Přepsal Petr Baudiš v ak. roce 2004/2005

Rozměr: px
Začít zobrazení ze stránky:

Download "Přepsal Petr Baudiš v ak. roce 2004/2005"

Transkript

1 Přepsal Petr Baudiš v ak roce 2004/2005 IfIamgivenaformula,andIamignorantofitsmeaning,itcannotteachmeanythingButif Ialreadyknowit,whatdoestheformulateachme? ST AUGUSTINE c 2004/2005 Jiří Fiala, Petr Baudiš Verze /L:1616 Tato verze není garantována, nemusí být kompletní a může obsahovat chyby Aktuální verzi vždy najdete na Sazba v programu TEX

2 !"# $%&'$( Jiří Fiala Lineární algebra II Determinant matice Permutacemnožiny {1,,n}jebijektivnízobrazení {1,,n} {1,,n} S n značímemnožinuvšechpermutacína nprvcích( S n =n!) Znaménkopermutace p S n definujeme: sgn(p) def =( 1) #inverzívp kdedvojiceindexů(i,j)tvoříinverzi,pokud i < j,ale p(i) > p(j) Cvičení: Definujte znaménko pomocí cyklů permutace a pomocí transpozic )*$'#+ Nechť Aječtvercovámaticeřádu nnadtělesem TPotomdeterminantmatice Ajedánvýrazem: det(a)= p S n sgn(p) n a i,p(i) (Jdevlastněozobrazení T n n T) ukázky Lze si rozmyslet, že determinat trojúhelníkové matice je součin všech prvků na hlavní diagonále Permanent: Determinant, ovšem bez použití sgn permutace,-"!$%!' /!'$"$! Pozorování: det(a T )=det(a) det(a T )= = p S n sgn(p) p S n sgn(p) n (A T ) i,p(i) = n a p(i),i =det(a) Poslednírovnostdokážitak,žepodle pzvolím q, q= p 1,tedy p(i)=i q(i )=itedy i < j p(i) > p(j)znamená,že q(i ) < q(j ) i > j,tedysgn(p)=sgn(q) Pozorování: Přerovnání sloupců matice A podle permutace q nezmění determinant, pokud sgn(q) = +1, v opačném případě determinant změní pouze znaménko Abuďpůvodnímatice, A pakmaticespřerovnanýmisloupci Sloupecč 1matice Ase octneva napozici q(1)apod a i,j = a i,q(j) = a i,j= a i,q 1 (j) det(a )= n sgn(p) (A ) i,p(i) = p S n = n sgn(p) p S n a i,q 1 (p(i))= 1

3 Jiří Fiala Lineární algebra II Determinant matice Nechť h(i)=q(p(i))(sgn q=sgn q 1 ): =sgn(q) n sgn(q)sgn(p) a } {{ } i,h(i) = p S n =sgn(q) h S n sgn(h) sgn(h) n a i,h(i) =sgn(q) det(a) Důsledek: Má-li matice A dva sloupce shodné, det(a) = 0(platí i pro stejné řádky) 012$3+ Determinant je lineární funkcí každého řádku i každého sloupce matice Tedynapř: a 11 a 12 a 1n a 21 a 22 a 2n det = b i1 + c i1 b i2 + c i2 b in + c in a n1 a n2 a nn b 11 b 12 b 21 b 22 =det b i1 b i2 b n1 b n2 b 1n b 2n b in b nn c 11 c 12 c 21 c 22 +det c i1 c i2 c n1 c n2 c 1n c 2n c in c nn + Linearitavůčinásobení t T: Abuďpůvodnímatice, A mávynásobený i-týřádek det(a )= sgn(p) (a 1,p(1) a 2,p(2) (t a i,p(i) ) a n,p(n) ) = } {{ } p S n n (A ) i,p(i) = t p S n sgn(p) n a i,p(i) = tdet(a) Linearitavůčesčítání, a i,j = b i,j + ci,j: det(a )= sgn(p) (a 1,p(1) a 2,p(2) (b i,p(i) + c i,p(i) ) a n,p(n))= } {{ } p S n = a i,p(i) p S n sgn(p) (a 1,p(1) a 2,p(2) b i,p(i) a n,p(n) ) + p S n sgn(p) (a 1,p(1) a 2,p(2) c i,p(i) a n,p(n) )= =det(b)+det(c) Důsledek: Elementární řádková úprava součtu řádků nemění determinant 2

4 ,45%6! /!'$"$! Jiří Fiala Lineární algebra II Determinant matice Převedením na trojúhelníkový tvar pomocí přičítání t-násobků ostatních řádků podobně jako Gaussova eliminace Nesmímeměnitpořadířádkůaninásobitřádek t T(resp můžeme,alemusímesipamatovat, jak to ovlivní diskriminant) Zato můžeme používat sloupcové operace 71'6$3+ Spočtěte determinant Vandormondovy matice:,8!%%19 %:"-( 1 x 1 x 2 1 x n x n x 2 n x1 n 1 Druhyobalůmnožinyvektorů v 1,,v n v R α : Lineárníobal L(v 1,,v n )={a 1 v 1 + a 2 v 2 + +a n v n : a i R} Mějme R 2 avektory v 1,v 2,pak L(v 1,v 2 )=R 2 Afinníobal {a 1 v 1 + +a n v n : a i R, n a } Mějme R 2 avektory v 1,v 2,pakafinníobalbudepřímkaprocházejícíjejichkoncovýmibody Konvexníobal {a 1 v 1 + +a n v n : a i R, n a, a i [0,1]} Mějme R 2 avektory v 1,v 2,pakkonvexníobalbudeúsečkaspojujícíjejichkoncovébody Rovnoběžnostěn {a 1 v 1 + +a n v n : a i R, a i [0,1]} Mějme R 2 avektory v 1,v 2,pakrovnoběžnostěnbudemnožinabodůuzavřenákosodélníkem skrajnímibody0,v 1,v 2,v 1 + v 2 (včetněúsečekjespojujících) ;% 1'-%! %:<(!=- Jdeogeometrickývýznamdeterminantu,jsmetedyvR n Mějmematici A R n n,rozložímjejí řádkynavektory a 1,,a n (tybudoutvořenysloupcimatice) diagramla1 %2%%1>$3+ det(a) udáváplochu(objem)rovnoběžnostěnuurčenéhovektory a 1,,a n Důkaz: diagram LA2 (jakýkoliv rovnoběžník můžeme převést beze změny objemu(tedy i determinantu) na n-rozměrný obdélník či kvádr, který má nenulové prvky jen na diagonále, tedy determinant spočteme a ověříme snadno) Důsledek:Je-li flineárnízobrazení R n R n a Fjematicetohotozobrazení,potomseobjemy těles mění podle předpisu vol(f(t))= det(f) vol(t) (kdevolznačíobjemvr d ) Viz diagramla3 (kolikrátsečtverečekvejdedo F, tolikrátse zdeformovaný čtvereček vejde do zdeformovaného f(t)) VĚTA (o součinu determinantů): Nechť AaBjsoučtvercovématiceřádu nnadtělesem TPotomplatí det(a B)=det(A) det(b) 3

5 Jiří Fiala Lineární algebra II Determinant matice Když A nebo B jsou singulární, nějaký řádek je lineární kombinací ostatních, tudíž je determinantnulový Je-li Anebo Bsingulární, A Bjetakésingulární Tedydostanemerovnici 0=0 Předpokládejmetedy,že AiBjsouregulární Toznamená,že Alzerozložitjakosoučin elementárních matic: A=E 1 E 2 E k Tedy: det(a B)=det(E 1 E 2 E k B)=det(E 1 ) det(e 2 E k B)= neboť víme, jak se mění determinant elementárními úpravami přičtení násobku jiného řádku znamenádet(e 1 )=1,násobenířádkučíslem tznamenádet(e 1 )=t =det(e 1 ) det(e 2 ) det(b)=det(e 1 E k ) det(b)=det(a) det(b) VĚTA (o regularitě podle determinantu): Čtvercovámatice Ajeregulární,právěkdyždetA 0 )?-/8 -'$"'!( /!'$"$! Nechť A ij značímatici,kterávzniknezmatice Avypuštěním i-téhořádkuaj-téhosloupce(někdy také nazýváme minor matice určený souřadnicemi i, j) Potom pro libovolné i platí tzv rozvoj determinantu podle i-tého řádku: det(a) = (Stejnou věc mohu udělat i pro sloupce) n a ij ( 1) i+j det(a ij ) j=1 Můžeme vzít definici determinantu det(a)= p S n sgn(p) n k=1 a k,p(k) avytýkatprvky a ij z i-téhořádku Alternativní(jednodušší) cesta: můžeme využít linearity a i-tý řádek si rozložit jako lineární kombinacivektorůkanonickébáze(e i ): (a i,1,a i,2,,a i,n )=a i,1 (1,0,,0)+a i,2 (0,1,0,,0)+ +a i,n (0,,0,1) Determinant det(a) si pak rozložíme na součet n determinantů, kde v i-tém řádku je vektor kanonickébáze e j (takovámaticebuďnapř B i,j ): det(a)=a i,1 det(b i,1 )+ +a i,n det(b i,n ) Posuneme si náš jednotkový řádek na nejvyšší pozici: det(b i,j )=( 1) i 1 det(b 1,j ) Nyní si sloupec s jedničkou posuneme do prvního sloupce: det(b 1,j )=( 1) i 1 ( 1) j 1 det(b 1,1 ) 4

6 Jiří Fiala Lineární algebra II Determinant matice Inuaodmyslíme-lisiprvnířádekaprvnísloupec,zbudenámmatice A ij : )*$'#+ det(b 1,j )=( 1) i+j det(a ij ) Pro čtvercovou matici A definujeme adjungovanou matici adj(a) předpisem (Pozornaobrácenépořadí A ji!) (adj(a)) ij =( 1) i+j det(a ji ) VĚTA (o vztahu inverzní a adjungované matice): Pro každou regulární matici A nad tělesem T platí A 1 = 1 det(a) adj(a) Podívejmesenasoučin A adj(a),konkrnasoučinřádků: A i adj(a) i = n a ij ( 1) i+j det(a ij )=det(a) j=1 Neboť determinant matice A, kde i-tý řádek je nahrazen j-tým, je nula(jde o singulární matici), platí: A j adj(a) i =0 A adj(a)=det(a) I n A 1 det(a) adj(a)=i n VĚTA (Cramerovo pravidlo): Nechť A je regulární matice, potom každé řešení soustavy Ax = b lze zapsat jako x i = det(a i b) det(a) kde A i b jematice,kterávzniknezmatice Anahrazením i-téhosloupcevektorem b x i = Ax=b= x=a 1 b= 1 det(a) (adj(a) b) 1 i= det(a) = 1 det(a) adj(a) b n adj(a) ij b j = j=1 1 det(a) det(a i b) 5

7 @ABC DCBA EABC EFGH IJKLM KNOPQRSTUVJ WNWXUQY Jiří Fiala Lineární algebra II Vlastní čísla a vlastní vektory Zaveďme si jednoduchý(abstraktní) model dynamického systému Systém budeme reprezentovat jako vektorovýprostor V nad T Dynamikupakreprezentujemejakolineárnízobrazení f:v V,které popisuje přechod mezi dvěma stabilními stavy Stabilní stavy mohou být buď pevné body zobrazení f,nebo skoropevné body(pevnéažnaskalárnínásobek) Z38-"/(+ (i) OsovásouměrnostvR 2 :mějmetakovézobrazení f,pakjehomaticeje [f] kk = ( ) (osa půlí druhý a čtvrtý kvadrant) Ptáme se: Které vektory se zachovávají? Které vektory zachovávají směr?(tedy až na skalár, včetně záporného, který vytvoří směr opačný) (ii) Čísla vlastní populacím králíků: Mějme Fibonacciho posloupnost(viz Lineární algebra I nebo kdekoliv jinde) Ptámese:Jaksevyvíjípoměr F t /F t 1?Mátentotrendlimitu?Osciluje,nebopronějakou volbu velikosti populací zůstává stabilní? Vřečimaticavektorovýchprostorů: Uvažmeprostor R 2 alineárnízobrazení f: R 2 R 2 dané rekurencí ( ) ( )( ) F1 1 1 Ft 1 = 1 0 F t 1 F t 2 Stabilnípoměr F t /F t 1 majínetriviálnívektory x= f(x)= ( ) 1 1 x=λx 1 0 ( Ft F t 1 ) takové, že pronějaké λ R(vektory xaλxmajízřejmětentopoměrstejný) [MPWXO\ ]\WMP )*$'#+ Nechť V jevektorovýprostornadtělesem T a f:v V jelineárnízobrazení Potom λ T senazývávlastní číslo zobrazení f,existuje-linenulovývektor x V takový,že f(x)=λx Vlastnívektorpříslušnývlastnímučíslu λjelibovolné x,pronějžplatí f(x)=λx Je-li dim(v) konečná, lze zobrazení f reprezentovat maticí(vůči nějaké bázi), tedy lze pojem vlastníchčíselavektorůrozšířitipromatice A T n n Vlastníčíslomatice λjetakové,pro které x 0takové,že Ax=λxVlastnívektor xpříslušný λjetakový,že Ax=λxMnožina všech vlastních čísel matice se nazývá stopa 6

8 Z38-"/(+ Jiří Fiala Lineární algebra II Vlastní čísla a vlastní vektory Vlastní čísla (i) Osová souměrnost: λ 1 =1 x 1 =( 1,1) λ 2 = 1 x 2 =(1,1) (ii) Králíci: λ 1 = 1+ 5 ( 2 1+ ) 5 x=,1 2 (vektor při každé iteraci narůstá) λ 2 = 1 5 ( 2 1 ) 5 x=,1 2 (vektor mění znaménko ablížíseknulovémuvektoru) Pozorování: Je-li x vlastní vektor příslušný vlastnímu číslu λ, je i libovolný skalární násobek x VĚTA (o lineární nezávislosti vlastních vektorů): Mějmelineárnízobrazení f:v V,navzájemrůznávlastníčísla λ 1,λ 2,,λ k apříslušnévlastní vektory x 1,x 2,,x k (x i přísluší λ i )Potomvektory x 1,,x k jsoulineárněnezávislé Indukcí a sporem: Nechť v 1,,v k dávajínejmenšíprotipříklad,tedylibovolná(k 1)-ticejelineárněnezávislá, ale x 1,,x k jelineárnězávislá: a 1,,a k Tnetriviálnítaková,že a 1 x 1 + +a k x k =0 ( k k k 0=f(0)=f a i x i )= a i f(x i )= a i λ i x i ( k 0=λ k 0=λ k a i x i )= k a i λ k x i 0=0 0= k a i λ i x i k a i λ k x i = k k 1 a i (λ i λ k )x i = a i (λ i λ k )x i Toaleznamená,žebuďje x k =0,nebo x 1,,x k 1 jsoulineárnězávisláobojíje Spor Důsledek: Čtvercovámaticeřádu nmánejvýše nrůznýchvlastníchčísel,protože T n má nejvýše n lineárně nezávislých vektorů 7

9 [MPWXO\ ]\WMP QPXRS Jiří Fiala Lineární algebra II Vlastní čísla a vlastní vektory Vlastní čísla matic Vztah zobrazení f matice A není jednoznačný, neboť různé matice A, B mohou odpovídat stejnému zobrazení f(vůcirůznýmbázím X,Y): A=[f] XX,B=[f] Y Y [f] XX =[id] Y X [f] Y Y [id] XY Matice[id]jsoupřitomregulární,navíc[id] XY =[id] 1 Y X Označme[id] XY = R,pak A=R 1 BR Definice: Čtvercové matice A, B stejného řádu se nazývají podobné, pokud existuje regulární matice Rtaková,že A=R 1 BR VĚTA (o vlastních číslech podobných matic): Nechť AaBjsoupodobnématice(tj R:A=R 1 BR), λjevlastníčíslomatice Aaxje příslušný vlastní vektor Potom λ je i vlastní číslo matice B a y = Rx je příslušný vlastní vektor By=(RAR 1 )(Rx) = RAx=R(λx)=λ(Rx)=λy } {{ }}{{} B y Pozorování: Vlastní čísla diagonální matice vlastnívektor e i =(0,,0,1,0,,0)) ^&'!3 /'"_%$"-'2%1"!-$4#` "!'# a 1 0 jsou prvky na diagonále(příslušný 0 a n Definice: Matice A je diagonalizovatelná, pokud je podobná nějaké diagonální matici Mějmediagonalizovatelnoumatici A=R 1 DR (a) Výpočet vlastních čísel a vektorů: Pokud a i je i-týprveknadiagonálevd,potom a i jeii-tévlastníčíslo D,Aai-týsloupec R=(R e i )jevlastnívektormatice A (b) Výpočet mocnin matic: A k = R } 1 DRR 1 DR {{ R 1 DR } = R 1 D k R k 8

10 Jiří Fiala Lineární algebra II Vlastní čísla a vlastní vektory Vlastní čísla matic VĚTA (o vztahu vlastních čísel a diagonalizovatelnosti): Má-limatice A T n n nnavzájemrůznýchvlastníchčísel,potomjediagonalizovatelná Mějme λ 1,λ 2,,λ n různýchvlastníchčíselax 1,x 2,,x n lineárněnezávislýchvlastních vektorůdálemějmeregulárníčtvercovoumatici T n n : R=(x 1 x 2 x n ) Všimněmesi,že Ax i = λ i x i Pak A Rjevšakmatice,kde i-týsloupecje λ i x i Platínavíc, že A R=R D,kde Djediagonálnímaticemajícínadiagonále λ 1,λ 2,,λ n Tedy R 1 AR=D,aproto Ajepodobnádiagonální D(R 1 jsemtomohlvynásobit,neboť R je regulární, tedy vektory jsou nezávislé) VĚTA (o vztahu vlastních vektorů a diagonalizovatelnosti): Matice A T n n jediagonalizovatelná,právěkdyžmá nlineárněnezávislýchvlastníchvektorů Existujeregulární R,tedy R 1 AR=D AR=RD,sloupce Rtvořívlastnívektory Protože R je regulární, vektory jsou lineárně nezávislé Zvlastníchvektorůsestavím R,pak R 1 AR=D 9

11 avpbptxlbrwxrstc QOJVJ]MLO )*$'#+ Jiří Fiala Lineární algebra II Vlastní čísla a vlastní vektory Charakteristický mnohočlen Nechť A je čtvercová matice řádu n nad tělesem T, potom charakteristický mnohočlen (v proměnné t) je definován předpisem Vždyjdeopolynomvtstupně n p A (t)=det(a ti) VĚTA (o vztahu charakteristických mnohočlenů a vlastních čísel): Prokaždoučtvercovoumatici Aplatí,že λjevlastníčíslomatice A,právěkdyž λjekořenem charakteristického mnohočlenu matice A λjevlastníčíslomatice A,právěkdyžexistujenetriviální x:ax=λx,tedy: Ax λx=0 (A λi)x=0 Toplatí,právěkdyžmaticetétosoustavy A λijesingulární,cožovšemznamená,že det(a λi)=0 Z38-"/(+ p A (λ)=0 ( 0 1 (i) Mějme osovou souměrnost A = 1 0 p A (t)=det (ii) Mějme Fibonacciho posloupnost A = (iii) Mějmematiciotočení(o90 ) A= ) : ( t 1 1 t λ 1,2 = ±1 ( ) 1 1 : 1 0 p A (t)=t 2 t 1 λ 1,2 = 1 ± 5 2 ( ) p A (t)=t 2 +1 ) = t 2 1 ŘešenímnejsoužádnávlastníčíslavR,zatovCexistujívlastníčísla λ 1,2 = ±i 10

12 Jiří Fiala Lineární algebra II Vlastní čísla a vlastní vektory Charakteristický mnohočlen VĚTA (o charakteristických polynomech podobných matic): Podobné matice mají shodné charakteristické polynomy(silnější vlastnost, než že matice mají stejná vlastní čísla) A=R 1 BR p A (t)=det(a ti)=det(r 1 BR tr 1 IR)=det(R 1 (B ti)r)= neboťdet(r 1 )det(r)=det(i)=1 %2%%1>$3+ =det(r 1 )det(b ti)det(r)=det(b ti)=p B (t) Mějme I,J,K,L,P,Q,R,S T n n : ( ) ( ) I J P Q K L R S } {{ } } {{ } T 2n 2n ( ) IP+ JR IQ+JS = KP+ LR KQ+LS VĚTA (o vztahu řádu matice a vlastních čísel součinů matic): Pro čtvercové matice A a B stejného řádu mají matice AB a BA stejná vlastní čísla Cvičení: Dokažte, že toto jednoduše platí, je-li A nebo B regulární (Nyní dokazujeme větu i pro singulární A, B) ( )( ) ( ) AB 0 I A AB ABA = B 0 0 I B BA ( )( ) ( ) I A 0 0 AB ABA = 0 I B BA B BA ( ) I A Dále víme, že je regulární, tudíž matice 0 I ( ) AB 0 B 0 a ( ) 0 0 B BA si jsou podobné a mají tedy stejný charakteristický polynom: ( ) AB ti 0 det =( t) n det(ab ti)=( t) n p B ti AB (t) První rovnost platí, neboť jeden kvadrant je nulový, tedy si musíme brát prvky z kvadrantu s ti(tojeono( t) n ),aostatnínutněmusímebrátzab ti,abychomzachovalipermutaci 11

13 Jiří Fiala Lineární algebra II Vlastní čísla a vlastní vektory Charakteristický mnohočlen Stejně i pro druhou matici ( ) ti 0 det =( t) n det(ba ti)=( t) n p B BA ti BA (t) Tedy díky rovnosti oněch matic platí ( t) n p AB (t)=( t) n p BA (t) VĚTA (Cayley Hamilton): Nechť A T n n a p A (t)=( 1) n t n + a n 1 t n 1 + +a 1 t+a 0 je její charakteristický polynom Potom platí ( 1) n A n + a n 1 A n 1 + +a 1 A+a 0 I=0 Cvičení: Ukažte, že tato věta platí pro diagonalizovatelné matice Využijme faktu, že Madj(M)=det(M)I adosaďmeza M= A ti Pakprvkymaticeadj(A ti)jsoupolynomystupně n 1vt (plyne z definice adj(m) pomocí minorů) adj(a ti)=t n 1 B n 1 + t n 2 B n 2 + +tb 1 + B 0 B n 1,,B 0 T n n (A ti)(t n 1 B n 1 + t n 2 B n 2 + +tb 1 + B 0 )=det(a ti)i= =p A (t)i=( 1) n t n I+ a n 1 t n 1 I+ +a 1 ti+ a 0 I Jaké dostaneme koeficienty? t n B n 1 =( 1) n I / A n zleva t i,1 i n 1 AB i B i 1 = a i I / A i zleva t 0 (absčlen) AB 0 = a 0 I Sečteme: A n B n 1 + A n 1 (AB n 1 B n 2 )+A n 2 (AB n 2 B n 3 )+ +A(AB 1 B 0 )+AB 0 = =( 1) n A n + a n 1 A n 1 + +a 1 A+a 0 I Ale zároveň se vše vzájemně vykrátí tak, že: A n B n 1 + A n 1 (AB n 1 B n 2 )+ +A(AB 1 B 0 )+AB 0 =0 12

14 [MPWXO\ ]\WMP P QPXRSL d a JiříFiala LineárníalgebraII C je algebraicky uzavřené těleso, tedy se dají nalézt kořeny polynomů e>8-"/$3 1=!" "-_:( Každýpolynomstupně 1má 1kořenvtělese C )?-/8+ Vlastníčíslaavlastnívektory VlastníčíslaamaticevC Každýpolynom p(t)stupně n 1nad Clzerozložitnasoučit nmonomů p(t)=a n (t λ 1 )(t λ 2 ) (t λ n ) kde λ 1,,λ n jsoukořeny Pročbytoměloplatit? p(t)/(t λ)musíbýtnutněpolynomstupně n 1aλ i jekořen p(t), jehož existenci dává základní věta algebry Postupnětaktodělíme,apokudbynakoncizůstaloněcojinéhonež0,taknemohlybýt λ i kořeny f>!'$ /?8"2 Mějme p(t)=a n t n + a n 1 t n 1 + +a 1 t+a 0 abezújmynaobecnostipředpokládejme a n 0, a 0 0 Jakse p(t)chová? (i) t 0:p(t) = a 1 t+a 0 (předpokládáme-li a 1 0) (ii) t :p(t) = a n t n Jakgrafickyvypadáobrazkomplexníkružniceopoloměru r:d r := {t: t =r}? (i) t 0:p(D r )jemalýkomplexníkroužekokolo a 0 (ii) t :p(d r )obrazse n-krátovineokolonuly Topologickýargument: Pro t jepočátekuvnitřobrazukružniceapro t 0jevně Tedy pokud spojitě přechází z extrému do extrému, tak tu nulu někdy musí trefit Důsledek: Nechť A je komplexní čtvercová matice řádu n Potom lze psát p A (t)=(λ 1 t) r1 (λ 2 t) r2 (λ k t) r k kde λ 1,,λ k jsourůznávlastníčíslaar i jetzvalgebraickánásobnostvlastníhočísla: k r i= n %2%%1>$3+ (i) a 0 =deta= k λ ri i Dosaďme t = 0 do charakteristického polynomu a do jeho alternativního zápisu z předchozího důsledku: p A (t)=det(a ti) 13

15 JiříFiala LineárníalgebraII Vlastníčíslaavlastnívektory VlastníčíslaamaticevC (ii) a n =( 1) n a n 1 =( 1) n (r 1 λ 1 + r 2 λ 2 + +r k λ k )=(A 1,1 + A 2,2 + A 3,3 + +A n,n ) (1) p A (t)=(λ 1 1) r1 (λ 2 t) r2 (λ k t) r k Ztohotorozvojemohuurčitkoeficient t n 1 :z n 1závorekvždyvezmu taztézbývající λ (2) p A (t)=det(a ti) Jedině permutace, která je identitou(tedy provede vynásobení po diagonále), může dát polynomvtstupně n 1 Tatopermutacedásoučin(A 1,1 t)(a 2,2 t) (A n,n t)akoeficienttedybudeopět (stejným způsobem jako v(1)) součet prvků na diagonále 012$3+ Čtvercová komplexní matice A je diagonalizovatelná, právě když λ i :rank(a λ i I)=rank(A) r i Ajediagonalizovatelná,tedyexistujebáze C n složenázvlastníchvektorů Tutobázivšak můžemerozložitna kbázívprostoruker(a λ i ),kdekaždájeodimenzi r i Z38-"/+ Matice, která nelze diagonalizovat: A= ( ) λ 1,2 =1 g%/"$?1 $%>-$3!1" "!'# Každá komplexní čtvercová matice je podobná matici T-O-D-O: nakreslit Čtvercovéoblasti,kterémajínadiagonálevlastníčíslo λ i obklopenéjedničkami,nazývámejordanovy buňky h'!%18> "!'# )*$'#+ Nechť AjekomplexníčtvercovámaticePotommatici A H,prokterouplatí (A H ) ij = a ji nazýváme hermitovská transpozice matice A Pozn: Někdyseznačítaké Aaktomuseještěněkdynazývákonjugovanámatice %2%%1>$3+ (AB) H = B H A H (Důkaz je obdobný jako pro obyčejnou transpozici) 14

16 %2%%1>$3+ JiříFiala LineárníalgebraII Vlastníčíslaavlastnívektory VlastníčíslaamaticevC Pro standardní skalární součin nad C platí x y = n x i y i = y H x Vezměmeprostornad Ckonečnédimenze n = C n aorthonormálníbázi u i vůčistandardnímu skalárnímu součinu: A=(u 1 u 2 u n ) Potom nutně platí A H A=I Definice: Komplexníčtvercovámatice Asenazýváhermitovská,platí-li A H = A,aunitární, platí-li A H A=I Pozn: InterpretacevR: Hermitovskámaticeodpovídásymetrickématici A T = A,zatímco unitárnímaticeodpovídáorthogonálnímatici A T = A 1 VĚTA (o diagonalizaci hermitovské matice): Každá hermitovská matice A má všechna vlastní čísla reálná a dokonce existuje unitární matice Rtaková,že R 1 ARjediagonální Pozn: Podobnávětaplatíiproširšítřídumatic,tzvnormálnímatice A H A=AA H Indukcí podle n řádu matice Pro n = 1 triviálně platí, nechť tedy platí pro 1,2,,n 1: Víme,žeexistujevlastníčíslo λapříslušnývlastnívektor x CPodleSteinitzovyvěty ovýměněmůžemedoplnit xnaorthonormálníbáziprostoru C n Bezújmynaobecnosti tedynechť x =1 Z vektorů této báze vytvoříme matici P n, obsahující ve svém sloupcovém prostoru ortonormálníbázi C n P n jeunitární,poněvadžstandardnískalárnísoučindvourůzných vektorů z orthonormální báze je nulový a součin dvou stejných vektorů je 1 Platí: (P H n A n P n ) H = P H n A H n(p H n) H = P H n A H n P n Tedy Pn H A H n P n jehermitovskámatice Dálemějmematici: ( ) λ 0 0 A n 1 Protožetatomaticejerovnasvéhermitovskétranspozici,musíplatit λ=λ,tudíž λ R Zindukčníhopředpokladuexistujeunitárnímatice R n 1 taková,že Rn 1 1 A n 1R n 1 = D n=1 Vezměme ( ) 1 0 S= 0 R n 1 R n = P n S Si P n jeunitární jeunitárníijejichsoučin? R H n R n =(P n S) H P n S= S H P H n P n S= I Tedy R n jeunitárníjetoonamatice,kteroujsmehledali? R 1 n A n R n =(P n S) H AP n S= S H Pn H AP n S= ( ) ( ) ( ) ( ) 1 0 λ λ 0 = 0 Rn 1 H = = D 0 A n 1 0 R n 1 0 D n 1 15

17 JiříFiala LineárníalgebraII Vlastníčíslaavlastnívektory VlastníčíslaamaticevC Alternativní cesta k důkazu (i) Snadnoseukáže,že λ R: Ax=λx (Ax) H =(λx) H (λx) H = λx H = x H A H x H x(λ λ)=x H (λ λ)x=x H Bx x H B H x=0 Tedynutně λ=λ (ii) Různá vlastní čísla znamenají, že příslušné vektory jsou na sebe kolmé Nechť λ 1,λ 2 jsoudvěrůznávlastníčíslamatice Aax 1,x 2 jsoupříslušnévlastní vektoryvíme,že A H x 1 = λx 1 Potom λ 1 x H 1 x 2 =(λ 1 x H 1 x 2 =(A H x 1 ) H x 2 = x H 1(Ax 2 )=λ 2 x H 1 x 2 avíme,že λ 1 λ 2,proto x H 1 x 2 =0ajsoutedyortogonální (iii) Obtížnéjealeukázat,žedim(Ker(A λ i I))=r i )?-/8+ Pro každou symetrickou matici A platí, že všechna její vlastní čísla jsou reálná a navíc existuje orthogonálnímatice Rtaková,že R 1 ARjediagonalizovatelná Pozor, ne každá matice je orthogonální Je nutno ukázat, že příslušný vlastní vektor x lze vzít reálný To naštěstí lze: (A λi)x=0 To je soustava lineárních rovnic s reálnou singulární maticí, tedy musí existovat netriviální řešeníatakmůžemezůstatvtělese R Z38-"/+ A= ( ) 1 1+i 1 i 2 p A (t)=t 2 3t λ 1 =0, λ 2 =3 R= ( 1+i i 3 ) unitární R H = R 1 = R 1 AR=R H AR= ( 1 i ) i 3 3 ( )

18 ,2!"` `'!%189!"$5%2'# " 8"->$3`% % 6'$ %2%%1>$3+ JiříFiala LineárníalgebraII Vlastníčíslaavlastnívektory VlastníčíslaamaticevC Nechť V jevektorovýprostorseskalárnímsoučinemkonečnédimenzeax= {x 1,x 2,,x n } je jeho orthogonální báze Potom: u,v V : u v = n u x i x i v =[v] H x[u] x n u= α i x i n v= β i x i α i = u x i =([u] x ) i β i = v x i =([v] x ) i 012$3+ x i v =β i u v = n n n n α i x i β j x j = α i β j x i x j j=1 j=1 i j x i x j =0 i=j x i x j =1 Nechť V jevektorovýprostorseskalárnímsoučinemkonečnédimenzeax= {x 1,x 2,,x n } jejehoorthonormálníbázenechťdále f:v V jelineárnízobrazení Potom platí, že f zachovává skalární součin, tj u v = f(u) f(v) ato,právěkdyžjematicezobrazení[f] XX unitární u v =[v] H X[u] X f(u) f(v) =[f(v)] H X[f(u)] X =([f] XX [v] X ) H [f] XX [u] X =[v] H XX[f] H XX[f] XX [u] X Tovšakmůžeplatit,pouzepokud[f] H XX [f] XX= I,jinak u,v Vtakové,žeserovnost porušítedy[f] XX musíbýtunitární 17

19 igjek lmc Jiří Fiala Lineární algebra II Pozitivně definitní matice Jak se chová skalární součin vůči orthonormální bázi víme Otázka však zní, jak se chová vůči libovolné bázi Odpověď? Překvapivě i v tomto případě lze vyjádřit maticovým součinem %2%%1>$3+ Nechť V = C n jeprostorseskalárnímsoučinem Potomexistujematice Etaková,že u v = v H Euprolibovolnéaritmetickévektory u,v C Vezměmekanonickoubázi C n : e 1,e 2,,e n u:=(u 1,u 2,,u n ) v:=(v 1,v 2,,v n ) u v = n n n n u i e i v j e j = u i v j e i e j j=1 Definujmetedymatici(E) ij = e i e j : %2$>8(+ n j=1 j=1 n u i v j e i e j =v H Eu Pokud u v = u v, matice E musí být hermitovská Pokud u u 0a u u =0 u=0,matice Emusíbýtpozitivnědefinitní )*$'#+ Splňuje-li hermitovská matice A řádu n podmínku x C n, x 0:x H Ax >0 potom řekneme, že matice A je pozitivně definitní Pokud je splněna alespoň podmínka x C n : x H Ax 0 tak nazveme matici A pozitivně semidefinitní Obdobně máme matice negativně(semi)definitní a indefinitní(neplatí-li ani jedno) Pozn: Pozitivně definitní matice indikují lokální minimum, v matematické analýze se proto uplatňují při vyšetřování extrémů funkce více proměnných VĚTA (hermitovská matice a pozitivní definitnost): Pro hermitovskou matici A jsou následující podmínky ekvivalentní: (i) A je pozitivně definitní (ii) A má všechna vlastní čísla kladná (iii) k Aexistujeregulárnímatice Utaková,že A=U H U 18

20 Jiří Fiala Lineární algebra II Pozitivně definitní matice (1 2) Mějmevlastníčíslo λapříslušnývlastnívektor x: Ax=λx x H Ax=x H λx x H Ax=λx H x Zpředpokladuvíme,že Ajepozitivnědefinitní(x H Ax >0),tedy x H xjesoučinkomplexně sdružených nenulových čísel, což musí být kladné reálné číslo, a proto nutně λ >0 (2 3) Matice Ajehermitovská,tedy R:R H DR kde RjeunárníaDdiagonálníNadiagonálemápřitomvlastníčísla,kterájsoukladná Zvolme Dtak,že D ii = D ii Potom D= D H D A=R H DH DR U= DR a Ujeregulární,neboť Ri Djsouregulární (3 1) Snadnoodvodíme: x H Ax=x H U H Ux=(Ux) H (Ux) >0 } {{ }} {{ } $3 n7`%-89`% %28-"/o+ Pro pozitivně definitní matici A existuje trojúhelníková matice U taková, že A=U H U Vynecháme Důkaz by byl jen adaptací důkazu tvrzení, že A je hermitovská existuje unitární R:A=R H DR Jenbysemuselověnovattrochuúsilípřisestavovánímaticetak, aby byla trojúhelníková a dalšími operacemi se tento stav neporušil p-_%'! 5% $"-2$3 %28-"/ Vstup: Hermitovská matice A Výstup: Choleskéhorozklad U: U H U= Aneboodpověď,že Anenípozitivnědefinitní (i) Pro až nproveď i 1 u ii = aii u ki u ki k=1 (pokud u ii Rneexistuje, Anenípositivnědefinitní) 19

21 Jiří Fiala Lineární algebra II Pozitivně definitní matice (ii) Pro j= i+1až nproveď u ij = 1 u ii ( ) i 1 a ij u kj u ki k=1 Není složitý, lze poměrně snadno zpětně odvodit z násobení matic 012$3 ng"#%:'`% 5"1'/-%o+ Hermitovskámatice Ařádu njepozitivnědefinitníprávětehdy,kdyždeterminantymatic A 0, A 1, A 2,, A n 1 jsoukladné(a i značímaticivzniklouzaumazánímposledních iřádkůasloupců) Důkaz: Složitý, neuveden 012$3+ Mějme blokovou matici A definovanou jako α a H A= a à Blokovámatice Ajepozitivnědefinitní,právěkdyž α >0aà 1 α a ah jepozitivnědefinitní Nechť x C n (libovolnýnetriviální): α a H x 1 x H Ax=(x 1 x H ) a à x = = αx 1 x 1 + x 1 x H a+x 1 a H x+ x H à x x H1 α aah x+ x H1 α aah x= = αx 1 x 1 + x 1 x H a+x 1 a H x+ x H1 α aah x+ x H ( à 1 α aah ) x= komplexně sdružená čísla ( { = x H à 1 ( }} { αx1 ) x+ α aah + 1 )( αx1 α x H a + 1 a H x ) >0 α } {{ } vždyjejedenzvýrazů >0,neboť xjenetriviální Ukáže se stejně volbou x 1 = 1 α ah x ( cvičení ) 20

22 qgh Jiří Fiala Lineární algebra II Formy Mějmelineárnízobrazení f:v V,kdedimV < Paksedánajítmaticezobrazenítaková,že volbou vhodné báze získáme diagonální matici Mějmedáleskalárnísoučin V V C(neboobecně T),kdedimV < Paksedánajít matice součinu (pozitivně definitní matice) taková, že volbou vhodné báze získáme pěknou matici )*$'#+ Nechť V jevektorovýprostornadtělesem Ta f:v V Tjezobrazenítakové,kteréjelineární v první složce: u,v V, α T: f(αu,v)=αf(u,v) ivedruhésložce: u 1,u 2,v V : f(u 1 + u 2,v)=f(u 1,v)+f(u 2,v) u,v V, β T: f(u,βv)=βf(u,v) u,v 1,v 2 V : f(u,v 1 + v 2 )=f(u,v 1 )+f(u,v 2 ) Potom fnazývámebilineárníformouna V Bilineární forma je symetrická, platí-li u,v V : f(u,v)=f(v,u) Zobrazení g:v T nazývámekvadratickouformou,pokud g(v)=f(v,v)pronějakoubilineárníformu fna V )*$'#+ Nechť V jevektorovýprostornadtělesem T konečnédimenzeax= {v 1,,v n }jejehobáze Potomprokvadratickouformu g:v Tdefinujemematici Bformy gpředpisem b ij = f(v i,v j ) kde f je symetrická(tzv polární) bilineární forma vytvořující formu g %2%%1>$3+ Pro každou kvadratickou formu existuje polární forma, která ji definuje Bilineární formy na vektorových prostorech konečné dimenze se počítají jako maticové součiny (kde A je čtvercová matice) Jaksesmaticíformypočítá? )*$'#+ v T Au u V, [u] X =(α 1,α 2,,α n ):u= ( g(u)=f(u,u)=f αi v i, ) α j v j = n j=1 n α i u i n α i α j f(v i,v j )=[u] T X B [u] X Analytickévyjádřeníkvadratickéformy g:v Tvůčikonečnébázi Xjefunkce g:t n T n n g(x 1,x 2,,x n )= a ij x i x j j=i kdekoeficienty a ij jsouodvozenyzmatice Bformy gvůčibázi Xpředpisem a ij =2b ij i j a ii = b ii 21

23 Z38-"/(+ Jiří Fiala Lineární algebra II Formy (i) Kvadratickáforma g 1 : R 2 Rdanámatici B= Analytické vyjádření téže formy: ( ) 0 3 vůči kanonické bázi K 3 3 g 1 (x 1,x 2 )=6x 1 x 2 3x 2 2 (ii) Kvadratickáforma g 2 : R 3 Rdanámatici B= vůči kanonické bázi K Analytické vyjádření téže formy: g 2 (x 1,x 2,x 3 )=x 2 1+4x 1 x 3 2x 2 x 3 +3x 2 3 LEMMA: Nechť Bjematicekvadratickéformy g:v Tvůčibázi X,potom B =[id] T Y X B [id] Y X jematicíformy gvůčibázi Y [u] X =[id] Y X [u] Y g(u)=[u] T X B [u] X =([id] Y X [u] Y ) T B [id] Y X [u] Y = =[u] T Y [id] T Y X B [id] Y X } {{ } maticeformy gvůči Y [u] Y VĚTA (Sylvesterův zákon setrvačnosti kvadratických forem): Platípouzepro T= R! Nechť V jevektorovýprostorkonečnédimenzenad Rag:V Rjekvadratickáforma Potom existujebáze Xprostoru V taková,žematice Bformy gvůči Xjediagonální,anavíc i:b ii { 1,0,1} Navícpočetkladnýchprvkůnadiagonálenezáležínavolbě X(ajeprovšechnytakovévhodnébáze stejný) Pozn: Vektoru(#+1,# 1,#0) se říká signatura formy Zákon setrvačnosti tedy říká, že signatura formy dané formy je stejná a nelze změnit volbou jiné báze 22

24 Jiří Fiala Lineární algebra II Formy (a) existence:mámlibovolnoubázi X 0 asymetrickoumatici B 0 Pak unitární R:R 1 B 0 Rjediagonální (unitárníjetaková R,že R 1 = R T ) R 1 B 0 R=R T B 0 R=D Nadefinuji Ddiagonální: d ii = α ii D= D T B D Hledaná matice bude mít: nadiagonále0,pokudvdbylovlčíslo=0 nadiagonále1,pokudvdbylovlčíslo >0 nadiagonále 1,pokudvDbylovlčíslo <0 Z38-"/+ ( ) T B 0 = D R T B D R T kde D R T jeregulárnímatice,konkrétněmaticepřechoduodbáze X 0 k X (b) jednoznačnost: Nezkouší se Bez újmy na obecnosti nechť B je regulární Dokazuji fakt, že pro libovolnou symetrickou Balibovolnouregulární Rmajímatice Ba R T B Rstejnousignaturu(stačístejnýpočet kladných vlastních čísel) Mámdanou R=R 0 ProveduGramm Smidthovuortogonalizaciazískám R 1 unitární Tosivšakpředstavímjakospojitýproces získám R s pro s=[0,1]všechnytytomatice jsou regulární, vlastní čísla se však mění spojitě; nikdy proto nemohou projít nulou, a tedy počet kladných a záporných čísel se tímto procesem nezmění Diagonalizace kvadratickéformy:mějmekvadratickouformu g 1 : R 2 Rdanoumaticí B= ( ) vůči kanonické bázi K Maticetéžeformyvůčibázi X= {(2/3,1/3) T,( 1/3,1/3) T }: B =[id] T XK B [id] XK = Analytickévyjádření B jepak: ( )( )( ) ( ) 2/3 1/ /3 1/3 1 0 = 1/3 1/ /3 1/3 0 1 g(x 1,x 2 )=x 2 1 x

Lineární algebra II. Adam Liška. 9. února 2015. Zápisky z přednášek Jiřího Fialy na MFF UK, letní semestr, ak. rok 2007/2008

Lineární algebra II. Adam Liška. 9. února 2015. Zápisky z přednášek Jiřího Fialy na MFF UK, letní semestr, ak. rok 2007/2008 Lineární algebra II Zápisky z přednášek Jiřího Fialy na MFF UK, letní semestr, ak rok 2007/2008 Adam Liška 9 února 2015 http://kammffcunicz/~fiala http://wwwadliskacom 1 Obsah 10 Permutace 3 11 Determinant

Více

Učební texty k státní bakalářské zkoušce Matematika Vlastní čísla a vlastní hodnoty. študenti MFF 15. augusta 2008

Učební texty k státní bakalářské zkoušce Matematika Vlastní čísla a vlastní hodnoty. študenti MFF 15. augusta 2008 Učební texty k státní bakalářské zkoušce Matematika Vlastní čísla a vlastní hodnoty študenti MFF 15. augusta 2008 1 14 Vlastní čísla a vlastní hodnoty Požadavky Vlastní čísla a vlastní hodnoty lineárního

Více

1 Linearní prostory nad komplexními čísly

1 Linearní prostory nad komplexními čísly 1 Linearní prostory nad komplexními čísly V této přednášce budeme hledat kořeny polynomů, které se dále budou moci vyskytovat jako složky vektorů nebo matic Vzhledem k tomu, že kořeny polynomu (i reálného)

Více

Všechno, co jste kdy chtěli vědět o maticích, ale báli jste se zeptat

Všechno, co jste kdy chtěli vědět o maticích, ale báli jste se zeptat Všechno, co jste kdy chtěli vědět o maticích, ale báli jste se zeptat Čtvercová matice n n, např. může reprezentovat: A = A A 2 A 3 A 2 A 22 A 23 A 3 A 32 A 33 matici koeficientů soustavy n lineárních

Více

Vlastní čísla a vlastní vektory

Vlastní čísla a vlastní vektory Kapitola 11 Vlastní čísla a vlastní vektory Základní motivace pro studium vlastních čísel a vektorů pochází z teorie řešení diferenciálních rovnic Tato teorie říká, že obecné řešení lineární diferenciální

Více

Vlastní číslo, vektor

Vlastní číslo, vektor [1] Vlastní číslo, vektor motivace: směr přímky, kterou lin. transformace nezmění invariantní podprostory charakteristický polynom báze, vzhledem ke které je matice transformace nejjednodušší podobnost

Více

[1] Motivace. p = {t u ; t R}, A(p) = {A(t u ); t R} = {t A( u ); t R}

[1] Motivace. p = {t u ; t R}, A(p) = {A(t u ); t R} = {t A( u ); t R} Vlastní číslo, vektor motivace: směr přímky, kterou lin. transformace nezmění invariantní podprostory charakteristický polynom báze, vzhledem ke které je matice transformace nejjednodušší podobnost s diagonální

Více

Lineární algebra Operace s vektory a maticemi

Lineární algebra Operace s vektory a maticemi Lineární algebra Operace s vektory a maticemi Robert Mařík 26. září 2008 Obsah Operace s řádkovými vektory..................... 3 Operace se sloupcovými vektory................... 12 Matice..................................

Více

Lineární algebra. Matice, operace s maticemi

Lineární algebra. Matice, operace s maticemi Lineární algebra Matice, operace s maticemi Operační program Vzdělávání pro konkurenceschopnost Název projektu: Inovace magisterského studijního programu Fakulty ekonomiky a managementu Registrační číslo

Více

12. Determinanty. 12. Determinanty p. 1/25

12. Determinanty. 12. Determinanty p. 1/25 12. Determinanty 12. Determinanty p. 1/25 12. Determinanty p. 2/25 Determinanty 1. Induktivní definice determinantu 2. Determinant a antisymetrické formy 3. Výpočet hodnoty determinantu 4. Determinant

Více

2.6. VLASTNÍ ČÍSLA A VEKTORY MATIC

2.6. VLASTNÍ ČÍSLA A VEKTORY MATIC .6. VLASTNÍ ČÍSLA A VEKTORY MATIC V této kapitole se dozvíte: jak jsou definována vlastní (charakteristická) čísla a vektory čtvercové matice; co je to charakteristická matice a charakteristický polynom

Více

Jazyk matematiky. 2.1. Matematická logika. 2.2. Množinové operace. 2.3. Zobrazení. 2.4. Rozšířená číslená osa

Jazyk matematiky. 2.1. Matematická logika. 2.2. Množinové operace. 2.3. Zobrazení. 2.4. Rozšířená číslená osa 2. Jazyk matematiky 2.1. Matematická logika 2.2. Množinové operace 2.3. Zobrazení 2.4. Rozšířená číslená osa 1 2.1 Matematická logika 2.1.1 Výrokový počet logická operace zapisujeme čteme česky negace

Více

Skalární součin je nástroj, jak měřit velikost vektorů a úhly mezi vektory v reálných a komplexních vektorových prostorech.

Skalární součin je nástroj, jak měřit velikost vektorů a úhly mezi vektory v reálných a komplexních vektorových prostorech. Kapitola 9 Skalární součin Skalární součin je nástroj, jak měřit velikost vektorů a úhly mezi vektory v reálných a komplexních vektorových prostorech. Definice 9.1 Je-li x = (x 1,..., x n ) T R n 1 reálný

Více

e-mail: RadkaZahradnikova@seznam.cz 1. července 2010

e-mail: RadkaZahradnikova@seznam.cz 1. července 2010 Optimální výrobní program Radka Zahradníková e-mail: RadkaZahradnikova@seznam.cz 1. července 2010 Obsah 1 Lineární programování 2 Simplexová metoda 3 Grafická metoda 4 Optimální výrobní program Řešení

Více

Součin matice A a čísla α definujeme jako matici αa = (d ij ) typu m n, kde d ij = αa ij pro libovolné indexy i, j.

Součin matice A a čísla α definujeme jako matici αa = (d ij ) typu m n, kde d ij = αa ij pro libovolné indexy i, j. Kapitola 3 Počítání s maticemi Matice stejného typu můžeme sčítat a násobit reálným číslem podobně jako vektory téže dimenze. Definice 3.1 Jsou-li A (a ij ) a B (b ij ) dvě matice stejného typu m n, pak

Více

Vektorový prostor. Př.1. R 2 ; R 3 ; R n Dvě operace v R n : u + v = (u 1 + v 1,...u n + v n ), V (E 3 )...množina vektorů v E 3,

Vektorový prostor. Př.1. R 2 ; R 3 ; R n Dvě operace v R n : u + v = (u 1 + v 1,...u n + v n ), V (E 3 )...množina vektorů v E 3, Vektorový prostor Příklady: Př.1. R 2 ; R 3 ; R n...aritmetický n-rozměrný prostor Dvě operace v R n : součet vektorů u = (u 1,...u n ) a v = (v 1,...v n ) je vektor u + v = (u 1 + v 1,...u n + v n ),

Více

Učební texty k státní bakalářské zkoušce Matematika Matice. študenti MFF 15. augusta 2008

Učební texty k státní bakalářské zkoušce Matematika Matice. študenti MFF 15. augusta 2008 Učební texty k státní bakalářské zkoušce Matematika Matice študenti MFF 15. augusta 2008 1 12 Matice Požadavky Matice a jejich hodnost Operace s maticemi a jejich vlastnosti Inversní matice Regulární matice,

Více

Lineární algebra I. látka z. I. semestru informatiky MFF UK. Obsah. Zpracovali: Ondřej Keddie Profant, Jan Zaantar Štětina

Lineární algebra I. látka z. I. semestru informatiky MFF UK. Obsah. Zpracovali: Ondřej Keddie Profant, Jan Zaantar Štětina 1 Lineární algebra I látka z I semestru informatiky MFF UK Zpracovali: Ondřej Keddie Profant, Jan Zaantar Štětina Obsah Matice2 Grupy4 Grupa permutací4 Znaménko, inverze a transpozice grup5 Podgrupy5 Tělesa6

Více

fakulty MENDELU v Brně (LDF) s ohledem na disciplíny společného základu http://akademie.ldf.mendelu.cz/cz (reg. č. CZ.1.07/2.2.00/28.

fakulty MENDELU v Brně (LDF) s ohledem na disciplíny společného základu http://akademie.ldf.mendelu.cz/cz (reg. č. CZ.1.07/2.2.00/28. Základy lineárního programování Vyšší matematika, Inženýrská matematika LDF MENDELU Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem

Více

1. Matice a maticové operace. 1. Matice a maticové operace p. 1/35

1. Matice a maticové operace. 1. Matice a maticové operace p. 1/35 1. Matice a maticové operace 1. Matice a maticové operace p. 1/35 1. Matice a maticové operace p. 2/35 Matice a maticové operace 1. Aritmetické vektory 2. Operace s aritmetickými vektory 3. Nulový a opačný

Více

Definice. Vektorový prostor V nad tělesem T je množina s operacemi + : V V V, tj. u, v V : u + v V : T V V, tj. ( u V )( a T ) : a u V které splňují

Definice. Vektorový prostor V nad tělesem T je množina s operacemi + : V V V, tj. u, v V : u + v V : T V V, tj. ( u V )( a T ) : a u V které splňují Definice. Vektorový prostor V nad tělesem T je množina s operacemi + : V V V, tj. u, v V : u + v V : T V V, tj. ( u V )( a T ) : a u V které splňují 1. u + v = v + u, u, v V 2. (u + v) + w = u + (v + w),

Více

LDF MENDELU. Simona Fišnarová (MENDELU) Základy lineárního programování VMAT, IMT 1 / 25

LDF MENDELU. Simona Fišnarová (MENDELU) Základy lineárního programování VMAT, IMT 1 / 25 Základy lineárního programování Vyšší matematika, Inženýrská matematika LDF MENDELU Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem

Více

METRICKÉ A NORMOVANÉ PROSTORY

METRICKÉ A NORMOVANÉ PROSTORY PŘEDNÁŠKA 1 METRICKÉ A NORMOVANÉ PROSTORY 1.1 Prostor R n a jeho podmnožiny Připomeňme, že prostorem R n rozumíme množinu uspořádaných n tic reálných čísel, tj. R n = R } R {{ R }. n krát Prvky R n budeme

Více

ALGEBRA. Téma 4: Grupy, okruhy a pole

ALGEBRA. Téma 4: Grupy, okruhy a pole SLEZSKÁ UNIVERZITA V OPAVĚ Matematický ústav v Opavě Na Rybníčku 1, 746 01 Opava, tel. (553) 684 611 DENNÍ STUDIUM Téma 4: Grupy, okruhy a pole Základní pojmy unární operace, binární operace, asociativita,

Více

ANTAGONISTICKE HRY 172

ANTAGONISTICKE HRY 172 5 ANTAGONISTICKÉ HRY 172 Antagonistický konflikt je rozhodovací situace, v níž vystupují dva inteligentní rozhodovatelé, kteří se po volbě svých rozhodnutí rozdělí o pevnou částku, jejíž výše nezávisí

Více

Několik poznámek na téma lineární algebry pro studenty fyzikální chemie

Několik poznámek na téma lineární algebry pro studenty fyzikální chemie Několik poznámek na téma lineární algebry pro studenty fyzikální chemie Jiří Kolafa Vektory. Vektorový prostor Vektor je často zaveden jako n-tice čísel, (v,..., v n ), v i R (pro reálný vektorový prostor);

Více

MATEMATIKA PRO PŘÍRODNÍ VĚDY LINEÁRNÍ ALGEBRA, DIFERENCIÁLNÍ POČET MPV, LADP TUL, ZS 2009/10

MATEMATIKA PRO PŘÍRODNÍ VĚDY LINEÁRNÍ ALGEBRA, DIFERENCIÁLNÍ POČET MPV, LADP TUL, ZS 2009/10 1 MATEMATIKA PRO PŘÍRODNÍ VĚDY LINEÁRNÍ ALGEBRA, DIFERENCIÁLNÍ POČET 2 koncepce/slides: Jan Picek přednášející: Jiří Veselý KAP, tel. 485352290, budova H konzul. hodiny: dle úmluvy e-mail: jvesely@karlin.mff.cuni.cz

Více

Matematika. Kamila Hasilová. Matematika 1/34

Matematika. Kamila Hasilová. Matematika 1/34 Matematika Kamila Hasilová Matematika 1/34 Obsah 1 Úvod 2 GEM 3 Lineární algebra 4 Vektory Matematika 2/34 Úvod Zkouška písemná, termíny budou včas vypsány na Intranetu UO obsah: teoretická a praktická

Více

označme j = (0, 1) a nazvěme tuto dvojici imaginární jednotkou. Potom libovolnou (x, y) = (x, 0) + (0, y) = (x, 0) + (0, 1)(y, 0) = x + jy,

označme j = (0, 1) a nazvěme tuto dvojici imaginární jednotkou. Potom libovolnou (x, y) = (x, 0) + (0, y) = (x, 0) + (0, 1)(y, 0) = x + jy, Komplexní čísla Množinu všech uspořádaných dvojic (x, y) reálných čísel x, y nazýváme množinou komplexních čísel C, jestliže pro každé dvě takové dvojice (x, y ), (x 2, y 2 ) je definována rovnost, sčítání

Více

Lineární Algebra I. Adam Liška 8. prosince 2014. Zápisky z přednášek Jiřího Fialy na MFF UK, zimní semestr, ak. rok 2007/2008

Lineární Algebra I. Adam Liška 8. prosince 2014. Zápisky z přednášek Jiřího Fialy na MFF UK, zimní semestr, ak. rok 2007/2008 Lineární Algebra I. Zápisky z přednášek Jiřího Fialy na MFF UK, zimní semestr, ak. rok 2007/2008 Adam Liška 8. prosince 2014 http://kam.mff.cuni.cz/~fiala http://www.adliska.com 1 Obsah 1 Soustavy lineárních

Více

Numerické metody a programování

Numerické metody a programování Projekt: Inovace výuky optiky se zaměřením na získání experimentálních dovedností Registrační číslo: CZ.1.7/2.2./28.157 Numerické metody a programování Lekce 4 Tento projekt je spolufinancován Evropským

Více

Skalár- veličina určená jedním číselným údajem čas, hmotnost (porovnej životní úroveň, hospodaření firmy, naše poloha podle GPS )

Skalár- veličina určená jedním číselným údajem čas, hmotnost (porovnej životní úroveň, hospodaření firmy, naše poloha podle GPS ) LINEÁRNÍ ALGEBRA Úvod vektor Skalár- veličina určená jedním číselným údajem čas, hmotnost (porovnej životní úroveň, hospodaření firmy, naše poloha podle GPS ) Kartézský souřadnicový systém -je taková soustava

Více

5. Maticová algebra, typy matic, inverzní matice, determinant.

5. Maticová algebra, typy matic, inverzní matice, determinant. 5. Maticová algebra, typy matic, inverzní matice, determinant. Matice Matice typu m,n je matice složená z n*m (m >= 1, n >= 1) reálných (komplexních) čísel uspořádaných do m řádků a n sloupců: R m,n (resp.

Více

Teorie her a ekonomické rozhodování. 2. Maticové hry

Teorie her a ekonomické rozhodování. 2. Maticové hry Teorie her a ekonomické rozhodování 2. Maticové hry 2.1 Maticová hra Teorie her = ekonomická vědní disciplína, která se zabývá studiem konfliktních situací pomocí matematických modelů Hra v normálním tvaru

Více

KATEDRA INFORMATIKY UNIVERZITA PALACKÉHO LINEÁRNÍ ALGEBRA 1 OLGA KRUPKOVÁ VÝVOJ TOHOTO UČEBNÍHO TEXTU JE SPOLUFINANCOVÁN

KATEDRA INFORMATIKY UNIVERZITA PALACKÉHO LINEÁRNÍ ALGEBRA 1 OLGA KRUPKOVÁ VÝVOJ TOHOTO UČEBNÍHO TEXTU JE SPOLUFINANCOVÁN KATEDRA INFORMATIKY PŘÍRODOVĚDECKÁ FAKULTA UNIVERZITA PALACKÉHO LINEÁRNÍ ALGEBRA 1 OLGA KRUPKOVÁ VÝVOJ TOHOTO UČEBNÍHO TEXTU JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY

Více

Determinant. Definice determinantu. Permutace. Permutace, vlastnosti. Definice: Necht A = (a i,j ) R n,n je čtvercová matice.

Determinant. Definice determinantu. Permutace. Permutace, vlastnosti. Definice: Necht A = (a i,j ) R n,n je čtvercová matice. [] Definice determinantu BI-LIN, determinant, 9, P Olšák [2] Determinant je číslo jistým způsobem charakterizující čtvercovou matici det A 0 pro singulární matici, det A 0 pro regulární matici používá

Více

1. Algebraické struktury

1. Algebraické struktury 1. Algebraické struktury Definice 1.1 : Kartézský součin množin A,B (značíme A B) je množina všech uspořádaných dvojic [a, b], kde a A, b B. N-tou kartézskou mocninou nazveme A n. Definice 1.2 : Nechť

Více

Maturitní témata profilová část

Maturitní témata profilová část Seznam témat Výroková logika, úsudky a operace s množinami Základní pojmy výrokové logiky, logické spojky a kvantifikátory, složené výroky (konjunkce, disjunkce, implikace, ekvivalence), pravdivostní tabulky,

Více

Učební texty k státní bakalářské zkoušce Matematika Základy teorie funkcí více proměnných. študenti MFF 15. augusta 2008

Učební texty k státní bakalářské zkoušce Matematika Základy teorie funkcí více proměnných. študenti MFF 15. augusta 2008 Učební texty k státní bakalářské zkoušce Matematika Základy teorie funkcí více proměnných študenti MFF 15. augusta 2008 1 5 Základy teorie funkcí více proměnných Požadavky Parciální derivace a totální

Více

MATURITNÍ TÉMATA Z MATEMATIKY

MATURITNÍ TÉMATA Z MATEMATIKY MATURITNÍ TÉMATA Z MATEMATIKY 1. Základní poznatky z logiky a teorie množin Pojem konstanty a proměnné. Obor proměnné. Pojem výroku a jeho pravdivostní hodnota. Operace s výroky, složené výroky, logické

Více

a vlastních vektorů Příklad: Stanovte taková čísla λ, pro která má homogenní soustava Av = λv nenulové (A λ i I) v = 0.

a vlastních vektorů Příklad: Stanovte taková čísla λ, pro která má homogenní soustava Av = λv nenulové (A λ i I) v = 0. Výpočet vlastních čísel a vlastních vektorů S pojmem vlastního čísla jsme se již setkali například u iteračních metod pro řešení soustavy lineárních algebraických rovnic. Velikosti vlastních čísel iterační

Více

2 Vektory a vektorové prostory 23 2.1 Lineární závislost a nezávislost vektorů... 25 2.2 Souřadná soustava a báze... 26

2 Vektory a vektorové prostory 23 2.1 Lineární závislost a nezávislost vektorů... 25 2.2 Souřadná soustava a báze... 26 Obsah 1 Matice 3 11 Operace s maticemi 4 12 Soustavy lineárních rovnic 11 13 Maticové rovnice a výpočet inverzní matice 15 14 Elementární matice 19 15 Cvičení 21 16 Řešení 22 2 Vektory a vektorové prostory

Více

Mgr. Ladislav Zemánek Maturitní okruhy Matematika 2013-2014. 1. Obor reálných čísel

Mgr. Ladislav Zemánek Maturitní okruhy Matematika 2013-2014. 1. Obor reálných čísel Mgr. Ladislav Zemánek Maturitní okruhy Matematika 2013-2014 1. Obor reálných čísel - obor přirozených, celých, racionálních a reálných čísel - vlastnosti operací (sčítání, odčítání, násobení, dělení) -

Více

Nechť M je množina. Zobrazení z M M do M se nazývá (binární) operace

Nechť M je množina. Zobrazení z M M do M se nazývá (binární) operace Kapitola 2 Algebraické struktury Řada algebraických objektů má podobu množiny s nějakou dodatečnou strukturou. Například vektorový prostor je množina vektorů, ty však nejsou jeden jako druhý : jeden z

Více

(ne)závislost. α 1 x 1 + α 2 x 2 + + α n x n. x + ( 1) x Vektoru y = ( 1) y říkáme opačný vektor k vektoru y. x x = 1. x = x = 0.

(ne)závislost. α 1 x 1 + α 2 x 2 + + α n x n. x + ( 1) x Vektoru y = ( 1) y říkáme opačný vektor k vektoru y. x x = 1. x = x = 0. Lineární (ne)závislost [1] Odečítání vektorů, asociativita BI-LIN, zavislost, 3, P. Olšák [2] Místo, abychom psali zdlouhavě: x + ( 1) y, píšeme stručněji x y. Vektoru y = ( 1) y říkáme opačný vektor k

Více

2.6. Vlastní čísla a vlastní vektory matice

2.6. Vlastní čísla a vlastní vektory matice 26 Cíle V této části se budeme zabývat hledáním čísla λ které je řešením rovnice A x = λ x (1) kde A je matice řádu n Znalost řešení takové rovnice má řadu aplikací nejen v matematice Definice 261 Nechť

Více

3. Matice a determinanty

3. Matice a determinanty . Matice a determinanty Teorie matic a determinantů představuje úvod do lineární algebry. Nejrozsáhlejší aplikace mají matice a determinanty při řešení systémů lineárních rovnic. Pojem determinantu zavedl

Více

1. Jordanův kanonický tvar

1. Jordanův kanonický tvar . Jordanův kanonický tvar Obecně nelze pro zadaný lineární operátor ϕ : U U najít bázi α takovou, že (ϕ) α,α by byla diagonální. Obecně však platí, že pro každý lineární operátor ϕ : U U nad komplexními

Více

A0M15EZS Elektrické zdroje a soustavy ZS 2011/2012 cvičení 1. Jednotková matice na hlavní diagonále jsou jedničky, všude jinde nuly

A0M15EZS Elektrické zdroje a soustavy ZS 2011/2012 cvičení 1. Jednotková matice na hlavní diagonále jsou jedničky, všude jinde nuly Matice Matice typu (m, n) je uspořádaná m-tice prvků z řádky matice.. Jednotlivé složky této m-tice nazýváme Matice se zapisují Speciální typy matic Nulová matice všechny prvky matice jsou nulové Jednotková

Více

1 Mnohočleny a algebraické rovnice

1 Mnohočleny a algebraické rovnice 1 Mnohočleny a algebraické rovnice 1.1 Pojem mnohočlenu (polynomu) Připomeňme, že výrazům typu a 2 x 2 + a 1 x + a 0 říkáme kvadratický trojčlen, když a 2 0. Číslům a 0, a 1, a 2 říkáme koeficienty a písmenem

Více

Řešení. Hledaná dimenze je (podle definice) rovna hodnosti matice. a 1 2. 1 + a 2 2 1

Řešení. Hledaná dimenze je (podle definice) rovna hodnosti matice. a 1 2. 1 + a 2 2 1 Příklad 1. Určete všechna řešení následující soustavy rovnic nad Z 2 : 0 0 0 1 1 1 0 1 0 1 1 1 1 1 0 1 0 1 0 1 1 Gaussovou eliminací převedeme zadanou soustavu na ekvivalentní soustavu v odstupňovaném

Více

15. Moduly. a platí (p + q)(x) = p(x) + q(x), 1(X) = id. Vzniká tak struktura P [x]-modulu na V.

15. Moduly. a platí (p + q)(x) = p(x) + q(x), 1(X) = id. Vzniká tak struktura P [x]-modulu na V. Učební texty k přednášce ALGEBRAICKÉ STRUKTURY Michal Marvan, Matematický ústav Slezská univerzita v Opavě 15. Moduly Definice. Bud R okruh, bud M množina na níž jsou zadány binární operace + : M M M,

Více

Numerické metody lineární algebry

Numerické metody lineární algebry Numerické metody lineární algebry 1 Úvod 11 Úlohy lineární algebry 1 Řešení soustav lineárních rovnic A x = b Řešení soustavy s regulární čtvercovou maticí A řádu n n pro jednu nebo více pravých stran

Více

19 Hilbertovy prostory

19 Hilbertovy prostory M. Rokyta, MFF UK: Aplikovaná matematika III kap. 19: Hilbertovy prostory 34 19 Hilbertovy prostory 19.1 Úvod, základní pojmy Poznámka (připomenutí). Necht (X,(, )) je vektorový prostor se skalárním součinem

Více

Úvod do optimalizace

Úvod do optimalizace Přednáška Ú-Opt, February 19, 2006:1324 Petr Lachout 1 Úvod do optimalizace Prof. RNDr. Jitka Dupačová, DrSc. Doc. RNDr. Petr Lachout, CSc. KPMS MFF UK Verze 19. února 2006 2 Obsah 1 Úvod 5 2 Optimalizace

Více

ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE. Matematika 0A1. Cvičení, zimní semestr. Samostatné výstupy. Jan Šafařík

ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE. Matematika 0A1. Cvičení, zimní semestr. Samostatné výstupy. Jan Šafařík Vysoké učení technické v Brně Stavební fakulta ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE Matematika 0A1 Cvičení, zimní semestr Samostatné výstupy Jan Šafařík Brno c 2003 Obsah 1. Výstup č.1 2 2. Výstup

Více

Základní vlastnosti eukleidovského prostoru

Základní vlastnosti eukleidovského prostoru Kapitola 2 Základní vlastnosti eukleidovského prostoru 2.1 Eukleidovský prostor Eukleidovský prostor a jeho podprostory. Metrické vlastnosti, jako např. kolmost, odchylka, vzdálenost, obsah, objem apod.

Více

KOMPLEXNÍ ČÍSLA INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ

KOMPLEXNÍ ČÍSLA INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ KOMPLEXNÍ ČÍSLA Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro vyšší gymnázia Autoři projektu Student na prahu 21. století - využití ICT ve vyučování matematiky na gymnáziu INVESTICE

Více

Regulární matice. Věnujeme dále pozornost zejména čtvercovým maticím.

Regulární matice. Věnujeme dále pozornost zejména čtvercovým maticím. Regulární matice Věnujeme dále pozornost zejména čtvercovým maticím. Věta. Pro každou čtvercovou matici A = (a ij ) řádu n nad tělesem (T, +, ) jsou následující podmínky ekvivalentní: (i) Řádky matice

Více

HODNOST A DETERMINANT MATICE, INVERZNÍ MATICE

HODNOST A DETERMINANT MATICE, INVERZNÍ MATICE MENDELOVA UNIVERZITA V BRNĚ LDF MT MATEMATIKA HODNOST A DETERMINANT MATICE, INVERZNÍ MATICE Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s

Více

Josef Janyška Anna Sekaninová ANALYTICKÁ TEORIE KUŽELOSEČEK A KVADRIK

Josef Janyška Anna Sekaninová ANALYTICKÁ TEORIE KUŽELOSEČEK A KVADRIK Josef Janyška Anna Sekaninová ANALYTICKÁ TEORIE KUŽELOSEČEK A KVADRIK Obsah 1 KOMPLEXNÍ ROZŠÍŘENÍ PROSTORU 7 1 Komplexní rozšíření vektorového prostoru........... 7 Komplexní rozšíření reálného afinního

Více

Matematika I pracovní listy

Matematika I pracovní listy Matematika I pracovní listy Dagmar Dlouhá, Radka Hamříková, Zuzana Morávková, Michaela Tužilová Katedra matematiky a deskriptivní geometrie VŠB - Technická univerzita Ostrava Úvod Pracovní listy jsou určeny

Více

Vzorce počítačové grafiky

Vzorce počítačové grafiky Vektorové operace součet vektorů rozdíl vektorů opačný vektor násobení vektoru skalárem úhel dvou vektorů velikost vektoru a vzdálenost dvojice bodů v rovině (v prostoru analogicky) u = B A= b a b a u

Více

Praha & EU: investujeme do vaší budoucnosti. Daniel Turzík, Miroslava Dubcová,

Praha & EU: investujeme do vaší budoucnosti. Daniel Turzík, Miroslava Dubcová, E-sbírka příkladů Seminář z matematiky Evropský sociální fond Praha & EU: investujeme do vaší budoucnosti Daniel Turzík, Miroslava Dubcová, Pavla Pavlíková Obsah 1 Úpravy výrazů................................................................

Více

Jak pracovat s absolutními hodnotami

Jak pracovat s absolutními hodnotami Jak pracovat s absolutními hodnotami Petr Matyáš 1 Co to je absolutní hodnota Absolutní hodnota čísla a, dále ji budeme označovat výrazem a, je jeho vzdálenost od nuly na ose x, tedy je to vždy číslo kladné.

Více

Cvičné texty ke státní maturitě z matematiky

Cvičné texty ke státní maturitě z matematiky Cvičné texty ke státní maturitě z matematiky Pracovní listy s postupy řešení Brno 2010 RNDr. Rudolf Schwarz, CSc. Státní maturita z matematiky Obsah Obsah NIŽŠÍ úroveň obtížnosti 4 MAGZD10C0K01 říjen 2010..........................

Více

LINEÁRNÍ ALGEBRA. RNDr. Marie Hojdarová, CSc. Určeno pro studenty PS a AI

LINEÁRNÍ ALGEBRA. RNDr. Marie Hojdarová, CSc. Určeno pro studenty PS a AI LINEÁRNÍ ALGEBRA RNDr. Marie Hojdarová, CSc. Určeno pro studenty PS a AI Jihlava, říjen 2012 ISBN 978 80 87035 65-8 Úvod do studia předmětu Základy lineární algebry Milí studenti! Lineární algebra, kterou

Více

Matice. Přednáška MATEMATIKA č. 2. Jiří Neubauer. Katedra ekonometrie FEM UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.

Matice. Přednáška MATEMATIKA č. 2. Jiří Neubauer. Katedra ekonometrie FEM UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob. Přednáška MATEMATIKA č. 2 Katedra ekonometrie FEM UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz 13. 10. 2010 Uspořádané schéma vytvořené z m n reálných čísel, kde m, n N a 11 a 12 a

Více

Parametrické programování

Parametrické programování Parametrické programování Příklad 1 Parametrické pravé strany Firma vyrábí tři výrobky. K jejich výrobě potřebuje jednak surovinu a jednak stroje, na kterých dochází ke zpracování. Na první výrobek jsou

Více

Kapitola 1. Tenzorový součin matic

Kapitola 1. Tenzorový součin matic Kapitola 1 Tenzorový součin matic Definice 1.1. Buď F komutativní těleso. Pro matice A F m n a B F r s definujeme tenzorový součin A B jako matici o rozměru mr ns zapsanou blokově: A 11 B A 12 B A 1n B

Více

Soustavy lineárních rovnic

Soustavy lineárních rovnic 7 Matice. Determinant Soustavy lineárních rovnic 7.1 Matice Definice 1. Matice typu (m, n) jesoustavam n reálných čísel uspořádaných do m řádků a n sloupců a 11, a 12, a 13,..., a 1n a 21, a 22, a 23,...,

Více

0. Lineární rekurence Martin Mareš, 2010-07-04

0. Lineární rekurence Martin Mareš, 2010-07-04 0 Lineární rekurence Martin Mareš, 2010-07-04 V tomto krátkém textu se budeme zabývat lineárními rekurencemi, tj posloupnostmi definovanými rekurentní rovnicí typu A n+k = c 0 A n + c 1 A n+1 + + c k 1

Více

Maturitní témata z matematiky

Maturitní témata z matematiky Maturitní témata z matematiky G y m n á z i u m J i h l a v a Výroky, množiny jednoduché výroky, pravdivostní hodnoty výroků, negace operace s výroky, složené výroky, tabulky pravdivostních hodnot důkazy

Více

Poznámky z matematiky

Poznámky z matematiky Poznámky z matematiky Verze: 14. dubna 2015 Petr Hasil hasil@mendelu.cz http://user.mendelu.cz/hasil/ Ústav matematiky Lesnická a dřevařská fakulta Mendelova univerzita v Brně Vytvořeno s podporou projektu

Více

Ekonomická formulace. Matematický model

Ekonomická formulace. Matematický model Ekonomická formulace Firma balící bonboniéry má k dispozici 60 čokoládových, 60 oříškových a 85 karamelových bonbónů. Může vyrábět dva druhy bonboniér. Do první bonboniéry se dávají dva čokoládové, šest

Více

Edita Kolářová ÚSTAV MATEMATIKY

Edita Kolářová ÚSTAV MATEMATIKY Přípravný kurs z matematik Edita Kolářová ÚSTAV MATEMATIKY Přípravný kurs z matematik 1 Obsah 1 Přehled použité smbolik 3 Základní pojm matematické logik a teorie množin 4.1 Element matematické logik.........................

Více

Algebraické struktury s jednou binární operací

Algebraické struktury s jednou binární operací 16 Kapitola 1 Algebraické struktury s jednou binární operací 1.1 1. Grupoid, pologrupa, monoid a grupa Chtěli by jste vědět, co jsou to algebraické struktury s jednou binární operací? No tak to si musíte

Více

Matematika pro studenty ekonomie

Matematika pro studenty ekonomie w w w g r a d a c z vydání upravené a doplněné vydání Armstrong Grada Publishing as U Průhonu 7 Praha 7 tel: + fax: + e-mail: obchod@gradacz wwwgradacz Matematika pro studenty ekonomie MATEMATIKA PRO STUDENTY

Více

POLYNOMY 1 Jan Malý UK v Praze a UJEP v Ústí n. L. 1. Přehled teorie

POLYNOMY 1 Jan Malý UK v Praze a UJEP v Ústí n. L. 1. Přehled teorie POLYNOMY 1 Jan Malý UK v Praze a UJEP v Ústí n. L. 1. Přehled teorie Komplexní čísla. Komplexní čísla jsou objekty tvaru α+iβ, kde α, β R. Množina všech komplexních čísel se značí C. Rovnost komplexních

Více

Euklidovský prostor. Euklides. Euklidovy postuláty (axiomy)

Euklidovský prostor. Euklides. Euklidovy postuláty (axiomy) Euklidovský prostor Euklidovy Základy (pohled do historie) dnešní definice kartézský souřadnicový systém vlastnosti rovin v E n speciální vlastnosti v E 3 (vektorový součin) a) eprostor, 16, b) P. Olšák,

Více

TEORIE MATIC. Tomáš Vondra

TEORIE MATIC. Tomáš Vondra TEORIE MATIC Tomáš Vondra 2 Obsah 1 Opakování 5 1.1 Základní operace s maticemi..................... 5 1.2 Determinant matice......................... 7 1.2.1 Cauchyův-Binedův vzorec..................

Více

Vlastnosti regulárních jazyků

Vlastnosti regulárních jazyků Vlastnosti regulárních jazyků Podobně jako u dalších tříd jazyků budeme nyní zkoumat následující vlastnosti regulárních jazyků: vlastnosti strukturální, vlastnosti uzávěrové a rozhodnutelné problémy pro

Více

[1] Vzhledem ke zvolené bázi určujeme souřadnice vektorů...

[1] Vzhledem ke zvolené bázi určujeme souřadnice vektorů... [1] Báze Každý lineární (pod)prostor má svou bázi Vzhledem ke zvolené bázi určujeme souřadnice vektorů... a) base, 4, b) P. Olšák, FEL ČVUT, c) P. Olšák 2010, d) BI-LIN, e) L, f) 2009/2010, g)l. Viz p.

Více

POŽADAVKY K SOUBORNÉ ZKOUŠCE Z MATEMATIKY

POŽADAVKY K SOUBORNÉ ZKOUŠCE Z MATEMATIKY POŽADAVKY K SOUBORNÉ ZKOUŠCE Z MATEMATIKY Bakalářský studijní program B1101 (studijní obory - Aplikovaná matematika, Matematické metody v ekonomice, Aplikovaná matematika pro řešení krizových situací)

Více

CZ 1.07/1.1.32/02.0006

CZ 1.07/1.1.32/02.0006 PO ŠKOLE DO ŠKOLY CZ 1.07/1.1.32/02.0006 Číslo projektu: CZ.1.07/1.1.32/02.0006 Název projektu: Po škole do školy Příjemce grantu: Gymnázium, Kladno Název výstupu: Prohlubující semináře Matematika (MI

Více

Maturitní otázky z předmětu MATEMATIKA

Maturitní otázky z předmětu MATEMATIKA Wichterlovo gymnázium, Ostrava-Poruba, příspěvková organizace Maturitní otázky z předmětu MATEMATIKA 1. Výrazy a jejich úpravy vzorce (a+b)2,(a+b)3,a2-b2,a3+b3, dělení mnohočlenů, mocniny, odmocniny, vlastnosti

Více

2 Spojité modely rozhodování

2 Spojité modely rozhodování 2 Spojité modely rozhodování Jak již víme z přednášky, diskrétní model rozhodování lze zapsat ve tvaru úlohy hodnocení variant: f(a i ) max, a i A = {a 1, a 2,... a p }, kde f je kriteriální funkce a A

Více

Státní závěrečná zkouška z oboru Matematika a její použití v přírodních vědách

Státní závěrečná zkouška z oboru Matematika a její použití v přírodních vědách Státní závěrečná zkouška z oboru Matematika a její použití v přírodních vědách Ústní zkouška z oboru Náročnost zkoušky je podtržena její ústní formou a komisionálním charakterem. Předmětem bakalářské zkoušky

Více

Co byste měl/a zvládnout po 6. týdnu

Co byste měl/a zvládnout po 6. týdnu Co byste měl/a zvládnout po 6. týdnu Zde je uveden naprostý základ. Nejde o úplný výčet všech dovedností. Jiří Velebil: A7B01LAG Zvládnutá látka po 6. týdnu 1/8 Slovník základních pojmů Monomorfismus,

Více

MATEMATIKA STUDIJNÍ POŽADAVKY PRO JEDNOTLIVÉ ROČNÍKY STUDIA

MATEMATIKA STUDIJNÍ POŽADAVKY PRO JEDNOTLIVÉ ROČNÍKY STUDIA MATEMATIKA STUDIJNÍ POŽADAVKY PRO JEDNOTLIVÉ ROČNÍKY STUDIA Osmileté studium 1. ročník 1. Opakování a prohloubení učiva 1. 5. ročníku Číslo, číslice, množiny, přirozená čísla, desetinná čísla, číselné

Více

Operace s maticemi Sčítání matic: u matic stejného typu sečteme prvky na stejných pozicích: A+B=(a ij ) m n +(b ij ) m n =(a ij +b ij ) m n.

Operace s maticemi Sčítání matic: u matic stejného typu sečteme prvky na stejných pozicích: A+B=(a ij ) m n +(b ij ) m n =(a ij +b ij ) m n. 1 Sylvestrova věta Platí: Nechť A je symetrická matice řádu n, označme a 11 a 12... a 1i a D i = 21 a 22... a 2i.... a i1 a i2... a ii Pak A(a příslušná KF) je pozitivně definitní, právěkdyž D i >0provšechna

Více

Lineární algebra a analytická geometrie sbírka úloh a ř ešených př íkladů

Lineární algebra a analytická geometrie sbírka úloh a ř ešených př íkladů Lineární algebra a analytická geometrie sbírka úloh a ř ešených př íkladů Linear algebra and analytic geometry problems and solved examples Klára Javornická Bakalářská práce 2010 UTB ve Zlíně, Fakulta

Více

8 Kořeny cyklických kódů, BCH-kódy

8 Kořeny cyklických kódů, BCH-kódy 24 8 Kořeny cyklických kódů, BCH-kódy Generující kořeny cyklických kódů Nechť K je cyklický kód délky n nad Z p s generujícím polynomem g(z). Chceme najít rozšíření T tělesa Z p, tedy nějaké těleso GF

Více

y 10 20 Obrázek 1.26: Průměrová rovina válcové plochy

y 10 20 Obrázek 1.26: Průměrová rovina válcové plochy 36 KAPITOLA 1. KVADRIKY JAKO PLOCHY 2. STUPNĚ 2 1 2 1 1 y 1 2 Obráek 1.26: Průměrová rovina válcové plochy Věta: Je-li definována průměrová rovina sdružená s asymptotickým směrem, potom je s tímto směrem

Více

4. Topologické vlastnosti množiny reálných

4. Topologické vlastnosti množiny reálných Matematická analýza I přednášky M. Málka cvičení A. Hakové a R. Otáhalové Zimní semestr 2004/05 4. Topologické vlastnosti množiny reálných čísel V této kapitole definujeme přirozenou topologii na množině

Více

Maticový a tenzorový počet

Maticový a tenzorový počet Maticový a tenzorový počet Doc. RNDr. Martin Kovár, Ph.D. Ústav matematiky Fakulta elektrotechniky a komunikačních technologií VUT v Brně Obsah. Test vstupních znalostí............................. 5 Matice

Více

MATEMATIKA Maturitní témata společná část MZ základní úroveň (vychází z Katalogu požadavků MŠMT)

MATEMATIKA Maturitní témata společná část MZ základní úroveň (vychází z Katalogu požadavků MŠMT) MATEMATIKA Maturitní témata společná část MZ základní úroveň (vychází z Katalogu požadavků MŠMT) 1. Číselné obory 1.1 Přirozená čísla provádět aritmetické operace s přirozenými čísly rozlišit prvočíslo

Více

Optimalizace. Elektronická skripta předmětu A4B33OPT. Toto je verze ze dne 28. ledna 2016. Katedra kybernetiky Fakulta elektrotechnická

Optimalizace. Elektronická skripta předmětu A4B33OPT. Toto je verze ze dne 28. ledna 2016. Katedra kybernetiky Fakulta elektrotechnická Optimalizace Elektronická skripta předmětu A4B33OPT. Text je průběhu semestru doplňován a vylepšován. Toto je verze ze dne 28. ledna 2016. Tomáš Werner Katedra kybernetiky Fakulta elektrotechnická České

Více

Jan Kotůlek. verze 3 ze dne 25. února 2011

Jan Kotůlek. verze 3 ze dne 25. února 2011 Integrace racionálních lomených funkcí Jan Kotůlek (kombinované studium, první soustředění) verze 3 ze dne 5. února 0 Abstrakt Tento článek je koncipován jako rozšířený zápis průběhu prvního soustředění

Více

Přímé metody výpočtu charakteristických čísel matic

Přímé metody výpočtu charakteristických čísel matic Masarykova Univerzita v Brně Přírodovědecká fakulta Přímé metody výpočtu charakteristických čísel matic Bakalářská práce Vedoucí bakalářské práce RNDr. Ladislav Adamec, CSc. Brno 2007 Roman Melichar Prohlašuji,

Více