Vibrace atomů v mřížce, tepelná kapacita pevných látek
|
|
- Tereza Kadlecová
- před 8 lety
- Počet zobrazení:
Transkript
1 Vibrace atomů v mřížce, tepelná kapacita pevných látek Atomy vázané v mřížce nejsou v klidu. Míru jejich pohybu vyjadřuje podobně jako u plynů a kapalin teplota.
2 - Elastické vlny v kontinuu neatomární povahy Longitudinální deformace tyčky v místě x v důsledku longitudinální vlny ε = du dx Mechanické napětí S A Hrana dx se posune v důsledku šíření vlny o du x dx x+dx du σ = F A Hookův zákon σ = Eε L Relativní prodloužení je úměrné mechanickému napětí E je Youngův modul pružnosti
3 Řešení elastické vlny - Newtonův zákon F = ma σ x + dx σ dx A = σ x dxa = ρadx 2 u t 2 σ = Eε Vlnová rovnice v 1D 2 u x 2 ρ E 2 u t 2 = 0 Rovnice postupné vlny ω = vq v = E ρ Rychlost šíření vlny i qx ωt u x, t = Ae E je Youngův modul pružnosti
4 ω = vq ω Disperzní závislost bez disperze! v = E ρ Odhad rychlosti zvuku a mřížkové složky tepelné vodivosti ω = vq Povolené hodnoty vlnového čísla q? v g = dω dq = v = konst. q Periodické hraniční podmínky u(x=0) = u(x=l) Deformace začátku tyčky je stejná jako jejího konce Pro vlnu (bez časové závislosti) z toho plyne i qx u x = Ae 1 = e iql
5 1 = e iql q = n 2π L Krok je 2π L Z periodické hraniční podmínky plynou povolené hodnoty vlnového čísla q. Když bude tyčka dostatečně dlouhá, bude se q měnit po malých krůčcích a budeme mít téměř kontinuální posloupnost vlnového čísla q. Naopak v případě tyčky velmi malých rozměrů budeme sledovat efekt kvantování q. Počet módů na dq (hustota stavů podle dq) dn(q) = L 2π dq Dále budeme potřebovat tzv. hustotu stavů g( ) (v d ) tak, aby integrál g( )d dával celkový počet módů. g( )d = L 2π dq
6 g( )d = L 2π dq d 2 (Pro + i směr) g( ) = L π 1 dω dq grupová = fázová rychlost rychlost pokud je v=konst. g( ) = počet vibračních módů na jednotkový frekvenční rozsah Federseil -q 0 dq q Pro 1D g( ) = L π Nezávisí na! 1 v v = E ρ g( ) d - 0 Pro 3D hustota stavů vibračních módů: i q r u = Ae g( ) = 3V Balkanski Wallis/132 Kittel/146 ω 2 2π 2 v 3 1 longitudinální a 2 transverzální módy pro zvolené q
7 Tepelná kapacita pevných látek - Původem tepelné kapacity je energie vibračního pohybu oscilujících atomů Každému atomu přísluší energie E = 6 x 1/2kT pro jeden směr (potenciální+ kinetická) Pro krystal o velikosti jednoho molu je celková energie E M = 3N A kt = 3RT c M = 3R = 25 JK -1 mol -1 tzv. Dulongův Petitův zákon. Pro všechny atomy nezávisle na jejich hmotnosti m!!! Jak se počítá pro pevné látky? Srovnej s kinetickou teorií plynů. E závisí na T ale ne na m částice!
8 c M = 3R = 25 JK -1 mol -1 platí poměrně dobře pro vysoké teploty, ale selhává při nízkých teplotách. 3R Dva modely c M Einsteinův model Debyeův model T Atomy v pevné látce považuje za nezávislé kvantové oscilátory. To je veliké zjednodušení a přibližně platí pouze pro optické fonony (relativní pohyb atomů v rámci elementární buňky) a nikoliv pro akustické fonony Pevnou látku považuje za kontinuum bez vnitřní struktury. Toto zjednodušení řeší stanovením minimální vlnové délky fononů. Dobře platí pro akustické fonony, ale nepostihuje optické. Oba modely předpovídají správně pokles c M k nule při T = 0K
9 Atomy v pevné látce považuje za nezávislé oscilátory s konstantní frekvencí ν a energii oscilátoru vyjadřuje pomocí kvantové mechaniky. Pro jednorozměrný oscilátor: Einsteinův model E n = n ħω Hladiny kvantového oscilátoru Průměrnou energii jednoho oscilátoru při dané teplotě získáme středováním Bose-Einsteinova statistika vyjadřuje pravděpodobnost obsazení daného stavu E n = e ħω ħω kt 1 E 3 E 2 E 1 E 0 Bez interakce ħω n
10 Energie jednoho molu oscilátorů E = 3N Aħω e ħω kt 1 Molární kapacita c M = de dt = 3N A k ħω kt e ħω kt 1 2 e ħω kt 2 Pokud je kt mohem větší než hω, kvantová povaha se smývá a c M se blíží jeho klasické hodnotě 3R. Pro velmi nízké teploty se však projevuje kvantová povaha v plné míře. Z fitování experimentálních hodnot c M =f(t) lze vypočítat Einsteinovu frekvenci a teplotu ω E odpovídá průměrné frekvenci oscilátoru c M θ E = ħω E k vyjadřuje frekvenci v jednotkách teploty T
11 Debyeův model Atomy v pevné látce považuje za oscilátory spojené určitou vazbou. To vede ke vzniku kolektivních oscilací (módů). Nemáme zde jedinou frekvenci E ale velké množství módů až po určitou maximální frekvenci. Podle této teorie lze všem přiřadit stejnou grupovou rychlost a to rychlost zvuku υ z. ω = υ z q Každý mód je zde ekvivalentní jednomu lineárnímu harmonickému oscilátoru o energii E n = ħω e ħω kt 1 q= 2π λ Celková energie všech módů mřížky S interakcí E = E( )g( )d Předpokládáme, že se mění spojitě
12 E = E = E( )g( )d 3V 2π 2 ν 3 ω 0 Nyní musíme najít meze integrálu : ω ω 2 ħω e ħω kt 1 d g( ) = 3V ω 2 2π 2 v 3 1) spodní mez 0 = 0 -odpovídá skutečnosti 2) horní mez = -neodpovídá skutečnosti ω D = υ z q D = υ z 2π λ D Nejkratší vlnová délka, která má fyzikální smysl: λ D Celkový počet módů = celkový počet stupňů volnosti: 3N = ω D = υ z 0 ω Dg(ω)d 6π 2 N V 1 3
13 c M = E = 3V 2π 2 ν 3 0 3V ħ 2 ω D 2π 2 ν 3 kt 2 0 c M = 9R T θ D 3 0 x D ω D ħω 3 e ħω kt 1 ω 4 e ħω kt e ħω kt 1 x 4 e x e x 1 2 dx dω 2 dω T ħω kt =x Poznámka: θ D = ħω D k ~ υ z 6π 2 N V 1 3 ~ E ρ ~ E M diamant vs. olovo Be=1440K, C=2230K, Si=645K, Pb=105K ρ = N V M
14 Analýza Debyeovy závislosti c M c M = 9R T θ D 3 0 x D x 4 e x e x 1 2 dx pro T θ D Stačí, když D 0,5 e x 1 + x 0 x D x 4 e x x Dx 2 dx e x 1 2 dx 0 Pro všechny oscilátory platí E=3kT E=3kTN A c M =3R c M = 3R + 0 x D x 3 dx pro T θ D x D 0 x 4 e x e x 1 2 dx = 4π4 15 Pouze dlouhé vlny lineární disperze c M = 12π4 5 R T θ D 3 ~T 3!!!
15 pro T θ D Je třeba uvažovat, že hustota stavů nesplňuje teoretický předpoklad g( ) 3V ω 2 2π 2 v 3 Dvě možnosti Proměnná Debyeova teplota Každou hodnotu c M v závislosti na její teplotě fitujeme Debyeovým modelem tak, že pro danou teplotu získáme konkrétní hodnotu Debyeovy teploty Experimentální hustota stavů Z neutronové difrakce nalezneme experimentální hustotu stavů v závislosti na frekvenci g( ) g( ) D E = E( )g exp ( )d 0
16 Modelovat průběh specifického tepla je lépe popisovat kombinací Einsteinova a Debyeova modelu. Jak uvidíme později, např. 3N módů lze rozdělit na 1N akustických (= akustická větev) a 2N optických (=optické větve) Akustické módy (především delší vlny) lze lépe aproximovat D. přiblížením Optické módy lze lépe aproximovat E. přiblížením c M = c D + 2c E Pokud je v elementární buňce M atomů je třeba násobit počet větví číslem M. Pokud vezmeme ještě v úvahu anharmonicitu c M = M i=1 c D 2M 1 α i T + j=1 c E 1 α j T
17 Dosud jsme se zabývali je harmonickými oscilátory. S rostoucí teplotou se však stále více částic dostává do stavu nelineárních (anharmonických) oscilací. To má za následek řadu efektů. 1) Teplotní roztažnost 2) Difuze částic 3) Redukci tepelné vodivosti kvůli rozptylu fononů (klesá volná dráha fotonů, viz. kinetická teorie tepelné vodivosti) 4) c M 3R pro T D
Tepelná vodivost pevných látek
Tepelná vodivost pevných látek Přenos tepla vedení mřížková část tepelné vodivosti Dvouatomový lineární řetězec přiblížení např. NaCl (1) u -1 (A) u s-1 (B) u (A) u s (B) u s+1 (B) u +1 (A) Např. = příčné
Fyzika IV. g( ) Vibrace jader atomů v krystalové mříži
Vibrace jader atomů v krystalové mříži v krystalu máme N základních buněk, v každé buňce s atomů, které kmitají kolem rovnovážných poloh výchylky kmitů jsou malé (Taylorův rozvoj): harmonická aproximace
Termodynamika materiálů. Vztahy a přeměny různých druhů energie při termodynamických dějích podmínky nutné pro uskutečnění fázových přeměn
Termodynamika materiálů Vztahy a přeměny různých druhů energie při termodynamických dějích podmínky nutné pro uskutečnění fázových přeměn Důležité konstanty Standartní podmínky Avogadrovo číslo N A = 6,023.10
Vlastnosti pevných látek
Vlastnosti pevných látek fyzikální vlastnost: odezva na určitý podnět, fyzikální rovnice definuje vztah mezi nimi (fyzikální veličiny skaláry, vektory, tenzory) Příklad: elastická deformace izotropního
Kovy - model volných elektronů
Kovy - model volných elektronů Kovová vazba 1. Preferuje ji většina prvků vyskytujících se v přírodě. Kov je tvořen kladně nabitými ionty (s konfigurací vzácného plynu) a relativně velmi volnými elektrony.
Kvantová mechanika - model téměř volných elektronů. model těsné vazby
Kvantová mechanika - model téměř volných elektronů model těsné vazby Částice (elektron) v periodickém potenciálu- Blochův teorém Dále už nebudeme považovat elektron za zcela volný (Sommerfeld), ale připustíme
Fyzika - Sexta, 2. ročník
- Sexta, 2. ročník Fyzika Výchovné a vzdělávací strategie Kompetence komunikativní Kompetence k řešení problémů Kompetence sociální a personální Kompetence občanská Kompetence k podnikavosti Kompetence
Vlastnosti pevných látek
lastnosti pevných látek fyzikální vlastnost: odezva na určitý podnět, fyzikální rovnice definue vztah mezi nimi Příklad: elastická deformace izotropního pružného tělesa l 0 (Hookův zákon) = E tahové napětí
Vlastnosti pevných látek
Vlastnosti pevných látek fyzikální vlastnost: odezva na určitý podnět, fyzikální rovnice definue vztah mezi nimi Příklad: elastická deformace izotropního pružného tělesa l 0 (Hookův zákon) = E tahové napětí
1. Kvantové jámy. Tabulka 1: Efektivní hmotnosti nosičů v krystalech GaAs, AlAs, v jednotkách hmotnosti volného elektronu m o.
. Kvantové jámy Pokročilé metody růstu krystalů po jednotlivých vrstvách (jako MBE) dovolují vytvořit si v krystalu libovolný potenciál. Jeden z hojně používaných materiálů je: GaAs, AlAs a jejich ternární
Fyzika IV Dynamika jader v molekulách
Dynamika jader v molekulách vibrace rotace Dynamika jader v molekulách rotační energetické hladiny (dvouatomová molekula) moment setrvačnosti kolem osy procházející těžištěm osa těžiště m2 m1 r2 r1 R moment
Od kvantové mechaniky k chemii
Od kvantové mechaniky k chemii Jan Řezáč UOCHB AV ČR 19. září 2017 Jan Řezáč (UOCHB AV ČR) Od kvantové mechaniky k chemii 19. září 2017 1 / 33 Úvod Vztah mezi molekulovou strukturou a makroskopickými vlastnostmi
Základem molekulové fyziky je kinetická teorie látek. Vychází ze tří pouček:
Molekulová fyzika zkoumá vlastnosti látek na základě jejich vnitřní struktury, pohybu a vzájemného působení částic, ze kterých se látky skládají. Termodynamika se zabývá zákony přeměny různých forem energie
E g IZOLANT POLOVODIČ KOV. Zakázaný pás energií
Polovodiče To jestli nazýváme danou látku polovodičem, závisí především na jejích vlastnostech ve zvoleném teplotním oboru. Obecně jsou to látky s 0 ev < Eg < ev. KOV POLOVODIČ E g IZOLANT Zakázaný pás
1 Tepelné kapacity krystalů
Kvantová a statistická fyzika 2 Termodynamika a statistická fyzika) 1 Tepelné kapacity krystalů Statistická fyzika dokáže vysvětlit tepelné kapacity látek a jejich teplotní závislosti alespoň tehdy, pokud
Voigtův model kompozitu
Voigtův model kompozitu Osnova přednášky Směšovací pravidlo použitelnost Princip Voigtova modelu Důsledky Voigtova modelu Specifika vláknových kompozitů Směšovací pravidlo Nejjednoduší vztah pro vlastnost
2. Elektrotechnické materiály
. Elektrotechnické materiály Předpokladem vhodného využití elektrotechnických materiálů v konstrukci elektrotechnických součástek a zařízení je znalost jejich vlastností. Elektrické vlastnosti materiálů
UČIVO. Termodynamická teplota. První termodynamický zákon Přenos vnitřní energie
PŘEDMĚT: FYZIKA ROČNÍK: SEXTA VÝSTUP UČIVO MEZIPŘEDM. VZTAHY, PRŮŘEZOVÁ TÉMATA, PROJEKTY, KURZY POZNÁMKY Zná 3 základní poznatky kinetické teorie látek a vysvětlí jejich praktický význam Vysvětlí pojmy
České vysoké učení technické v Praze Fakulta jaderná a fyzikálně inženýrská. Příloha formuláře C OKRUHY
Příloha formuláře C OKRUHY ke státním závěrečným zkouškám BAKALÁŘSKÉ STUDIUM Obor: Studijní program: Aplikace přírodních věd Základy fyziky kondenzovaných látek 1. Vazebné síly v kondenzovaných látkách
Fyzika IV. -ezv -e(z-zv) kov: valenční elektrony vodivostní elektrony. Elektronová struktura pevných látek model volných elektronů
Elektronová struktura pevných látek model volných elektronů 1897: J.J. Thomson - elektron jako částice 1900: P. Drude: kinetická teorie plynů - kov jako plyn elektronů Drudeho model elektrony se mezi srážkami
4. Stanovení teplotního součinitele odporu kovů
4. Stanovení teplotního součinitele odporu kovů 4.. Zadání úlohy. Změřte teplotní součinitel odporu mědi v rozmezí 20 80 C. 2. Změřte teplotní součinitel odporu platiny v rozmezí 20 80 C. 3. Vyneste graf
Struktura a vlastnosti kovů I.
Struktura a vlastnosti kovů I. Vlastnosti fyzikální (teplota tání, měrný objem, moduly pružnosti) Vlastnosti elektrické (vodivost,polovodivost, supravodivost) Vlastnosti magnetické (feromagnetika, antiferomagnetika)
Praktikum III - Optika
Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK Praktikum III - Optika Úloha č. 13 Název: Vlastnosti rentgenového záření Pracoval: Matyáš Řehák stud.sk.: 13 dne: 3. 4. 2008 Odevzdal
elektrony v pevné látce verze 1. prosince 2016
F6122 Základy fyziky pevných látek seminář elektrony v pevné látce verze 1. prosince 2016 1 Drudeho model volných elektronů 1 1.1 Mathiessenovo pravidlo............................................... 1
TERMIKA II. Stacionární vedení s dokonalou i nedokonalou izolací; Obecná rovnice vedení tepla; Přestup a prostup tepla;
TERMIKA II Šíření tepla vedením, prouděním a zářením; Stacionární vedení s dokonalou i nedokonalou izolací; Nestacionární vedení tepla; Obecná rovnice vedení tepla; Přestup a prostup tepla; 1 Šíření tepla
Fluktuace termodynamických veličin
Kvantová a statistická fyzika (Termodynamika a statistická fyzika Fluktuace termodynamických veličin Fluktuace jsou odchylky hodnot fyzikálních veličin od svých středních (rovnovážných hodnot. Mají původ
1 Zatížení konstrukcí teplotou
1 ZATÍŽENÍ KONSTRUKCÍ TEPLOTOU 1 1 Zatížení konstrukcí teplotou Časově proměnné nepřímé zatížení Klimatické vlivy, zatížení stavebních konstrukcí požárem Účinky zatížení plynou z rozšířeného Hookeova zákona
Opakování: shrnutí základních poznatků o struktuře atomu
11. Polovodiče Polovodiče jsou krystalické nebo amorfní látky, jejichž elektrická vodivost leží mezi elektrickou vodivostí kovů a izolantů a závisí na teplotě nebo dopadajícím optickém záření. Elektrické
TENSOR NAPĚTÍ A DEFORMACE. Obrázek 1: Volba souřadnicového systému
TENSOR NAPĚTÍ A DEFORMACE Obrázek 1: Volba souřadnicového systému Pole posunutí, deformace, napětí v materiálovém bodě {u} = { u v w } T (1) Obecně 9 složek pole napětí lze uspořádat do matice [3x3] -
Tepelná kapacita = T. Ē = 1 2 hν + hν. 1 = 1 e x. ln dx. Einsteinův výpočet (1907): Soustava N nezávislých oscilátorů se stejnou vlastní frekvencí má
Tepelná kapacta C x = C V = ( ) dq ( ) du Dulong-Pettovo pravdlo: U = 3kT N C V = 3kN x V = T ( ) ds x Tepelná kapacta mřížky Osclátor s kvantovanou energí E n = ( n + 2) hν má střední hodnotu energe (po
Základy vakuové techniky
Základy vakuové techniky Střední rychlost plynů Rychlost molekuly v p = (2 k N A ) * (T/M 0 ), N A = 6. 10 23 molekul na mol (Avogadrova konstanta), k = 1,38. 10-23 J/K.. Boltzmannova konstanta, T.. absolutní
Maturitní témata fyzika
Maturitní témata fyzika 1. Kinematika pohybů hmotného bodu - mechanický pohyb a jeho sledování, trajektorie, dráha - rychlost hmotného bodu - rovnoměrný pohyb - zrychlení hmotného bodu - rovnoměrně zrychlený
KONSTITUČNÍ VZTAHY. 1. Tahová zkouška
1. Tahová zkouška Tahová zkouška se provádí dle ČSN EN ISO 6892-1 (aktualizována v roce 2010) Je nejčastější mechanickou zkouškou kovových materiálů. Zkoušky se realizují na trhacích strojích, kde se zkušební
Okruhy k maturitní zkoušce z fyziky
Okruhy k maturitní zkoušce z fyziky 1. Fyzikální obraz světa - metody zkoumaní fyzikální reality, pojem vztažné soustavy ve fyzice, soustava jednotek SI, skalární a vektorové fyzikální veličiny, fyzikální
Emise vyvolaná působením fotonů nebo částic
Emise vyvolaná působením fotonů nebo částic PES (fotoelektronová spektroskopie) XPS (rentgenová fotoelektronová spektroskopie), ESCA (elektronová spektroskopie pro chemickou analýzu) UPS (ultrafialová
Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/ Vlnění
Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/03.0009 Vlnění Vhodíme-li na klidnou vodní hladinu kámen, hladina se jeho dopadem rozkmitá a z místa rozruchu se začnou
A až E, s těmito váhami 6, 30, 15, 60, 15, což znamená, že distribuce D dominuje.
Příklad 1 Vypočtěte počet způsobů rozdělení 18 identických objektů do 6 boxů s obsahem 1,0,3,5,8,1 objektů a srovnejte tuto váhu s konfigurací, kdy je každý box obsazen třemi objekty. Která konfigurace
Téma: Dynamika - Úvod do stavební dynamiky
Počítačová podpora statických výpočtů Téma: Dynamika - Úvod do stavební dynamiky 1) Úlohy stavební dynamiky 2) Základní pojmy z fyziky 3) Základní zákony mechaniky 4) Základní dynamická zatížení Katedra
Atom vodíku. Nejjednodušší soustava: p + e Řešitelná exaktně. Kulová symetrie. Potenciální energie mezi p + e. e =
Atom vodíku Nejjednodušší soustava: p + e Řešitelná exaktně Kulová symetrie Potenciální energie mezi p + e V 2 e = 4πε r 0 1 Polární souřadnice využití kulové symetrie atomu Ψ(x,y,z) Ψ(r,θ, φ) x =? y=?
Maturitní otázky z předmětu FYZIKA
Wichterlovo gymnázium, Ostrava-Poruba, příspěvková organizace Maturitní otázky z předmětu FYZIKA 1. Pohyby z hlediska kinematiky a jejich zákony Klasifikace pohybů z hlediska trajektorie a závislosti rychlosti
Neideální plyny. Z e dr dr dr. Integrace přes hybnosti. Neideální chování
eideální plyny b H Q(, V, T )... e dp 3... dpdr... dr! h Integrace přes hybnosti QVT (,, ) pmkt! h 3 / e dr dr dr /... U kt... eideální chování p kt r B ( T) r B ( T) r 3 3 Vyšší koeficinety velice složité
ATOMOVÁ SPEKTROMETRIE
ATOMOVÁ SPEKTROMETRIE Atomová spektrometrie valenčních e - 1. OES (AES). AAS 3. AFS 1 Atomová spektra čárová spektra Tok záření P - množství zářivé energie (Q E ) přenesené od zdroje za jednotku času.
12. Struktura a vlastnosti pevných látek
12. Struktura a vlastnosti pevných látek Osnova: 1. Látky krystalické a amorfní 2. Krystalová mřížka, příklady krystalových mřížek 3. Poruchy krystalových mřížek 4. Druhy vazeb mezi atomy 5. Deformace
Vlastnosti a zkoušení materiálů. Přednáška č.4 Úvod do pružnosti a pevnosti
Vlastnosti a zkoušení materiálů Přednáška č.4 Úvod do pružnosti a pevnosti Teoretická a skutečná pevnost kovů Trvalá deformace polykrystalů začíná při vyšším napětí než u monokrystalů, tj. hodnota meze
Fyzikální praktikum FJFI ČVUT v Praze
Fyzikální praktikum FJFI ČVUT v Praze Úloha 5: Měření teploty wolframového vlákna Datum měření: 1. 4. 2016 Doba vypracovávání: 12 hodin Skupina: 1, pátek 7:30 Vypracoval: Tadeáš Kmenta Klasifikace: 1 Zadání
Šíření tepla. Obecnéprincipy
Šíření tepla Obecnéprincipy Šíření tepla Obecně: Šíření tepla je výměna tepelné energie v tělese nebo mezi tělesy, která nastává při rozdílu teplot. Těleso s vyšší teplotou má větší tepelnou energii. Šíření
TERMOMECHANIKA 1. Základní pojmy
1 FSI VUT v Brně, Energetický ústav Odbor termomechaniky a techniky prostředí prof. Ing. Milan Pavelek, CSc. TERMOMECHANIKA 1. Základní pojmy OSNOVA 1. KAPITOLY Termodynamická soustava Energie, teplo,
Laserová technika prosince Katedra fyzikální elektroniky.
Laserová technika 1 Aktivní prostředí Šíření rezonančního záření dvouhladinovým prostředím Jan Šulc Katedra fyzikální elektroniky České vysoké učení technické jan.sulc@fjfi.cvut.cz 22. prosince 2016 Program
13. Spektroskopie základní pojmy
základní pojmy Spektroskopicky významné OPTICKÉ JEVY absorpce absorpční spektrometrie emise emisní spektrometrie rozptyl rozptylové metody Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti
Definice spojité náhodné veličiny zjednodušená verze
Definice spojité náhodné veličiny zjednodušená verze Náhodná veličina X se nazývá spojitá, jestliže existuje nezáporná funkce f : R R taková, že pro každé a, b R { }, a < b, platí P(a < X < b) = b a f
Úvod do laserové techniky
Úvod do laserové techniky Světlo jako elektromagnetické záření I. část Jan Šulc Katedra fyzikální elektroniky České vysoké učení technické v Praze jan.sulc@fjfi.cvut.cz 5. října 2016 Kontakty Ing. Jan
Daniel Franta. jaro Ústav fyzikální elektroniky, Přírodovědecká fakulta, Masarykova univerzita
Pokročilé disperzní modely v optice tenkých vrstev Lekce 3: Základní schéma disperzního modelu založeného na TRK sumačním pravidle rozdělení dielektrické funkce na elektronovou a nukleonovou část versus
Úvod do laserové techniky
Úvod do laserové techniky Světlo jako elektromagnetické záření I. část Michal Němec Katedra fyzikální elektroniky České vysoké učení technické v Praze michal.nemec@fjfi.cvut.cz Kontakty Ing. Michal Němec,
Tento dokument je doplňkem opory pro studenty Přírodovědecké fakulty Univerzity Jana Evangelisty Purkyně.
Statistická fyzika - cvičení RNDr. Filip Moučka, Ph.D., filip.moucka@ujep.cz Tento dokument je doplňkem opory pro studenty Přírodovědecké fakulty Univerzity Jana Evangelisty Purkyně. Cílem tohoto textu
Senzory průtoku tekutin
Senzory průtoku tekutin Průtok - hmotnostní - objemový - rychlostní Druhy proudění - laminární parabolický rychlostní profil - turbulentní víry Způsoby měření -přímé: dávkovací senzory, čerpadla -nepřímé:
Dobývání znalostí. Doc. RNDr. Iveta Mrázová, CSc. Katedra teoretické informatiky Matematicko-fyzikální fakulta Univerzity Karlovy v Praze
Dobývání znalostí Doc. RNDr. Iveta Mrázová, CSc. Katedra teoretické informatiky Matematicko-fyzikální fakulta Univerzity Karlovy v Praze Dobývání znalostí Pravděpodobnost a učení Doc. RNDr. Iveta Mrázová,
11. přednáška 10. prosince Kapitola 3. Úvod do teorie diferenciálních rovnic. Obyčejná diferenciální rovnice řádu n (ODR řádu n) je vztah
11. přednáška 10. prosince 2007 Kapitola 3. Úvod do teorie diferenciálních rovnic. Obyčejná diferenciální rovnice řádu n (ODR řádu n) je vztah F (x, y, y, y,..., y (n) ) = 0 mezi argumentem x funkce jedné
Energie, její formy a měření
Energie, její formy a měření aneb Od volného pádu k E=mc 2 Přednášející: Martin Zápotocký Seminář Aplikace lékařské biofyziky 2014/5 Definice energie Energos (ἐνεργός) = pracující, aktivní; ergon = práce
Vybrané technologie povrchových úprav. Základy vakuové techniky Doc. Ing. Karel Daďourek 2006
Vybrané technologie povrchových úprav Základy vakuové techniky Doc. Ing. Karel Daďourek 2006 Střední rychlost plynů Rychlost molekuly v p = (2 k N A ) * (T/M 0 ), N A = 6. 10 23 molekul na mol (Avogadrova
Přednáška č. 5: Jednorozměrné ustálené vedení tepla
Přednáška č. 5: Jednorozměrné ustálené vedení tepla Motivace Diferenciální rovnice problému Gradient teploty Energetická bilance Fourierův zákon Diferenciální rovnice vedení tepla Slabé řešení Diskretizace
odpuzují, když je zmáčkneme příliš blízko k sobě. V této světě, stačí k tomu jen trocha fantazie a přemýšlení.
Radiologická fyzika Hmota se skládá z atomů Atomy Zmínka o kvantové teorii 1. října 01 Hmota se skládá z atomů Úvod podle Richarda Feynmana Kdyby při nějaké katastrofě vzalo za své všechno, co vědy zjistily,
Kmity a mechanické vlnění. neperiodický periodický
rozdělení časově proměnných pohybů (dějů): Mechanické kmitání neperiodický periodický ne(an)harmonický harmonický vlastní kmity nucené kmity - je pohyb HB (tělesa), při němž HB nepřekročí konečnou vzdálenost
Vlny v plazmatu. Narušení rovnováhy, perturbace se šíří prostorem => vlny Vlna musí být řešením příslušných rovnic plazmatu => módy
Vlny v plazmatu Narušení rovnováhy, perturbace se šíří prostorem => vlny Vlna musí být řešením příslušných rovnic plazmatu => módy Jakákoli perturbace A( x,t může být reprezentována jako kombinace rovinných
Laserová technika prosince Katedra fyzikální elektroniky.
Laserová technika 1 Aktivní prostředí Šíření optických impulsů v aktivním prostředí Jan Šulc Katedra fyzikální elektroniky České vysoké učení technické jan.sulc@fjfi.cvut.cz. prosince 016 Program přednášek
Výroba tablet. Inženýrství chemicko-farmaceutických výrob. Lisování tablet. POMOCNÉ LÁTKY (kluzné látky, rozvolňovadla) LÉČIVÉ LÁTKY
Lisování tablet Výroba tablet GRANULÁT POMOCNÉ LÁTKY (kluzné látky, rozvolňovadla) LÉČIVÉ LÁTKY POMOCNÉ LÁTKY plniva, suchá pojiva, kluzné látky, rozvolňovadla tabletování z granulátu homogenizace TABLETOVINA
Mol. fyz. a termodynamika
Molekulová fyzika pracuje na základě kinetické teorie látek a statistiky Termodynamika zkoumání tepelných jevů a strojů nezajímají nás jednotlivé částice Molekulová fyzika základem jsou: Látka kteréhokoli
Plyn. 11 plynných prvků. Vzácné plyny. He, Ne, Ar, Kr, Xe, Rn Diatomické plynné prvky H 2, N 2, O 2, F 2, Cl 2
Plyny Plyn T v, K Vzácné plyny 11 plynných prvků He, Ne, Ar, Kr, Xe, Rn 165 Rn 211 N 2 O 2 77 F 2 90 85 Diatomické plynné prvky Cl 2 238 H 2, N 2, O 2, F 2, Cl 2 H 2 He Ne Ar Kr Xe 20 4.4 27 87 120 1 Plyn
frekvence f (Hz) perioda T = 1/f (s)
1.) Periodický pohyb - každý pohyb, který se opakuje v pravidelných intervalech Poet Poet cykl cykl za za sekundu sekundu frekvence f (Hz) perioda T 1/f (s) Doba Doba trvání trvání jednoho jednoho cyklu
1. Ze zadané hustoty krystalu fluoridu lithného určete vzdálenost d hlavních atomových rovin.
1 Pracovní úkoly 1. Ze zadané hustoty krystalu fluoridu lithného určete vzdálenost d hlavních atomových rovin. 2. Proměřte úhlovou závislost intenzity difraktovaného rentgenového záření při pevné orientaci
Necht na hmotný bod působí pouze pružinová síla F 1 = ky, k > 0. Podle druhého Newtonova zákona je pohyb bodu popsán diferenciální rovnicí
Počáteční problémy pro ODR2 1 Lineární oscilátor. Počáteční problémy pro ODR2 Uvažujme hmotný bod o hmotnosti m, na který působí síly F 1, F 2, F 3. Síla F 1 je přitom úměrná výchylce y z rovnovážné polohy
LOGO. Struktura a vlastnosti pevných látek
Struktura a vlastnosti pevných látek Rozdělení pevných látek (PL): monokrystalické krystalické Pevné látky polykrystalické amorfní Pevné látky Krystalické látky jsou charakterizovány pravidelným uspořádáním
Poznámky k Fourierově transformaci
Poznámky k Fourierově transformaci V těchto poznámkách jsou uvedeny základní vlastnosti jednorozměrné Fourierovy transformace a její aplikace na jednoduché modelové případy. Pro určitost jsou sdružené
6. Viskoelasticita materiálů
6. Viskoelasticita materiálů Viskoelasticita materiálů souvisí se schopností materiálů tlumit mechanické vibrace. Uvažujme harmonické dynamické namáhání (tzn. střídavě v tahu a tlaku) materiálu v oblasti
Výroba tablet. Lisovací nástroje. Inženýrství chemicko-farmaceutických výrob. Lisování tablet. Horní trn (razidlo) Lisovací matrice (forma, lisovnice)
Lisování tablet Výroba tablet GRANULÁT POMOCNÉ LÁTKY (kluzné látky, rozvolňovadla) LÉČIVÉ LÁTKY POMOCNÉ LÁTKY plniva, suchá pojiva, kluzné látky, rozvolňovadla tabletování z granulátu homogenizace TABLETOVINA
Výroba tablet. Fáze lisování. Lisovací nástroje. Typy tabletovacích lisů. Inženýrství chemicko-farmaceutických výrob
Výroba tablet GRANULÁT POMOCNÉ LÁTKY (kluzné látky, rozvolňovadla) LÉČIVÉ LÁTKY POMOCNÉ LÁTKY piva, suchá pojiva, kluzné látky, rozvolňovadla homogenizace homogenizace tabletování z granulátu TABLETOVINA
Univerzita Karlova v Praze procesy II. Zuzana. funkce
Náhodné 1 1 Katedra pravděpodobnosti a matematické statistiky Univerzita Karlova v Praze email: praskova@karlin.mff.cuni.cz 11.-12.3. 2010 1 Outline Lemma 1: 1. Nechť µ, ν jsou konečné míry na borelovských
6 PŘEDNÁŠKA 6: Stav kvantového systému, úplná množina pozorovatelných. Operátor momentu hybnosti a kvadrátu momentu hybnosti.
6 PŘEDNÁŠKA 6: Stav kvantového systému, úplná množina pozorovatelných Operátor momentu hybnosti a kvadrátu momentu hybnosti Víme už tedy téměř vše o operátorech Jsou to vlastně měřící přístroje v kvantové
Detekce nabitých částic Jak se ztrácí energie průchodem částice hmotou?
Detekce nabitých částic Jak se ztrácí energie průchodem částice hmotou? 10/20/2004 1 Bethe Blochova formule (1) je maximální možná předaná energie elektronu N r e - vogadrovo čislo - klasický poloměr elektronu
SIGNÁLY A SOUSTAVY, SIGNÁLY A SYSTÉMY
SIGNÁLY A SOUSTAVY, SIGNÁLY A SYSTÉMY TEMATICKÉ OKRUHY Signály se spojitým časem Základní signály se spojitým časem (základní spojité signály) Jednotkový skok σ (t), jednotkový impuls (Diracův impuls)
Profilová část maturitní zkoušky 2017/2018
Střední průmyslová škola, Přerov, Havlíčkova 2 751 52 Přerov Profilová část maturitní zkoušky 2017/2018 TEMATICKÉ OKRUHY A HODNOTÍCÍ KRITÉRIA Studijní obor: 78-42-M/01 Technické lyceum Předmět: FYZIKA
Elektrické vlastnosti pevných látek
Elektrické vlastnosti pevných látek elektrická vodivost gradient vnějšího elektrického pole vyvolá přenos náboje volnými nositeli (elektrony, díry, ionty) měrná vodivost = e n n e p p [ -1 m -1 ] Kovy
2. Statistický popis plazmatu
Statistický popis plazmatu 60 Statistický popis plazmatu Při popisu typického plazmatu je technicky nemožné popsat trajektorie všech částic Jen v řídkém plazmatu mezihvězdného prostoru nalezneme miliony
Maturitní témata profilová část
SEZNAM TÉMAT: Kinematika hmotného bodu mechanický pohyb, relativnost pohybu a klidu, vztažná soustava hmotný bod, trajektorie, dráha klasifikace pohybů průměrná a okamžitá rychlost rovnoměrný a rovnoměrně
Úvod do spektrálních metod pro analýzu léčiv
Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti Úvod do spektrálních metod pro analýzu léčiv Pavel Matějka, Vadym Prokopec pavel.matejka@vscht.cz pavel.matejka@gmail.com Vadym.Prokopec@vscht.cz
Plazmové metody. Základní vlastnosti a parametry plazmatu
Plazmové metody Základní vlastnosti a parametry plazmatu Atom je základní částice běžné hmoty. Částice, kterou již chemickými prostředky dále nelze dělit a která definuje vlastnosti daného chemického prvku.
MAKROSVĚT ~ FYZIKA MAKROSVĚTA (KLASICKÁ) FYZIKA
MAKRO- A MIKRO- MAKROSVĚT ~ FYZIKA MAKROSVĚTA (KLASICKÁ) FYZIKA STAV... (v dřívějším okamţiku)...... info o vnějším působení STAV... (v určitém okamţiku) ZÁKLADNÍ INFO O... (v tomto okamţiku) VŠCHNY DALŠÍ
Elektronová a absorpční spektroskopie, Vibrační spektroskopie (absorpční a Ramanova rozptylu)
Elektronová a absorpční spektroskopie, Vibrační spektroskopie (absorpční a Ramanova rozptylu) Průchod optického záření absorbujícím prostředím V dipólové aproximaci platí Einsteinův vztah pro pravděpodobnost
8 Elasticita kaučukových sítí
8 Elasticita kaučukových sítí Elastomerní polymerní látky (např. kaučuky) tvoří ze / chemické příčné vazby a / fyzikální uzly. Vyznačují se schopností deformovat se již malou silou nejméně o 00 % své původní
Termomechanika 9. přednáška Doc. Dr. RNDr. Miroslav Holeček
Termomechanika 9. přednáška Doc. Dr. RNDr. Miroslav Holeček Upozornění: Tato prezentace slouží výhradně pro výukové účely Fakulty strojní Západočeské univerzity v Plzni. Byla sestavena autorem s využitím
Úloha 1: Vypočtěte hustotu uhlíku (diamant), křemíku, germania a α-sn (šedý cín) z mřížkové konstanty a hmotnosti jednoho atomu.
Úloha : Vypočtěte hustotu uhlíku (diamant), křemíku, germania a α-sn (šedý cín) z mřížkové konstanty a hmotnosti jednoho atomu. Všechny zadané prvky mají krystalovou strukturu kub. diamantu. (http://en.wikipedia.org/wiki/diamond_cubic),
Teplota jedna ze základních jednotek soustavy SI, vyjadřována je v Kelvinech (značka K) další používané stupnice: Celsiova, Fahrenheitova
1 Rozložení, distribuce tepla Teplota je charakteristika tepelného stavu hmoty je to stavová veličina, charakterizující termodynamickou rovnováhu systému. Teplo vyjadřuje kinetickou energii částic. Teplota
Úvod do vln v plazmatu
Úvod do vln v plazmatu Co je to vlna? (fázová a grupová rychlost) Přehled vln v plazmatu Plazmové oscilace Iontové akustické vlny Horní hybridní frekvence Elektrostatické iontové cyklotronové vlny Dolní
Měření teplotní roztažnosti
KATEDRA EXPERIMENTÁLNÍ FYZIKY PŘÍRODOVĚDECKÁ FAKULTA UNIVERZITY PALACKÉHO V OLOMOUCI FYZIKÁLNÍ PRAKTIKUM Z MOLEKULOVÉ FYZIKY A TERMODYNAMIKY Měření teplotní roztažnosti Úvod Zvyšování termodynamické teploty
Metody využívající rentgenové záření. Rentgenografie, RTG prášková difrakce
Metody využívající rentgenové záření Rentgenografie, RTG prášková difrakce 1 Rentgenovo záření 2 Rentgenovo záření X-Ray Elektromagnetické záření Ionizující záření 10 nm 1 pm Využívá se v lékařství a krystalografii.
Kontraktantní/dilatantní
Kontraktantní/dilatantní plasticita - úhel dilatance směr přírůstku plastické deformace Na základě experimentálního měření dospěl St. Venant k závěru, že směry hlavních napětí jsou totožné se směry přírůstku
SIMULACE ŠÍŘENÍ NAPĚŤOVÝCH VLN V KRYSTALECH MĚDI A NIKLU
SIMULACE ŠÍŘENÍ NAPĚŤOVÝCH VLN V KRYSTALECH MĚDI A NIKLU V. Pelikán, P. Hora, A. Machová Ústav termomechaniky AV ČR Příspěvek vznikl na základě podpory záměru ÚT AV ČR AV0Z20760514. VÝPOČTOVÁ MECHANIKA
Hodnocení parametrů signálu AE při únavovém zatěžování tří typů konstrukčních materiálů. Vypracoval: Kolář Lukáš
Hodnocení parametrů signálu AE při únavovém zatěžování tří typů konstrukčních materiálů Vypracoval: Kolář Lukáš Cíl práce: Analýza současného stavu testování metodou AE Návrh experimentálního zajištění
Fyzika, maturitní okruhy (profilová část), školní rok 2014/2015 Gymnázium INTEGRA BRNO
1. Jednotky a veličiny soustava SI odvozené jednotky násobky a díly jednotek skalární a vektorové fyzikální veličiny rozměrová analýza 2. Kinematika hmotného bodu základní pojmy kinematiky hmotného bodu
Molekulová fyzika a termika:
Molekulová fyzika a termika: 1. Měření teploty: 2. Délková roztažnost a Objemová roztažnost látek 3. Bimetal 4. Anomálie vody 5. Částicová stavba látek, vlastnosti látek 6. Atomová hmotnostní konstanta
3.5.2 Kvantový rotátor
35 Další příklady 77 m ( x) exp x ; ( ) th kb (388) uto dnes slavnou formuli odvodil Felix v roce 193 Formule má velký význam v teorii kmitů krystalové mříže Odvoďme tak jako v minulých případech limitu