1.1.3 Převody jednotek

Rozměr: px
Začít zobrazení ze stránky:

Download "1.1.3 Převody jednotek"

Transkript

1 .. Převody jednotek Předpoklady: 0 Pomůcky: Pedagogická poznámka: Občas se převádění jednotek pojímá jako exhibice mířící do co největších mocnin. Snažím se takovému přístupu vyhnout. Nejde o základ fyziky, žáci mají dost problémů i s jednoduššími příklady, proto se učíme pouze to, co přijde na řadu v následujícím půlroku. Hodnoty veličin se často neudávají v základních jednotkách, ale v jejich násobcích (v tabulce z minulé hodiny) před dosazením do vztahů je většinou nutné převádět do základních jednotek. Dodatek: Existuje mnoho fyzikálních vztahů, do kterých je možné dosazovat u některých veličin i nepřevedené hodnoty, ale převádění je sázka na jistotu. Pokud nepřevádíme, musíme dobře vědět, co děláme. Díky mocninám deseti je převádění v soustavě SI jednoduché. 0, mm = 0, 0,00m = 0,000m,km =, 000 m = 00 m 5700 m = ,00km = 5,7 km Jednotku, ze které převádíme, nahradíme násobkem jednotku, na kterou chceme převést, a vynásobíme původní hodnotu mocninou deseti. Ke správnému převodu potřebujeme pouze dvě věci: pamatovat si význam předpony (napsat správný násobek), umět násobit mocninami deseti (správně posunout desetinou čárku). Častou chybou je převádění "obrácený směrem" před převodem bychom měli mít představu, zda se hodnota zvětší nebo zmenší. Př. : Převeď na základní jednotku. Před převodem odhadni, zda se hodnota zvětší nebo zmenší. a) mm b) 0,7 km c) 50µΑ d) 0,05GJ e) 70km f) 0,0mW g) 450 nm h) 00MW a) Metrů bude méně než milimetrů. mm = 0, 00m = 0, 0 m b) Metrů bude více než kilometrů. 0, 7 km = 0, m = 700 m c) Hodnota se zmenší. 50µΑ = 50 0, A = 0, 0005 A d) Hodnota se zvětší. 0, 05GJ = 0, J = J e) Hodnota se zvětší. 70 km = m = m f) Hodnota se zmenší. 0, 0mW = 0, 0 0, 00W = 0, 0000 W g) Hodnota se zmenší. 450 nm = 450 0, m = 0, m h) Hodnota se zvětší. 00 MW = W = W

2 Pedagogická poznámka: U všech příkladů na převádění platí, že není dobré studentům nutit vlastní postupy na převádění, pokud mají funkční vlastní metodu, se kterou jsou spokojení. O funkčnosti se rozhodne jejich používáním. Teprve pokud jejich metoda selhává, je třeba jim poskytnou jinou. Př. : Převeď na základní jednotku. a) 0,0dm b) 5dkg c) 050 hpa d) 5000cm a) 0,0dm = 0,0 0,m = 0,00m b) 5dkg = 5 0g = 50g = 50 0,00kg = 0,5kg c) 050 hpa = Pa = Pa d) 5000cm = ,0m = 50m Př. : Převeď ze základní jednotky na jednotku v závorce. a) 500 m[ km ] b) 0,05A [ µa ] c) 0, N[ kn ] d) 0, m[ nm ] e) J[ GJ ] f) 0,00F[ nf ] a) 500 m[ km] = 500 0,00km =,5km b) 0, 05 A [ µa] = 0, µA = 5000µA c) 0, N[ kn] = 0, 0,00kN = 0,000kN d) 0, m[ nm] = 0, nm = 4500 nm e) J[ GJ] = , GJ = 0, 00045GJ f) 0, 00 F[ nf] = 0, nf = nf Př. 4: Převeď na jednotku v závorce. a) 0 mm[ km ] b) 0,007 MJ[ mj ] c) 8000 nm[ mm ] a) 0 mm[ km] = 0 0,00m = 0,m = 0, 0,00km = 0,000km b) 0,007 MJ[ mj] = 0, J = 7000 J = mJ = mj c) 8000 nm[ mm] = , 00000mm = 0, 08mm Složitější je převádění jednotek času, které se nepřevádějí pomocí mocnin desíti. den = 4 hod, hod = 60 min, min = 60s Př. 5: Převeď na jednotku v závorce. a) h[ s ] b) 5min[ h ] c) 40min[ s ] d) 000s[ min ] e) 900s[ h ] f) dny[ min ] a) h[ s] = 60min = 60 60s = 600s 5 5 min h = 5 h = h = h b) [ ]

3 c) 40 min [ s] = 40 60s = 400s 000s min = 000 min = 50 min s h = 900 min = 900 h = h dny min = 4 h = 4 60 min = 40min d) [ ] e) [ ] f) [ ] Jednotky ostatních veličin se odvozují z jednotek základních. Př. 6: Odvoď základní jednotku: a) plochy, b) objemu, c) hustoty. a) plocha Plocha se počítá jako součin dvou vzdáleností: S = a b Dosadíme jednotky: S = a b = m m = m Základní jednotkou plochy je m. b) objem Objem určujeme jako třetí mocninu vzdálenosti: V Dosadíme jednotky: V = abc = m m m = m Základní jednotkou objemu je m. = abc c) hustota m Hustotu určujeme podle vzorce: ρ = V Dosadíme jednotky: ρ = m kg kg/m V = m = Základní jednotkou plochy je kg/m. Kromě jednotky můžeme ze vztahu odvodit i převodní koeficienty: m cm = m m = 00cm 00cm = 0000cm Při převodu plošných jednotek posouváme desetinnou čárku o dvojnásobný počet míst. Při převodu objemových jednotek posouváme desetinnou čárku o trojnásobný počet míst. Další jednotky plochy a objemu: ar: a = 00 m (čtverec 0 m x 0 m); hektar: ha = 0000 m (čtverec 00 m x 00 m); litr: l = dm.

4 Př. 7: Převeď na jednotky v závorce. a) 5m dm b) 0000 m [ ha ] c) 000 mm m d) 50 l m e) 0, 00hl m f) 5a m a) 5m dm = 5 00dm = 500dm 0000 m ha = , 000ha = ha b) [ ] c) 000 mm m = 000 0, m = 0, m d) 50 l m = 50dm = 50 0,00m = 0,5m e) 0, 00hl m = 0, l = 0,l = 0,dm = 0, 0, 00m = 0, 000m f) 5a m = 5 00 m = 500 m Poměrně snadno si můžeme odvodit převodové vztahy i pro složitější jednotky. Například: základní jednotka rychlosti - m/s ; často používaná jednotka rychlosti km/h. Jak převedeme z m/s na km/h? km m m/s = = = km/h =, 6 km/h s h Př. 8: Odvoď koeficient pro převod rychlosti z km/h na m/s. km 000 m km/h = = = m/s h 600s, 6 Oba předchozí výsledky můžeme zapsat do schématu:,6 m/s km/h,6 Na tomto místě je vhodné něco připomenout k procesu zapamatování. Lidská paměť není příliš stavěná na zapamatovávání čísel. Převody mezi km/h a m/s si můžeme pamatovat na několika úrovních. Zpočátku budeme převádět jednotky rychlosti často a budeme si pamatovat schéma včetně šipek. Po určité době si zřejmě budeme stále pamatovat číslo,6 ale nebudeme si jistí, kdy s ním násobit a kdy dělit. V takové situaci nám pomůže, když si uvědomíme čeho je víc (vždy km/h). V případě, že zapomeneme i převodní číslo, nezbývá než se vrátit na začátek a převod si opět odvodit. Nečíselné pravidlo ( převod složené jednotky odvodíme dosazením převodů jednotek, ze kterých je složena ) je přesně to, co mozku vyhovuje nejvíce. 4

5 Převodní vztahy pro složené jednotky získáme tím, že převedeme postupně jednotlivé jednotky, ze kterých je jednotka složena. Př. 9: Odvoď koeficienty pro převody jednotek. a) km/h[ km/s ] b) kg/m g/cm c) N/m N/cm km km a) km/h = = = km/s h 600s 600 kg 000 g b) kg/m = = = g/cm m cm 000 N N c) N/m = = = N/cm m 0000 cm 0000 Pedagogická poznámka: Převody v exponenciálním tvaru jsem uvedeny spíše ze setrvačnosti. Většina žáků má s exponenciálním tvarem problémy, které je lepší řešit až ve chvíli, kdy bude exponenciální tvar opravdu třeba (gravitační zákon) a látka je probrána v matematice. Pokud umíme používat exponenciální tvar čísla, jsou převody snazší. 6 4, 0 µm =, 0 0 m =, 0 m = = Při převádění v exponenciálním tvaru pouze měníme exponent u desítkové mocniny ,4 0 Tm, m,4 0 m Př. 0: Zapiš v exponenciálním tvaru. a) 000m b) 0,0 W c) Pa d) 0,0000A a) c) m =, 0 m b) Pa =, 05 0 Pa d) = 0,0 W 0 W = 5 0,0000A, 0 A Př. : Převeď na jednotku v závorce pomocí exponenciálního tvaru nm mm a) 0 mm[ km ] b) 0,007 MJ[ mj ] c) [ ] 0 mm km =, 0 mm =, 0 0 km =, 0 km 6 4 a) [ ] 0,007 MJ mj = 7 0 MJ = mj = 7 0 mj 9 6 b) [ ] 8000 nm mm = 8, 0 nm = 8, 0 0 mm = 8, 0 mm c) [ ] Pedagogická poznámka: Pokud zbude čas, žáci samostatně převádějí příklady ze sbírky. Shrnutí: Převádění složených jednotek provádíme převedením jednotek, ze kterých se složená jednotka skládá. 5

1.1.3 Převody jednotek

1.1.3 Převody jednotek .. Převody jednotek Předpoklady: 000 Pomůcky: Př. : Převeď ze základní jednotky na jednotku v závorce. a) 500 m[ km ] b) 0,05A [ µa ] c) 0, N[ kn ] d) 0,000 0045m[ nm ] e) 450 000J[ GJ ] f) 0,00 F[ nf

Více

1.1.4 Převody jednotek II

1.1.4 Převody jednotek II ..4 Převody jednotek II Předpoklady: 000 Pomůcky: voda, olej, trychtýř, dvě stejné kádinky. Pedagogická poznámka: Druhou částí hodiny je třeba začít nejpozději 5 minut před koncem. Př. : Převeď na jednotky

Více

1.1.2 Fyzikální veličiny, jednotky

1.1.2 Fyzikální veličiny, jednotky ..2 Fyzikální veličiny, jednotky Předpoklady: Pedagogická poznámka: Je třeba, aby byl dostatek času (minimálně 0 minut) na příklady na převádění jednotek na konci hodiny. U žáků, kteří mají problémy, je

Více

Převody jednotek Vedlejší jednotky objemu

Převody jednotek Vedlejší jednotky objemu Převody jednotek Vedlejší jednotky objemu Pár užitečných rad, jak postupovat při převádění jednotek objemu. Zopakujme si již známé jednotky objemu: Základní jednotka: metr krychlový ( kubík značka m Odvozené

Více

1 mm = 0,01 dm 1 m = 1 000 mm 1 mm = 0,001 m 1 km = 1 000 m 1 m = 0,001 km

1 mm = 0,01 dm 1 m = 1 000 mm 1 mm = 0,001 m 1 km = 1 000 m 1 m = 0,001 km Téma: Převody jednotek fyzikálních veličin A. Pravidla pro převody jednotek v desítkové soustavě převádíme-li z jednotky větší na menší číslo bude větší násobíme 10, 100, 1 000, 1 000 000 posuneme desetinou

Více

Svobodná chebská škola, základní škola a gymnázium s.r.o. Dušan Astaloš. samostatná práce, případně skupinová práce. úpravy a převádění zlomků

Svobodná chebská škola, základní škola a gymnázium s.r.o. Dušan Astaloš. samostatná práce, případně skupinová práce. úpravy a převádění zlomků METODICKÝ LIST DA Název tématu: Autor: Předmět: Zlomky smíšené číslo, složené zlomky a převod na desetinná čísla Dušan Astaloš Matematika Ročník: 6. Učebnice: Kapitola, oddíl: Metody výuky: Formy výuky:

Více

Jednotky objemu

Jednotky objemu 1.2.16 Jednotky objemu Předpoklady: 0215 Př. 1: Vynásob. a) 2,5 b) 0,042 20 c) 1, 0, d) 0, 08 0,9 a) 2,5 = 7,5 b) 0, 042 20 = 0,840 c) 1, 0, = 0,9 d) 0,08 0,9 = 0,072 Př. 2: Urči objem krychle o hraně:

Více

ÚVOD. Fyzikální veličiny a jednotky Mezinárodní soustava jednotek Skalární a vektorové veličiny Skládání vektorů

ÚVOD. Fyzikální veličiny a jednotky Mezinárodní soustava jednotek Skalární a vektorové veličiny Skládání vektorů ÚVOD Obsah, metody a význam fyziky Fyzikální veličiny a jednotky Mezinárodní soustava jednotek Skalární a vektorové veličiny Skládání vektorů Název - odvozen z řeckého slova fysis = příroda Původně - nauka

Více

1.5.2 Číselné soustavy II

1.5.2 Číselné soustavy II .. Číselné soustavy II Předpoklady: Př. : Převeď do desítkové soustavy čísla. a) ( ) b) ( ) 4 c) ( ) 6 = + + + = 7 + 9 + = a) = 4 + 4 + 4 = 6 + 4 + = 9 b) 4 = 6 + 6 + 6 = 6 + 6 + = 6 + + = 69. c) 6 Pedagogická

Více

soustava jednotek SI, základní, odvozené, vedlejší a doplňkové jednotky, násobky a díly jednotek, skalární a vektorové veličiny

soustava jednotek SI, základní, odvozené, vedlejší a doplňkové jednotky, násobky a díly jednotek, skalární a vektorové veličiny Škola: Autor: DUM: Vzdělávací obor: Tematický okruh: Téma: Masarykovo gymnázium Vsetín Mgr. Jitka Novosadová MGV_F_SS_3S3_D01_Z_OPAK_M_Uvodni_pojmy_T Člověk a příroda Fyzika Úvodní pojmy, fyzikální veličiny

Více

Fyzikální veličiny. Převádění jednotek

Fyzikální veličiny. Převádění jednotek Fyzikální veličiny Vlastnosti těles, které můžeme měřit nebo porovnávat nazýváme fyzikální veličiny. Značka fyzikální veličiny je písmeno, kterým se název fyzikální veličiny nahradí pro zjednodušení zápisu.

Více

1.2.3 Měříme objem I. Předpoklady: Pomůcky: odměrné válce, 8 kostek. Objem - velikost části prostoru, který předmět zaujímá.

1.2.3 Měříme objem I. Předpoklady: Pomůcky: odměrné válce, 8 kostek. Objem - velikost části prostoru, který předmět zaujímá. 1.2. Měříme objem I Předpoklady: 0202 Pomůcky: odměrné válce, 8 kostek Objem - velikost části prostoru, který předmět zaujímá. Pedagogická poznámka: Pojem objemu žáci formulují společně. Snažím se, aby

Více

Poměry a úměrnosti II

Poměry a úměrnosti II 1.1.12 Poměry a úměrnosti II Předpoklady: 010111 U následujících úloh je nutné poznat, zda jde o přímou nebo nepřímou úměrnost případně příklad, který není možné řešit ani jedním z obou postupů. Pedagogická

Více

Metodické pokyny k pracovnímu listu č Objem krychle a kvádru

Metodické pokyny k pracovnímu listu č Objem krychle a kvádru Název projektu: Spokojená škola Číslo projektu: OPVK.CZ.1.07/1.2.33/02.0039 Metodické pokyny k pracovnímu listu č. 6.10 Objem krychle a kvádru Pracovní list je určen k výkladu a procvičování učiva o objemu

Více

FYZIKA, SI, NÁSOBKY A DÍLY, SKALÁR A VEKTOR, PŘEVODY TEORIE. Fyzika. Fyzikální veličiny a jednotky

FYZIKA, SI, NÁSOBKY A DÍLY, SKALÁR A VEKTOR, PŘEVODY TEORIE. Fyzika. Fyzikální veličiny a jednotky Škola: Autor: DUM: Vzdělávací obor: Tematický okruh: Téma: Masarykovo gymnázium Vsetín Mgr. Vladislav Válek MGV_F_SS_1S1_D01_Z_MECH_Uvod_PL Člověk a příroda Fyzika Mechanika Úvod Fyzika, SI, násobky a

Více

Soustava SI, převody jednotek

Soustava SI, převody jednotek Variace 1 Soustava SI, převody jednotek Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. 1. Co je fyzika, jednotky

Více

Postup při řešení matematicko-fyzikálně-technické úlohy

Postup při řešení matematicko-fyzikálně-technické úlohy Postup při řešení matematicko-fyzikálně-technické úlohy Michal Kolesa Žádná část této publikace NESMÍ být jakkoliv reprodukována BEZ SOUHLASU autora! Poslední úpravy: 3.7.2010 Úvod Matematicko-fyzikálně-technické

Více

4.3.8 Vzorce pro součet goniometrických funkcí. π π. π π π π. π π. π π. Předpoklady: 4306

4.3.8 Vzorce pro součet goniometrických funkcí. π π. π π π π. π π. π π. Předpoklady: 4306 ..8 Vzorce pro součet goniometrických funkcí Předpoklady: 06 Vzorce pro součet goniometrických funkcí: sin + sin y = sin cos sin sin y = cos sin cos + cos y = cos cos cos cos y = sin sin Na první pohled

Více

Číselné soustavy a převody mezi nimi

Číselné soustavy a převody mezi nimi Číselné soustavy a převody mezi nimi Základní požadavek na počítač je schopnost zobrazovat a pamatovat si čísla a provádět operace s těmito čísly. Čísla mohou být zobrazena v různých číselných soustavách.

Více

Mocniny. Nyní si ukážeme jak je to s umocňováním záporných čísel.

Mocniny. Nyní si ukážeme jak je to s umocňováním záporných čísel. Mocniny Mocnina je matematická funkce, která (jednoduše řečeno) slouží ke zkrácenému zápisu násobení. Místo toho abychom složitě psali 2 2 2 2 2, napíšeme jednoduše V množině reálných čísel budeme definovat

Více

M - Příprava na pololetní písemku č. 1

M - Příprava na pololetní písemku č. 1 M - Příprava na pololetní písemku č. 1 Určeno jako studijní materiál pro třídu 2K. VARIACE 1 Tento dokument byl kompletně vytvořen, sestaven a vytištěn v programu dosystem - EduBase. Více informací o programu

Více

1.1.5 Poměry a úměrnosti II

1.1.5 Poměry a úměrnosti II 1.1.5 Poměry a úměrnosti II Předpoklady: 1104 U následujících úloh je nutné poznat, zda jde o přímou nebo nepřímou úměrnost případně příklad, který není možné řešit ani jedním z obou postupů. Pedagogická

Více

2. Mocniny 2.1 Mocniny a odmocniny

2. Mocniny 2.1 Mocniny a odmocniny . Mocniny. Mocniny a odmocniny 8. ročník. Mocniny a odmocniny Příklad : Vyjádřete jako mocninu : a)... b) (- ). (- ). (- ). (- ). (- ). (- ) c)...a.a.a.a.b.b.b.b d)..a.b e) a. a. a. a Příklad : Vyjádřete

Více

ZLOMKY A RACIONÁLNÍ ČÍSLA. Pojem zlomku. Zlomek zápis části celku. a b. a je část, b je celek, zlomková čára

ZLOMKY A RACIONÁLNÍ ČÍSLA. Pojem zlomku. Zlomek zápis části celku. a b. a je část, b je celek, zlomková čára 9... ZLOMKY A RACIONÁLNÍ ČÍSLA Pojem zlomku Zlomek zápis části celku a b a je část, b je celek, zlomková čára Každé číslo zapsané zlomkem lze vyjádřit jako číslo desetinné 7 Zlomková čára je dělící čára

Více

Projekt Efektivní Učení Reformou oblastí gymnaziálního vzdělávání je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky.

Projekt Efektivní Učení Reformou oblastí gymnaziálního vzdělávání je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky. Projekt Efektivní Učení Reformou oblastí gymnaziálního vzdělávání je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky. FYZIKÁLNÍ VELIČINY A JEDNOTKY Teorie Do textu doplňte

Více

Jméno autora: Mgr. Zdeněk Chalupský Datum vytvoření: 25. 8. 2012 Číslo DUM: VY_32_INOVACE_01_FY_A

Jméno autora: Mgr. Zdeněk Chalupský Datum vytvoření: 25. 8. 2012 Číslo DUM: VY_32_INOVACE_01_FY_A Jméno autora: Mgr. Zdeněk Chalupský Datum vytvoření: 25. 8. 2012 Číslo DUM: VY_32_INOVACE_01_FY_A Ročník: I. Fyzika Vzdělávací oblast: Přírodovědné vzdělávání Vzdělávací obor: Fyzika Tematický okruh: Úvod

Více

Jméno autora: Mgr. Zdeněk Chalupský Datum vytvoření: 25. 9. 2012 Číslo DUM: VY_32_INOVACE_17_FY_A

Jméno autora: Mgr. Zdeněk Chalupský Datum vytvoření: 25. 9. 2012 Číslo DUM: VY_32_INOVACE_17_FY_A Jméno autora: Mgr. Zdeněk Chalupský Datum vytvoření: 25. 9. 2012 Číslo DUM: VY_32_INOVACE_17_FY_A Ročník: I. Fyzika Vzdělávací oblast: Přírodovědné vzdělávání Vzdělávací obor: Fyzika Tematický okruh: Mechanika

Více

ÍKLAD 190 gram klidu 2880 km/h 0,01 s Otázky z y r ch c le l n dráha síla p sobící práci výkon kinetická energie hmotnosti 2 t rychlost pytle

ÍKLAD 190 gram klidu 2880 km/h 0,01 s Otázky z y r ch c le l n dráha síla p sobící práci výkon kinetická energie hmotnosti 2 t rychlost pytle Při výstřelu lodního protiletadlového děla projektil neboli střela ráže 3 mm o hmotnosti 190 gramů zrychlí z klidu na rychlost 880 km/h za 0,01 s. Předpokládáme, že: pohybující se projektil v hlavni je

Více

1. ÚVOD 1.1 SOUSTAVA FYZIKÁLNÍCH VELIČIN, KONSTANT,

1. ÚVOD 1.1 SOUSTAVA FYZIKÁLNÍCH VELIČIN, KONSTANT, 1. ÚVOD 1.1 SOUSTAVA FYZIKÁLNÍCH VELIČIN, KONSTANT, JEDNOTEK A JEJICH PŘEVODŮ FYZIKÁLNÍ VELIČINY Fyzikálními veličinami charakterizujeme a popisujeme vlastnosti fyzikálních objektů parametry stavů, ve

Více

1. OBSAH, METODY A VÝZNAM FYZIKY -

1. OBSAH, METODY A VÝZNAM FYZIKY - IUVENTAS - SOUKROMÉ GYMNÁZIUM A STŘEDNÍ ODBORNÁ ŠKOLA 1. OBSAH, METODY A VÝZNAM FYZIKY - STUDIJNÍ TEXTY Frolíková Martina Augustynek Martin Adamec Ondřej OSTRAVA 2006 Budeme rádi, když nám jakékoliv případné

Více

1.2.3 Racionální čísla I

1.2.3 Racionální čísla I .2. Racionální čísla I Předpoklady: 002 Racionální jsou všechna čísla, která můžeme zapsat ve tvaru zlomku p q, kde p Z, q N. Například 2 ; ; 2 ; 6 ; umožňují počítat s částmi celků (třeba polovina dortu),

Více

1.5.1 Číselné soustavy

1.5.1 Číselné soustavy .. Číselné soustavy Předpoklady: základní početní operace Pedagogická poznámka: Tato hodina není součástí klasické gymnaziální sady. Upřímně řečeno nevím proč. Jednak se všichni studenti určitě setkávají

Více

1.1.4 Poměry a úměrnosti I

1.1.4 Poměry a úměrnosti I 1.1.4 Poměry a úměrnosti I Předpoklady: základní početní operace Poznámka: Následující látka patří mezi nejdůležitější, probírané na základní škole. Bohužel patří také mezi ty, kde je nejvíce rozšířené

Více

Vypočítejte délku tělesové úhlopříčky krychle o hraně délky a cm.

Vypočítejte délku tělesové úhlopříčky krychle o hraně délky a cm. Vypočítejte délku tělesové úhlopříčky krychle o hraně délky a cm. 8 cm u s = 11,3137085 cm pomocí Pythagorovy věty z pravoúhlého ABC u t = 13,85640646 cm opět pomocí Pythagorovy věty z pravoúhlého ACA'

Více

Vyšší odborná škola, Obchodní akademie a Střední odborná škola EKONOM, o. p. s. Litoměřice, Palackého 730/1

Vyšší odborná škola, Obchodní akademie a Střední odborná škola EKONOM, o. p. s. Litoměřice, Palackého 730/1 DUM Základy přírodních věd DUM III/2-T3-1 Téma: Veličiny a jednotky Střední škola Rok: 2012 2013 Varianta: A Zpracoval: Mgr. Pavel Hrubý VÝKLAD SI soustava Obsah MECHANIKA... Chyba! Záložka není definována.

Více

Přepočet přes jednotku - podruhé I

Přepočet přes jednotku - podruhé I 1.2.25 Přepočet přes jednotku - podruhé I Předpoklady: 010224 Pedagogická poznámka: Tato a následující hodina navazují na poslední hodinu úvodní kapitoly. Jde v podstatě o stejné problémy, ale s desetinnými

Více

Variace. Mocniny a odmocniny

Variace. Mocniny a odmocniny Variace 1 Mocniny a odmocniny Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. 1. Mocniny a odmocniny Obor přirozených

Více

4a) Racionální čísla a početní operace s nimi

4a) Racionální čísla a početní operace s nimi Racionální čísla a početní operace s nimi Množinu racionálních čísel získáme z množiny čísel celých, jejím rozšířením o čísla desetinná s ukončeným des. rozvojem nebo periodická a zlomky, které lze na

Více

Rozšiřování = vynásobení čitatele i jmenovatele stejným číslem různým od nuly

Rozšiřování = vynásobení čitatele i jmenovatele stejným číslem různým od nuly Rozšiřování a krácení zlomků Rozšiřování vynásobení čitatele i jmenovatele stejným číslem různým od nuly rozšířený zlomek vznikl tak, že jsme čitatel i jmenovatel původního zlomku vynásobili číslem rozšířený

Více

Variace. Číselné výrazy

Variace. Číselné výrazy Variace 1 Číselné výrazy Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. 1. Číselné výrazy Číselné výrazy, výpočty

Více

Obsahy. Trojúhelník = + + 2

Obsahy. Trojúhelník = + + 2 Obsahy Obsah nám říká, jak velkou plochu daný útvar zaujímá. Třeba jak velký máme byt nebo pozemek kolik metrů čtverečných (m 2 ), hektarů (ha), centimetrů čtverečných (cm 2 ), Základní jednotkou obsahu

Více

1.2.3 Racionální čísla I

1.2.3 Racionální čísla I .2. Racionální čísla I Předpoklady: 002 Pedagogická poznámka: Hodina je trochu netypická, na jejím začátku provedu výklad (spíše opakování), který nechám na tabuli a potom až do konce řeší žáci zbytek

Více

1.3.5 Siloměr a Newtony

1.3.5 Siloměr a Newtony 1.3.5 Siloměr a Newtony Předpoklady: 010305 Pomůcky: siloměry, Vernier měřič tlakové síly rukou, Př. 1: Na obrázku je nakreslen kvádřík, který rovnoměrně táhneme po stole. Zakresli do obrázku síly, které

Více

Příklady pro přijímací zkoušku z matematiky školní rok 2012/2013

Příklady pro přijímací zkoušku z matematiky školní rok 2012/2013 Příklady pro přijímací zkoušku z matematiky školní rok 2012/2013 Test přijímací zkoušky bude obsahovat úlohy uzavřené, kdy žák vybírá správnou odpověď ze čtyř nabízených variant (správná je vždy právě

Více

2.5.21 Nepřímá úměrnost III

2.5.21 Nepřímá úměrnost III .5.1 Nepřímá úměrnost III Předpoklady: 0050 Př. 1: Porovnej do dvou sloupců přímou a nepřímou úměrnost (předpis, základní vlastnost, postup při řešení příkladů,...). Přímá úměrnost Nepřímá úměrnost předpis

Více

Výpočet hustoty, práce s tabulkami

Výpočet hustoty, práce s tabulkami Výpočet hustoty, práce s tabulkami Autor: Pavel Broža Datum: 3. 5. 2014 Cílový ročník: 7. Život jako leporelo, reistrační číslo CZ.1.07/1.4.00/21.3763 Výpočet hustoty vzor 1 (bez převodů jednotek) Dřevěné

Více

Grafické sčítání úseček teorie

Grafické sčítání úseček teorie Grafické sčítání úseček teorie Nezáleží na tom, kterou úsečku přeneseme na polopřímku jako první. Úsečka AD je grafickým součtem úseček AB a CD. Příklad 1 Hana jde ze školy na poštu, z pošty do knihovny.

Více

Zvyšování kvality výuky technických oborů

Zvyšování kvality výuky technických oborů Zvyšování kvality výuky technických oborů Klíčová aktivita IV.2 Inovace a zkvalitnění výuky směřující k rozvoji matematické gramotnosti žáků středních škol Téma IV.2.1 Algebraické výrazy, výrazy s mocninami

Více

Autor: Jana Krchová Obor: Fyzika FYZIKÁLNÍ VELIČINY. Délka Doplň ve větě chybějící slova: Fyzikální veličina je těles, kterou lze..

Autor: Jana Krchová Obor: Fyzika FYZIKÁLNÍ VELIČINY. Délka Doplň ve větě chybějící slova: Fyzikální veličina je těles, kterou lze.. FYZIKÁLNÍ VELIČINY Délka Doplň ve větě chybějící slova: Fyzikální veličina je těles, kterou lze.. Doplň chybějící písmena : Každá fyzikální veličina má: 1) - - z v 2) z - - - k 3) - - k l - d - - j - -

Více

1 Měrové jednotky používané v geodézii

1 Měrové jednotky používané v geodézii 1 Měrové jednotky používané v geodézii Ke stanovení vzájemné polohy jednotlivých bodů zemského povrchu, je nutno měřit různé fyzikální veličiny. Jsou to zejména délky, úhly, plošné obsahy, čas, teplota,

Více

7 = 3 = = Učivo Vysvětlení Př. + pozn. Zlomek = vyjádření části celku 3 část snědla jsem 3 kousky

7 = 3 = = Učivo Vysvětlení Př. + pozn. Zlomek = vyjádření části celku 3 část snědla jsem 3 kousky 0 Učivo Vysvětlení Př. + pozn. Zlomek vyjádření části celku část snědla jsem kousky celek a pizza byla rozdělena na kousky Pojem zlomek Vyjádření zlomku Základní tvar: čitatel a jmenovatel jsou nesoudělná

Více

1 Mnohočleny a algebraické rovnice

1 Mnohočleny a algebraické rovnice 1 Mnohočleny a algebraické rovnice 1.1 Pojem mnohočlenu (polynomu) Připomeňme, že výrazům typu a 2 x 2 + a 1 x + a 0 říkáme kvadratický trojčlen, když a 2 0. Číslům a 0, a 1, a 2 říkáme koeficienty a písmenem

Více

Instrukce: Jednotlivé části nejdou přesně po sobě, jak jsme se učili, je to shrnutí.

Instrukce: Jednotlivé části nejdou přesně po sobě, jak jsme se učili, je to shrnutí. Instrukce: Vytiskněte si tenhle přehled, vybarvěte důležité části (zvýrazňovačkou, pastelkami) tak, aby jste se rychle orientovali. Při počítání příkladů jej mějte před sebou! a dívejte se do něj. Možná

Více

Fyzikální veličiny a jednotky, přímá a nepřímá metoda měření

Fyzikální veličiny a jednotky, přímá a nepřímá metoda měření I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY Laboratorní práce č. 2 Fyzikální veličiny a jednotky,

Více

ZÁKLADNÍ ŠKOLA PŘI DĚTSKÉ LÉČEBNĚ Ostrov u Macochy, Školní 363 INOVACE VÝUKY CZ.1.07/1.4.00/

ZÁKLADNÍ ŠKOLA PŘI DĚTSKÉ LÉČEBNĚ Ostrov u Macochy, Školní 363 INOVACE VÝUKY CZ.1.07/1.4.00/ ZÁKLADNÍ ŠKOLA PŘI DĚTSKÉ LÉČEBNĚ Ostrov u Macochy, Školní 363 INOVACE VÝUKY CZ.1.07/1.4.00/21.0647 Název vzdělávacího materiálu: Anotace: Vzdělávací oblast: VY_32_INOVACE_HRAVĚ02 Křížovka, test délka

Více

Přehled učiva matematiky 7. ročník ZŠ

Přehled učiva matematiky 7. ročník ZŠ Přehled učiva matematiky 7. ročník ZŠ I. ARITMETIKA 1. Zlomky a racionální čísla Jestliže rozdělíme něco (= celek) na několik stejných dílů, nazývá se každá část celku zlomkem. Zlomek tři čtvrtiny = tři

Více

MĚŘENÍ FYZIKÁLNÍCH VELIČIN. m = 15 kg. Porovnávání a měření. Soustava SI (zkratka z francouzského Le Système International d'unités)

MĚŘENÍ FYZIKÁLNÍCH VELIČIN. m = 15 kg. Porovnávání a měření. Soustava SI (zkratka z francouzského Le Système International d'unités) MĚŘENÍ FYZIKÁLNÍCH VELIČIN Porovnávání a měření Při zkoumání světa kolem nás porovnáváme různé vlastnosti těles např. barvu, tvar, délku, tvrdost, stlačitelnost, teplotu, hmotnost, objem,. Často se však

Více

KINEMATIKA I FYZIKÁLNÍ VELIČINY A JEDNOTKY

KINEMATIKA I FYZIKÁLNÍ VELIČINY A JEDNOTKY Předmět: Ročník: Vytvořil: Datum: FYZIKA PRVNÍ MGR. JÜTTNEROVÁ 24. 7. 212 Název zpracovaného celku: KINEMATIKA I FYZIKÁLNÍ VELIČINY A JEDNOTKY Fyzikální veličiny popisují vlastnosti, stavy a změny hmotných

Více

ČÍSLICOVÁ TECHNIKA VÝUKOVÝ MATERIÁL. Produkt: Číslicová technika Téma výukového materiálu: Číselné soustavy a kódy

ČÍSLICOVÁ TECHNIKA VÝUKOVÝ MATERIÁL. Produkt: Číslicová technika Téma výukového materiálu: Číselné soustavy a kódy ČÍSLICOVÁ TECHNIKA VÝUKOVÝ MATERIÁL Produkt: Číslicová technika Téma výukového materiálu: Číselné soustavy a kódy Studijní obor: Elektrotechnika Ročník: 2. Měsíc a rok vypracování: červen 2010 Vypracoval:

Více

Kolik otáček udělá válec parního válce, než uválcuje 150 m dlouhý úsek silnice? Válec má poloměr 110 cm a je 3 m dlouhý.

Kolik otáček udělá válec parního válce, než uválcuje 150 m dlouhý úsek silnice? Válec má poloměr 110 cm a je 3 m dlouhý. DDÚ Kolik otáček udělá válec parního válce, než uválcuje 150 m dlouhý úsek silnice? Válec má poloměr 110 cm a je m dlouhý. Na délce válce vůbec nezáleží, záleží na jeho obvodu, poloměr je 110 cm, vypočítám

Více

1 Mnohočleny a algebraické rovnice

1 Mnohočleny a algebraické rovnice 1 Mnohočleny a algebraické rovnice 1.1 Pojem mnohočlenu (polynomu) Připomeňme, že výrazům typu a 2 x 2 + a 1 x + a 0 říkáme kvadratický trojčlen, když a 2 0. Číslům a 0, a 1, a 2 říkáme koeficienty a písmenem

Více

M - 2. stupeň. Matematika a její aplikace Školní výstupy Žák by měl

M - 2. stupeň. Matematika a její aplikace Školní výstupy Žák by měl 6. ročník číst, zapisovat, porovnávat, zaokrouhlovat, rozkládat přirozená čísla do 10 000 provádět odhady výpočtů celá čísla - obor přirozených čísel do 10 000 numerace do 10 000 čtení, zápis, porovnávání,

Více

16. Goniometrické rovnice

16. Goniometrické rovnice @198 16. Goniometrické rovnice Definice: Goniometrická rovnice je taková rovnice, ve které proměnná (neznámá) vystupuje pouze v goniometrických funkcích. Řešit goniometrické rovnice znamená nalézt všechny

Více

VELIČINY UŽÍVANÉ V EKONOMICE A STATISTICE

VELIČINY UŽÍVANÉ V EKONOMICE A STATISTICE VELIČINY UŽÍVANÉ V EKONOMICE A STATISTICE Lze zjednodušeně říci: Statistika = matematika užitá v ekonomice (aj. vědních oborech) Statistika jako užitá (aplikovaná) věda pracuje s pojmenovanými čísly, např.

Více

JEDNOTKY MĚR. Růžena Blažková

JEDNOTKY MĚR. Růžena Blažková JEDNOTKY MĚR Růžena Blažková Vyjádření studentů: Měla jsem problémy s převody jednotek. Maminka mi ukázala naši zahradu. Dodnes vím, že naše zahrada má 14 arů a že to je 1 400 m 2. Pamatuji si životní

Více

Digitální učební materiál

Digitální učební materiál Digitální učební materiál Projekt CZ.1.07/1.5.00/34.0415 Inovujeme, inovujeme Šablona III/2 Inovace a zkvalitnění výuky prostřednictvím ICT (DUM) Tematická Hospodářské výpočty I Společná pro celou sadu

Více

Svobodná chebská škola, základní škola a gymnázium s.r.o. procvičování obsahu a objemu prostorových těles

Svobodná chebská škola, základní škola a gymnázium s.r.o. procvičování obsahu a objemu prostorových těles METODICKÝ LIST DA55 Název tématu: Autor: Předmět: Ročník: Metody výuky: Formy výuky: Cíl výuky: Získané dovednosti: Stručný obsah: Prostorová tělesa VII. slovní úlohy Astaloš Dušan Matematika šestý/sedmý

Více

Racionální čísla. Množinu racionálních čísel značíme Q. Zlomky můžeme při počítání s nimi:

Racionální čísla. Množinu racionálních čísel značíme Q. Zlomky můžeme při počítání s nimi: Racionální čísla Racionální číslo je číslo vyjádřené ve tvaru zlomku p kde p je celé číslo a q je q číslo přirozené. Tento zápis je jednoznačný pokud čísla p, q jsou nesoudělná, zlomek je v základním tvaru.

Více

EXPONENCIÁLNÍ ROVNICE

EXPONENCIÁLNÍ ROVNICE Projekt ŠABLONY NA GVM Gymnázium Velké Meziříčí registrační číslo projektu: CZ.1.07/1.5.00/34.0948 IV-2 Inovace a zkvalitnění výuky směřující k rozvoji matematické gramotnosti žáků středních škol EXPONENCIÁLNÍ

Více

Desetinná čísla pracovní listy pro ročník stupňované podle náročnosti Irena Budínová Pedagogická fakulta MU

Desetinná čísla pracovní listy pro ročník stupňované podle náročnosti Irena Budínová Pedagogická fakulta MU Desetinná čísla pracovní listy pro 6. 7. ročník stupňované podle náročnosti Irena Budínová Pedagogická fakulta MU irena.budinova@seznam.cz Moderní výuka by se měla co nejvíce orientovat na individualitu

Více

Jednoduchá exponenciální rovnice

Jednoduchá exponenciální rovnice Jednoduchá exponenciální rovnice Z běžné rovnice se exponenciální stává, pokud obsahuje proměnnou v exponentu. Obecně bychom mohli exponenciální rovnici zapsat takto: a f(x) = b g(x), kde a, b > 0. Typickým

Více

Kaţdé číslo, které lze vyjádřit jako podíl dvou celých čísel, je číslo racionální.

Kaţdé číslo, které lze vyjádřit jako podíl dvou celých čísel, je číslo racionální. . Racionální čísla. ročník -. Racionální čísla.. Vymezení pojmu Kaţdé číslo které lze vyjádřit jako podíl dvou celých čísel je číslo racionální. Při podílu dvou celých čísel a a b mohou nastat tyto situace

Více

KOMPLEXNÍ ČÍSLA INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ

KOMPLEXNÍ ČÍSLA INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ KOMPLEXNÍ ČÍSLA Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro vyšší gymnázia Autoři projektu Student na prahu 21. století - využití ICT ve vyučování matematiky na gymnáziu INVESTICE

Více

Číslo projektu: CZ.1.07/1.4.00/21.3811 Název DUM: Hustota Číslo DUM: III/2/FY/2/1/9 Vzdělávací předmět: Fyzika Tematická oblast: Fyzikální veličiny a

Číslo projektu: CZ.1.07/1.4.00/21.3811 Název DUM: Hustota Číslo DUM: III/2/FY/2/1/9 Vzdělávací předmět: Fyzika Tematická oblast: Fyzikální veličiny a Číslo projektu: CZ.1.07/1.4.00/21.3811 Název DUM: Hustota Číslo DUM: III/2/FY/2/1/9 Vzdělávací předmět: Fyzika Tematická oblast: Fyzikální veličiny a jejich měření Autor: Mgr. Petra Kejkrtová Anotace:

Více

g) když umocníme na druhou třetinu rozdílu dvou čísel x, y a zvětšíme toto číslo o jejich součin, tak dostaneme výraz?

g) když umocníme na druhou třetinu rozdílu dvou čísel x, y a zvětšíme toto číslo o jejich součin, tak dostaneme výraz? Téma : Výrazy, poměr (úprava výrazů, podmínky řešitelnosti, algebraické vzorce, hodnota výrazů, poměr, měřítko na mapě) Příklady Zápis výrazů ) Zapište jako výraz: a) součet trojnásobku libovolného čísla

Více

Příklady k opakování učiva ZŠ

Příklady k opakování učiva ZŠ Příklady k opakování učiva ZŠ 1. Číslo 78 je dělitelné: 8 7 3. Rozhodněte, které z následujících čísel je dělitelem čísla 94: 4 14 15 3. Určete všechny dělitele čísla 36:, 18, 4, 9, 6, 3, 1, 3, 6, 1 3,

Více

15. KubickÈ rovnice a rovnice vyööìho stupnï

15. KubickÈ rovnice a rovnice vyööìho stupnï 15. KubickÈ rovnice a rovnice vyööìho stupnï Čas od času je možné slyšet v pořadech o počasí jména jako Andrew, Mitch, El Ňiňo. otom následuje zpráva o katastrofálních vichřicích, uragánech a jiných mimořádných

Více

7.5.3 Hledání kružnic II

7.5.3 Hledání kružnic II 753 Hledání kružnic II Předpoklady: 750 Pedagogická poznámka: Tato hodina patří mezi vůbec nejtěžší Není reálné předpokládat, že by většina studentů dokázala samostatně přijít na řešení, po čase na rozmyšlenou

Více

Metodické pokyny k pracovnímu listu č Povrchy a objemy těles II

Metodické pokyny k pracovnímu listu č Povrchy a objemy těles II Název projektu: Spokojená škola Číslo projektu: OPVK.CZ.1.07/1.2.33/02.0039 Metodické pokyny k pracovnímu listu č. 9.10 Povrchy a objemy těles II Pracovní list je zaměřen především na výpočty povrchů a

Více

Slouží k procvičení aplikace vzorců pro povrch a objem těles ve slovních úlohách

Slouží k procvičení aplikace vzorců pro povrch a objem těles ve slovních úlohách Název projektu Život jako leporelo Registrační číslo CZ.1.07/1.4.00/21.3763 Autor Mgr. Martina Smolinková Datum 11. 1. 2014 Ročník 9. Vzdělávací oblast Matematika a její aplikace Vzdělávací obor Matematika

Více

Chemické výpočty. = 1,66057. 10-27 kg

Chemické výpočty. = 1,66057. 10-27 kg 1. Relativní atomová hmotnost Chemické výpočty Hmotnost atomů je velice malá, řádově 10-27 kg, a proto by bylo značně nepraktické vyjadřovat ji v kg, či v jednontkách odvozených. Užitečnější je zvolit

Více

Matematika Název Ročník Autor

Matematika Název Ročník Autor Desetinná čísla řádu desetin a setin 6. Opakování učiva 6.ročníku 7. Opakování učiva 6.ročníku 7. Opakování učiva 6.ročníku 7. Dělitelnost přirozených čísel 7. Desetinná čísla porovnávání 7. Desetinná

Více

Praha & EU: investujeme do vaší budoucnosti. Daniel Turzík, Miroslava Dubcová,

Praha & EU: investujeme do vaší budoucnosti. Daniel Turzík, Miroslava Dubcová, E-sbírka příkladů Seminář z matematiky Evropský sociální fond Praha & EU: investujeme do vaší budoucnosti Daniel Turzík, Miroslava Dubcová, Pavla Pavlíková Obsah 1 Úpravy výrazů................................................................

Více

( ) Jako základ mocnin nemusíme používat jen 10. Pokud není jasné, že číslo je uvedeno v desítkové soustavě, píšeme jej takto: ( 12054 ) 10

( ) Jako základ mocnin nemusíme používat jen 10. Pokud není jasné, že číslo je uvedeno v desítkové soustavě, píšeme jej takto: ( 12054 ) 10 .. Číselné soustavy I Předpoklady: základní početní operace Pedagogická poznámka: Tato a následující hodina není součástí klasické gymnaziální sady. Upřímně řečeno nevím proč. Jednak se všichni studenti

Více

Pedagogická poznámka: Celý obsah se za hodinu stihnout nedá. z ] leží na kulové ploše, právě když platí = r. Dosadíme vzorec pro vzdálenost:

Pedagogická poznámka: Celý obsah se za hodinu stihnout nedá. z ] leží na kulové ploše, právě když platí = r. Dosadíme vzorec pro vzdálenost: 753 Kulová plocha Předpoklady: 750 Pedagogická poznámka: Celý obsah se za hodinu stihnout nedá Kulová plocha = kružnice v prostoru Př : Vyslov definici kulové plochy Kulová plocha je množina všech bodů

Více

2.3.17 Slovní úlohy vedoucí na soustavy rovnic I

2.3.17 Slovní úlohy vedoucí na soustavy rovnic I .3.7 Slovní úlohy vedoucí na soustavy rovnic I Předpoklady: 34 Pedagogická poznámka: Jak už bylo uvedeno dříve slovní úlohy tvoří specifickou část matematiky jednoduše proto, že nestačí sledovat dříve

Více

Pracovní list: Hustota 1

Pracovní list: Hustota 1 Pracovní list: Hustota 1 1. Doplň zápis: g kg 1 = cm 3 m 3 2. Napiš, jak se čte jednotka hustoty: g.. cm 3 kg m 3 3. Doplň značky a základní jednotky fyzikálních veličin. Napiš měřidla hmotnosti a objemu.

Více

Autor: Jana Krchová Obor: Matematika. Hranoly

Autor: Jana Krchová Obor: Matematika. Hranoly Převeď na jednotky v závorce: Hranoly a) 0,5 cm 2 (mm 2 ) = 8,4 dm 2 (cm 2 ) = b) 2,3 m 2 (dm 2 ) = 0,078 m 2 (cm 2 ) = c) 0,09 ha (a) = 0,006 km 2 (a) = d) 4 a (m 2 ) = 540 cm 2 (m 2 ) = e) 23 cm 3 (mm

Více

Úvod. rovinný úhel např. ϕ radián rad prostorový úhel např. Ω steradián sr

Úvod. rovinný úhel např. ϕ radián rad prostorový úhel např. Ω steradián sr Úvod Fyzikální veličina je jakákoliv objektivní vlastnost hmoty, jejíž hodnotu lze změřit nebo spočítat. Fyzikálním veličinám přiřazujeme určitou hodnotu (velikost). Hodnota dané veličiny je udávána prostřednictvím

Více

Výukový materiál zpracovaný v rámci projektu Výuka moderně Registrační číslo projektu: CZ.1.07/1.5.00/34.0205

Výukový materiál zpracovaný v rámci projektu Výuka moderně Registrační číslo projektu: CZ.1.07/1.5.00/34.0205 Střední průmyslová škola strojnická Olomouc, tř.7. listopadu 49 Výukový materiál zpracovaný v rámci projektu Výuka moderně Registrační číslo projektu: CZ..07/.5.00/34.0205 Šablona: III/2 Informační technologie

Více

7.1.3 Vzdálenost bodů

7.1.3 Vzdálenost bodů 7.. Vzdálenost bodů Předpoklady: 70 Př. : Urči vzdálenost bodů A [ ;] a B [ 5;] obecný vzorec pro vzdálenost bodů A[ a ; a ] a [ ; ]. Na základě řešení příkladu se pokus sestavit B b b. y A[;] B[5;] Z

Více

DOPLŇKOVÝ STUDIJNÍ MATERIÁL CHEMICKÉ VÝPOČTY. Zuzana Špalková. Věra Vyskočilová

DOPLŇKOVÝ STUDIJNÍ MATERIÁL CHEMICKÉ VÝPOČTY. Zuzana Špalková. Věra Vyskočilová DOPLŇKOVÝ STUDIJNÍ MATERIÁL CHEMICKÉ VÝPOČTY Zuzana Špalková Věra Vyskočilová BRNO 2014 Doplňkový studijní materiál zaměřený na Chemické výpočty byl vytvořen v rámci projektu Interní vzdělávací agentury

Více

Funkce. Úkol: Uveďte příklady závislosti dvou veličin.

Funkce. Úkol: Uveďte příklady závislosti dvou veličin. Funkce Pojem funkce Dostupné z Metodického portálu www.rvp.cz, ISSN: 1802-4785, financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze. Funkce vyjadřuje závislost

Více

( ) ( ) Rozklad mnohočlenů na součin I (vytýkání) Předpoklady:

( ) ( ) Rozklad mnohočlenů na součin I (vytýkání) Předpoklady: 1.8.6 Rozklad mnohočlenů na součin I (vytýkání) Předpoklady: 010805 Pedagogická poznámka: Na začátku každé rozkládací hodiny jsou přidány příklady na opakování úprav mnohočlenů. Důvod je jediný, čtyři

Více

3. Mocnina a odmocnina. Pythagorova věta

3. Mocnina a odmocnina. Pythagorova věta . Mocnina a odmocnina. Pythagorova věta 7. ročník -. Mocnina, odmocnina, Pythagorovavěta.. Mocnina... Vymezení pojmu Součin stejných činitelů můţeme napsat v podobě mocniny. Například : součin...... můţeme

Více

terénní praktikum : Pila Ptení jméno a příjmení : třída : datum :

terénní praktikum : Pila Ptení jméno a příjmení : třída : datum : Pracovní list vytvořil : Mgr. Lenka Krčová lektor terénních praktik : Mgr. Petr Žůrek terénní praktikum : Pila Ptení jméno a příjmení : třída : datum : Základní škola Prostějov, Dr. Horáka 24 1) Jistě

Více

Úvod Fyzika hypotéza Pracovní hypotéza Axiom Fyzikální teorie Fyzikální zákon princip Fyzikální model materiální model

Úvod Fyzika hypotéza Pracovní hypotéza Axiom Fyzikální teorie Fyzikální zákon princip Fyzikální model materiální model 1 Úvod Fyzika je přírodní věda, jež studuje nejobecnější vlastnosti látek a fyzikálních polí. Zkoumá příčinné souvislosti nejobecnějších přírodních jevů a hledá zákony, jimiž se tyto jevy řídí. Vytváří

Více

7.5.1 Středová a obecná rovnice kružnice

7.5.1 Středová a obecná rovnice kružnice 7.5.1 Středová a obecná rovnice kružnice Předpoklady: kružnice, 505, 7103, 730 Pedagogická poznámka: Pro tuto hodinu (a mnoho dalších hodin v kapitole o kuželosečkách) je rozhodující, aby studenti uměli

Více

1. Několik základních pojmů ze středoškolské matematiky. Na začátku si připomeneme následující pojmy:

1. Několik základních pojmů ze středoškolské matematiky. Na začátku si připomeneme následující pojmy: Opakování středoškolské matematiky Slovo úvodem: Tato pomůcka je určena zejména těm studentům presenčního i kombinovaného studia na VŠFS, kteří na středních školách neprošli dostatečnou průpravou z matematiky

Více

Sbírka úloh z matematiky. 6. - 9. ročník

Sbírka úloh z matematiky. 6. - 9. ročník Sbírka úloh z matematiky 6. - 9. ročník Pro základní školy srpen 2011 Vypracovali: Mgr. Jaromír Čihák Ing. Jan Čihák Obsah 1 Úvod 2 2 6. ročník 3 2.1 Přirozená čísla.................................. 3

Více