N N 0) + 1 T 1 EP N 0 N(z) = 1 + d 1 T 1 T E
11 Šíření stacionárního rezonančního signálu bez fázové modulace Rovnice pro intenzitu optického záření Přejdeme od intenzity eletrického pole k intenzitě světla I = 1 cε 0E z = d 1 µ 0 ω 1 c E T N d 1 T 1 T E Přitom využijeme vztah pro derivaci složené funkce: di dz = g I/I s I z = E z Součinitel zesílení pro slabý signál g 0 = σn 0 Účinný průřez pro stimulovanou emisi Saturační intenzita σ = µ 0ω 1 c d 1 T I s = ω σt 1
12 Šíření stacionárního rezonančního signálu bez fázové modulace Zesilování Rovnice popisující zesilování rezonančního záření Normovaná intenzita záření Separace proměnných Okrajová (počáteční) podmínka di dz = g I/I s I J = I I s dj dz = g J J 1 + J dj = g 0 dz J J z=0 = J 1 Řešení (z = L) ln J J 1 + (J J 1 ) = g 0 L
13 Šíření stacionárního rezonančního signálu bez fázové modulace Zesilování v prostředí beze ztrát Řešení (z = L) transcendentní rovnice Slabý signál ln J J 1 + (J J 1 ) = g 0 L J 1 1, J 1 ln J J 1 0, J = J 1 e g 0 L Silný signál tj. J = J 1 + g 0 L J J 1 1 Obecné řešení transcendentní rovnice (pro libovolné J 1 a zesílení) J = LambertW nj 1 e [J 1 + g 0 L] o
14 Šíření stacionárního rezonančního signálu bez fázové modulace Zesilování (g 0 L = 4)
15 Šíření stacionárního rezonančního signálu bez fázové modulace Zesilování + ztráty Přidáme součinitel ztrát β: Řešení (DC.) Limita g 0 L dj dz = βj + g J J ln J J 1 g 0 β ln g 0 β(1 + J ) g 0 β(1 + J 1 ) = (g 0 β) L I max = g 0 β Is Existuje mezní hustota výkonu nekonečně dlouhého zesilovače saturovaný zisk právě kompenzuje ztráty
16 Šíření impulsů Charakter šíření určuje délka obálky impulzu T imp v porovnání s relaxačními časy T 1 a T z = µ 0ω 1 c P P = P d 1 T EN = N N T 1 EP KOHERENTNÍ NEKOHERNTNÍ T imp T 1, T T imp T 1, T APROXIMACE RYCHLOSTNÍCH ROVNIC T T imp T 1
17 Nekoherentní šíření impulsů T imp T 1, T Rychlá relaxace rezonančního prostředí Při šíření se projeví ztráty energie způsobené relaxací polarizace i inverze populace hladin Adiabatická eliminace v každém okamžiku ustálený stav Relaxace má větší vliv než změna amplitudy časové derivace 0 << N T 1, P << P T Odpovídá rovnicím pro stacionární signál pokud se signál mění pomalu ve srovnání s dobou T 1, T, pak odezva prostředí sleduje vstup P (z, t) = d 1 N(z, t) = (z, t) = d 1 z di(z, t) dz T E(z, t)n(z, t) N d 1 T 1 T E (z, t) µ 0 ω 1 c = T N 0 E(z, t) 1 + d 1 T 1 T E (z, t) g I(z, t)/i s I(z, t)
18 Aproximace rychlostních rovnic T T imp T 1 Částečná adiabatická eliminace Polarizace spojená s časem T relaxuje rychle kvazistacionární stav P = P d 1 T EN = N N T 1 EP z = µ 0ω 1 c P Vyloučíme polarizaci, protože: P << P T Odezvu prostředí ovlivňuje inverze populace hladin, která se vyvíjí v závislosti na velikosti signálu 0 = P (z, t) d 1 T E(z, t)n(z, t) P (z, t) = d 1 T E(z, t)n(z, t) (z, t) = N 0 N + 1 T 1 E(z, t)p (z, t) (z, t) = N 0 N(z, t) σ I(z, t)n(z, t) T 1 T 1 ω 1 (z, t) = µ 0ω 1 c I(z, t) P z (z, t) = σn(z, t)i(z, t) z
19 Rychlostní rovnice Rychlostní rovnice popisují rychlost změny inverze populace hladin a intenzity záření (z, t) = N 0 N(z, t) σi(z, t)n(z, t) T 1 T 1 ω 1 {z } {z} {z } stimul. emise/absorbce buzení fluorescence I(z, t) = σn(z, t)i(z, t) z Zákon zachování energie fotony vs inverze populace hladin Hustota energie u = I/c Einstein Hustota fotonů φ = I/( ωc) Tok fotonů F = I/( ω) B = cσ ω
20 Koherentní šíření impulzů (záření v rezonanci) Pokud můžeme předpokládat přesnou rezonanci ( ω = 0) a signál bez fázové modulace ( Φ/ = 0), potom i P 1 = 0 a šíření rezonančního záření dvouhladinovým prostředím je popsáno soustavou tří rovnic: z = µ 0ω 1 c P P = P d 1 T EN = N N T 1 EP Pokud jsou charakteristické časy změn E, P, N mnohem kratší než obě relaxační doby T 1 a T, neuplatňuje se vliv tlumícího systému. Je možné zanedbat relaxační členy s T 1 a T. z = µ 0ω 1 c P = d 1 EN = 1 EP P
21 Shrnutí Pro popis síření impulzů s pomalu proměnnou obálkou stačí 5 rovnic. Rovnice popisují časový vývoj obálky impulzu, amplitudu polarizace prostředí a inverzi populace hladin. Za předpokladu, že záření je v dokonalé rezonanci s prostředím (ω = ω 1 ), a že signál má konstantní fázi, stačí nám 3 rovnice: z = µ 0ω 1 c P P = P d 1 T EN = N N T 1 EP Stacionární řešení poskytuje rovnici popisující zesilování rezonančního záření di dz = g I/I s I βi V obecném případě časově proměnné obálky impulzu délky T imp rozlišujeme 3 oblasti řešení: koherentní šíření (T imp T 1, T ), nekoherentní šíření (T imp T 1, T ), aproximace rychlostních rovnic (T T imp T 1 )
22 Literatura VRBOVÁ M., ŠULC J.: Interakce rezonančního záření s látkou, Skriptum FJFI ČVUT, Praha, 006 VRBOVÁ M., JELÍNKOVÁ H., GAVRILOV P.: Úvod do laserové techniky, Skriptum FJFI ČVUT, Praha, 1994 ( VRBOVÁ M. a kol.: Lasery a moderní optika - Oborová encyklopedie, Prometheus, Praha, 1994 LONČAR, G.: Elektrodynamika I, Skriptum FJFI ČVUT, Praha, 1990 Štol, I.: Elektřina a magnetismus, Skriptum FJFI ČVUT, Praha, 1994 Přednášky:
Fyzika laserů. 7. března Katedra fyzikální elektroniky.
Fyzika laserů Poloklasický popis šíření elmg. záření v rezonančním prostředí. Jan Šulc Katedra fyzikální elektroniky České vysoké učení technické jan.sulc@fjfi.cvut.cz 7. března 2013 Program přednášek
VíceLaserová technika 1. Laser v aproximaci rychlostních rovnic. 22. prosince Katedra fyzikální elektroniky.
Laserová technika 1 Aktivní prostředí Laser v aproximaci rychlostních rovnic Jan Šulc Katedra fyzikální elektroniky České vysoké učení technické jan.sulc@fjfi.cvut.cz 22. prosince 2016 Program přednášek
VíceLaserová technika prosince Katedra fyzikální elektroniky.
Laserová technika 1 Aktivní prostředí Šíření rezonančního záření dvouhladinovým prostředím Jan Šulc Katedra fyzikální elektroniky České vysoké učení technické jan.sulc@fjfi.cvut.cz 22. prosince 2016 Program
VíceLaserová technika 1. Rychlostní rovnice pro Q-spínaný laser. 22. prosince Katedra fyzikální elektroniky.
Laserová technika 1 Aktivní prostředí Rychlostní rovnice pro Q-spínaný laser Jan Šulc Katedra fyzikální elektroniky České vysoké učení technické jan.sulc@fjfi.cvut.cz 22. prosince 2016 Program přednášek
VíceLaserová technika 1. Rychlostní rovnice pro Q-spínaný laser. 16. prosince 2013. Katedra fyzikální elektroniky. jan.sulc@fjfi.cvut.
Laserová technika 1 Aktivní prostředí Rychlostní rovnice pro Q-spínaný laser Jan Šulc Katedra fyzikální elektroniky České vysoké učení technické jan.sulc@fjfi.cvut.cz 16. prosince 2013 Program přednášek
VíceFyzika laserů. Aproximace rychlostních rovnic. 18. března Katedra fyzikální elektroniky.
Fyzika laserů Aproximace rychlostních rovnic Metody generace nanosekundových impulsů. Q-spínání. Spínání ziskem Jan Šulc Katedra fyzikální elektroniky České vysoké učení technické jan.sulc@fjfi.cvut.cz
VíceFyzika laserů. 4. dubna Katedra fyzikální elektroniky.
Fyzika laserů Přitahováni frekvencí. Spektrum laserového záření. Modelocking Jan Šulc Katedra fyzikální elektroniky České vysoké učení technické jan.sulc@fjfi.cvut.cz 4. dubna 2013 Program přednášek 1.
VíceFyzika laserů. Plocha impulsu. Soliton. Samoindukovaná propustnost. Fotonové echo. Katedra fyzikální elektroniky.
Fyzika laserů Koherentní šíření impulzů Plocha impulsu. Soliton. Samoindukovaná propustnost. Fotonové echo. Jan Šulc Katedra fyzikální elektroniky České vysoké učení technické jan.sulc@fjfi.cvut.cz 25.
VíceÚvod do laserové techniky
Úvod do laserové techniky Světlo jako elektromagnetické záření I. část Michal Němec Katedra fyzikální elektroniky České vysoké učení technické v Praze michal.nemec@fjfi.cvut.cz Kontakty Ing. Michal Němec,
VíceÚvod do laserové techniky
Úvod do laserové techniky Světlo jako elektromagnetické záření I. část Jan Šulc Katedra fyzikální elektroniky České vysoké učení technické v Praze jan.sulc@fjfi.cvut.cz 5. října 2016 Kontakty Ing. Jan
VíceLaserové technologie v praxi I. Přednáška č.1. Fyzikální princip činnosti laserů. Hana Chmelíčková, SLO UP a FZÚ AVČR Olomouc, 2011
Laserové technologie v praxi I. Přednáška č. Fyzikální princip činnosti laserů Hana Chmelíčková, SLO UP a FZÚ AVČR Olomouc, 0 LASER kvantový generátor světla Fyzikální princip činnosti laserů LASER zkratka
VíceÚvod do laserové techniky
Úvod do laserové techniky Látka jako soubor kvantových soustav Jan Šulc Katedra fyzikální elektroniky České vysoké učení technické v Praze petr.koranda@gmail.com 18. září 2018 Světlo jako elektromagnetické
VíceÚvod do laserové techniky
Úvod do laserové techniky Světlo jako elektromagnetické záření II. část Jan Šulc Katedra fyzikální elektroniky České vysoké učení technické v Praze jan.sulc@fjfi.cvut.cz 6. října 016 Kontakty Ing. Jan
VíceSvětlo jako elektromagnetické záření
Světlo jako elektromagnetické záření Základní pojmy: Homogenní prostředí prostředí, jehož dané vlastnosti jsou ve všech místech v prostředí stejné. Izotropní prostředí prostředí, jehož dané vlastnosti
VíceElektromagnetické pole je generováno elektrickými náboji a jejich pohybem. Je-li zdroj charakterizován nábojovou hustotou ( r r
Záření Hertzova dipólu, kulové vlny, Rovnice elektromagnetického pole jsou vektorové diferenciální rovnice a podle symetrie bývá vhodné je řešit v křivočarých souřadnicích. Základní diferenciální operátory
Víceρ = 0 (nepřítomnost volných nábojů)
Učební text k přednášce UFY Světlo v izotropním látkovém prostředí Maxwellovy rovnice v izotropním látkovém prostředí: B rot + D rot H ( r, t) div D ρ rt, ( ) div B a materiálové vztahy D ε pro dielektrika
VíceÚvod do laserové techniky
Úvod do laserové techniky Světlo jako elektromagnetické záření Látka jako soubor kvantových soustav Jan Šulc Katedra fyzikální elektroniky České vysoké učení technické v Praze jan.sulc@fjfi.cvut.cz 5.
VíceÚvod do laserové techniky
Úvod do laserové techniky Laser Jan Šulc Katedra fyzikální elektroniky České vysoké učení technické v Praze jan.sulc@fjfi.cvut.cz 29. října 2012 Světlo a jeho interakce s hmotou opakování Světlo = elektromagnetická
VíceCharakteristiky optického záření
Fyzika III - Optika Charakteristiky optického záření / 1 Charakteristiky optického záření 1. Spektrální charakteristika vychází se z rovinné harmonické vlny jako elementu elektromagnetického pole : primární
VícePostupné, rovinné, monochromatické vlny v lineárním izotropním nemagnetickém prostředí
Postupné, rovinné, monochromatické vlny v lineárním izotropním nemagnetickém prostředí Rovinné vlny 1 Při diskusi o řadě jevů je výhodné vycházet z rovinných vln. Vlny musí splňovat Maxwellovy rovnice
VíceMetody nelineární optiky v Ramanově spektroskopii
Metody nelineární optiky v Ramanově spektroskopii Využití optických nelinearit umožňuje přejít od tradičního studia rozptylu světla na fluktuacích, teplotních elementárních excitacích, ke studiu rozptylu
VíceV mnoha běžných případech v optickém oboru je zanedbáváno silové působení magnetické složky elektromagnetického pole na náboje v látce str. 3 6.
Nekvantový popis interakce světla s pasivní látkou Zcela nekvantová fyzika nemůže interakci elektromagnetického záření s látkou popsat, např. atom jako soustava kladných a záporných nábojů by vůbec nebyl
VícePřechodné děje 2. řádu v časové oblasti
Přechodné děje 2. řádu v časové oblasti EO2 Přednáška 8 Pavel Máša - Přechodné děje 2. řádu ÚVODEM Na předchozích přednáškách jsme se seznámili s obecným postupem řešení přechodných dějů, jmenovitě pak
VíceFYZIKA II. Petr Praus 9. Přednáška Elektromagnetická indukce (pokračování) Elektromagnetické kmity a střídavé proudy
FYZIKA II Petr Praus 9. Přednáška Elektromagnetická indukce (pokračování) Elektromagnetické kmity a střídavé proudy Osnova přednášky Energie magnetického pole v cívce Vzájemná indukčnost Kvazistacionární
VíceELT1 - Přednáška č. 6
ELT1 - Přednáška č. 6 Elektrotechnická terminologie a odborné výrazy, měřicí jednotky a činitelé, které je ovlivňují. Rozdíl potenciálů, elektromotorická síla, napětí, el. napětí, proud, odpor, vodivost,
VíceMěření charakteristik pevnolátkového infračerveného Er:Yag laseru
Měření charakteristik pevnolátkového infračerveného Er:Yag laseru Ondřej Ticháček, PORG, ondrejtichacek@gmail.com Abstrakt: Úkolem bylo proměření základních charakteristik záření pevnolátkového infračerveného
VíceÚvod do laserové techniky KFE FJFI ČVUT Praha Michal Němec, 2014. Plynové lasery. Plynové lasery většinou pracují v kontinuálním režimu.
Aktivní prostředí v plynné fázi. Plynové lasery Inverze populace hladin je vytvářena mezi energetickými hladinami některé ze složek plynu - atomy, ionty nebo molekuly atomární, iontové, molekulární lasery.
VíceObsah PŘEDMLUVA 11 ÚVOD 13 1 Základní pojmy a zákony teorie elektromagnetického pole 23
Obsah PŘEDMLUVA... 11 ÚVOD... 13 0.1. Jak teoreticky řešíme elektrotechnické projekty...13 0.2. Dvojí význam pojmu pole...16 0.3. Elektromagnetické pole a technické projekty...20 1. Základní pojmy a zákony
VíceElektromechanický oscilátor
- 1 - Elektromechanický oscilátor Ing. Ladislav Kopecký, 2002 V tomto článku si ukážeme jeden ze způsobů, jak využít silové účinky cívky s feromagnetickým jádrem v rezonanci. I člověk, který neoplývá technickou
VíceELEKTROMAGNETICKÉ KMITÁNÍ A VLNĚNÍ POJMY K ZOPAKOVÁNÍ. Testové úlohy varianta A
Škola: Autor: DUM: Vzdělávací obor: Tematický okruh: Téma: Masarykovo gymnázium Vsetín Mgr. Jitka Novosadová MGV_F_SS_3S3_D18_Z_OPAK_E_Elektromagneticke_kmitani_a_ vlneni_t Člověk a příroda Fyzika Elektromagnetické
VíceZákladní otázky ke zkoušce A2B17EPV. České vysoké učení technické v Praze ID Fakulta elektrotechnická
Základní otázky ke zkoušce A2B17EPV Materiál z přednášky dne 10/5/2010 1. Síla současně působící na elektrický náboj v elektrickém a magnetickém poli (Lorentzova síla) 2. Coulombův zákon, orientace vektorů
VíceTéma: Dynamiky - Základní vztahy kmitání
Počítačová podpora statických výpočtů Téma: Dynamiky - Základní vztahy kmitání 1) Vlastnosti materiálů při dynamickém namáháni ) Základní vztahy teorie kmitání s jedním stupněm volnosti Katedra konstrukcí
VíceZáklady elektrotechniky 2 (21ZEL2) Přednáška 1
Základy elektrotechniky 2 (21ZEL2) Přednáška 1 Úvod Základy elektrotechniky 2 hodinová dotace: 2+2 (př. + cv.) zakončení: zápočet, zkouška cvičení: převážně laboratorní informace o předmětu, kontakty na
VíceZPOMALENÉ A ZASTAVENÉ SVĚTLO. A. Kalvová, FZÚ AV ČR, Praha a B. Velický, MFF UK a FZÚ AV ČR, Praha
ZPOMALENÉ A ZASTAVENÉ SVĚTLO A. Kalvová, FZÚ AV ČR, Praha a B. Velický, MFF UK a FZÚ AV ČR, Praha ... po pěti letech A. Kalvová, FZÚ AV ČR, Praha a B. Velický, MFF UK a FZÚ AV ČR, Praha historicky první,
VíceOptické spektroskopie 1 LS 2014/15
Optické spektroskopie 1 LS 2014/15 Martin Kubala 585634179 mkubala@prfnw.upol.cz 1.Úvod Velikosti objektů v přírodě Dítě ~ 1 m (10 0 m) Prst ~ 2 cm (10-2 m) Vlas ~ 0.1 mm (10-4 m) Buňka ~ 20 m (10-5 m)
VíceTlumené a vynucené kmity
Tlumené a vynucené kmity Katedra fyziky FEL ČVUT Evropský sociální fond Praha & U: Е Investujeme do vaší budoucnosti Problémová úloha 1: Laplaceova transformace Pomocí Laplaceovy transformace vlastností
VíceElektromagnetické záření. lineárně polarizované záření. Cirkulárně polarizované záření
Elektromagnetické záření lineárně polarizované záření Cirkulárně polarizované záření Levotočivé Pravotočivé 1 Foton Jakékoli elektromagnetické vlnění je kvantováno na fotony, charakterizované: Vlnovou
VíceFYZIKA II. Marek Procházka 1. Přednáška
FYZIKA II Marek Procházka 1. Přednáška Historie Dělení optiky Základní pojmy Reflexe (odraz) Refrakce (lom) jevy na rozhraní dvou prostředí o různém indexu lomu. Disperze (rozklad) prostorové oddělení
VícePROCESY V TECHNICE BUDOV 12
UNIVERZITA TOMÁŠE BATI VE ZLÍNĚ FAKULTA APLIKOVANÉ INFORMATIKY PROCESY V TECHNICE BUDOV 12 Dagmar Janáčová, Hana Charvátová, Zlín 2013 Tento studijní materiál vznikl za finanční podpory Evropského sociálního
VíceSvětlo x elmag. záření. základní principy
Světlo x elmag. záření základní principy Jak vzniká a co je to duha? Spektrum elmag. záření Viditelné 380 760 nm, UV 100 380 nm, IR 760 nm 1mm Spektrum elmag. záření Harmonická vlna Harmonická vlna E =
VíceElementární částice. 1. Leptony 2. Baryony 3. Bosony. 4. Kvarkový model 5. Slabé interakce 6. Partonový model
Elementární částice 1. Leptony 2. Baryony 3. Bosony 4. Kvarkový model 5. Slabé interakce 6. Partonový model I.S. Hughes: Elementary Particles M. Leon: Particle Physics W.S.C. Williams Nuclear and Particle
VíceZákladní otázky pro teoretickou část zkoušky.
Základní otázky pro teoretickou část zkoušky. Platí shodně pro prezenční i kombinovanou formu studia. 1. Síla současně působící na elektrický náboj v elektrickém a magnetickém poli (Lorentzova síla) 2.
Více11. přednáška 10. prosince Kapitola 3. Úvod do teorie diferenciálních rovnic. Obyčejná diferenciální rovnice řádu n (ODR řádu n) je vztah
11. přednáška 10. prosince 2007 Kapitola 3. Úvod do teorie diferenciálních rovnic. Obyčejná diferenciální rovnice řádu n (ODR řádu n) je vztah F (x, y, y, y,..., y (n) ) = 0 mezi argumentem x funkce jedné
VícePŘECHODOVÝ JEV V RC OBVODU
PŘEHODOVÝ JEV V OBVOD Pracovní úkoly:. Odvoďte vztah popisující časovou závislost elektrického napětí na kondenzátoru při vybíjení. 2. Měřením určete nabíjecí a vybíjecí křivku kondenzátoru. 3. rčete nabíjecí
VíceOptika pro mikroskopii materiálů I
Optika pro mikroskopii materiálů I Jan.Machacek@vscht.cz Ústav skla a keramiky VŠCHT Praha +42-0- 22044-4151 Osnova přednášky Základní pojmy optiky Odraz a lom světla Interference, ohyb a rozlišení optických
Vícec) vysvětlení jednotlivých veličin ve vztahu pro okamžitou výchylku, jejich jednotky
Harmonický kmitavý pohyb a) vysvětlení harmonického kmitavého pohybu b) zápis vztahu pro okamžitou výchylku c) vysvětlení jednotlivých veličin ve vztahu pro okamžitou výchylku, jejich jednotky d) perioda
VíceVznik a šíření elektromagnetických vln
Vznik a šíření elektromagnetických vln Hlavní body Rozšířený Coulombův zákon lektromagnetická vlna ve vakuu Zdroje elektromagnetických vln Přehled elektromagnetických vln Foton vlna nebo částice Fermatův
VíceOd kvantové mechaniky k chemii
Od kvantové mechaniky k chemii Jan Řezáč UOCHB AV ČR 19. září 2017 Jan Řezáč (UOCHB AV ČR) Od kvantové mechaniky k chemii 19. září 2017 1 / 33 Úvod Vztah mezi molekulovou strukturou a makroskopickými vlastnostmi
VíceJaký význam má kritický kmitočet vedení? - nejnižší kmitočet vlny, při kterém se vlna začíná šířit vedením.
Jaký význam má kritický kmitočet vedení? - nejnižší kmitočet vlny, při kterém se vlna začíná šířit vedením. Na čem závisí účinnost vedení? účinnost vedení závisí na činiteli útlumu β a na činiteli odrazu
Více1.3. Módy laseru, divergence svazku, fokuzace svazku, Q- spínání
1.3. Módy laseru, divergence svazku, fokuzace svazku, Q- spínání Mody optického rezonátoru kmitající soustava je charakterizována vlastními frekvencemi. Optický rezonátor jako kmitající soustava nekonečný
VíceVibrace atomů v mřížce, tepelná kapacita pevných látek
Vibrace atomů v mřížce, tepelná kapacita pevných látek Atomy vázané v mřížce nejsou v klidu. Míru jejich pohybu vyjadřuje podobně jako u plynů a kapalin teplota. - Elastické vlny v kontinuu neatomární
VíceNerovnovážné systémy Onsagerova hypotéza, fluktuačně disipační teorém
Nerovnovážné systémy Onsagerova hypotéza, fluktuačně disipační teorém Omezení se na nerovnážné systémy v blízkosti rovnováhy Chování systému lze popsat v rámci linear response theory (teorie lineární odezvy)
VíceRovinná monochromatická vlna v homogenním, neabsorbujícím, jednoosém anizotropním prostředí
Rovinná monochromatická vlna v homogenním, neabsorbujícím, jednoosém anizotropním prostředí r r Další předpoklad: nemagnetické prostředí B = µ 0 H izotropně. Veškerá anizotropie pochází od interakce elektrických
VíceRovinná úloha v MKP. (mohou být i jejich derivace!): rovinná napjatost a r. deformace (stěny,... ): u, v. prostorové úlohy: u, v, w
Rovinná úloha v MKP Hledané deformační veličiny viz klasická teorie pružnosti (mohou být i jejich derivace!): rovinná napjatost a r. deformace (stěny,... ): u, v desky: w, ϕ x, ϕ y prostorové úlohy: u,
Více1. Pevnolátkový Nd:YAG laser v režimu volné generace a v režimu Q-spínání. 2. Zesilování laserového záření a generace druhé harmonické
Úloha č. 1 pro laserová praktika KFE, FJFI, ČVUT v Praze, verze 2010/1 1. Pevnolátkový Nd:YAG laser v režimu volné generace a v režimu Q-spínání. 2. Zesilování laserového záření a generace druhé harmonické
VíceMODERNÍ METODY CHEMICKÉ FYZIKY I lasery a jejich použití v chemické fyzice Přednáška 5
MODERNÍ METODY CHEMICKÉ FYZIKY I lasery a jejich použití v chemické fyzice Přednáška 5 Ondřej Votava J. Heyrovský Institute of Physical Chemistry AS ČR Opakování z minula Light Amplifier by Stimulated
VícePřipnutí LC větví FKZ k přípojnici 27 kv trakční napájecí stanice
Vědeckotechnický sborník ČD č. /006 Doc. Ing. Karel Hlava, Sc. Ing. adovan Doleček, Ph.D. Připnutí větví FKZ k přípojnici 7 kv trakční napájecí stanice Klíčová slova: trakční proudová soustava 5 kv, 50
VíceElektronová a absorpční spektroskopie, Vibrační spektroskopie (absorpční a Ramanova rozptylu)
Elektronová a absorpční spektroskopie, Vibrační spektroskopie (absorpční a Ramanova rozptylu) Průchod optického záření absorbujícím prostředím V dipólové aproximaci platí Einsteinův vztah pro pravděpodobnost
VíceRezonanční jevy na LC oscilátoru a závaží na pružině
Rezonanční jevy na LC oscilátoru a závaží na pružině M. Stejskal, K. Záhorová*, J. Řehák** Gymnázium Emila Holuba, Gymnázium J.K.Tyla*, SPŠ Hronov** Abstrakt Zkoumali jsme rezonanční frekvenci závaží na
VícePříloha č. 1. amplitudová charakteristika filtru fázová charakteristika filtru / frekvence / Hz. 1. Určení proudové hustoty
Příloha č. 1 Při hodnocení expozice nízkofrekvenčnímu elektromagnetickému poli (0 Hz 10 MHz) je určující veličinou modifikovaná proudová hustota J mod indukovaná v tělesné tkáni. Jak je uvedeno v nařízení
VíceMODIFIKOVANÝ KLIKOVÝ MECHANISMUS
MODIFIKOVANÝ KLIKOVÝ MECHANISMUS Michal HAJŽMAN Tento materiál je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky. Vyšetřování pohybu vybraných mechanismů v systému ADAMS
VíceSPEKTRÁLNÍ METODY. Ing. David MILDE, Ph.D. Katedra analytické chemie Tel.: ; (c) David MILDE,
SEKTRÁLNÍ METODY Ing. David MILDE, h.d. Katedra analytické chemie Tel.: 585634443; E-mail: david.milde@upol.cz (c) -2008 oužitá a doporučená literatura Němcová I., Čermáková L., Rychlovský.: Spektrometrické
Více1 Modelování systémů 2. řádu
OBSAH Obsah 1 Modelování systémů 2. řádu 1 2 Řešení diferenciální rovnice 3 3 Ukázka řešení č. 1 9 4 Ukázka řešení č. 2 11 5 Ukázka řešení č. 3 12 6 Ukázka řešení č. 4 14 7 Ukázka řešení č. 5 16 8 Ukázka
Více(Následující odstavce jsou zde uvedeny jen pro zájemce.) , sin2π, (2)
Studium difrakčních jevů TEORIE doplněk: Odvození výrazů pro difrakční maxima (popř. minima) na štěrbině, dvojštěrbině a mřížce jsou zpravidla uvedena na středoškolské úrovni, což je založeno na vhodném
VíceZobrazování. Zdeněk Tošner
Zobrazování Zdeněk Tošner Ultrazvuk Zobrazování pomocí magnetické rezonance Rentgen a počítačová tomografie (CT) Ultrazvuk Akustické vlnění 20 khz 1 GHz materiálová defektoskopie sonar sonografie (v lékařství
VíceDISPERZNÍ KŘIVKY V DESCE S KUBICKOU ANIZOTROPIÍ
DISPERZNÍ KŘIVKY V DESCE S KUBICKOU ANIZOTROPIÍ P. Hora, O. Červená Ústav termomechaniky AV ČR Příspěvek vznikl na základě podpory grantu cíleného vývoje a výzkumu AV ČR č. IBS276356 Ultrazvukové metody
VíceKMS cvičení 6. Ondřej Marek
KMS cvičení 6 Ondřej Marek NETLUMENÝ ODDAJNÝ SYSTÉM S DOF analytické řešení k k Systém se stupni volnosti popisují pohybové rovnice: x m m x m x + k + k x k x = m x k x + k x = k x m x k x x m k x x m
VíceFlexibilita jednoduché naprogramování a přeprogramování řídícího systému
Téma 40 Jiří Cigler Zadání Číslicové řízení. Digitalizace a tvarování. Diskrétní systémy a jejich vlastnosti. Řízení diskrétních systémů. Diskrétní popis spojité soustavy. Návrh emulací. Nelineární řízení.
Více13. Spektroskopie základní pojmy
základní pojmy Spektroskopicky významné OPTICKÉ JEVY absorpce absorpční spektrometrie emise emisní spektrometrie rozptyl rozptylové metody Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti
VíceÚloha 15: Studium polovodičového GaAs/GaAlAs laseru
Petra Suková, 2.ročník, F-14 1 Úloha 15: Studium polovodičového GaAs/GaAlAs laseru 1 Zadání 1. Změřte současně světelnou i voltampérovou charakteristiku polovodičového laseru. Naměřenézávislostizpracujtegraficky.Stanovteprahovýproud
Víceω=2π/t, ω=2πf (rad/s) y=y m sin ωt okamžitá výchylka vliv má počáteční fáze ϕ 0
Kmity základní popis kmitání je periodický pohyb, při kterém těleso pravidelně prochází rovnovážnou polohou mechanický oscilátor zařízení vykonávající kmity Základní veličiny Perioda T [s], frekvence f=1/t
VíceElektromagnetické vlnění
Elektromagnetické vlnění kolem vodičů elmag. oscilátoru se vytváří proměnné elektrické i magnetické pole http://www.walter-fendt.de/ph11e/emwave.htm Radiotechnika elmag vlnění vyzářené dipólem můžeme zachytit
VíceCharakteristiky laseru vytvářejícího světelné impulsy o délce několika pikosekund
Charakteristiky laseru vytvářejícího světelné impulsy o délce několika pikosekund H. Picmausová, J. Povolný, T. Pokorný Gymnázium, Česká Lípa, Žitavská 2969; Gymnázium, Brno, tř. Kpt. Jaroše 14; Gymnázium,
VíceZakončení viskózním tlumičem. Charakteristická impedance.
Kapitola 1 Odraz vln 1.1 Korektní zakončení struny Zakončení viskózním tlumičem. Charakteristická impedance. V mnoha praktických situacích požadujeme, aby prostředím postupovaly signály pouze jedním směrem,
VíceVybrané spektroskopické metody
Vybrané spektroskopické metody a jejich porovnání s Ramanovou spektroskopií Předmět: Kapitoly o nanostrukturách (2012/2013) Autor: Bc. Michal Martinek Školitel: Ing. Ivan Gregora, CSc. Obsah přednášky
VíceZajímavé vlastnosti sluneční atmosféry: magnetická a rychlostní pole
Zajímavé vlastnosti sluneční atmosféry: magnetická a rychlostní pole Spektroskopie (nejen) ve sluneční fyzice LS 2011/2012 Michal Švanda Astronomický ústav MFF UK Astronomický ústav AV ČR Vliv na tvar
VíceDiferenciální rovnice
Obyčejné diferenciální rovnice - studijní text pro cvičení v předmětu Matematika - 2. Studijní materiál byl připraven pracovníky katedry E. Novákovou, M. Hyánkovou a L. Průchou za podpory grantu IG ČVUT
VíceVlny v plazmatu. Narušení rovnováhy, perturbace se šíří prostorem => vlny Vlna musí být řešením příslušných rovnic plazmatu => módy
Vlny v plazmatu Narušení rovnováhy, perturbace se šíří prostorem => vlny Vlna musí být řešením příslušných rovnic plazmatu => módy Jakákoli perturbace A( x,t může být reprezentována jako kombinace rovinných
VíceZáření KZ. Význam. Typy netermálního záření. studium zdrojů a vlastností KZ. energetické ztráty KZ. synchrotronní. brzdné.
Zářivé procesy Podmínky vyzařování, Larmorův vzorec, Thomsonův rozptyl, synchrotronní záření, brzdné záření, Comptonův rozptyl, čerenkovské záření, spektum zdroje KZ Záření KZ Význam studium zdrojů a vlastností
VíceOPVK CZ.1.07/2.2.00/
18.2.2013 OPVK CZ.1.07/2.2.00/28.0184 Cvičení z NMR OCH/NMR Mgr. Tomáš Pospíšil, Ph.D. LS 2012/2013 18.2.2013 NMR základní principy NMR Nukleární Magnetická Resonance N - nukleární (studujeme vlastnosti
VíceMěření vlastností optického vlákna
ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta elektrotechnická LABORATORNÍ ÚLOHA Č. 1 Měření vlastností optického vlákna Vypracovali: Jan HLÍDEK & Lukáš TULACH V rámci předmětu: Telekomunikační systémy
VíceGE - Vyšší kvalita výuky CZ.1.07/1.5.00/
Gymnázium, Brno, Elgartova 3 GE - Vyšší kvalita výuky CZ.1.07/1.5.00/34.0925 IV/2 Inovace a zkvalitnění výuky směřující k rozvoji matematické gramotnosti žáků středních škol Téma : Diferenciální a integrální
VíceNecht na hmotný bod působí pouze pružinová síla F 1 = ky, k > 0. Podle druhého Newtonova zákona je pohyb bodu popsán diferenciální rovnicí
Počáteční problémy pro ODR2 1 Lineární oscilátor. Počáteční problémy pro ODR2 Uvažujme hmotný bod o hmotnosti m, na který působí síly F 1, F 2, F 3. Síla F 1 je přitom úměrná výchylce y z rovnovážné polohy
VíceCo je obsahem numerických metod?
Numerické metody Úvod Úvod Co je obsahem numerických metod? Numerické metody slouží k přibližnému výpočtu věcí, které se přesně vypočítat bud nedají vůbec, nebo by byl výpočet neúměrně pracný. Obsahem
VíceCvičení 7 (Matematická teorie pružnosti)
VŠB Technická univerzita Ostrava Fakulta strojní Katedra pružnosti a pevnosti (339) Pružnost a pevnost v energetice (Návo do cvičení) Cvičení 7 (Matematická teorie pružnosti) Autor: Jaroslav Rojíček Verze:
VíceÚvod do spektrálních metod pro analýzu léčiv
Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti Úvod do spektrálních metod pro analýzu léčiv Pavel Matějka, Vadym Prokopec pavel.matejka@vscht.cz pavel.matejka@gmail.com Vadym.Prokopec@vscht.cz
Více1. a) Určete parciální derivace prvního řádu funkce z = z(x, y) dané rovnicí z 3 3xy 8 = 0 v
. a) Určete parciální derivace prvního řádu funkce z = z(x, y) dané rovnicí z xy 8 = v bodě A =, ]. b) e grafu funkce f najděte tečnou rovinu, která je rovnoběžná s rovinou ϱ. f(x, y) = x + y x, ϱ : x
Více5.1 Modelování drátových antén v časové oblasti metodou momentů
5.1 Modelování drátových antén v časové oblasti metodou momentů Základní teorie V kapitolách 4.1, 4.4 resp. 4.5 byly drátový dipól, mikropáskový dipól a flíčková anténa modelovány metodou momentů ve frekvenční
VíceTepelná vodivost pevných látek
Tepelná vodivost pevných látek Přenos tepla vedení mřížková část tepelné vodivosti Dvouatomový lineární řetězec přiblížení např. NaCl (1) u -1 (A) u s-1 (B) u (A) u s (B) u s+1 (B) u +1 (A) Např. = příčné
Více4 Přenos energie ve FS
4 Přenos energie ve FS Petr Ilík KF a CH, PřF UP Přenos energie (excitace) do C - 1-1 molekula chl je i při vysoké ozářenosti excitována max. 10x za sekundu neefektivní pro C - nténní systém s mnoha pigmenty
VíceProjekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/ Vlnění
Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/03.0009 Vlnění Vhodíme-li na klidnou vodní hladinu kámen, hladina se jeho dopadem rozkmitá a z místa rozruchu se začnou
VícePrůhyb ocelového nosníku. Nezatížený a rovnoměrně zatížený nosník
EVROPSKÝ SOCIÁLNÍ FOND Průhyb ocelového nosníku. Nezatížený a rovnoměrně zatížený nosník PRAHA & EU INVESTUJEME DO VAŠÍ BUDOUCNOSTI České vysoké učení technické v Praze, Fakulta stavební, Katedra matematiky
VíceCW01 - Teorie měření a regulace
Ústav technologie, mechanizace a řízení staveb CW01 - Teorie měření a regulace ZS 2010/2011 SPEC. 2.p 2010 - Ing. Václav Rada, CSc. Ústav technologie, mechanizace a řízení staveb Teorie měření a regulace
VíceSIGNÁLY A LINEÁRNÍ SYSTÉMY
SIGNÁLY A LINEÁRNÍ SYSTÉMY prof. Ing. Jiří Holčík, CSc. holcik@iba.muni.cz II. SIGNÁLY ZÁKLADNÍ POJMY SIGNÁL - DEFINICE SIGNÁL - DEFINICE Signál je jev fyzikální, chemické, biologické, ekonomické či jiné
VíceOptoelektronika. elektro-optické převodníky - LED, laserové diody, LCD. Elektronické součástky pro FAV (KET/ESCA)
Optoelektronika elektro-optické převodníky - LED, laserové diody, LCD Elektro-optické převodníky žárovka - nejzákladnější EO převodník nevhodné pro optiku široké spektrum vlnových délek vhodnost pro EO
VíceZáklady elektrotechniky
Základy elektrotechniky Přednáška Tranzistory 1 BIPOLÁRNÍ TRANZISTOR - třívrstvá struktura NPN se třemi vývody (elektrodami): e - emitor k - kolektor b - báze Struktura, náhradní schéma a schematická značka
VíceSIGNÁLY A SOUSTAVY, SIGNÁLY A SYSTÉMY
SIGNÁLY A SOUSTAVY, SIGNÁLY A SYSTÉMY TEMATICKÉ OKRUHY Signály se spojitým časem Základní signály se spojitým časem (základní spojité signály) Jednotkový skok σ (t), jednotkový impuls (Diracův impuls)
VíceFyzika IV. g( ) Vibrace jader atomů v krystalové mříži
Vibrace jader atomů v krystalové mříži v krystalu máme N základních buněk, v každé buňce s atomů, které kmitají kolem rovnovážných poloh výchylky kmitů jsou malé (Taylorův rozvoj): harmonická aproximace
VíceMnohé problémy analýzy dynamických systémů vedou k řešení diferenciální rovnice (4.1)
4 Řešení odezev dynamických systémů ve fázové rovině 4.1 Základní pojmy teorie fázové roviny Mnohé problémy analýzy dynamických systémů vedou k řešení diferenciální rovnice ( ) x+ F x, x = (4.1) kde F(
VíceŘešení: Nejdříve musíme určit sílu, kterou působí kladka proti směru pohybu padajícího vědra a napíná tak lano. Moment síly otáčení kladky je:
Přijímací zkouška na navazující magisterské studium - 16 Studijní program Fyzika - všechny obory kromě Učitelství fyziky-matematiky pro střední školy, Varianta A Příklad 1 (5 bodů) Jak dlouho bude padat
Více