České vysoké učení technické v Praze, Fakulta strojní. Dynamická pevnost a životnost - Jur V. Dynamická pevnost a životnost. Jur V
|
|
- Vladimír Kraus
- před 6 lety
- Počet zobrazení:
Transkript
1 1/46 Dynamická pevnost a životnost Jur V Milan Růžička, Josef Jurenka, Martin Nesládek Poděkování: Děkuji prof. Ing. Jiřímu Kunzovi, CSc za laskavé svolení s využitím některých obrázků z jeho knihy Aplikovaná lomová mechanika, ČVUT, 2005 v této přednášce. josef.jurenka@fs.cvut.cz
2 2/46 Literatura J. Kunz: Aplikovaná lomová mechanika, ČVUT, 2005 J. Kunz: Základy lomové mechaniky, ČVUT, 2000 J. Němec: Prodlužování životnosti konstrukcí a předcházení jejich haváriím, Asociace strojních inženýrů v České republice, 1994 J. Kučera: Úvod do mechaniky lomu I : vruby a trhliny : nestabilní lom při statickém zatížení, 1. vyd. Ostrava : Vysoká škola báňská - Technická univerzita Ostrava, 2002 J. Kučera: Úvod do mechaniky lomu II : Únava materiálu, Ostrava : Vysoká škola báňská - Technická univerzita Ostrava, 1994 Lauschmann, H.: Mezní stavy I, únava materiálu, ČVUT, Praha 2007 V. Moravec, D. Pišťáček: Pevnost dynamicky namáhaných strojních součástí, Ostrava : Vysoká škola báňská - Technická univerzita Ostrava, 2006 D Broek: Elementary Engineering Fracture Mechanics, 1. ed. Martinus Nijhoff Publ., Boston 1982 D Broek: The Practical Use of Fracture Mechanics, Kluwer Academic Publishers, Dordrecht, The Netherlands, 1988 Růžička, M., Fidranský, J. Pevnost a životnost letadel. ČVUT, Růžička, M., Hanke, M., Rost, M. Dynamická pevnost a životnost. ČVUT, Pook, L. Metal Fatigue What it is, why it matters. Springer, 2007.
3 3/46 Šíření únavových trhlin
4 4/46 Proměnlivé zatížení!!! nominální provoz pěkné počasí bouře nominální provoz pěkné počasí čas čas
5 5/46 Rozvoj defektu/trhliny Porucha technických konstrukcí lomem nastává obvykle při standardním (poměrně nízkém) provozním namáhání, které se během provozu konstrukce cyklicky opakuje. Trhliny a defekty materiálu konstrukce se v podmínkách cyklického namáhání pomalu rozvíjejí, čímž oslabují pevnost konstrukce. Rozvoj defektů (trhlin) pokrčuje až do okamžiku, kdy provozní namáhání nemůže být přeneseno oslabeným průřezem (dosažení kritické velikosti trhliny/defektu) a dojde k poruše křehký lom. V praxi musíme předcházet nečekaným poruchám konstrukcí vlivem rostoucích únavových trhlin musíme být schopni určit, jednak jak je pevnost (zbytková pevnost) konstrukce ovlivněna přítomností trhlin (určit pevnost jako funkci velikosti trhlin), ale také musíme být schopni stanovit rozvoj trhlin v čase při provozním namáhání.
6 6/46 délka trhliny A B C reziduální pevnost A B projektová pevnost max. provozní zatížení porušení může vzniknout C provozní zatížení porušení vznikne čas, počet cyklů délka trhliny
7 7/46 projektová pevnost reziduální pevnost max. provozní zatížení porušení může vzniknout délka trhliny porušení vznikne pásmo provozního zatěžování délka trhliny čas, počet cyklů
8 8/46 Stadia rozvoje defektu/trhliny a) NUKLEACE: probíhá v únavových skluzových pásech, na hranicích materiálových zrn a na rozhraní mezi inkluzemi a základní matricí. b) ŠÍŘENÍ MIKROTRHLIN: je ovlivněna především lokálními vlastnostmi materiálu vede k velkým rozptylům experimentálních dat (nelze aplikovat LLM). Vliv především velikosti zatěžování, zbytkových pnutí v povrchových vrstvách, struktury materiálu, prostředí a teploty. c) ŠÍŘENÍ MAKROTRHLIN: v počátečních fázích vliv struktury materiálu a lokálních podmínek růst ve smykovém módu II, u delších trhlin slábne vliv lokálních podmínek a struktury materiálu růst v otevíracím módu I. Pro popis šíření lze aplikovat LLM. d) DOLOM: závěrečné stádium nestabilního rychlého růstu trhliny, aplikace LLM. J. Kunz: Aplikovaná lomová mechanika, ČVUT, 2005
9 9/46 Stadia rozvoje defektu/trhliny 1. Iniciace 2. Šíření 3. Lom
10 10/46 Konstrukční přístupy: Critical Location YES Theoretically infinite life NO Permanent strength (unlimited fatigue life) Fatigue strength (limited fatigue life) SAFE-LIFE structure NO Inspection possible YES Damage Tolerance structure Slow Crack Growth structure NO Multiple elements YES FAIL-SAFE structure
11 11/46 Konstrukční filozofie a predikce životnosti Vhodnými konstrukčními přístupy (filozofiemi) lze minimalizovat nebezpeční vzniku neočekávaného únavového porušení konstrukcí v praxi se nejčastěji vychází následujících filozofií dimenzování (volna nejvhodnějšího přístupu záleží na konkrétní konstrukci a závažnosti následků poruchy). a) Filosofie SAFE-LIFE (spolehlivý život): tento přístup v podstatě vylučuje možnost vzniku únavového procesu materiálu (iniciaci a šíření trhliny) v součástí. Rozhodující je etapa iniciace součásti jsou pečlivě kontrolovány vzhledem k technologickým defektům, které by mohly vést k iniciaci trhlin.
12 12/46 b) Filozofie SLOW CRACK GROWTH : v tomto přístupu se s vychází se z předpokladu, že konstrukce obsahuje defekt ještě před uvedením do provozu (dáno technologií výroby), který se může během provozu šířit. Rozhodující je tedy etapa šíření únavové trhliny součástí provozu jsou pravidelné inspekční prohlídky, jejichž interval musím být stanoven tak, aby šířící se trhlina nedosáhla kritické velikosti dříve, než bude detekována, nebo bude konstrukce odstavena z provozu.
13 13/46 c) Filozofie FAIL-SAFE (bezpečný za poruchy): konstrukce navrhované podle tohoto přístupu zůstávají bezpečné i v případě výskytu neočekávané poruchy. Rozhodující je opět etapa šíření trhliny. Stěžejní pro provoz těchto konstrukcí je opět interval inspekčních prohlídek, které monitorují rozsah poškození a rozhodují o dalším provozu, opravě nebo vyřazení.
14 Mechanismus únavového růstu trhliny a) I při malém zatížení se na čele trhliny vytvoří plastická zóna (vysoké koncentrace napětí a deformace). b) Plastická deformace se projeví skluzem v atomárních rovinách obr.a-c, což způsobuje otupení čela trhliny obr.c-d. c) Po odlehčení nebo zatížení v tlaku dojde opětnému zaostření trhliny obr.e. d) Díky rychlé oxidaci čerstvě exponovaného objemu materiálu na čele trhliny a díky značnému porušení struktury materiálu během skluzu, dochází k prodloužení trhliny a přírůstek a obr.d, F, H 14/46 D Broek: Elementary Engineering Fracture Mechanics, 1. ed. Martinus Nijhoff Publ., Boston 1982
15 15/46 Šíření únavových trhlin Uvažovaný mechanismu růstu únavových trhlin předpokládá, že k prodloužení trhliny dochází v každém cyklu, přičemž přírůstek délky je velmi malý, řádově 10-7 až 10-3 mm. Nicméně pokud je počet zátěžných cyklů roven řádově 10 4 až 10 8 může trhlina dorůst délky až několika milimetrů! Opakované otupování a zaostřování čela trhliny během cyklického zatěžování indukuje stopy na lomové ploše tzv. striace, které je možné pozorovat okem, mikroskopem, nebo elektronovým mikroskopem.
16 16/46 Zatěžování: Šíření únavových trhlin Cyklické zatěžování lze rozdělit na zatěžování s konstantní nebo proměnnou amplitudou kmitu a dále dle poměru minimální a maximální hladiny zatížení v cyklu. Zatěžovací kmit resp. celý zatěžovací blok cyklů v případě konstantní amplitudy je možné charakterizovat pomocí následujících veličin: min max m a minimální zatížení v cyklu maximální zatížení v cyklu střední zatížení v cyklu amplituda zatížení frekvence zatěžování Na základě částečné znalosti zatěžovacího kmitu lze vypočíst často používané veličiny: max min m 2 min Kmin R K max max, max min, K K K max max a max min, 2 2
17 17/46 Proměnlivá amplituda nutné zpracování pomocí např. rain-flow matrix! nominální provoz pěkné počasí bouře nominální provoz pěkné počasí čas Následné využití matice rain-flow pro predikci šíření únavových trhlin není přímočaré, neboť rychlost šíření je závislá na posloupnosti zátěžných cyklů, která je zpracováním pomocí rain-flow narušena. Dále bude uvažováno pouze zatěžování s konstantní hodnotou amplitudy kmitu.
18 18/46 Matematický popis šíření únavových trhlin Únavová životnost neboli doba šíření trhliny od okamžiku iniciace do okamžiku lomu (dosažení mezního stavu) se vyjadřuje pomocí počtů zátěžných cyklů. Tento počet cyklů je označován N. Experimenty ukazují, že k prodloužení trhliny dochází v podstatě v každém zátěžném cyklu. Rychlost růstu trhlin je potom definována jako v = da/dn [mm/cyklus, resp. m/cyklus]. Velikost přírůstku, resp. rychlost růstu je závislá na mnoha faktorech: a) Zatížení: rozkmit napětí, resp. K, asymetrie cyklu, frekvence, tvar zátěžného cyklu, pořadí cyklů v případě zatěžování s proměnlivou amplitudou, stav napjatosti RD, resp. RN, zbytková pnutí. b) Geometrie: rozměry a tvar tělesa a trhliny, konstrukční vruby RN vs. RD. c) Materiálové vlastnosti: mechanické vlastnosti, složení, struktura, tepelné a mechanické zpracování. d) Prostředí: teplota, obsah oxidačních látek, radiace. Vzhledem k velkému množství faktorů, které mohou významným způsobem ovlivnit rychlost růstu trhlin, není možné sestavit a verifikovat zcela obecný model popisující šíření únavových trhlin typu: da dn v v a), b), c), d )
19 19/46 Rychlost růstu únavových trhlin budeme studovat na jediném materiálu v daném prostředí a za daných podmínek. Potom rychlost šíření trhlin bude funkcí pouze pole napětí před čelem trhliny, které je dáno superpozicí: a) Napětí indukovaného okamžitým vnějším zatížením. b) Zbytkové napětí od předcházející zatěžovací historie. c) Zbytkové napětí technologického původu. Pole napětí před čelem trhliny lze charakterizovat pomocí kritérií lomové mechaniky: 1.E-01 1.E-02 1.E-03 da/dn v-k křivka da dn v v K rozkmit FIN K 1.E-04 1.E-05 1.E-06 V K je zahrnut vliv a geometrické charakteristiky tělesa trhlinou, přičemž uvedenou funkci v(k) lze rozšířit (zobecnit) i o další faktory mající vliv na rychlost šíření. 1.E-07 1.E-08 1.E K
20 20/46 Rozvoj plastické deformace na čele trhliny během cyklického namáhání zatěžování = vznik monotónní plastické deformace odlehčování = vznik reverzní plastické deformace tlakové působení okolního elastického materiálu na monotónní plast. zónu. Čelo trhliny je po odlehčení uzavíráno tlakovým zbytkovým napětím! Pro následné otevření (na čele trhliny) je třeba nejprve tyto zbytková napětí překonat. J. Kunz: Aplikovaná lomová mechanika, ČVUT, 2005 D Broek: Elementary Engineering Fracture Mechanics, 1. ed. Martinus Nijhoff Publ., Boston 1982
21 21/46 J. Kunz: Aplikovaná lomová mechanika, ČVUT, 2005 Otevírání únavových trhlin během cyklického zatěžování Tlaková zbytková pnutí v blízkosti čela trhliny v důsledku vzniku plastické zóny po odlehčení způsobí vzájemné přitlačení lomových ploch nucené uzavření trhliny: K opětovnému otevření trhliny je nutné překonat nejprve zbytkové tlakové napětí zatížení F op, resp. napětí op, kterému odpovídá K op. Šíření únavové trhliny nastává pouze pokud je trhlina otevřena (v intervalu F op až F max ), tedy o rychlosti šíření bude rozhodovat efektivní rozkmit faktoru intenzity napětí: da K K K v v K dn ef max op ef
22 22/46 Otevírání únavových trhlin během cyklického zatěžování Relativní část zátěžného cyklu, ve kterém je trhlina otevřena je možné charakterizovat poměrem: Je-li tedy: K ef K potom lze poměr U vyjádřit jako: U K K ef max Kop, K Kmax Kmin U 1 K 1 1 R K Poměr U může být funkcí různých faktorů mající vliv na rychlost šíření trhliny, nicméně většinou jde o funkce asymetrie cyklu R. U většiny konstrukční materiálů platí, že s klesající tloušťkou B a s rostoucí délkou trhliny a nebo s klesající mezí kluzu R p0,2 za jinak stejných podmínek roste hodnota K op, tj. klesá poměr U a klesá K ef. op max
23 23/46 Pro jednoduchost budeme dále předpokládat, že nebude docházet k nucenému uzavírání trhliny, tedy vztah pro rychlost šíření trhliny budeme uvažovat ve tvaru: da K K max Kmin v v K dn
24 24/46 Šíření únavových trhlin definice, experiment Konstrukce křivky závislosti v(k) se neobejde bez experimentálního pozorování růstu trhliny ve zkušebních vzorcích. Takto získaná křivka je platná pro libovolná tělesa vyrobená ze stejného materiálu a namáhaná za stejných podmínek. Princip experimentálního pozorování: Zkušební vzorek + cyklické zatěžování F a k a i a 1 Růstová křivka a [mm] a i N i N [-] Počet zátěžných cyklů N i dosažených při délce trhliny a i odečítáme ze zkušebního stroje. Délku trhliny a i měříme pomocí: Optických metod Kompliančních metod Odporových metod Ultrazvukových metod Metody akustické emise Řádkovací elektronová mikroskopie
25 25/46 Zkušební stroje: a) Elektromagnetické pulzační. b) Hydraulické pulzační. c) Mechanické. a) b)
26 26/46 Optické metody měření délky trhliny: a) Přímé metody: pomocí lupy nebo optického mikroskopu odečítáme délku trhliny z povrchu tělesa s trhlinou. b) Nepřímé metody: měření se provádí na replikách sejmutých z povrchu tělesa s trhlinou.
27 27/46 Komplianční metody: založeno na měření změny poddajnosti tělesa s trhlinou. a) Měření deformace na zadní straně porušovaného tělesa. b) Měření deformace v blízkém okolí čela trhliny. c) Měření COD rozevření trhliny. Odporové metody: založeny na vztahu mezi elektrickým odporem a zbývajícím nosným průřezem, jehož velikost se mění s rostoucí délkou trhliny. a) Metoda využívající stejnosměrný proud. b) Metoda využívající střídavý proud. c) Metoda povrchových snímačů.
28 28/46 Stanovení rychlosti šíření únavové trhliny Vychází se z růstové křivky, kdy je možné pro jednotlivé změřené úseky vypočíst průměrnou rychlost šíření pomocí následujících metod: a) Metoda sečná jednoduchá a často využívaná. a i a i a 2 i1 v i dai d N i a N i1 i1 ai N i a N i i a [mm] Růstová křivka K a i+1; dy a i a = dx a i+1 N i N i+1 a i a i N i N i N i+1 N [-]
29 29/46 Stanovení rychlosti šíření únavové trhliny b) Metoda British Standards Institution: a i v i da dn i i a N i1 i1 a N i1 i1 a [mm] Růstová křivka Výsledná rychlost má hladší průběh než v případě sečné metody. c) Metody ASTM vícebodové Použitím více sousedních bodů růstové křivky vede k hladšímu průběhu výsledné rychlosti na délce trhliny. a i a i+1; a i-1 N i-1 N i+1 N [-] d) Metody fraktografické N i Vychází se z mikroskopického pozorování lomové plochy po rozlomení tělesa. Základem výpočtu rychlosti šíření jsou striační pásy a jejich vzájemná rozteč.
30 30/46 v-k křivka I. Oblast platnosti vztahu Lukáše a Klesnila II. III. Oblast Parisova vztahu Oblast Formanova vztahu K p je tzv. prahová hodnota rozkmitu FIN K, při které by měla rychlost šíření únavové trhliny odpovídat nule. V praxi bývá volena smluvní hodnota K p, které odpovídá průměrná změřená rychlost růstu trhliny cca v = m/cyklus. K cf K c je lomová houževnatost materiálu. K 1 c R Kcf K c je kritický rozkmit FIN K, při kterém dojde k porušení součásti lomem. 1.E-01 1.E-02 1.E-03 1.E-04 1.E-05 1.E-06 1.E-07 1.E-08 1.E-09 da/dn I II III K K p K c =(1-R)K cf
31 31/46 Oblast Lukáše a Klesnila I. Oblast platnosti vztahu Lukáše a Klesnila: vztah mezi rychlosti růstu trhliny v a rozkmitem faktoru intenzity napětí je dán relací: da m m v A K K p, dn kde A a m jsou materiálové konstanty stanovené fitováním uvedeného vztahu na experimentálně získaná data. 1.E-01 1.E-02 1.E-03 1.E-04 1.E-05 1.E-06 1.E-07 1.E-08 1.E-09 da/dn K K p je tzv. prahová hodnota rozkmitu FIN K, při které by měla rychlost šíření únavové trhliny odpovídat nule. V praxi bývá volena smluvní hodnota K p, které odpovídá průměrná změřená rychlost růstu trhliny cca v = m/cyklus. K p se zjišťuje experimentálně, přičemž na její hodnotu má vliv řada faktorů: asymetrie cyklu R, geometrické charakteristiky tělesa s trhlinou, historie zatěžování, úrovně zatížení, struktura materiálu, prostředí volba podmínek experimentu blízkých reálnému provozu.
32 32/46 Oblast Lukáše a Klesnila Vliv parametru asymetrie cyklu R na hodnotu prahového rozkmitu FIN: da dn R R 1 2 R3 K p R K R K 1 p 2 p R3 parisovská oblast K K R 1 R p K p 0 1 R0 je závislá na materiálu a prostředí. Hodnota K p vyžaduje vždy experimentální ověření, vypočet dle různých vzorců lze považovat jen za velmi přibližný.
33 33/46 Oblast Lukáše a Klesnila Vliv struktury materiálu na hodnotu prahového rozkmitu FIN: Nejvýznamnějším strukturním parametrem je velikost materiálového zrna ozn. d. Charakter závislosti K p (d) může být u různých materiálů různý: a) Ocele s nízkou pevností a mezí kluzu a titanové slitiny prahová hodnota K p (d) s rostoucí velikostí zrna roste. b) Ocele s vysokou pevností a mezí kluzu prahová hodnota K p (d) s rostoucí velikostí zrna klesá. Vliv prostředí a teploty na hodnotu prahového rozkmitu FIN: Se vzrůstající agresivitou prostředí klesá hodnota prahového rozkmitu K p. (v některých případech může nastat chování opačné záleží na mikromechanismech degradačního procesu). S rostoucí teplotou dochází k snadnějšímu rozvoji plastické zóny a tedy k poklesu hodnoty prahového rozkmitu K p.
34 34/46 Oblast Parisova Vztah mezi rychlosti růstu trhliny v a rozkmitem faktoru intenzity napětí je dán relací (tzv. Parisovým vztahem): da v A K dn kde A a m jsou materiálové konstanty stanovené fitováním uvedeného vztahu na experimentálně získaná data v log-log souřadnicích se mocninná funkce zobrazí jako přímka!! m a 2 a 2 a [mm] Růstová křivka v v 2 1 a N 2 2 a1 N 1 1.E-01 1.E-02 1.E-03 1.E-04 1.E-05 1.E-06 1.E-07 da/dn a 1 a 1 1.E-08 N 1 N 2 N [-] 1.E K K 1 2 K a1 Y a1 a1 a2 Y a2 a2
35 35/46 v Identifikace Parisova vztahu: da dn A K m logaritmování log da dn m log logaritmování mocninná funkce lineární funkce typu K loga y ax b mm cyklus Výpočet konstanty A a exponentu m: MPa m da dn da dn K K a1 20 a m log20 loga 4 10 m log100 loga log 2.3 log m log 3.52 m 2 m log 3.03 A A A 9.58 nebo da dn K. 10
36 36/46 J. Kunz: Aplikovaná lomová mechanika, ČVUT, 2005 Vliv vybraných parametrů na rychlost šíření trhliny a) Vliv parametru asymetrie cyklu R: V případě měření pro odlišné hodnoty R a následného zpracování dat pomocí Parisova vztahu s uvažováním rozkmitu K, je nutné měření uvažovat odděleně. V případě převedení rozkmitu K pomocí poměru U na K ef je možné všechna měření zpracovat jako jeden soubor! da dn A m K. da dn A m. K ef J. Kunz: Aplikovaná lomová mechanika, ČVUT, 2005
37 37/46 b) Vliv tloušťky B tělesa s trhlinou: J. Kunz: Aplikovaná lomová mechanika, ČVUT, 2005 Základní rozměrové charakteristiky vstupují do výpočtu rychlosti šíření trhliny přes korekční funkci Y. Nicméně rychlost šíření trhliny je ovlivněna také tloušťkou tělesa, resp. stavem napjatosti. Ve stavu RN je rychlost šíření trhliny nižší v důsledku poklesu K ef (nárůst velikosti plastické zóny). c) Vliv frekvence: S rostoucí frekvencí zatěžování u většiny materiálů rychlost šíření únavových trhlin mírně klesá. d) Vliv teploty: S rostoucí teplotou většiny materiálů rychlost šíření únavových trhlin roste, nicméně závislost vychází z mikromechanismů porušování, které se mohou se změnou teploty také měnit.
38 38/46 Oblast Parisova Vliv asymetrie cyklu 1.E-01 1.E-02 1.E-03 1.E-04 1.E-05 1.E-06 1.E-07 1.E-08 1.E-09 da/dn R 1.E-01 1.E-02 1.E-03 1.E-04 1.E-05 1.E-06 da/dn 1.E-07 da m da A ΔK 1.E-08 A K K ef ΔK m ef dn dn 1.E R Vliv tloušťky tělesa 1.E-01 1.E-02 1.E-03 1.E-04 1.E-05 1.E-06 1.E-07 1.E-08 1.E-09 da/dn K B Rychlost šíření trhliny je ovlivněna tloušťkou tělesa, resp. stavem napjatosti. Ve stavu RN je rychlost šíření trhliny nižší v důsledku poklesu K ef (nárůst velikosti plastické zóny).
39 39/46 Oblast Formanova III. Oblast platnosti Formanova vztahu: vztah mezi rychlosti růstu trhliny v a rozkmitem faktoru intenzity napětí je dán vztahem: 1.E-01 1.E-02 1.E-03 da/dn v da dn A K K K c m 1.E-04 1.E-05 1.E-06 kde A a m jsou materiálové konstanty stanovené fitováním uvedeného vztahu na experimentálně získaná data. 1.E-07 1.E-08 1.E-09 K
40 40/46 Obecný vztah pro rychlost šíření trhlin Vztah NASA-GLAGRO: vztah mezi rychlosti růstu trhliny v a rozkmitem faktoru intenzity napětí K v celém rozsahu rozkmitů FIN: da d Na N v A * K m A * A 1 R, 1 m 1 1 * th * Kth K K K * c p q, 1 1.E-01 1.E-02 1.E-03 1.E-04 1.E-05 1.E-06 1.E-07 1.E-08 1.E-09 m K K 1 R, th da/dn K kde A, m, p, q, jsou materiálové konstanty stanovené fitováním uvedeného vztahu na experimentálně získaná data. K * c K c
41 41/46 Šíření únavových trhlin při stochastickém způsobu zatěžování čas Různé rozkmity zatížení budou indukovat různé hodnoty K a tedy i různé velikosti plastické zóny před čelem trhliny. Vznik plastické zóny se po odlehčení projeví tlakovým zbytkovým pnutím, které má tendenci trhlinu uzavírat efekt otevíracího napětí op, resp. FIN K op. V případě konstantní amplitudy napětí se velikost plastické zóny na čele mění málo a pomalu s tím jak postupně narůstá hodnota FIN K. V případě proměnlivé amplitudy napětí se však ve spektru mohou vyskytnou osamocená zátěžná maxima, která indukují značné plastické zóny, přičemž po takovém maximu následuje zatěžování na nižší hladině vliv na rychlost růstu
42 42/46 Po osamoceném přetěžujícím cyklu následuje etapa ovlivnění rychlosti růstu: Je zřejmé, že výsledná (celková) rychlost růstu, resp. počet cyklů N do poruchy je závislý na pořadí jednotlivých zátěžných cyklů problémy při zpracování zátěžného spektra pomocí rainflow!! 1, 2, 3, 4,
43 43/46 da dn da dn V literatuře je možné nalézt celou řadu modelů (retardačních modelů), které jsou schopny různým způsobem postihnout uvedené jevy většinou se jedná o modifikace Parisova nebo Formanova vztahu přírůstek délky trhliny je nutné počítat pro každý zátěžný cyklus zvlášť!!! a) Schijveho model. d) Model ONERA. b) Wheelerův model. c) Willenborgův model. Parisova oblast K e) Model NASA-FLAGRO. Parisova oblast K
Pevnost a životnost Jur III
1/48 Pevnost a životnost Jur III Milan Růžička, Josef Jurenka, Zbyněk Hrubý Poděkování: Děkuji prof. Ing. Jiřímu Kunzovi, CSc za laskavé svolení s využitím některých obrázků z jeho knihy Aplikovaná lomová
VícePevnost a životnost Jur III
1/48 Pevnost a životnost Jur III Milan Růžička, Josef Jurenka, Zbyněk Hrubý Poděkování: Děkuji prof. Ing. Jiřímu Kunzovi, CSc za laskavé svolení s využitím některých obrázků z jeho knihy Aplikovaná lomová
VíceČeské vysoké učení technické v Praze, Fakulta strojní. Pevnost a životnost Jur II. Pevnost a životnost. Jur II
České vysoké učení technické v Praze, Fakulta strojní 1/13 Pevnost a životnost Jur II Milan Růžička, Josef Jurenka, Zbyněk Hrubý Poděkování: Děkuji prof. Ing. Jiřímu Kunzovi, CSc za laskavé svolení s využitím
Více12. Únavové šíření trhliny. Únava a lomová mechanika Pavel Hutař, Luboš Náhlík
Únava a lomová mechanika Proces únavového porušení Iniciace únavové trhliny v krystalu Cu (60 000 cyklů při 20 C) (převzato z [Suresh 2006]) Proces únavového porušení Jednotlivé stádia únavového poškození:
Více5. Únava Zatížení při únavě, Wöhlerův přístup a lomová mechanika, únosnost, vliv vrubů, kumulace poškození, přístup podle Eurokódu.
5. Únava Zatížení při únavě, Wöhlerův přístup a lomová mechanika, únosnost, vliv vrubů, kumulace poškození, přístup podle Eurokódu. K poškození únavou dochází při zatížení výrazně proměnném s časem. spolehlivost
VíceÚnava materiálu. únavového zatěžování. 1) Úvod. 2) Základní charakteristiky. 3) Křivka únavového života. 4) Etapy únavového života
Únava materiálu 1) Úvod 2) Základní charakteristiky únavového zatěžování 3) Křivka únavového života 4) Etapy únavového života 5) Klíčové vlivy na únavový život 1 Degradace vlastností materiálu za provozu
VíceHouževnatost. i. Základní pojmy (tranzitní lomové chování ocelí, teplotní závislost pevnostních vlastností, fraktografie)
Houževnatost i. Základní pojmy (tranzitní lomové chování ocelí, teplotní závislost pevnostních vlastností, fraktografie) ii. (Empirické) zkoušky houževnatosti (Charpy, TNDT) iii. Lineárně-elastická elastická
VíceNelineární problémy a MKP
Nelineární problémy a MKP Základní druhy nelinearit v mechanice tuhých těles: 1. materiálová (plasticita, viskoelasticita, viskoplasticita,...) 2. geometrická (velké posuvy a natočení, stabilita konstrukcí)
VíceWöhlerova křivka (uhlíkové oceli výrazná mez únavy)
Únava 1. Úvod Mezním stavem únava je definován stav, kdy v důsledku působení časově proměnných zatížení dojde k poruše funkční způsobilosti konstrukce či jejího elementu. Charakteristické pro tento proces
VíceNauka o materiálu. Přednáška č.5 Základy lomové mechaniky
Nauka o materiálu Přednáška č.5 Základy lomové mechaniky Způsoby stanovení napjatosti a deformace Využívají se tři přístupy: 1. Analytický - jen jednoduché geometrie těles - vždy za jistých zjednodušujících
VíceDoc. Ing. Jiří Kunz, CSc., Prof. Ing. Ivan Nedbal, CSc., Ing. Jan Siegl, CSc. Katedra materiálů FJFI ČVUT v Praze, Trojanova 13, Praha 2
KUNZ, J. - NEDBAL, I. - SIEGL, J.: Vliv vodního prostředí a zvýšené teploty na únavové porušování austenitické oceli. In: Degradácia vlastností konštrukčných materiálov (VIII. celoštátna konferencia so
Víceb) Křehká pevnost 2. Podmínka max τ v Heigově diagramu a) Křehké pevnosti
1. Podmínka max τ a MOS v Mohrově rovině a) Plasticity ϭ K = ϭ 1 + ϭ 3 b) Křehké pevnosti (ϭ 1 κ R * ϭ 3 ) = ϭ Rt Ϭ red = max (ϭ 1, ϭ 1 - κ R * ϭ 3 ) MOS : max (ϭ 1, ϭ 1 - κ R * ϭ 3 ) = ϭ Rt a) Plasticita
VíceFilosofie konstruování a dimenzování mechanických částí vozidel z hlediska jejich funkce a provozního zatěžování
Filosofie konstruování a dimenzování mechanických částí vozidel z hlediska jejich funkce a provozního zatěžování doc. Ing. Miloslav Kepka, CSc. ZČU v Plzni, Fakulta strojní, Katedra konstruování strojů
VíceHouževnatost. i. Základní pojmy (tranzitní lomové chování ocelí, teplotní závislost pevnostních vlastností, fraktografie) ii.
Henry Kaiser, Hoover Dam 1 Henry Kaiser, 2 Houževnatost i. Základní pojmy (tranzitní lomové chování ocelí, teplotní závislost pevnostních vlastností, fraktografie) ii. (Empirické) zkoušky houževnatosti
VíceTest A 100 [%] 1. Čím je charakteristická plastická deformace? - Je to deformace nevratná.
Test A 1. Čím je charakteristická plastická deformace? - Je to deformace nevratná. 2. Co je to µ? - Poissonův poměr µ poměr poměrného příčného zkrácení k poměrnému podélnému prodloužení v oblasti pružných
VícePojednání ke státní doktorské zkoušce. Hodnocení mechanických vlastností slitin na bázi Al a Mg s využitím metody AE
Pojednání ke státní doktorské zkoušce Hodnocení mechanických vlastností slitin na bázi Al a Mg s využitím metody AE autor: Ing. školitel: doc. Ing. Pavel MAZAL CSc. 2 /18 OBSAH Úvod Vymezení řešení problematiky
VíceIOK L. Rozlívka 1, M. Vlk 2, L. Kunz 3, P. Zavadilová 3. Materiál. Institut ocelových konstrukcí, s.r.o
IOK ÚNAVOVÉ ZKOUŠKY PATINUJÍCÍ OCELI L. Rozlívka 1, M. Vlk 2, L. Kunz 3, P. Zavadilová 3 1 Institut ocelových konstrukcí, s.r.o 2 VUT Brno, Fakulta strojního inženýrství 3 Ústav fyziky materiálů AVČR Seminář
VíceČásti a mechanismy strojů 1 KKS/CMS1
Katedra konstruování strojů Fakulta strojní Části a mechanismy strojů 1 KKS/CMS1 Podklady k přednáškám část A4 Prof. Ing. Stanislav Hosnedl, CSc. a kol. Tato prezentace je spolufinancována Evropským sociálním
VíceZkouška rázem v ohybu. Autor cvičení: prof. RNDr. B. Vlach, CSc; Ing. Petr Langer. Jméno: St. skupina: Datum cvičení:
BUM - 6 Zkouška rázem v ohybu Autor cvičení: prof. RNDr. B. Vlach, CSc; Ing. Petr Langer Jméno: St. skupina: Datum cvičení: Úvodní přednáška: 1) Vysvětlete pojem houževnatost. 2) Popište princip zkoušky
Více8. Základy lomové mechaniky. Únava a lomová mechanika Pavel Hutař, Luboš Náhlík
Únava a lomová mechanika Koncentrace napětí nesingulární koncentrátor napětí singulární koncentrátor napětí 1 σ = σ + a r 2 σ max = σ 1 + 2( / ) r 0 ; σ max Nekonečný pás s eliptickým otvorem [Pook 2000]
Více5. Únava materiálu S-n přístup (Stress-life) Pavel Hutař, Luboš Náhlík
Příklad Zadání: Vytvořte přibližný S-n diagram pro ocelovou tyč a vyjádřete její rovnici. Jakou životnost můžeme očekávat při zatížení souměrně střídavým cyklem o amplitudě 100 MPa? Je dáno: Mez pevnosti
VíceÚvod do únavového poškozování
4. Historie 1923 Palmgren Kumulativní poškození 1949 Irwin 1957 Irwin K-koncepce Historie r. 1843 Rankine hovoří o krystalizaci materiálu během opakovaného zatěžování, díky níž se materiál stává křehkým.
Více2. Mezní stavy. MS porušení
p02 1 2. Mezní stavy V kapitole 6. Zatížení tělesa jsou mezi různými zatěžovacími stavy zavedeny stavy přechodové a mezní jako stavy, v nichž je částečně nebo úplně a dočasně nebo trvale znemožněna funkce
VíceJméno: St. skupina: Datum cvičení: Autor cvičení: Doc. Ing. Stanislav Věchet, CSc., Ing. Petr Liškutín, Ing. Martin Petrenec,
BUM - 7 Únava materiálu Jméno: St. skupina: Datum cvičení: Autor cvičení: Doc. Ing. Stanislav Věchet, CSc., Ing. Petr Liškutín, Ing. Martin Petrenec, Úkoly k řešení 1. Vysvětlete stručně co je únava materiálu.
Více- 120 - VLIV REAKTOROVÉHO PROSTŘEDl' NA ZKŘEHNUTI' Cr-Mo-V OCELI
- 120 - VLIV REAKTOROVÉHO PROSTŘEDl' NA ZKŘEHNUTI' Cr-Mo-V OCELI Ing. K. Šplíchal, Ing. R. Axamit^RNDr. J. Otruba, Prof. Ing. J. Koutský, DrSc, ÚJV Řež 1. Úvod Rozvoj trhlin za účasti koroze v materiálech
Více4. Tenkostěnné za studena tvarované prvky. Návrh na únavu OK.
4. Tenkostěnné za studena tvarované prvky. Návrh na únavu OK. Výroba, zvláštnosti návrhu, základní případy namáhání, spoje, navrhování z hlediska MSÚ a MSP. Návrh na únavu: zatížení, Wöhlerův přístup a
VíceHouževnatost. i. Základní pojmy (tranzitní lomové chování ocelí, teplotní závislost pevnostních vlastností, fraktografie)
Houževnatost i. Základní pojmy (tranzitní lomové chování ocelí, teplotní závislost pevnostních vlastností, fraktografie) ii. (Empirické) zkoušky houževnatosti (Charpy, TNDT) iii. Lineárně-elastická elastická
VíceVlastnosti a zkoušení materiálů. Přednáška č.9 Plasticita a creep
Vlastnosti a zkoušení materiálů Přednáška č.9 Plasticita a creep Vliv teploty na chování materiálu 1. Teplotní roztažnost L = L α T ( x) dl 2. Závislost modulu pružnosti na teplotě: Modul pružnosti při
VíceKřehké materiály. Technická univerzita v Liberci Nekovové materiály, 5. MI Doc. Ing. Karel Daďourek, 2008
Křehké materiály Technická univerzita v Liberci Nekovové materiály, 5. MI Doc. Ing. Karel Daďourek, 2008 Základní charakteristiky Křehký lom bez znatelné trvalé deformace Mez pevnosti má velký rozptyl
VíceHODNOCENÍ PŘÍPUSTNOSTI VAD MONTÁŽNÍCH SVARŮ HORKOVODŮ. Ondrej Bielak, BiSAFE, s.r.o., Malebná 1049, 149 00 Praha 4,, e-mail: bielak@bisafe.
HODNOCENÍ PŘÍPUSTNOSTI VAD MONTÁŽNÍCH SVARŮ HORKOVODŮ Ondrej Bielak, BiSAFE, s.r.o., Malebná 1049, 149 00 Praha 4,, e-mail: bielak@bisafe.cz Horkovody jsou namáhány opakovaně vnitřním přetlakem, dále pak
VíceZKOUŠKY MECHANICKÝCH. Mechanické zkoušky statické a dynamické
ZKOUŠKY MECHANICKÝCH VLASTNOSTÍ MATERIÁLŮ Mechanické zkoušky statické a dynamické Úvod Vlastnosti materiálu, lze rozdělit na: fyzikální a fyzikálně-chemické; mechanické; technologické. I. Mechanické vlastnosti
VíceMECHANIKA PODZEMNÍCH KONSTRUKCÍ PODMÍNKY PLASTICITY A PORUŠENÍ
STUDIJNÍ PODPORY PRO KOMBINOVANOU FORMU STUDIA NAVAZUJÍCÍHO MAGISTERSKÉHO PROGRAMU STAVEBNÍ INŽENÝRSTVÍ -GEOTECHNIKA A PODZEMNÍ STAVITELSTVÍ MECHANIKA PODZEMNÍCH KONSTRUKCÍ PODMÍNKY PLASTICITY A PORUŠENÍ
Více3. Mezní stav křehké pevnosti. Únava a lomová mechanika Pavel Hutař, Luboš Náhlík
Únava a lomová mechanika Mezní stav křehké pevnosti Při monotónním zatěžování tělesa může dojít k nepředvídanému porušení křehkým lomem. Poškození houževnaté oceli při různých způsobech namáhání Poškození
VíceKINETIKA ÚNAVOVÝCH TRHLIN Z HLEDISKA LINEÁRNÍ LOMOVÉ MECHANIKY Prof. Ing. Jiří Kunz, CSc. Katedra materiálů FJFI ČVUT v Praze
KINETIKA ÚNAVOVÝCH TRHLIN Z HLEDISKA LINEÁRNÍ LOMOVÉ MECHANIKY Prof. Ing. Jiří Kunz, CSc. Katedra materiálů FJFI ČVUT v Praze. Úvod Únavový proces, ke kterému dochází v konstrukčních částí, vystavených
VíceSPECIÁLNÍ ZKUŠEBNÍ METODY studijní opora
Vysoká škola báňská Technická univerzita Ostrava Fakulta metalurgie a materiálového inženýrství SPECIÁLNÍ ZKUŠEBNÍ METODY studijní opora Karel Matocha Petr Jonšta Ostrava 2013 Recenze: Ing. Ladislav Kander,
VíceZKOUŠKY MIKROLEGOVANÝCH OCELÍ DOMEX 700MC
Sborník str. 392-400 ZKOUŠKY MIKROLEGOVANÝCH OCELÍ DOMEX 700MC Antonín Kříž Výzkumné centrum kolejových vozidel, ZČU v Plzni,Univerzitní 22, 306 14, Česká republika, kriz@kmm.zcu.cz Požadavky kladené dnešními
VíceFakulta strojního inženýrství VUT v Brně Ústav konstruování. KONSTRUOVÁNÍ STROJŮ strojní součásti. Přednáška 2
Fakulta strojního inženýrství VUT v Brně Ústav konstruování KONSTRUOVÁNÍ STROJŮ strojní součásti Přednáška 2 Porušování při cyklickém zatěžování All machine and structural designs are problems in fatigue
VíceDEGRADACE MATERIÁLOVÝCH VLASTNOSTÍ OCELI 15 128 A PŘÍČINY VZNIKU TRHLIN VYSOKOTLAKÝCH PAROVODŮ
DEGRADACE MATERIÁLOVÝCH VLASTNOSTÍ OCELI 15 128 A PŘÍČINY VZNIKU TRHLIN VYSOKOTLAKÝCH PAROVODŮ Josef ČMAKAL, Jiří KUDRMAN, Ondřej BIELAK * ), Richard Regazzo ** ) UJP PRAHA a.s., * ) BiSAFE s.r.o., **
VíceVýpočtová i experimentální analýza vlivu vrubů na omezenou životnost součástí
Výpočtová i experimentální analýza vlivu vrubů na omezenou životnost součástí Martin Laštovka. Úvod Predikce životnosti je otázka, kterou se zabývají inženýři již dlouho dobu. Klasické přístupy jsou zvládnuty,
VícePojednání ke státní doktorské zkoušce. Hodnocení mechanických vlastností slitin na bázi Al a Mg s využitím metody AE
Pojednání ke státní doktorské zkoušce Hodnocení mechanických vlastností slitin na bázi Al a Mg s využitím metody AE autor: Ing. školitel: doc. Ing. Pavel MAZAL CSc. 2 /18 OBSAH Úvod Vymezení řešení problematiky
VíceExperimentální zjišťování charakteristik kompozitových materiálů a dílů
Experimentální zjišťování charakteristik kompozitových materiálů a dílů Dr. Ing. Roman Růžek Výzkumný a zkušební letecký ústav, a.s. Praha 9 Letňany ruzek@vzlu.cz Základní rozdělení zkoušek pro ověření
VíceHru I. Milan RůžR. zbynek.hruby.
- Hru I 1/75 Dynamická pevnost a životnost Hru I Milan RůžR ůžička, Josef Jurenka,, Zbyněk k Hrubý zbynek.hruby hruby@fs.cvut.cz - Hru I /75 Literatura Růžička, M., Fidranský,, J. Pevnost a životnost letadel.
VíceKumulace poškození termoplastického laminátu C/PPS při cyklickém zatížení a jeho posuzování
Kumulace poškození termoplastického laminátu C/PPS při cyklickém zatížení a jeho posuzování Jiří Minster, Martin Šperl, ÚTAM AV ČR, v. v. i., Praha Jaroslav Lukeš, FS ČVUT v Praze Motivace a obsah přednášky
VíceTéma: Dynamiky - Základní vztahy kmitání
Počítačová podpora statických výpočtů Téma: Dynamiky - Základní vztahy kmitání 1) Vlastnosti materiálů při dynamickém namáháni ) Základní vztahy teorie kmitání s jedním stupněm volnosti Katedra konstrukcí
VíceA mez úměrnosti B mez pružnosti C mez kluzu (plasticity) P vznik krčku na zkušebním vzorku, smluvní mez pevnosti σ p D přetržení zkušebního vzorku
1. Úlohy a cíle teorie plasticity chopnost tuhých těles deformovat se působením vnějších sil a po odnětí těchto sil nabývat původního tvaru a rozměrů se nazývá pružnost. 1.1 Plasticita, pracovní diagram
VíceNAUKA O MATERIÁLU I. Zkoušky mechanické. Přednáška č. 04: Zkoušení materiálových vlastností I
NAUKA O MATERIÁLU I Přednáška č. 04: Zkoušení materiálových vlastností I Zkoušky mechanické Autor přednášky: Ing. Daniela ODEHNALOVÁ Pracoviště: TUL FS, Katedra materiálu ZKOUŠENÍ mechanických vlastností
VícePoškození strojních součástí
Poškození strojních součástí Degradace strojních součástí Ve strojích při jejich provozu probíhají děje, které mají za následek změny vlastností součástí. Tyto změny jsou prvotními technickými příčinami
VíceDynamická pevnost a životnost Přednášky
DPŽ 1 Dynamická pevnost a životnost Přednášky Milan Růžička, Josef Jurenka, Martin Nesládek, Jan Papuga mechanika.fs.cvut.cz milan.ruzicka@fs.cvut.cz DPŽ 2 Přednášky část 1 Základy únavové pevnosti Milan
VíceDynamická pevnost a životnost Přednášky
DPŽ 1 Dynamická pevnost a životnost Přednášky Milan Růžička, Josef Jurenka, Martin Nesládek, Jan Papuga mechanika.fs.cvut.cz milan.ruzicka@fs.cvut.cz DPŽ 2 Přednášky část 1 Základy únavové pevnosti Milan
VíceDynamická únosnost a životnost Přednášky
Dynamická únosnost a životnost Přednášky Milan Růžička, Jan Papuga mechanika.fs.cvut.cz milan.ruzicka@fs.cvut.cz 1 Přednášky část 1 Základy únavové pevnosti Milan Růžička mechanika.fs.cvut.cz milan.ruzicka@fs.cvut.cz
VíceAktuální trendy v oblasti modelování
Aktuální trendy v oblasti modelování Vladimír Červenka Radomír Pukl Červenka Consulting, Praha 1 Modelování betonové a železobetonové konstrukce - tunelové (definitivní) ostění Metoda konečných prvků,
VíceOPOTŘEBENÍ A TRVANLIVOST NÁSTROJE
Poznámka: tyto materiály slouží pouze pro opakování STT žáků SPŠ Na Třebešíně, Praha 10; s platností do r. 2016 v návaznosti na platnost norem. Zákaz šíření a modifikace těchto materiálů. Děkuji Ing. D.
VíceNázev práce: DIAGNOSTIKA KONTAKTNĚ ZATÍŽENÝCH POVRCHŮ S VYUŽITÍM VYBRANÝCH POSTUPŮ ZPRACOVÁNÍ SIGNÁLU AKUSTICKÉ EMISE
Ing. 1 /12 Název práce: DIAGNOSTIKA KONTAKTNĚ ZATÍŽENÝCH POVRCHŮ S VYUŽITÍM VYBRANÝCH POSTUPŮ ZPRACOVÁNÍ SIGNÁLU AKUSTICKÉ EMISE Školitel: doc.ing. Pavel Mazal CSc Ing. 2 /12 Obsah Úvod do problematiky
VíceTrvanlivost betonových konstrukcí. Prof. Ing. Jaroslav Procházka, CSc. ČVUT - stavební fakulta katedra betonových konstrukcí
Trvanlivost betonových konstrukcí Prof. Ing. Jaroslav Procházka, CSc. ČVUT - stavební fakulta katedra betonových konstrukcí 1 Osnova přednášky Požadavky na betonové konstrukce Trvanlivost materiálu a konstrukce
VícePorušení hornin. J. Pruška MH 7. přednáška 1
Porušení hornin Předpoklady pro popis mechanických vlastností hornin napjatost masivu je včase a prostoru proměnná nespojitosti jsou určeny pevnostními charakteristikami prostředí horniny ovlivňuje rychlost
VíceKritéria porušení laminy
Kap. 4 Kritéria porušení laminy Inormační a vzdělávací centrum kompozitních technologií & Ústav mechaniky, biomechaniky a mechatroniky S ČVU v Praze.. 007-6.. 007 Úvod omové procesy vyvolané v jednosměrovém
VíceNavrhování konstrukcí z korozivzdorných ocelí
Navrhování konstrukcí z korozivzdorných ocelí Marek Šorf Seminář Navrhování konstrukcí z korozivzdorných ocelí 27. září 2017 ČVUT Praha 1 Obsah 1. část Ing. Marek Šorf Rozdíl oproti navrhování konstrukcí
VíceÚVOD DO PROBLEMATIKY LOMOVÉ MECHANIKY KVAZIKŘEHKÝCH MATERIÁLŮ. Zbyněk Keršner Ústav stavební mechaniky FAST VUT v Brně
ÚVOD DO PROBLEMATIKY LOMOVÉ MECHANIKY KVAZIKŘEHKÝCH MATERIÁLŮ Zbyněk Keršner Ústav stavební mechaniky FAST VUT v Brně 1 Motivace: trhliny v betonu mikrostruktura Vyhojování trhlin konstrukce Pražec po
VíceStřední průmyslová škola strojírenská a Jazyková škola s právem státní jazykové zkoušky, Kolín IV, Heverova 191
Název školy Název projektu Registrační číslo projektu Autor Název šablony Střední průmyslová škola strojírenská a Jazyková škola s právem státní jazykové zkoušky, Kolín IV, Heverova 191 Modernizace výuky
VíceVÝZKUM MECHANICKÝCH VLASTNOSTÍ SVAROVÝCH SPOJŮ MODIFIKOVANÝCH ŽÁROPEVNÝCH OCELÍ T24 A P92. Ing. Petr Mohyla, Ph.D.
VÝZKUM MECHANICKÝCH VLASTNOSTÍ SVAROVÝCH SPOJŮ MODIFIKOVANÝCH ŽÁROPEVNÝCH OCELÍ T24 A P92 Ing. Petr Mohyla, Ph.D. Úvod Od konce osmdesátých let 20. století probíhá v celosvětovém měřítku intenzivní vývoj
VíceProvozní pevnost a životnost dopravní techniky. - úvod do předmětu
Provozní pevnost a životnost dopravní techniky - úvod do předmětu doc. Ing. Miloslav Kepka, CSc. ZČU v Plzni, Fakulta strojní, Katedra konstruování strojů Provozní pevnost a životnost dopravní techniky
VíceVýzkumné centrum spalovacích motorů a automobilů Josefa Božka - Kolokvium Božek 2010, Praha 7.12.2011 -
53A107 Systematický výzkum vlastností vybraného konstrukčního materiálu (litina, slitiny lehkých kovů) typického pro teplotně exponované díly motoru (hlava, blok, skříně turbodmychadla ) s ohledem na kombinované
VíceOPTIMALIZACE NÁVRHU CB VOZOVEK NA ZÁKLADĚ POČÍTAČOVÉHO A EXPERIMENTÁLNÍHO MODELOVÁNÍ. GAČR 103/09/1746 ( )
OPTIMALIZACE NÁVRHU CB VOZOVEK NA ZÁKLADĚ POČÍTAČOVÉHO A EXPERIMENTÁLNÍHO MODELOVÁNÍ. GAČR 103/09/1746 (2009 2011) Dílčí část projektu: Experiment zaměřený na únavové vlastnosti CB desek L. Vébr, B. Novotný,
VíceSPECIÁLNÍ ZKUŠEBNÍ METODY učební text
Vysoká škola báňská Technická univerzita Ostrava SPECIÁLNÍ ZKUŠEBNÍ METODY učební text prof. Ing. Karel Matocha, CSc. Ing. Petr Jonšta, Ph.D. Ostrava 2013 Recenze: Ing. Ladislav Kander, Ph.D. Název: Autor:
VíceÚnava (Fatigue) Úvod
Únava (Fatigue) Úvod Únavové křivky napětí - historie 9. století rozvoj technického poznání rozšíření možnosti využití oceli a kovových materiálů v běžné praxi. Rozvoj železniční dopravy parní lokomotiva
VíceKONSTRUKČNÍ MATERIÁLY A JEJICH VLASTNOSTI Z HLEDISKA LOMOVÉ MECHANIKY STRUCTURAL MATERIALS AND THEIR PROPERTIES FROM FRACTURE MECHANICS POINT OF VIEW
KONSTRUKČNÍ MATERIÁLY A JEJICH VLASTNOSTI Z HLEDISKA LOMOVÉ MECHANIKY STRUCTURAL MATERIALS AND THEIR PROPERTIES FROM FRACTURE MECHANICS POINT OF VIEW Kunz, J. Katedra materiálů, Fakulta jaderná a fyzikálně
VícePevnost v tahu vláknový kompozit
Pevnost v tahu vláknový kompozit Obsah přednášky Předpoklady výpočtu pevnosti Stejná tažnost matrice i vlákna (disperze) Tažnější matrice než vlákna Kritické množství vláken Tažnější vlákna než matrice
VíceStavební hmoty. Přednáška 3
Stavební hmoty Přednáška 3 Mechanické vlastnosti Pevné látky Pevné jsou ty hmoty, které reagují velmi mohutně proti silám působícím změnu objemu i tvaru. Ottova encyklopedie = skupenství, při kterém jsou
VíceLETECKÉ MATERIÁLY. Úvod do předmětu
LETECKÉ MATERIÁLY Úvod do předmětu Historický vývoj leteckých konstrukčních materiálů Uplatnění konstrukčních materiálů souvisí s pevnostními koncepcemi leteckých konstrukcí Pevnostní koncepce leteckých
VíceIng. Jan BRANDA PRUŽNOST A PEVNOST
Ing. Jan BRANDA PRUŽNOST A PEVNOST Výukový text pro učební obor Technik plynových zařízení Vzdělávací oblast RVP Plynová zařízení a Tepelná technika (mechanika) Pardubice 013 Použitá literatura: Technická
Více18MTY 1. Ing. Jaroslav Valach, Ph.D.
18MTY 1. Ing. Jaroslav Valach, Ph.D. valach@fd.cvut.cz Informace o předmětu http://mech.fd.cvut.cz/education/bachelor/18mty Popis předmětu Témata přednášek Pokyny k provádění cvičení Informace ke zkoušce
VíceStanovení lomové energie betonu
Stanovení lomové energie betonu RNDr. Vítězslav Vydra, CSc. Habilitační přednáška 5. 10. 2006 1 / 17 Cíle přednášky Cíle Efekt rozměru Stanovení lomové energie ❶ Efekt rozměru při destrukci betonových
VícePROBLEMATICKÉ SVAROVÉ SPOJE MODIFIKOVANÝCH ŽÁROPEVNÝCH OCELÍ
PROBLEMATICKÉ SVAROVÉ SPOJE MODIFIKOVANÝCH ŽÁROPEVNÝCH OCELÍ doc. Ing. Petr Mohyla, Ph.D. Fakulta strojní, VŠB TU Ostrava 1. Úvod Snižování spotřeby fosilních paliv a snižování škodlivých emisí vede k
VícePrvky betonových konstrukcí BL01 6 přednáška. Dimenzování průřezů namáhaných posouvající silou prvky se smykovou výztuží, Podélný smyk,
Prvky betonových konstrukcí BL01 6 přednáška Dimenzování průřezů namáhaných posouvající silou prvky se smykovou výztuží, Podélný smyk, Způsoby porušení prvků se smykovou výztuží Smyková výztuž přispívá
VíceNáhradní ohybová tuhost nosníku
Náhradní ohybová tuhost nosníku Autoři: Doc. Ing. Jiří PODEŠVA, Ph.D., Katedra mechaniky, Fakulta strojní, VŠB - Technická univerzita Ostrava, e-mail: jiri.podesva@vsb.cz Anotace: Výpočty ocelových výztuží
VíceNauka o materiálu. Přednáška č.2 Poruchy krystalické mřížky
Nauka o materiálu Přednáška č.2 Poruchy krystalické mřížky Opakování z minula Materiál Degradační procesy Vnitřní stavba atomy, vazby Krystalické, amorfní, semikrystalické Vlastnosti materiálů chemické,
VíceNAUKA O MATERIÁLU I. Přednáška č. 03: Vlastnosti materiálu II (vlastnosti mechanické a technologické, odolnost proti opotřebení)
NAUKA O MATERIÁLU I Přednáška č. 03: Vlastnosti materiálu II (vlastnosti mechanické a technologické, odolnost proti opotřebení) Autor přednášky: Ing. Daniela Odehnalová Pracoviště: TUL FS, Katedra materiálu
VíceMetoda akustické emise
P11: NDT metody 4/5 Princip metody - Uvolněné elastické vlny, které jako typický praskot sledoval Josef Kaiser během deformace cínové tyčinky, daly základ novému oboru testování materiálu a struktur. -
VíceZkoušky rázem. Vliv deformační rychlosti
Zkoušky rázem V provozu působí často na strojní součásti síla, která se cyklicky mění, popř. Její působení je dynamického charakteru. Rázové působení síly je velmi nebezpečné, neboť to může iniciovat náhlou
VíceZkoušky vlastností technických materiálů
Zkoušky vlastností technických materiálů Stálé zvyšování výkonu strojů a snižování jejich hmotnosti klade vysoké požadavky na jakost hutního materiálu. Se zvyšováním nároků na materiál je nerozlučně spjato
VíceKatedra geotechniky a podzemního stavitelství
Katedra geotechniky a podzemního stavitelství Modelování v geotechnice Metoda oddělených elementů (prezentace pro výuku předmětu Modelování v geotechnice) doc. RNDr. Eva Hrubešová, Ph.D. Inovace studijního
VíceDynamická pevnost a životnost Přednášky
DPŽ 1 Dynamická pevnost a životnost Přednášky Milan Růžička, Josef Jurenka, Martin Nesládek, Jan Papuga mechanika.fs.cvut.cz martin.nesladek@fs.cvut.cz DPŽ 2 Přednášky část 3 Koncentrace napětí a její
VíceVY_32_INOVACE_C 07 03
Název a adresa školy: Střední škola průmyslová a umělecká, Opava, příspěvková organizace, Praskova 399/8, Opava, 74601 Název operačního programu: OP Vzdělávání pro konkurenceschopnost, oblast podpory 1.5
VíceKONCEPCE PRAVDĚPODOBNOSTNÍHO VÝPOČTU ŽIVOTNOSTI KOTLOVÝCH TĚLES. Jan Korouš, BiSAFE, s.r.o., Malebná 1049, 149 00 Praha 4, e-mail: korous@bisafe.
KONCEPCE PRAVDĚPODOBNOSTNÍHO VÝPOČTU ŽIVOTNOSTI KOTLOVÝCH TĚLES Jan Korouš, BiSAFE, s.r.o., Malebná 1049, 149 00 Praha 4, e-mail: korous@bisafe.cz Příspěvek obsahuje metodický postup pro pravděpodobnostní
VíceOVMT Mechanické zkoušky
Mechanické zkoušky Mechanickými zkouškami zjišťujeme chování materiálu za působení vnějších sil, tzn., že zkoumáme jeho mechanické vlastnosti. Některé mechanické vlastnosti materiálu vyjadřují jeho odpor
VíceHAIGHŮV DIAGRAM VYBRANÉ PRUŽINOVÉ OCELI HAIGH DIAGRAM OF SELECTED SPRING STEEL
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA STROJNÍHO INŽENÝRSTVÍ ÚSTAV MATERIÁLOVÝCH VĚD A INŽENÝRSTVÍ FACULTY OF MECHANICAL ENGINEERING INSTITUTE OF MATERIALS SCIENCE AND ENGINEERING
VíceHistorie velkých havárií - vývoj v oblasti zkoušení materiálů a studia mezních stavů
Historie velkých havárií - vývoj v oblasti zkoušení materiálů a studia mezních stavů Motto: No man is civilised or mentally adult until he realises that the past, the present, and the future are indivisible.
VíceANALÝZA NAPĚTÍ A DEFORMACÍ PRŮTOČNÉ ČOČKY KLAPKOVÉHO RYCHLOUZÁVĚRU DN5400 A POROVNÁNÍ HODNOCENÍ ÚNAVOVÉ ŽIVOTNOSTI DLE NOREM ČSN EN 13445-3 A ASME
1. Úvod ANALÝZA NAPĚTÍ A DEFORMACÍ PRŮTOČNÉ ČOČKY KLAPKOVÉHO RYCHLOUZÁVĚRU DN5400 A POROVNÁNÍ HODNOCENÍ ÚNAVOVÉ ŽIVOTNOSTI DLE NOREM ČSN EN 13445-3 A ASME Michal Feilhauer, Miroslav Varner V článku se
VíceREGIONÁLNÍ TECHNOLOGICKÝ INSTITUT. Západočeská univerzita v Plzni Fakulta strojní
REGIONÁLNÍ TECHNOLOGICKÝ INSTITUT Západočeská univerzita v Plzni Fakulta strojní Výzkumné centrum RTI Regionální technologický institut - RTI je výzkumné centrum Fakulty strojní Západočeské univerzity
VíceEXPERIMENTÁLNÍ MECHANIKA 2. Jan Krystek
EXPERIMENTÁLNÍ MECHANIKA 2 4. přednáška Jan Krystek 15. března 2018 ODPOROVÁ TENZOMETRIE Elektrická odporová tenzometrie je nepřímá metoda. Poměrné prodloužení je určováno na základě poměrné změny elektrického
VíceÚNAVOVÉ CHOVÁNÍ NIKLOVÉ SUPERSLITINY INCONEL 713LC ZA VYSOKÝCH TEPLOT FATIGUE BEHAVIOUR OF NICKEL BASE SUPERALLOY INCONEL 713LC AT HIGH TEMPERATURE.
ÚNAVOVÉ CHOVÁNÍ NIKLOVÉ SUPERSLITINY INCONEL 713LC ZA VYSOKÝCH TEPLOT FATIGUE BEHAVIOUR OF NICKEL BASE SUPERALLOY INCONEL 713LC AT HIGH TEMPERATURE. Martin Juliš a Karel Obrtlík b Tomáš Podrábský a Martin
VíceFRACTOGRAPHIC STUDY OF FRACTURE SURFACES IN WELDED JOINTS OF HSLA STEEL AFTER MECHANICAL TESTING
FRACTOGRAPHIC STUDY OF FRACTURE SURFACES IN WELDED JOINTS OF HSLA STEEL AFTER MECHANICAL TESTING Doc.Dr.Ing. Antonín KŘÍŽ Sborník str. 183-192 Požadavky kladené dnešními výrobci, zejména v průmyslu dopravních
VíceVLIV TECHNOLOGIE ŽÁROVÉHO ZINKOVÁNÍ NA VLASTNOSTI ŽÁROVĚ ZINKOVANÝCH OCELÍ
Transfer inovácií 2/211 211 VLIV TECHNOLOGIE ŽÁROVÉHO ZINKOVÁNÍ NA VLASTNOSTI ŽÁROVĚ ZINKOVANÝCH OCELÍ Ing. Libor Černý, Ph.D. 1 prof. Ing. Ivo Schindler, CSc. 2 Ing. Petr Strzyž 3 Ing. Radim Pachlopník
VíceReologické modely technických materiálů při prostém tahu a tlaku
. lekce Reologické modely technických materiálů při prostém tahu a tlaku Obsah. Základní pojmy Vnitřní síly napětí. Základní reologické modely technických materiálů 3.3 Elementární reologické modely creepu
VíceMechanické vlastnosti technických materiálů a jejich měření. Metody charakterizace nanomateriálů 1
Mechanické vlastnosti technických materiálů a jejich měření Metody charakterizace nanomateriálů 1 Základní rozdělení vlastností ZMV Přednáška č. 1 Nejobvyklejší dělení vlastností materiálů v technické
VíceObecný Hookeův zákon a rovinná napjatost
Obecný Hookeův zákon a rovinná napjatost Základní rovnice popisující napěťově-deformační chování materiálu při jednoosém namáhání jsou Hookeův zákon a Poissonův zákon. σ = E ε odtud lze vyjádřit také poměrnou
VíceKONSTITUČNÍ VZTAHY. 1. Tahová zkouška
1. Tahová zkouška Tahová zkouška se provádí dle ČSN EN ISO 6892-1 (aktualizována v roce 2010) Je nejčastější mechanickou zkouškou kovových materiálů. Zkoušky se realizují na trhacích strojích, kde se zkušební
VíceHODNOCENÍ PEVNOSTI A ŽIVOTNOSTI ŠROUBŮ DLE NORMY ASME BPV CODE, SECTION VIII, DIVISION 2
HODNOCENÍ EVNOSTI ŽIVOTNOSTI ŠROUBŮ DLE NORMY SME BV CODE, SECTION VIII, DIVISION 2 STRENGTH ND FTIGUE EVLUTION OF BOLTS CCORDING TO SME BV CODE, SEC. VIII, DIV. 2 Miroslav VRNER 1, Viktor KNICKÝ 2 bstract:
Vícepísemky (3 příklady) Výsledná známka je stanovena zkoušejícím na základě celkového počtu bodů ze semestru, ze vstupního testu a z písemky.
POŽADAVKY KE ZKOUŠCE Z PP I Zkouška úrovně Alfa (pro zájemce o magisterské studium) Zkouška sestává ze vstupního testu (10 otázek, výběr správné odpovědi ze čtyř možností, rozsah dle sloupečku Požadavky)
VíceEXPERIMENTÁLNÍ MECHANIKA 2
EXPERIMENTÁLNÍ MECHANIKA 2 2. přednáška Jan Krystek 28. února 2018 EXPERIMENTÁLNÍ MECHANIKA Experiment slouží k tomu, abychom pomocí experimentální metody vyšetřili systém veličin nutných k řešení problému.
Více