Stanovení lomové energie betonu
|
|
- Alexandra Beranová
- před 8 lety
- Počet zobrazení:
Transkript
1 Stanovení lomové energie betonu RNDr. Vítězslav Vydra, CSc. Habilitační přednáška / 17
2 Cíle přednášky Cíle Efekt rozměru Stanovení lomové energie ❶ Efekt rozměru při destrukci betonových konstrukcí ❷ Význam lomové energie při šíření trhliny ❸ Model efektivní trhliny ❹ Stanovení lomové energie nezávislé na velikosti vzorku 2 / 17
3 Cíle Efekt rozměru Úvod Efekt rozměru Specifická lomová energie Stanovení GF- Rilem Zdroj energie Bilance energie při šíření trhliny LPZ Efekt rozměru a význam lomové energie při šíření trhlin Stanovení lomové energie 3 / 17
4 Úvod Kdy dojde k selhání konstrukce? K selhání velkých konstrukcí dochází při nižší hodnotě nominálního napětí a při nižší hodnotě relativní deformace. 4 / 17
5 Efekt rozměru Statistická Vždy praskne nejslabší článek řetězu... V rozměrnějších konstrukcích je vyšší pravděpodobnost výskytu slabých míst. Hlavní příčiny rozměrového efektu : Deterministická Na šíření trhliny je třeba energie Ve velkých napjatých konstrukcích je energie k dispozici více. 5 / 17
6 Specifická lomová energie Energie potřebná na vytváření trhliny je v prvním přiblížení úměrná ploše nově vzniklé trhliny: B - rozměr trhliny kolmo na směr jejího šíření δa - nárůst délky trhliny ve směru šíření δw F = G f B δa G f - specifická lomová energie je to energie potřebná na zpřetrhání vazeb a vytvoření dvou nových povrchů 6 / 17
7 Stanovení lomové energie - základní metoda Standardní metoda pro určení lomové energie dle doporučení komise RILEM pomocí tříbodového ohybu zkušebního vzorku práce působící síly: A F = δmax 0 P dδ práce na jednotku plochy: G F = A F BW BW - plocha trhliny (plocha průřezu ligamentu) 7 / 17
8 Odkud trhlina získává energii pro šíření? Energie na šíření trhliny jde na úkor mechanické potenciální energie Π. Π = Π el + Π P potenciální energie vnějších sil potenciální energie vnitřních elastických sil působících v napjaté konstrukci ( objemu konstrukce!!!) 8 / 17
9 Odkud trhlina získává energii pro šíření? Energie na šíření trhliny jde na úkor mechanické potenciální energie Π. Π = Π el + Π P potenciální energie vnějších sil potenciální energie vnitřních elastických sil působících v napjaté konstrukci ( objemu konstrukce!!!) Platí zákon zachování energie: δ(k + Π) = δw F 8 / 17
10 Odkud trhlina získává energii pro šíření? Energie na šíření trhliny jde na úkor mechanické potenciální energie Π. Π = Π el + Π P potenciální energie vnějších sil potenciální energie vnitřních elastických sil působících v napjaté konstrukci ( objemu konstrukce!!!) Platí zákon zachování energie: δ(k + Π) = δw F Rychlost uvolňování potenciální energie: G = 1 B dπ da = G f 1 B dk da 8 / 17
11 Bilance energie při šíření trhliny Při šíření trhliny mohou nastat tyto případy: ❶ G < G f (trhlina se nešíří) ❷ G = G f (trhlina se šíří kvazistaticky) G f = 1 B ❸ G > G f (trhlina se šíří explozivně) dπ da 9 / 17
12 Lomová procesní zóna (LPZ) Při vzniku trhliny dochází k poškození materiálu a ke spotřebě energie v bezprostředním okolí trhliny v tzv. lomové procesní zóně (LPZ). Rozlišujeme materiály: Křehké - rozměr LPZ je zanedbatelný. Kvazikřehké velikost LPZ je srovnatelná s rozměry konstrukce velikost LPZ není podél trhliny konstantní G F určená standardní metodou závisí na velikosti vzorku! Lze určit lomovou energii tak, aby její hodnota nezávisela na velikosti vzorků? 10 / 17
13 Cíle Efekt rozměru Stanovení lomové energie Model efektivní trhliny Lokální lomová energie Stanovení délky efektivní trhliny jako funkce δ Příklad určení a e a Π Závěr: výsledky a interpretace Stanovení lomové energie betonu pomocí modelu efektivní trhliny Konec 11 / 17
14 Model efektivní trhliny Lomová procesní zóna částečně přenáší napětí. Pojem délka trhliny tím poněkud ztrácí smysl a nelze ji ani určit. Zavádí se pojem efektivní délka trhliny a e. trojbodový ohyb: skutečnost: trámec s lomovou procesní zónou a trhlinou délky a model: dokonale elastický trámec s trhlinou délky a e 12 / 17
15 (Lokální) lomová energie jako funkce efektivní trhliny Tvar LPZ se v průběhu šíření trhliny mění, mění se potřeba energie na šíření trhliny, lomová energie G f je funkcí délky efektivní trhliny: G f (a e ) při kvazistatickém šíření trhliny lze G f určit ze vztahu: G f (a e ) = G = 1 B dπ da e Funkci Π(a e ) neznáme a proto nelze provést derivaci! Není možné vyjádřit Π a a e jako funkci průhybu trámce δ? G f (a e ) = 1 B dπ da e = 1 B dπ dδ ( dae dδ ) 1 13 / 17
16 Stanovení délky efektivní trhliny jako funkce δ V literatuře lze nalézt pouze implicitní vyjádření, např. dle ING. STIBORA: E = P 4Bδ ( ) [ 3 S 1 0, 387 W ( W W S + 12, 13 S ) 2,5 ] P Bδ ( ) 2 S F 1 (α e ), W kde F 1 (α e ) = αe 0 xy 2 (x)dx, Y(x) je složitá funkce geometrie. Délka efektivní trhliny se z těchto implicitních vyjádření obvykle určuje iteračním výpočtem, ale podařilo se nalézt přibližné explicitní vyjádření: α e (F 1 ) = arctan(b 1+b 2 ln F 1 +b 3 (lnf 1 ) 2 +b 4 (ln F 1 ) 3 ) π, kde b 1 b 4 jsou jednoduché funkce velikosti vzorku. Chyba tohoto přibližného vyjádření je maximálně 0,2%! 14 / 17
17 Příklad určení a e a Π 15 / 17
18 Závěr: výsledky a interpretace G f určená zpracováním zkoušek tříbodovým ohybem: trojlineární model: Pokud existuje plató, lze z jeho hodnoty G určit hodnotu lomové energie nezávislé na tvaru vzorku! 16 / 17
19 Cíle Efekt rozměru Stanovení lomové energie Model efektivní trhliny Lokální lomová energie Stanovení délky efektivní trhliny jako funkce δ Příklad určení a e a Π Závěr: výsledky a interpretace Dámy a pánové děkuji Vám za pozornost... Konec 17 / 17
ÚVOD DO PROBLEMATIKY LOMOVÉ MECHANIKY KVAZIKŘEHKÝCH MATERIÁLŮ. Zbyněk Keršner Ústav stavební mechaniky FAST VUT v Brně
ÚVOD DO PROBLEMATIKY LOMOVÉ MECHANIKY KVAZIKŘEHKÝCH MATERIÁLŮ Zbyněk Keršner Ústav stavební mechaniky FAST VUT v Brně 1 Motivace: trhliny v betonu mikrostruktura Vyhojování trhlin konstrukce Pražec po
Houževnatost. i. Základní pojmy (tranzitní lomové chování ocelí, teplotní závislost pevnostních vlastností, fraktografie)
Houževnatost i. Základní pojmy (tranzitní lomové chování ocelí, teplotní závislost pevnostních vlastností, fraktografie) ii. (Empirické) zkoušky houževnatosti (Charpy, TNDT) iii. Lineárně-elastická elastická
Křehké materiály. Technická univerzita v Liberci Nekovové materiály, 5. MI Doc. Ing. Karel Daďourek, 2008
Křehké materiály Technická univerzita v Liberci Nekovové materiály, 5. MI Doc. Ing. Karel Daďourek, 2008 Základní charakteristiky Křehký lom bez znatelné trvalé deformace Mez pevnosti má velký rozptyl
Houževnatost. i. Základní pojmy (tranzitní lomové chování ocelí, teplotní závislost pevnostních vlastností, fraktografie)
Houževnatost i. Základní pojmy (tranzitní lomové chování ocelí, teplotní závislost pevnostních vlastností, fraktografie) ii. (Empirické) zkoušky houževnatosti (Charpy, TNDT) iii. Lineárně-elastická elastická
České vysoké učení technické v Praze, Fakulta strojní. Pevnost a životnost Jur II. Pevnost a životnost. Jur II
České vysoké učení technické v Praze, Fakulta strojní 1/13 Pevnost a životnost Jur II Milan Růžička, Josef Jurenka, Zbyněk Hrubý Poděkování: Děkuji prof. Ing. Jiřímu Kunzovi, CSc za laskavé svolení s využitím
Pevnostní vlastnosti
Pevnostní vlastnosti J. Pruška MH 3. přednáška 1 Pevnost v prostém tlaku na opracovaných vzorcích Jedná se o mezní napětí při porušení zkušebního tělesa za jednoosého tlakového namáhání F R = mez d A pevnost
Použitelnost. Žádné nesnáze s použitelností u historických staveb
Použitelnost - funkční způsobilost za provozních podmínek - pohodlí uživatelů - vzhled konstrukce Obvyklé mezní stavy použitelnosti betonových konstrukcí: mezní stav napětí z hlediska podmínek použitelnosti,
SIMULACE URČOVÁNÍ LOMOVÉ ENERGIE: VLIV HUSTOTY SÍTĚ
SIMULACE URČOVÁNÍ LOMOVÉ ENERGIE: VLIV HUSTOTY SÍTĚ SIMULATION OF FRACTURE ENERGY DETERMINATION: INFLUENCE OF FEM MESH SIZE Ladislav Řoutil 1, Václav Veselý 2, Patrik Štancl 3, Zbyněk Keršner 4 Abstract
Aktuální trendy v oblasti modelování
Aktuální trendy v oblasti modelování Vladimír Červenka Radomír Pukl Červenka Consulting, Praha 1 Modelování betonové a železobetonové konstrukce - tunelové (definitivní) ostění Metoda konečných prvků,
Houževnatost. i. Základní pojmy (tranzitní lomové chování ocelí, teplotní závislost pevnostních vlastností, fraktografie) ii.
Henry Kaiser, Hoover Dam 1 Henry Kaiser, 2 Houževnatost i. Základní pojmy (tranzitní lomové chování ocelí, teplotní závislost pevnostních vlastností, fraktografie) ii. (Empirické) zkoušky houževnatosti
4. Napjatost v bodě tělesa
p04 1 4. Napjatost v bodě tělesa Předpokládejme, že bod C je nebezpečným bodem tělesa a pro zabránění vzniku mezních stavů je m.j. třeba zaručit, že napětí v tomto bodě nepřesáhne definované mezní hodnoty.
8. Základy lomové mechaniky. Únava a lomová mechanika Pavel Hutař, Luboš Náhlík
Únava a lomová mechanika Koncentrace napětí nesingulární koncentrátor napětí singulární koncentrátor napětí 1 σ = σ + a r 2 σ max = σ 1 + 2( / ) r 0 ; σ max Nekonečný pás s eliptickým otvorem [Pook 2000]
Pevnost kompozitů obecné zatížení
Pevnost kompozitů obecné zatížení Osnova Příčná pevnost v tahu Pevnost v tahu pod nenulovým úhlem proti vláknům Podélná pevnost v tlaku Příčná pevnost v tlaku Pevnost vláknových kompozitů - obecně Základní
OTÁZKY K PROCVIČOVÁNÍ PRUŽNOST A PLASTICITA II - DD6
OTÁZKY K PROCVIČOVÁNÍ PRUŽNOST A PLASTICITA II - DD6 POSUZOVÁNÍ KONSTRUKCÍ PODLE EUROKÓDŮ 1. Jaké mezní stavy rozlišujeme při posuzování konstrukcí podle EN? 2. Jaké problémy řeší mezní stav únosnosti
Učební pomůcka Prof.Ing. Vladimír Křístek, DrSc. Ing. Alena Kohoutková, CSc. Ing. Helena Včelová. Katedra betonových konstrukcí a mostů
PŘEDNÁŠKY Učební pomůcka Prof.Ing. Vladimír Křístek, DrSc. Ing. Alena Kohoutková, CSc. Ing. Helena Včelová Katedra betonových konstrukcí a mostů Text učební pomůcky lze nalézt na internetové stránce http://beton.fsv.cvut.cz
SPOLEHLIVOST KONSTRUKCÍ & TEORIE SPOLEHLIVOSTI část 8: Normové předpisy
SPOLEHLIVOST KONSTRUKCÍ & TEORIE SPOLEHLIVOSTI část 8: Normové předpisy Drahomír Novák Jan Eliáš 2012 Spolehlivost konstrukcí, Drahomír Novák & Jan Eliáš 1 část 8 Normové předpisy 2012 Spolehlivost konstrukcí,
Reologické modely technických materiálů při prostém tahu a tlaku
. lekce Reologické modely technických materiálů při prostém tahu a tlaku Obsah. Základní pojmy Vnitřní síly napětí. Základní reologické modely technických materiálů 3.3 Elementární reologické modely creepu
Statika 2. Vybrané partie z plasticity. Miroslav Vokáč 2. prosince ČVUT v Praze, Fakulta architektury.
ocelových 5. přednáška Vybrané partie z plasticity Miroslav Vokáč miroslav.vokac@klok.cvut.cz ČVUT v Praze, Fakulta architektury 2. prosince 2015 Pracovní diagram ideálně pružného materiálu ocelových σ
5. Únava Zatížení při únavě, Wöhlerův přístup a lomová mechanika, únosnost, vliv vrubů, kumulace poškození, přístup podle Eurokódu.
5. Únava Zatížení při únavě, Wöhlerův přístup a lomová mechanika, únosnost, vliv vrubů, kumulace poškození, přístup podle Eurokódu. K poškození únavou dochází při zatížení výrazně proměnném s časem. spolehlivost
Vlastnosti a zkoušení materiálů. Přednáška č.9 Plasticita a creep
Vlastnosti a zkoušení materiálů Přednáška č.9 Plasticita a creep Vliv teploty na chování materiálu 1. Teplotní roztažnost L = L α T ( x) dl 2. Závislost modulu pružnosti na teplotě: Modul pružnosti při
Zkouška rázem v ohybu. Autor cvičení: prof. RNDr. B. Vlach, CSc; Ing. Petr Langer. Jméno: St. skupina: Datum cvičení:
BUM - 6 Zkouška rázem v ohybu Autor cvičení: prof. RNDr. B. Vlach, CSc; Ing. Petr Langer Jméno: St. skupina: Datum cvičení: Úvodní přednáška: 1) Vysvětlete pojem houževnatost. 2) Popište princip zkoušky
SPOLEHLIVOST KONSTRUKCÍ statistické vyhodnocení materiálových zkoušek
SPOLEHLIVOST KONSTRUKCÍ statistické vyhodnocení materiálových zkoušek Thákurova 7, 166 29 Praha 6 Dejvice Česká republika Program přednášek a cvičení Výuka: Úterý 12:00-13:40, C -219 Přednášky a cvičení:
Nauka o materiálu. Přednáška č.5 Základy lomové mechaniky
Nauka o materiálu Přednáška č.5 Základy lomové mechaniky Způsoby stanovení napjatosti a deformace Využívají se tři přístupy: 1. Analytický - jen jednoduché geometrie těles - vždy za jistých zjednodušujících
Vlastnosti a zkoušení materiálů. Přednáška č.4 Úvod do pružnosti a pevnosti
Vlastnosti a zkoušení materiálů Přednáška č.4 Úvod do pružnosti a pevnosti Teoretická a skutečná pevnost kovů Trvalá deformace polykrystalů začíná při vyšším napětí než u monokrystalů, tj. hodnota meze
Nosné konstrukce AF01 ednáška
Brno University of Technology, Faculty of Civil Engineering Institute of Concrete and Masonry Structures, Veveri 95, 662 37 Brno Nosné konstrukce AF01 3. přednp ednáška Deska působící ve dvou směrech je
Obecný Hookeův zákon a rovinná napjatost
Obecný Hookeův zákon a rovinná napjatost Základní rovnice popisující napěťově-deformační chování materiálu při jednoosém namáhání jsou Hookeův zákon a Poissonův zákon. σ = E ε odtud lze vyjádřit také poměrnou
MODELOVÁNÍ LOMOVÉHO PROCESU V KVAZIKŘEHKÝCH MATERIÁLECH
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA STAVEBNÍ ÚSTAV STAVEBNÍ MECHANIKY FACULTY OF CIVIL ENGINEERING INSTITUTE OF STRUCTURAL MECHANICS MODELOVÁNÍ LOMOVÉHO PROCESU V KVAZIKŘEHKÝCH
- Větší spotřeba předpínací výztuže, komplikovanější vedení
133 B04K BETONOVÉ KONSTRUKCE 4K Návrh předpětí Metoda vyrovnání napětí Metoda vyrovnání zatížení Metoda vyrovnání napětí Metoda vyrovnání zatížení - Princip vyrovnání napětí v průřezu - Větší spotřeba
3.2 Základy pevnosti materiálu. Ing. Pavel Bělov
3.2 Základy pevnosti materiálu Ing. Pavel Bělov 23.5.2018 Normálové napětí představuje vazbu, která brání částicím tělesa k sobě přiblížit nebo se od sebe oddálit je kolmé na rovinu řezu v případě že je
Katedra textilních materiálů ENÍ TEXTILIÍ PŘEDNÁŠKA 7 MECHANICKÉ VLASTNOSTI
PŘEDNÁŠKA 7 Definice: Mechanické vlastnosti materiálů - odezva na mechanické působení od vnějších sil: 1. na tah 2. na tlak 3. na ohyb 4. na krut 5. střih F F F MK F x F F F MK 1. 2. 3. 4. 5. Druhy namáhání
18MTY 1. Ing. Jaroslav Valach, Ph.D.
18MTY 1. Ing. Jaroslav Valach, Ph.D. valach@fd.cvut.cz Informace o předmětu http://mech.fd.cvut.cz/education/bachelor/18mty Popis předmětu Témata přednášek Pokyny k provádění cvičení Informace ke zkoušce
Specializovaný MKP model lomu trámce
Structural and Physical Aspects of Civil Engineering, 2010 Specializovaný MKP model lomu trámce Tomáš Pail, Petr Frantík, Michal Štafa Technical University of Brno Faculty of Civil Engineering, Institute
ZKOUŠKY MIKROLEGOVANÝCH OCELÍ DOMEX 700MC
Sborník str. 392-400 ZKOUŠKY MIKROLEGOVANÝCH OCELÍ DOMEX 700MC Antonín Kříž Výzkumné centrum kolejových vozidel, ZČU v Plzni,Univerzitní 22, 306 14, Česká republika, kriz@kmm.zcu.cz Požadavky kladené dnešními
Nelineární problémy a MKP
Nelineární problémy a MKP Základní druhy nelinearit v mechanice tuhých těles: 1. materiálová (plasticita, viskoelasticita, viskoplasticita,...) 2. geometrická (velké posuvy a natočení, stabilita konstrukcí)
České vysoké učení technické v Praze Fakulta stavební. katedra fyziky HABILITAČNÍ PRÁCE
České vysoké učení technické v Praze Fakulta stavební katedra fyziky HABILITAČNÍ PRÁCE Lomové charakteristiky betonu vystaveného působení vysokých teplot Praha, 2005 RNDr. Vítězslav Vydra, CSc. Abstrakt
2. Vlnění. π T. t T. x λ. Machův vlnostroj
2. Vlnění 2.1 Vlnění zvláštní případ pohybu prostředí Vlnění je pohyb v soustavě velkého počtu částic navzájem vázaných, kdy částice kmitají kolem svých rovnovážných poloh. Druhy vlnění: vlnění příčné
Betonové konstrukce (S) Přednáška 3
Betonové konstrukce (S) Přednáška 3 Obsah Účinky předpětí na betonové prvky a konstrukce Silové působení kabelu na beton Ekvivalentní zatížení Staticky neurčité účinky předpětí Konkordantní kabel, Lineární
Definice spojité náhodné veličiny zjednodušená verze
Definice spojité náhodné veličiny zjednodušená verze Náhodná veličina X se nazývá spojitá, jestliže existuje nezáporná funkce f : R R taková, že pro každé a, b R { }, a < b, platí P(a < X < b) = b a f
Navrhování konstrukcí z korozivzdorných ocelí
Navrhování konstrukcí z korozivzdorných ocelí Marek Šorf Seminář Navrhování konstrukcí z korozivzdorných ocelí 27. září 2017 ČVUT Praha 1 Obsah 1. část Ing. Marek Šorf Rozdíl oproti navrhování konstrukcí
KŘIVKY A PLOCHY. Obrázky (popř. slajdy) převzaty od
KŘIVKY A PLOCHY JANA ŠTANCLOVÁ jana.stanclova@ruk.cuni.cz Obrázky (popř. slajdy) převzaty od RNDr. Josef Pelikán, CSc., KSVI MFF UK Obsah matematický popis křivek a ploch křivky v rovině implicitní tvar
Statika 1. Vnitřní síly na prutech. Miroslav Vokáč 11. dubna ČVUT v Praze, Fakulta architektury. Statika 1. M.
Definování 4. přednáška prutech iroslav okáč miroslav.vokac@cvut.cz ČUT v Praze, Fakulta architektury 11. dubna 2016 prutech nitřní síly síly působící uvnitř tělesa (desky, prutu), které vznikají působením
EXPERIMETÁLNÍ OVĚŘENÍ ÚNOSNOSTI DŘEVOBETONOVÝCH SPŘAŽENÝCH TRÁMŮ ZESÍLENÝCH CFRP LAMELAMI
19. Betonářské dny (2012) Sborník Sekce: Výzkum a technologie 2 ISBN 978-80-87158-32-6 EXPERIMETÁLNÍ OVĚŘENÍ ÚNOSNOSTI DŘEVOBETONOVÝCH SPŘAŽENÝCH TRÁMŮ ZESÍLENÝCH CFRP LAMELAMI David Horák 1 Hlavní autor
Kˇriv e pruty Martin Fiˇser Martin Fiˇ ser Kˇ riv e pruty
Obsah Dimenzování křivého tenkého prutu zde Deformace v daném místě prutu zde Castiglianova věta zde Dimenzování křivého tenkého prutu Mějme obecný křivý prut z homogeního izotropního materiálu. Obrázek:
Struktura polymerů. Příprava (výroba).struktura vlastnosti. Materiálové inženýrství (Nauka o materiálu) Základní představy: přírodní vs.
Struktura polymerů Základní představy: přírodní vs. syntetické V.Švorčík, vaclav.svorcik@vscht.cz celulóza přírodní kaučuk Příprava (výroba).struktura vlastnosti Materiálové inženýrství (Nauka o materiálu)
Obyčejnými diferenciálními rovnicemi (ODR) budeme nazývat rovnice, ve kterých
Obyčejné diferenciální rovnice Obyčejnými diferenciálními rovnicemi (ODR) budeme nazývat rovnice, ve kterých se vyskytují derivace neznámé funkce jedné reálné proměnné. Příklad. Bud dána funkce f : R R.
13. Zděné konstrukce. h min... nejmenší tloušťka prvku bez omítky
13. Zděné konstrukce Navrhování zděných konstrukcí Zděné konstrukce mají široké uplatnění v nejrůznějších oblastech stavebnictví. Mají dobrou pevnost, menší objemová hmotnost, dobrá tepelně izolační schopnost
Statistické vyhodnocení zkoušek betonového kompozitu
Statistické vyhodnocení zkoušek betonového kompozitu Thákurova 7, 166 29 Praha 6 Dejvice Česká republika Program přednášek a cvičení Výuka: Středa 10:00-11:40, C -204 Přednášky a cvičení: Statistické vyhodnocení
[ MPa] 11. KAPITOLA DYNAMICKÉ ZKOUŠKY. Rázová a vrubová houževnatost. = ε. A d
11. KAPITOLA DYNAMICKÉ ZKOUŠKY Rázová a vrubová houževnatost Zkouška rázové a vrubové houževnatosti materiálů spočívá v namáhání tělesa rázem, tedy silou koncentrovanou do velmi krátké doby. Souvisí s
12. Únavové šíření trhliny. Únava a lomová mechanika Pavel Hutař, Luboš Náhlík
Únava a lomová mechanika Proces únavového porušení Iniciace únavové trhliny v krystalu Cu (60 000 cyklů při 20 C) (převzato z [Suresh 2006]) Proces únavového porušení Jednotlivé stádia únavového poškození:
KONSTITUČNÍ VZTAHY. 1. Tahová zkouška
1. Tahová zkouška Tahová zkouška se provádí dle ČSN EN ISO 6892-1 (aktualizována v roce 2010) Je nejčastější mechanickou zkouškou kovových materiálů. Zkoušky se realizují na trhacích strojích, kde se zkušební
Práce, energie a další mechanické veličiny
Práce, energie a další mechanické veličiny Úvod V předchozích přednáškách jsme zavedli základní mechanické veličiny (rychlost, zrychlení, síla, ) Popis fyzikálních dějů usnadňuje zavedení dalších fyzikálních
Měření a analýza mechanických vlastností materiálů a konstrukcí. 1. Určete moduly pružnosti E z ohybu tyče pro 4 různé materiály
FP 1 Měření a analýza mechanických vlastností materiálů a konstrukcí Úkoly : 1. Určete moduly pružnosti E z ohybu tyče pro 4 různé materiály 2. Určete moduly pružnosti vzorků nepřímo pomocí měření rychlosti
Základy vyšší matematiky arboristika Zadání písemek ze školního roku
Základy vyšší matematiky arboristika Zadání písemek ze školního roku 20 202 Robert ařík 9. ledna 203 Níže najdete zadání písemek předmětu ZVTA. Za některými písemkami je vloženo i řešení. Písemná část
Nosné konstrukce II - AF01 ednáška Navrhování betonových. použitelnosti
Brno University of Technology, Faculty of Civil Engineering Institute of Concrete and Masonry Structures, Veveri 95, 662 37 Brno Nosné konstrukce II - AF01 1. přednp ednáška Navrhování betonových prvků
Voigtův model kompozitu
Voigtův model kompozitu Osnova přednášky Směšovací pravidlo použitelnost Princip Voigtova modelu Důsledky Voigtova modelu Specifika vláknových kompozitů Směšovací pravidlo Nejjednoduší vztah pro vlastnost
Test A 100 [%] 1. Čím je charakteristická plastická deformace? - Je to deformace nevratná.
Test A 1. Čím je charakteristická plastická deformace? - Je to deformace nevratná. 2. Co je to µ? - Poissonův poměr µ poměr poměrného příčného zkrácení k poměrnému podélnému prodloužení v oblasti pružných
Mechanické vlastnosti technických materiálů a jejich měření. Metody charakterizace nanomateriálů 1
Mechanické vlastnosti technických materiálů a jejich měření Metody charakterizace nanomateriálů 1 Základní rozdělení vlastností ZMV Přednáška č. 1 Nejobvyklejší dělení vlastností materiálů v technické
Zlepšení tepelněizolační funkce ETICS. Ing. Vladimír Vymětalík
Zlepšení tepelněizolační funkce ETICS Ing. Vladimír Vymětalík Způsoby řešení Provedení nového ETICS na původní podkladní konstrukci po předchozí demontáži kompletního stávajícího ETICS Provedení nového
5 Analýza konstrukce a navrhování pomocí zkoušek
5 Analýza konstrukce a navrhování pomocí zkoušek 5.1 Analýza konstrukce 5.1.1 Modelování konstrukce V článku 5.1 jsou uvedeny zásady a aplikační pravidla potřebná pro stanovení výpočetních modelů, které
Řešíme tedy soustavu dvou rovnic o dvou neznámých. 2a + b = 3, 6a + b = 27,
Přijímací řízení 2015/16 Přírodovědecká fakulta Ostravská univerzita v Ostravě Navazující magisterské studium, obor Aplikovaná matematika (1. červen 2016) Příklad 1 Určete taková a, b R, aby funkce f()
Historie velkých havárií - vývoj v oblasti zkoušení materiálů a studia mezních stavů
Historie velkých havárií - vývoj v oblasti zkoušení materiálů a studia mezních stavů Motto: No man is civilised or mentally adult until he realises that the past, the present, and the future are indivisible.
Skenovací tunelová mikroskopie a mikroskopie atomárních sil
Skenovací tunelová mikroskopie a mikroskopie atomárních sil M. Vůjtek Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky v rámci projektu Vzdělávání výzkumných
Podniková norma Desky z PP-B osmiúhelníky
IMG Bohemia, s.r.o. Průmyslová 798, 391 02 Sezimovo Ústí divize vytlačování Vypracoval: Podpis: Schválil: Ing.Pavel Stránský Ing.Antonín Kuchyňka Verze: 01/08 Vydáno dne: 3.3.2008 Účinnost od: 3.3.2008
Požární zkouška v Cardingtonu, ocelobetonová deska
Požární zkouška v Cardingtonu, ocelobetonová deska Modely chování konstrukcí za vysokých teplot při požáru se opírají o omezené množství experimentů na skutečných objektech. Evropské poznání je založeno
Katedra geotechniky a podzemního stavitelství
Katedra geotechniky a podzemního stavitelství Zemní tlaky cvičení doc. Dr. Ing. Hynek Lahuta Inovace studijního oboru Geotechnika CZ.1.07/2.2.00/28.0009. Tento projekt je spolufinancován Evropským sociálním
Ztráta stability tenkých přímých prutů - vzpěr
Ztráta stability tenkých přímých prutů - vzpěr Motivace štíhlé pruty namáhané tlakem mohou vybočit ze svého původně přímého tvaru a může dojít ke ztrátě stability a zhroucení konstrukce dříve, než je dosaženo
Kritéria porušení laminy
Kap. 4 Kritéria porušení laminy Inormační a vzdělávací centrum kompozitních technologií & Ústav mechaniky, biomechaniky a mechatroniky S ČVU v Praze.. 007-6.. 007 Úvod omové procesy vyvolané v jednosměrovém
Objemové ultrajemnozrnné materiály a jejich příprava. Doc. RNDr. Miloš Janeček CSc. Katedra fyziky materiálů
Objemové ultrajemnozrnné materiály a jejich příprava Doc. RNDr. Miloš Janeček CSc. Katedra fyziky materiálů Definice Definice objemových ultrajemnozrnných (bulk UFG ultrafine grained) materiálů: Malá velikost
Střední průmyslová škola strojírenská a Jazyková škola s právem státní jazykové zkoušky, Kolín IV, Heverova 191
Název školy Název projektu Registrační číslo projektu Autor Název šablony Střední průmyslová škola strojírenská a Jazyková škola s právem státní jazykové zkoušky, Kolín IV, Heverova 191 Modernizace výuky
Pružnost a pevnost. zimní semestr 2013/14
Pružnost a pevnost zimní semestr 2013/14 Organizace předmětu Přednášející: Prof. Milan Jirásek, B322 Konzultace: pondělí 10:00-10:45 nebo dle dohody E-mail: Milan.Jirasek@fsv.cvut.cz Webové stránky předmětu:
Filosofie konstruování a dimenzování mechanických částí vozidel z hlediska jejich funkce a provozního zatěžování
Filosofie konstruování a dimenzování mechanických částí vozidel z hlediska jejich funkce a provozního zatěžování doc. Ing. Miloslav Kepka, CSc. ZČU v Plzni, Fakulta strojní, Katedra konstruování strojů
Akustický přijímač přeměňuje energii akustického pole daného místa na energii elektrického pole
Akustické přijímače Akustický přijímač přeměňuje energii akustického pole daného místa na energii elektrického pole jeho součástí je elektromechanický měnič Při přeměně kmitů plynu = mikrofon Při přeměně
Vibrace atomů v mřížce, tepelná kapacita pevných látek
Vibrace atomů v mřížce, tepelná kapacita pevných látek Atomy vázané v mřížce nejsou v klidu. Míru jejich pohybu vyjadřuje podobně jako u plynů a kapalin teplota. - Elastické vlny v kontinuu neatomární
Matematika 1 pro PEF PaE
Tečny a tečné roviny 1 / 16 Matematika 1 pro PEF PaE 7. Tečny a tečné roviny Přemysl Jedlička Katedra matematiky, TF ČZU Tečny a tečné roviny Tečny a normály grafů funkcí jedné proměnné / 16 Tečny a normály
ZKOUŠKY MECHANICKÝCH. Mechanické zkoušky statické a dynamické
ZKOUŠKY MECHANICKÝCH VLASTNOSTÍ MATERIÁLŮ Mechanické zkoušky statické a dynamické Úvod Vlastnosti materiálu, lze rozdělit na: fyzikální a fyzikálně-chemické; mechanické; technologické. I. Mechanické vlastnosti
Okruhy otázek ke zkoušce
Kompozity A farao pokračoval: "Hle, lidu země je teď mnoho, a vy chcete, aby nechali svých robot? Onoho dne přikázal farao poháněčům lidu a dozorcům: Propříště nebudete vydávat lidu slámu k výrobě cihel
Zatížení stálá a užitná
ZÁSADY OVĚŘOVÁNÍ EXISTUJÍCÍCH KONSTRUKCÍ Zatížení stálá a užitná prof. Ing. Milan Holický, DrSc. Kloknerův ústav, ČVUT v Praze 1. Zatížení stálá 2. Příklad stanovení stálého zatížení na základě zkoušek
Studentská 1402/2 461 17 Liberec 1 tel.: +420 485 353 006 cxi.tul.cz
Pokročilé simulace pro komplexní výzkum a optimalizace Ing. Michal Petrů, Ph.D. Studentská 1402/2 461 17 Liberec 1 tel.: +420 485 353 006 cxi.tul.cz Stránka: 2 Modelové simulace pro komplexní výzkum Mechanických
Příloha č. 3 Technická specifikace
Příloha č. 3 Technická specifikace PŘÍSTROJ Dva creepové stroje pro měření, jeden creepový zkušební stroj pracující v rozmezí teplot od +150 do +1200 C a jeden creepový zkušební stroj pracující v rozmezí
MATEMATIKA III. Olga Majlingová. Učební text pro prezenční studium. Předběžná verze
Fakulta strojního inženýrství Univerzity J. E. Purkyně v Ústí nad Labem Pasteurova 7 Tel.: 475 285 511 400 96 Ústí nad Labem Fax: 475 285 566 Internet: www.ujep.cz E-mail: kontakt@ujep.cz MATEMATIKA III
5. cvičení z Matematiky 2
5. cvičení z Matematiky 2 21.-25. března 2016 5.1 Nalezněte úhel, který v bodě 1, 0, 0 svírají grafy funkcí fx, y ln x 2 + y 2 a gx, y sinxy. Úhel, který svírají grafy funkcí je dán jako úhel mezi jednotlivými
Výpočtová únosnost pilot. Cvičení 8
Výpočtová únosnost pilot Cvičení 8 Podmínka únosnosti: V de U vd V de Svislá složka extrémního výpočtového zatížení U vd výpočtová únosnost ve svislém směru Stanovení výpočtové únosnosti pilot Podle ČSN:
Inovace studia molekulární a buněčné biologie reg. č. CZ.1.07/2.2.00/
Inovace studia molekulární a buněčné biologie reg. č. CZ.1.07/2.2.00/07.0354 Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky Populační genetika (KBB/PG)
Výpočtová únosnost U vd. Cvičení 4
Výpočtová únosnost U vd Cvičení 4 Podmínka únosnosti: V de U vd V de Svislá složka extrémního výpočtového zatížení U vd výpočtová únosnost ve svislém směru Stanovení výpočtové únosnosti pilot Podle ČSN:
12. Struktura a vlastnosti pevných látek
12. Struktura a vlastnosti pevných látek Osnova: 1. Látky krystalické a amorfní 2. Krystalová mřížka, příklady krystalových mřížek 3. Poruchy krystalových mřížek 4. Druhy vazeb mezi atomy 5. Deformace
Katedra textilních materiálů ZKOUŠENÍ TEXTILIÍ
ZKOUŠENÍ TEXTILIÍ PŘEDNÁŠKA 12 c = l cos0,5θ *( 8* tgθ 1 3 ) STÁLOSTI A ODOLNOSTI: Odezva textilií na chemické a fyzikální namáhání při dalším zpracování : Stálosti tvaru sráživost po praní (může být také
9. přednáška 26. listopadu f(a)h < 0 a pro h (0, δ) máme f(a 1 + h, a 2,..., a m ) f(a) > 1 2 x 1
9 přednáška 6 listopadu 007 Věta 11 Nechť f C U, kde U R m je otevřená množina, a a U je bod Pokud fa 0, nemá f v a ani neostrý lokální extrém Pokud fa = 0 a H f a je pozitivně negativně definitní, potom
Diferenciální počet funkcí více proměnných
Vysoké učení technické v Brně Fakulta strojního inženýrství Diferenciální počet funkcí více proměnných Doc RNDr Miroslav Doupovec, CSc Neřešené příklady Matematika II OBSAH Obsah I Diferenciální počet
Mechanika s Inventorem
Mechanika s Inventorem 5. Aplikace tahová úloha CAD data FEM výpočty Petr SCHILLING, autor přednášky Ing. Kateřina VLČKOVÁ, obsahová korekce Optimalizace Tomáš MATOVIČ, publikace 1 Obsah cvičení: Zadání
A mez úměrnosti B mez pružnosti C mez kluzu (plasticity) P vznik krčku na zkušebním vzorku, smluvní mez pevnosti σ p D přetržení zkušebního vzorku
1. Úlohy a cíle teorie plasticity chopnost tuhých těles deformovat se působením vnějších sil a po odnětí těchto sil nabývat původního tvaru a rozměrů se nazývá pružnost. 1.1 Plasticita, pracovní diagram
POKROČILÉ VYHODNOCENÍ VYBRANÝCH LOMOVÝCH TESTŮ TĚLES Z BETONŮ S ROZPTÝLENOU VÝZTUŽÍ
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA STAVEBNÍ ÚSTAV STAVEBNÍ MECHANIKY FACULTY OF CIVIL ENGINEERING INSTITUTE OF STRUCTURAL MECHANICS POKROČILÉ VYHODNOCENÍ VYBRANÝCH LOMOVÝCH
Materiálové vlastnosti: Poissonův součinitel ν = 0,3. Nominální mez kluzu (ocel S350GD + Z275): Rozměry průřezu:
Řešený příklad: Výpočet momentové únosnosti ohýbaného tenkostěnného C-profilu dle ČSN EN 1993-1-3. Ohybová únosnost je stanovena na základě efektivního průřezového modulu. Materiálové vlastnosti: Modul
Nauka o materiálu. Přednáška č.12 Keramické materiály a anorganická nekovová skla
Nauka o materiálu Přednáška č.12 Keramické materiály a anorganická nekovová skla Úvod Keramika a nekovová skla jsou ve srovnání s kovy velmi křehké. Jejich pevnost v tahu je nízká a finálnímu lomu nepředchází
Pružnost, pevnost, tvrdost, houževnatost. Jaký je v tom rozdíl?
Pružnost, pevnost, tvrdost, houževnatost. Jaký je v tom rozdíl? Zkušební stroj pro zkoušky mechanických vlastností materiálů na Ústavu fyziky materiálů AV ČR, v. v. i. Pružnost (elasticita) Z fyzikálního
VYHODNOCENÍ LOMOVÉHO EXPERIMENTU S KATASTROFICKOU ZTRÁTOU STABILITY
VYHODNOCENÍ LOMOVÉHO EXPERIMENTU S KATASTROFICKOU ZTRÁTOU STABILITY P. Frantík ) a Z. Keršner 2) Abstract: Paper deals with the correction of load deflection diagram of a specimen obtained by displacement-controlled
Principy návrhu 28.3.2012 1. Ing. Zuzana Hejlová
KERAMICKÉ STROPNÍ KONSTRUKCE ČSN EN 1992 Principy návrhu 28.3.2012 1 Ing. Zuzana Hejlová Přechod z národních na evropské normy od 1.4.2010 Zatížení stavebních konstrukcí ČSN 73 0035 = > ČSN EN 1991 Navrhování
Stanovení požární odolnosti. Přestup tepla do konstrukce v ČSN EN
Stanovení požární odolnosti NAVRHOVÁNÍ OCELOVÝCH KONSTRUKCÍ NA ÚČINKY POŽÁRU ČSN EN 1993-1-2 Ing. Jiří Jirků Ing. Zdeněk Sokol, Ph.D. Prof. Ing. František Wald, CSc. 1 2 Přestup tepla do konstrukce v ČSN
Stěnové nosníky. Obr. 1 Stěnové nosníky - průběh σ x podle teorie lineární pružnosti.
Stěnové nosníky Stěnový nosník je plošný rovinný prvek uložený na podporách tak, že prvek je namáhán v jeho rovině. Porovnáme-li chování nosníků o výškách h = 0,25 l a h = l, při uvažování lineárně pružného
Porušení hornin. J. Pruška MH 7. přednáška 1
Porušení hornin Předpoklady pro popis mechanických vlastností hornin napjatost masivu je včase a prostoru proměnná nespojitosti jsou určeny pevnostními charakteristikami prostředí horniny ovlivňuje rychlost