Aplikace T -prostorů při modelování kompozičních časových řad
|
|
- Marek Vacek
- před 6 lety
- Počet zobrazení:
Transkript
1 Aplikace T -prostorů při modelování kompozičních časových řad P. Kynčlová 1,3 P. Filzmoser 1, K. Hron 2,3 1 Department of Statistics and Probability Theory Vienna University of Technology 2 Katedra matematické analýzy a aplikací matematiky Univerzita Palackého v Olomouci 3 Katedra geoinformatiky Univerzita Palackého v Olomouci ROBUST 2014, 23. ledna 2014
2 Obsah Kompoziční časové řady VAR model T -prostory Praktický příklad
3 Kompoziční data data nesoucí výhradně relativní informaci, jejichž výběrovým prostorem je simplex S D { } D S D = x = (x 1,..., x D ) x i > 0, i = 1,..., D; x i = κ Aitchisonova geometrie na simplexu = logratio transformace ze simplexu do reálného prostoru izometrická logratio transformace: ilr(x) = (z 1,..., z D 1 ) D j z j = D j + 1 ln x j D j D, j = 1,..., D 1 (1) l=j+1 x l = souřadnice z 1 obsahuje veškerou relativní informaci o x 1 vzhledem k ostatním složkám x 2,..., x D i=1
4 Kompoziční časové řady Definice mnohorozměrné časové řady pro kompoziční data {x t : t = 1,..., n}, x t = (x 1t,..., x Dt ) S D časové řady s kladnými reálnými prvky x 1t,..., x Dt > 0 problém: konstatní součet v každém čase t často roven 1 (proporcionální data) řešení: logratio transformace ze simplexu do prostoru souřadnic (S D R D 1 )
5 Kompoziční časové řady Princip modelování kompozičních časových řad transformace do prostoru souřadnic: izometrická logratio (ilr) transformace (1) = výhodné interpretační vlastnosti aplikace standardních metod pro analýzu mnohorozměrných časových řad v prostoru souřadnic návrat zpět na simplex = inverzní ilr transformace
6 Vektorový autoregresní proces VAR(p) Definice VAR(p) model v redukovaném tvaru z t = c + A (1) V z t 1 + A (2) V z t A (p) V z t p + ɛ t, (2) kde B = [c V, A (1) V,..., A(p) V ] jsou parametry a ɛ t chybová složka, ɛ t WN (0, Σ ɛ ) p se nazývá řád modelu pozorování z t je modelováno pomocí p předchozích pozorování z t 1,..., z t p.
7 z t = ilr V (x t ) jsou ilr souřadnice kompozice x t S D dané maticí V a z t = ilr V (x t ) ilr souřadnice dané maticí V VAR(p) modely jsou kompozičně ekvivalentní při použití libovolné ilr transformace z t = c V + A (1) V z t 1 + A (2) V z t A (p) V z t p, z t = c V + A (1) V z t 1 + A (2) V z t A (p) V z t p.
8 Vektorový autoregresní proces VAR(p) Endomorfismus na simplexu S D ( D A x = C x a 1j j,..., j=1 D j=1 ) x a Dj j A R D D, x S D představuje lineární transformaci vzhledem k Aitchisonově geometrii za podmínky A1D = 0 D (jinak A x A (kx)) pokud navíc platí A 1 D = 0 D, pak funkce x A x se nazývá endomorfismus na simplexu S D máme-li endomorfismus y = A x na simplexu, pak ho můžeme též vyjádřit i v prostoru souřadnic clr(y) = A clr(x) ilrv (y) = A V ilr V (x) ilr(y) = V AV ilr(x)
9 Vektorový autoregresní proces VAR(p) VAR(p) na simplexu S D výsledný VAR model na simplexu nezávisí na volbě konkrétní transformace ) ) x t = b (A (1) x t 1 (A (p) x t p w t modelování kompozičních časových řad přímo na simplexu = Barcelo-Vidal et al.(2011)
10 Vektorový autoregresní proces VAR(p) Odhad parametrů stacionární VAR(p) model lze rovněž zapsat v maticovém tvaru Y = ZB + E kde Y = (z 1,..., z n ), Z t = (1, z t 1,..., z t p) je t-tý řádek matice Z R n [(D 1)p+1] parametry B lze odhadnout pomocí MNČ pro každou rovnici zvlášt na základě sample z1,..., z n presample z p+1,..., z 0
11 Vektorový autoregresní proces VAR(p) Testování hypotéz: Grangerova kauzalita testování kauzality založené na predikci x 1 Granger causes x 2 = minulé (zpožděné) hodnoty x 1 obsahují statisticky významnou informaci o budoucích hodnotách x 2 test hypotézy H 0 : Rˆβˆβˆβ = r Waldova statistika ( Rˆβ r ) { R [ âvar(ˆβ) ] R } 1( Rˆβ r ) F ( q, n (D 1)p 1 ) q... hodnost matice R
12 Teorie T -prostorů kompoziční data = data nesoucí výhradně relativní informaci v podílech mezi složkami kompoziční časové řady zajímá nás též absolutní informace o celkovém množství v čase t (např. při predikci budoucích hodnot) teorie T -prostorů definuje rozšířený vektorový prostor T = R D + S D = umožňuje modelovat podíly mezi jednotlivými složkami s úhrnnými hodnotami těchto složek současně v jednom modelu
13 Teorie T -prostorů Aplikace teorie T -prostorů na časové řady vektor x = [t(x), C(x)] = [t x, x 1, x 2,..., x D ] je prvkem prostoru T = R D + S D C(x) kompozice, x S D t(x) celkový součet hodnot složek kompozice v daném okamžiku t D t(x) = kompozice x jsou modelovány pomocí logratio transformací úhrnné hodnoty t(x) jsou uvažovány v jejich zlogaritmované podobě i=1 x i
14 Praktický příklad Hrubé bonusy k příjmům zaměstnanců hrubé bonusy k příjmům zaměstnanců v odvětví zpracovávání kovů v Rakousku (v tisících eurech) = leden listopad 2011 x tzv. bílé ĺımečky x dělníci x učni v komerční sféře x učni v industriální sféře Xt celkový úhrn hodnot v čase t x 1 + x 2 + x 3 + x 4 x1 x2 x3 x4 Xt
15 Praktický příklad Metal production Kompoziční časové řady - absolutní hodnoty, x 1 ( ), x 2 ( ), x 3 ( ), x 4 ( )
16 Praktický příklad Volba modelu Dva přístupy: aplikace VAR modelu standardním způsobem na proměnné x 1, x 2, x 3, x 4 s využitím teorie T -prostorů byly proměnné transformovány pomocí ilr transformace a zlogaritmovaný celkový úhrn hodnot log (X t ) byl zahrnut do modelu jako další proměnná Přístup AIC(p) HQ(p) SC(p) FPE(p) standardní kompoziční = VAR(1) model
17 Praktický příklad Ilr coordinates and logtransformed total Ilr souřadnice pro kompoziční časové řady (z 1 ( ), z 2 ( ), z 3 ( )) a celkový úhrn hodnot složek X t po zlogaritmování.
18 Praktický příklad Testování Grangerovy kauzality na rozdíl od standardního přístupu nám použití ilr transformace a teorie T -prostorů umožňuje testovat kauzalitu nejen mezi proměnnými, ale i mezi úhrnnými hodnotami složek vzhledem k výhodným interpretačním vlastnostem dané ilr transformace lze otestovat nulovou hypotézu z 1 nemá signifikantní vliv na z 2, z 3, log (X t ) testování Grangerovy kauzality kompozičním přístupem je nesrovnatelné s aplikací VAR modelu klasickým způsobem samotné testování probíhá v prostoru ortonormálních souřadnic celkové úhrnné hodnoty jsou zahrnuty do modelu jako další proměnná
19 Praktický příklad Testování Grangerovy kauzality nulová hypotéza p-hodnota z 1 nemá vliv na z 2, z 3, log (X t ) z 1 = rel. informace o x 1 vzhledem k x 2, x 3, x z 1 = rel. informace o x 2 vzhledem k x 1, x 3, x z 1 = rel. informace o x 3 vzhledem k x 1, x 2, x z 1 = rel. informace o x 4 vzhledem k x 1, x 2, x log (X t ) nemá vliv na z 1, z 2, z = relativní informace obsažená v x 4 má dle testu významný vliv na předpověd budoucích hodnot složek x 1, x 2, x 3 i celkových úhrnných hodnot X t
20 Závěr určení předpovědí nezávisí na typu zvolené logratio transformace výběr ilr transformace usnadňuje možnost interpretace (např. testování hypotéz) teorie T -prostorů umožňuje modelovat nejen proporcionální strukturu dat, ale i celkové absolutní hodnoty v jednom modelu použití T -prostorů poskytuje nové možnosti testování Grangerovy kauzality (testování kauzálních vztahů i mezi kompozicemi a úhrnnými hodnotami) kompoziční přístup ukázal vyšší přesnost předpovědí na základě RMSEP
21 Příloha Příloha Reference Reference Barceló-Vidal, C., Aguilar, L., Martín-Fernández, J. A. (2011) Compositional VARIMA time series. In V. Pawlowsky-Glahn and A. Buccianti, eds., Compositional Data Analysis. Theory and Applications. John Wiley & Sons, Chichester, pp Fišerová, E., Hron, K. (2012). On interpretation of orthonormal coordinates for compositional data. Mathematical Geosciences 43(4), Pawlowsky-Glahn, V., Egozcue, J.J., Lovell, D. (2013). The product space T (tools for compositional data with a total). In K. Hron, P. Filzmoser and M. Templ, editors, Proceedings of CoDaWork 13, The 5th Compositional Data Analysis Workshop. Vorau, Austria.
22 Příloha Příloha Reference Reference Aitchison, J. (1986). The Statistical Analysis of Compositional Data. Chapman and Hall Ltd., London, UK. Lütkepohl, L. (2005). New Introduction to Multiple Time Series Analysis. Springer, Berlin. Pawlowsky-Glahn, V., Buccianti, A., eds. (2011). Compositional Data Analysis: Theory and Applications. Wiley, Chichester.
23 Příloha Příloha ĉc (Â ˆβˆβˆβ (1) ) = vec(ˆb) =. (Â (p) ) âvar(ˆβˆβˆβ) = ˆΣ ɛ (ZZ ) 1 ˆΣ ɛ = 1 n (D 1)p 1 n (z t ZˆB)(z t ZˆB). t=1
24 Příloha Příloha Testování Grangerovy kauzality ve standardním VAR modelu nulová hypotéza p-hodnota x 1 nemá vliv na x 2, x 3, x x 2 nemá vliv na x 1, x 3, x x 3 nemá vliv na x 1, x 2, x x 4 nemá vliv na x 1, x 2, x = i standardně docházíme k výsledku, že x 4 má signifikantní vliv na x 1, x 2, x 3, a tedy minulé hodnoty x 4 mají významný efekt na odhad budoucích hodnot ostatních proměnných
25 Příloha Příloha Přesnost předpovědí pro použité modely Root mean squared error of prediction (RMSEP) RMSEP = 1 m x t ˆx t m 2, i=1 kde m je počet predikovaných hodnot. přístup RMSEP standardní kompoziční
Předzpracování kompozičních dat
Předzpracování kompozičních dat Karel Hron Katedra matematické analýzy a aplikací matematiky, Přírodovědecká fakulta Univerzity Palackého, Olomouc Robust 2012, Němčičky, 10. září 2012 Karel Hron (UP) Předzpracování
Alternativní přístup k analýze vícefaktorových dat
Alternativní přístup k analýze vícefaktorových dat Kamila Fačevicová 1, Peter Filzmoser 2, Karel Hron 1 1 Katedra matematické analýzy a aplikací matematiky, Přírodovědecká fakulta Univerzity Palackého
EKONOMICKÁ APLIKACE KOMPOZIČNÍHO REGRESNÍHO MODELU
EKONOMICKÁ APLIKACE KOMPOZIČNÍHO REGRESNÍHO MODELU Klára Hrůzová 1,2, Karel Hron 1,2 1 Katedra matematické analýzy a aplikací matematiky, Přírodovědecká fakulta, Univerzita Palackého v Olomouci 2 Katedra
kompoziční data s aplikací v metabolomice
Metoda dílčích nejmenších čtverců pro kompoziční data s aplikací v metabolomice Karel Hron a,b, Peter Filzmoser c, Lukáš Najdekr d a Katedra matematické analýzy a aplikací matematiky b Katedra geoinformatiky
Robust 2014, 19. - 24. ledna 2014, Jetřichovice
K. Hron 1 C. Mert 2 P. Filzmoser 2 1 Katedra matematické analýzy a aplikací matematiky Přírodovědecká fakulta, Univerzita Palackého, Olomouc 2 Department of Statistics and Probability Theory Vienna University
Klasická a robustní ortogonální regrese mezi složkami kompozice
Klasická a robustní ortogonální regrese mezi složkami kompozice K. Hrůzová, V. Todorov, K. Hron, P. Filzmoser 13. září 2016 Kompoziční data kladná reálná čísla nesoucí pouze relativní informaci, x = (x
Eva Fišerová a Karel Hron. Katedra matematické analýzy a aplikací matematiky Přírodovědecká fakulta Univerzity Palackého v Olomouci.
Ortogonální regrese pro 3-složkové kompoziční data využitím lineárních modelů Eva Fišerová a Karel Hron Katedra matematické analýzy a aplikací matematiky Přírodovědecká fakulta Univerzity Palackého v Olomouci
Statistick anal 0 5za kompozi 0 0n ͺch tabulek
Statistick anal 0 5za kompozi 0 0n ͺch tabulek Kamila Fa 0 0evicov, Karel Hron Katedra matematick anal 0 5zy a aplikac ͺ matematiky, Univerzita Palack ho v Olomouci Od kontingen 0 0n ͺch ke kompozi 0 0n
Imputace nulovy ch hodnot v metabolomice
Imputace nulovy ch hodnot v metabolomice Alz be ta Gardloa, Matthias Templb, Karel Hronc, Peter Filzmoserb alzbetagardlo@gmail.com a Laborator metabolomiky, U stav molekula rnı a translac nı medicı ny,
Lineární a logistická regrese
Lineární a logistická regrese Martin Branda Univerzita Karlova v Praze Matematicko-fyzikální fakulta Katedra pravděpodobnosti a matematické statistiky Výpočetní prostředky finanční a pojistné matematiky
Základy ekonometrie. XI. Vektorové autoregresní modely. Základy ekonometrie (ZAEK) XI. VAR modely Podzim / 28
Základy ekonometrie XI. Vektorové autoregresní modely Základy ekonometrie (ZAEK) XI. VAR modely Podzim 2015 1 / 28 Obsah tématu 1 Prognózování s VAR modely 2 Vektorové modely korekce chyb (VECM) 3 Impulzní
8 Coxův model proporcionálních rizik I
8 Coxův model proporcionálních rizik I Předpokládané výstupy z výuky: 1. Student umí formulovat Coxův model proporcionálních rizik 2. Student rozumí významu regresních koeficientů modelu 3. Student zná
Testování změn v binárnách autoregresních modelech Šárka Hudecová 1/ 36
Testování změn v binárnách autoregresních modelech Šárka Hudecová KPMS MFF UK ROBUST 2012 Němčičky 9. 14.9.2012 Testování změn v binárnách autoregresních modelech Šárka Hudecová 1/ 36 Uvažovaná situace
Modelování sesuvu svahu v Halenkovicích pomocí metody kriging
Modelování sesuvu svahu v Halenkovicích pomocí metody kriging Robert Zůvala, Eva Fišerová Katedra matematické analýzy a aplikací matematiky Přírodovědecká fakulta Univerzity Palackého v Olomouci ROBUST
4EK211 Základy ekonometrie
4EK211 Základy ekonometrie ZS 2015/16 Cvičení 7: Časově řady, autokorelace LENKA FIŘTOVÁ KATEDRA EKONOMETRIE, FAKULTA INFORMATIKY A STATISTIKY VYSOKÁ ŠKOLA EKONOMICKÁ V PRAZE 1. Časové řady Data: HDP.wf1
Úlohy nejmenších čtverců
Úlohy nejmenších čtverců Petr Tichý 7. listopadu 2012 1 Problémy nejmenších čtverců Ax b Řešení Ax = b nemusí existovat, a pokud existuje, nemusí být jednoznačné. Často má smysl hledat x tak, že Ax b.
7 Regresní modely v analýze přežití
7 Regresní modely v analýze přežití Předpokládané výstupy z výuky: 1. Student rozumí významu regresního modelování dat o přežití 2. Student dokáže definovat pojmy poměr rizik a základní riziková funkce
Soustavy lineárních rovnic
Přednáška MATEMATIKA č 4 Katedra ekonometrie FEM UO Brno kancelář 69a, tel 973 442029 email:jirineubauer@unobcz 27 10 2010 Soustava lineárních rovnic Definice Soustava rovnic a 11 x 1 + a 12 x 2 + + a
4EK211 Základy ekonometrie
4EK Základy ekonometrie Odhad klasického lineárního regresního modelu II Cvičení 3 Zuzana Dlouhá Klasický lineární regresní model - zadání příkladu Soubor: CV3_PR.xls Data: y = maloobchodní obrat potřeb
Optimalizace provozních podmínek. Eva Jarošová
Optimalizace provozních podmínek Eva Jarošová 1 Obsah 1. Experimenty pro optimalizaci provozních podmínek 2. EVOP klasický postup využití statistického softwaru 3. Centrální složený návrh model odezvové
Regresní a korelační analýza
Přednáška STATISTIKA II - EKONOMETRIE Katedra ekonometrie FEM UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Regresní analýza Cíl regresní analýzy: stanovení formy (trendu, tvaru, průběhu)
Statistické metody v marketingu. Ing. Michael Rost, Ph.D.
Statistické metody v marketingu Ing. Michael Rost, Ph.D. Jihočeská univerzita v Českých Budějovicích Regresní analýza doplnění základů Vzhledem k požadavku Vašich kolegů zařazuji doplňující partii o regresní
(Cramerovo pravidlo, determinanty, inverzní matice)
KMA/MAT1 Přednáška a cvičení, Lineární algebra 2 Řešení soustav lineárních rovnic se čtvercovou maticí soustavy (Cramerovo pravidlo, determinanty, inverzní matice) 16 a 21 října 2014 V dnešní přednášce
AVDAT Geometrie metody nejmenších čtverců
AVDAT Geometrie metody nejmenších čtverců Josef Tvrdík Katedra informatiky Přírodovědecká fakulta Ostravská univerzita Lineární model klasický lineární regresní model odhad parametrů MNČ y = Xβ + ε, ε
Klasifikace a rozpoznávání. Extrakce příznaků
Klasifikace a rozpoznávání Extrakce příznaků Extrakce příznaků - parametrizace Poté co jsme ze snímače obdržely data která jsou relevantní pro naši klasifikační úlohu, je potřeba je přizpůsobit potřebám
INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ. Modernizace studijního programu Matematika na PřF Univerzity Palackého v Olomouci CZ.1.07/2.2.00/28.
INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ Modernizace studijního programu Matematika na PřF Univerzity Palackého v Olomouci CZ107/2200/280141 Soustavy lineárních rovnic Michal Botur Přednáška 4 KAG/DLA1M: Lineární
VĚTY Z LINEÁRNÍ ALGEBRY
VĚTY Z LINEÁRNÍ ALGEBRY Skripta Matematické metody pro statistiku a operační výzkum (Nešetřilová, H., Šařecová, P., 2009). 1. věta Nechť M = {x 1, x 2,..., x k } je množina vektorů z vektorového prostoru
dat Robust ledna 2018
Analýza prostorově závislých funkcionálních dat V. Římalová, A. Menafoglio, A. Pini, E. Fišerová Robust 2018 25. ledna 2018 Motivace Data a náhled lokace Měsíční měření (březen-říjen 2015 a 2016) 5 chemických
Testování hypotéz o parametrech regresního modelu
Testování hypotéz o parametrech regresního modelu Ekonometrie Jiří Neubauer Katedra kvantitativních metod FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Jiří Neubauer (Katedra UO
2 Hlavní charakteristiky v analýze přežití
2 Hlavní charakteristiky v analýze přežití Předpokládané výstupy z výuky: 1. Student umí definovat funkci přežití, rizikovou funkci a kumulativní rizikovou funkci a zná funkční vazby mezi nimi 2. Student
5 Časové řady. Definice 16 Posloupnost náhodných veličin {X t, t T } nazveme slabě stacionární, pokud
5 Časové řady Časovou řadou rozumíme posloupnost reálných náhodných veličin X 1,..., X n, přičemž indexy t = 1,..., n interpretujeme jako časové okamžiky. Někdy však uvažujeme i nekonečné posloupnosti
4EK211 Základy ekonometrie
4EK211 Základy ekonometrie Predikce Multikolinearita Cvičení 4 Zuzana Dlouhá Aplikace EM predikce obecně ekonomické prognózování, předpověď, předvídání hlavním cílem je odhad hodnot vysvětlované proměnné
Matematika III 10. týden Číselné charakteristiky střední hodnota, rozptyl, kovariance, korelace
Matematika III 10. týden Číselné charakteristiky střední hodnota, rozptyl, kovariance, korelace Jan Slovák Masarykova univerzita Fakulta informatiky 28. 11 2. 12. 2016 Obsah přednášky 1 Literatura 2 Střední
INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ. Modernizace studijního programu Matematika na PřF Univerzity Palackého v Olomouci CZ.1.07/2.2.00/28.
INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ Modernizace studijního programu Matematika na PřF Univerzity Palackého v Olomouci CZ.1.07/2.2.00/28.0141 Báze vektorových prostorů, transformace souřadnic Michal Botur Přednáška
Modely stacionárních časových řad
Statistika II Katedra ekonometrie FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Proces bílého šumu Proces {ɛ t} nazveme bílým šumem s nulovou střední hodnotou a rozptylem σ 2 a
10. Soustavy lineárních rovnic, determinanty, Cramerovo pravidlo
0. Soustavy lineárních rovnic, determinanty, Cramerovo pravidlo (PEF PaA) Petr Gurka aktualizováno 9. prosince 202 Obsah Základní pojmy. Motivace.................................2 Aritmetický vektorový
Markovské metody pro modelování pravděpodobnosti
Markovské metody pro modelování pravděpodobnosti rizikových stavů 1 Markovský řetězec Budeme uvažovat náhodný proces s diskrétním časem (náhodnou posloupnost) X(t), t T {0, 1, 2,... } s konečnou množinou
Statistické vyhodnocování experimentálních dat. Mgr. Martin Čada, Ph.D.
Statistické vyhodnocování experimentálních dat Mgr. Martin Čada, Ph.D. - Ústav fyziky a biofyziky, PřF JU - E-mail: mcada@prf.jcu.cz - Tel.: 266052418 - Organizace výuky, zkouška, zápočet - Přednášky a
1 Řešení soustav lineárních rovnic
1 Řešení soustav lineárních rovnic 1.1 Lineární rovnice Lineární rovnicí o n neznámých x 1,x 2,..., x n s reálnými koeficienty rozumíme rovnici ve tvaru a 1 x 1 + a 2 x 2 +... + a n x n = b, (1) kde koeficienty
Bayesovský p ístup k t-test m v kompozi ní analýze metabolomických dat
Bayesovský p ístup k t-test m v kompozi ní analýze metabolomických dat Julie Rendlová 1,2,3, Karel Hron 1, Ond ej Vencálek 1, David Friedecký 2,3 ROBUST 2018 1 KMAAM, P F, Univerzita Palackého 2 OKB, Fakultní
BAKALÁŘSKÁ PRÁCE. Vývoj složení hrubého domácího produktu v České republice UNIVERZITA PALACKÉHO V OLOMOUCI
UNIVERZITA PALACKÉHO V OLOMOUCI PŘÍRODOVĚDECKÁ FAKULTA KATEDRA MATEMATICKÉ ANALÝZY A APLIKACÍ MATEMATIKY BAKALÁŘSKÁ PRÁCE Vývoj složení hrubého domácího produktu v České republice Vedoucí bakalářské práce:
4EK211 Základy ekonometrie
4EK211 Základy ekonometrie Predikce Multikolinearita Cvičení 4 Zuzana Dlouhá Aplikace EM predikce obecně ekonomické prognózování, předpověď, předvídání hlavním cílem je odhad hodnot vysvětlované proměnné
Aplikace 2: Hledání informativních příznaků pro rozpoznávání
Aplikace : Hledání informativních příznaků pro rozpoznávání Sonogram štítné žlázy v podélném řezu zdravá lymfocitická thyroitida Zajímá nás, kolik se lze z dat dozvědět o třídě c a kde ta informace je.
AVDAT Klasický lineární model, metoda nejmenších
AVDAT Klasický lineární model, metoda nejmenších čtverců Josef Tvrdík Katedra informatiky Přírodovědecká fakulta Ostravská univerzita Lineární model y i = β 0 + β 1 x i1 + + β k x ik + ε i (1) kde y i
Metoda backward výběru proměnných v lineární regresi a její vlastnosti
Metoda backward výběru proměnných v lineární regresi a její vlastnosti Aktuárský seminář, 13. dubna 2018 Milan Bašta 1 / 30 1 Metody výběru proměnných do modelu 2 Monte Carlo simulace, backward metoda
odpovídá jedna a jen jedna hodnota jiných
8. Regresní a korelační analýza Problém: hledání, zkoumání a hodnocení souvislostí, závislostí mezi dvěma a více statistickými znaky (veličinami). Typy závislostí: pevné a volné Pevná závislost každé hodnotě
Základy teorie matic
Základy teorie matic 7. Vektory a lineární transformace In: Otakar Borůvka (author): Základy teorie matic. (Czech). Praha: Academia, 1971. pp. 43--47. Persistent URL: http://dml.cz/dmlcz/401335 Terms of
CHOVÁNÍ SILOFUNKCÍ TESTŮ V COXOVĚ MODELU PROPORCIONÁLNÍCH RIZIK
CHOVÁNÍ SILOFUNKCÍ TESTŮ V COXOVĚ MODELU PROPORCIONÁLNÍCH RIZIK Aneta Andrášiková 1, Eva Fišerová 1, Silvie Bělašková 2 1 Univerzita Palackého v Olomouci, PřF, KMaAM 2 Fakultní nemocnice u sv. Anny v Brně,
Robustní statistické metody
Populární úvod Ústav teoretické fyziky a astrofyziky, MU Brno 28. říjen 2006, Vlašim O co jde? Robustní znamená: necitlivý k malým odchylkám od ideálních předpokladů na který je metoda odhadu optimalizována.
Soustavy lineárních rovnic
Soustavy lineárních rovnic Základy vyšší matematiky LDF MENDELU Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na discipĺıny společného
MATEMATICKÁ STATISTIKA - XP01MST
MATEMATICKÁ STATISTIKA - XP01MST 1. Úvod. Matematická statistika (statistics) se zabývá vyšetřováním zákonitostí, které v sobě obsahují prvek náhody. Zpracováním hodnot, které jsou výstupem sledovaného
Zadání Máme data hdp.wf1, která najdete zde: Bodová předpověď: Intervalová předpověď:
Predikce Text o predikci pro upřesnění pro ty, které zajímá, kde se v EViews všechna ta čísla berou. Ruční výpočty u průběžného testu nebudou potřeba. Co bude v závěrečném testu, to nevím. Ale přečíst
4EK213 Lineární modely. 5. Dualita v úlohách LP
4EK213 Lineární modely 5. Dualita v úlohách LP 5. Dualita v úlohách LP Obecné vyjádření simplexové tabulky Formulace duálního problému Formulace symetrického duálního problému Formulace nesymetrického
ALGEBRA. Téma 5: Vektorové prostory
SLEZSKÁ UNIVERZITA V OPAVĚ Matematický ústav v Opavě Na Rybníčku 1, 746 01 Opava, tel. (553) 684 611 DENNÍ STUDIUM Téma 5: Vektorové prostory Základní pojmy Vektorový prostor nad polem P, reálný (komplexní)
Kapitola 11: Vektory a matice:
Kapitola 11: Vektory a matice: Prostor R n R n = {(x 1,, x n ) x i R, i = 1,, n}, n N x = (x 1,, x n ) R n se nazývá vektor x i je i-tá souřadnice vektoru x rovnost vektorů: x = y i = 1,, n : x i = y i
(motto: An unsophisticated forecaster uses statistics as a drunken man uses lamp-posts - for support rather than for illumination.
Neparametricke testy (motto: An unsophisticated forecaster uses statistics as a drunken man uses lamp-posts - for support rather than for illumination. Andrew Lang) 1. Příklad V následující tabulce jsou
Kapitola 11: Vektory a matice 1/19
Kapitola 11: Vektory a matice 1/19 2/19 Prostor R n R n = {(x 1,..., x n ) x i R, i = 1,..., n}, n N x = (x 1,..., x n ) R n se nazývá vektor x i je i-tá souřadnice vektoru x rovnost vektorů: x = y i =
4EK211 Základy ekonometrie
4EK211 Základy ekonometrie ZS 2014/15 Cvičení 6: Dummy proměnné, úvod do časových řad LENKA FIŘTOVÁ KATEDRA EKONOMETRIE, FAKULTA INFORMATIKY A STATISTIKY VYSOKÁ ŠKOLA EKONOMICKÁ V PRAZE 1. Multikolinearita
EKONOMETRIE 7. přednáška Fáze ekonometrické analýzy
EKONOMETRIE 7. přednáška Fáze ekonometrické analýzy Ekonometrická analýza proces, skládající se z následujících fází: a) specifikace b) kvantifikace c) verifikace d) aplikace Postupné zpřesňování jednotlivých
MODELU A KOMPOZIČNÍHO MODELU PŘI ANALÝZE DAT
UNIVERZITA PALACKÉHO V OLOMOUCI PŘÍRODOVĚDECKÁ FAKULTA KATEDRA MATEMATICKÉ ANALÝZY A APLIKACÍ MATEMATIKY DIPLOMOVÁ PRÁCE POROVNÁNÍ ZOBECNĚNÉHO LINEÁRNÍHO MODELU A KOMPOZIČNÍHO MODELU PŘI ANALÝZE DAT Vedoucí
Interpolační funkce. Lineární interpolace
Interpolační funkce VEKTOR RASTR Metody Globální Regrese - trend Lokální Lineární interpolace Výstupy Regrese lokální trend Inverse Distance Weighted IDW Spline Thiessenovy polygony Natural Neighbours
Testování hypotéz o parametrech regresního modelu
Statistika II Katedra ekonometrie FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Lineární regresní model kde Y = Xβ + e, y 1 e 1 β y 2 Y =., e = e 2 x 11 x 1 1k., X =....... β 2,
Necht tedy máme přirozená čísla n, k pod pojmem systém lineárních rovnic rozumíme rovnice ve tvaru
2. Systémy lineárních rovnic V této kapitole se budeme zabývat soustavami lineárních rovnic s koeficienty z pole reálných případně komplexních čísel. Uvádíme podmínku pro existenci řešení systému lineárních
15 Maticový a vektorový počet II
M. Rokyta, MFF UK: Aplikovaná matematika III kap. 15: Maticový a vektorový počet II 1 15 Maticový a vektorový počet II 15.1 Úvod Opakování z 1. ročníku (z kapitoly 8) Označení. Množinu všech reálných resp.
Neuronové časové řady (ANN-TS)
Neuronové časové řady (ANN-TS) Menu: QCExpert Prediktivní metody Neuronové časové řady Tento modul (Artificial Neural Network Time Series ANN-TS) využívá modelovacího potenciálu neuronové sítě k predikci
4EK211 Základy ekonometrie
4EK11 Základy ekonometrie Autokorelace Cvičení 5 Zuzana Dlouhá Gauss-Markovy předpoklady Náhodná složka: Gauss-Markovy předpoklady 1. E(u) = náhodné vlivy se vzájemně vynulují. E(uu T ) = σ I n konečný
HODNOST A DETERMINANT MATICE, INVERZNÍ MATICE
MENDELOVA UNIVERZITA V BRNĚ LDF MT MATEMATIKA HODNOST A DETERMINANT MATICE, INVERZNÍ MATICE Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s
Teorie časových řad Test 2 Varianta A HODNOCENÍ (max. 45 bodů z 50 možných)
Teorie časových řad Test 2 Varianta A HODNOCENÍ (max. 45 bodů z 50 možných) 1. SPECIFIKACE (12 bodů): (1) Graf průběhu proměnných (1) Obě řady se chovají stejně, lze předpokládat jejich lineární vztah
HODNOST A DETERMINANT MATICE, INVERZNÍ MATICE
MENDELOVA UNIVERZITA V BRNĚ LDF MT MATEMATIKA HODNOST A DETERMINANT MATICE, INVERZNÍ MATICE Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s
Marta Vomlelová marta@ktiml.mff.cuni.cz
Strojové učení Úvod, lineární regrese Marta Vomlelová marta@ktiml.mff.cuni.cz References [1] P. Berka. Dobývání znalostí z databází. Academia, 2003. [2] T. Hastie, R. Tishirani, and J. Friedman. The Elements
Rovnovážné modely v teorii portfolia
3. září 2013, Podlesí Obsah Portfolio a jeho charakteristiky Definice portfolia Výnosnost a riziko aktiv Výnosnost a riziko portfolia Klasická teorie portfolia Markowitzův model Tobinův model CAPM - model
Vektorový prostor. Př.1. R 2 ; R 3 ; R n Dvě operace v R n : u + v = (u 1 + v 1,...u n + v n ), V (E 3 )...množina vektorů v E 3,
Vektorový prostor Příklady: Př.1. R 2 ; R 3 ; R n...aritmetický n-rozměrný prostor Dvě operace v R n : součet vektorů u = (u 1,...u n ) a v = (v 1,...v n ) je vektor u + v = (u 1 + v 1,...u n + v n ),
Eukleidovský prostor a KSS Eukleidovský prostor je bodový prostor, ve kterém je definována vzdálenost dvou bodů (metrika)
Eukleidovský prostor a KSS Eukleidovský prostor je bodový prostor, ve kterém je definována vzdálenost dvou bodů (metrika) Kartézská soustava souřadnic je dána počátkem O a uspořádanou trojicí bodů E x,
Bayesovská klasifikace digitálních obrazů
Výzkumný ústav geodetický, topografický a kartografický Bayesovská klasifikace digitálních obrazů Výzkumná zpráva č. 1168/2010 Lubomír Soukup prosinec 2010 1 Úvod V průběhu nedlouhého historického vývoje
PRAVDĚPODOBNOST A STATISTIKA
PRAVDĚPODOBNOS A SAISIKA Regresní analýza - motivace Základní úlohou regresní analýzy je nalezení vhodného modelu studované závislosti. Je nutné věnovat velkou pozornost tomu aby byla modelována REÁLNÁ
Matematika 2 (Fakulta ekonomická) Cvičení z lineární algebry. TU v Liberci
Matematika 2 (Fakulta ekonomická) Cvičení z lineární algebry TU v Liberci Jiří Hozman 1. dubna 2010 Cvičení 2 Příklad 1. Rozhodněte, zda lze vektor x vyjádřit jako lineární kombinaci vektorů u, v, w, v
4EK211 Základy ekonometrie
4EK211 Základ ekonometrie Odhad klasického lineárního regresního modelu I Cvičení 2 Zuzana Dlouhá Metodologický postup tvor EM 1. Specifikace modelu určení proměnných určení vzájemných vaze mezi proměnnými
Intervalová data a výpočet některých statistik
Intervalová data a výpočet některých statistik Milan Hladík 1 Michal Černý 2 1 Katedra aplikované matematiky Matematicko-fyzikální fakulta Univerzita Karlova 2 Katedra ekonometrie Fakulta informatiky a
AVDAT Vektory a matice
AVDAT Vektory a matice Josef Tvrdík Katedra informatiky Přírodovědecká fakulta Ostravská univerzita Vektory x = x 1 x 2. x p y = y 1 y 2. y p Řádkový vektor dostaneme transpozicí sloupcového vektoru x
Úvod do analýzy časových řad
Přednáška STATISTIKA II - EKONOMETRIE Katedra ekonometrie FEM UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Posloupnost náhodných veličin {Y t, t = 0, ±1, ±2... } se nazývá stochastický
1 Tyto materiály byly vytvořeny za pomoci grantu FRVŠ číslo 1145/2004.
Prostá regresní a korelační analýza 1 1 Tyto materiály byly vytvořeny za pomoci grantu FRVŠ číslo 1145/2004. Problematika závislosti V podstatě lze rozlišovat mezi závislostí nepodstatnou, čili náhodnou
7. Analýza rozptylu.
7. Analýza rozptylu. Uvedeme obecnou ideu, která je založena na minimalizaci chyby metodou nejmenších čtverců. Nejdříve uvedeme několik základních tvrzení. Uvažujeme náhodný vektor Y = (Y, Y,..., Y n a
Matematika B101MA1, B101MA2
Matematika B101MA1, B101MA2 Zařazení předmětu: povinný předmět 1.ročníku bc studia 2 semestry Rozsah předmětu: prezenční studium 2 + 2 kombinované studium 16 + 0 / semestr Zakončení předmětu: ZS zápočet
Studium závislosti výpočetního času algoritmu GPC prediktivního řízení na volbě typu popisu matematického modelu v regulátoru
1 Portál pre odborné publikovanie ISSN 1338-0087 Studium závislosti výpočetního času algoritmu GPC prediktivního řízení na volbě typu popisu matematického modelu v regulátoru Barot Tomáš Elektrotechnika
MATEMATICKÉ PRINCIPY VÍCEROZMĚRNÉ ANALÝZY DAT
8. licenční studium Univerzita Pardubice Fakulta chemicko-technologická Katedra analytické chemie MATEMATICKÉ PRINCIPY VÍCEROZMĚRNÉ ANALÝZY DAT Příklady: ) Najděte vlastní (charakteristická) čísla a vlastní
Statistická analýza dat
Statistická analýza dat Jméno: Podpis: Cvičení Zkouška (písemná + ústní) 25 Celkem 50 Známka Pokyny k vypracování: doba řešení je 120min, jasně zodpovězte pokud možno všechny otázky ze zadání, pracujte
Lineární algebra : Skalární součin a ortogonalita
Lineární algebra : Skalární součin a ortogonalita (15. přednáška) František Štampach, Karel Klouda frantisek.stampach@fit.cvut.cz, karel.klouda@fit.cvut.cz Katedra aplikované matematiky Fakulta informačních
Měření dat Filtrace dat, Kalmanův filtr
Měření dat Filtrace dat, Matematické metody pro ITS (11MAMY) Jan Přikryl Ústav aplikované matematiky ČVUT v Praze, Fakulta dopravní 3. přednáška 11MAMY čtvrtek 28. února 2018 verze: 2018-03-21 16:45 Obsah
Požadavky k písemné přijímací zkoušce z matematiky do navazujícího magisterského studia pro neučitelské obory
Požadavky k písemné přijímací zkoušce z matematiky do navazujícího magisterského studia pro neučitelské obory Zkouška ověřuje znalost základních pojmů, porozumění teorii a schopnost aplikovat teorii při
LWS při heteroskedasticitě
Stochastické modelování v ekonomii a financích Petr Jonáš 7. prosince 2009 Obsah 1 2 3 4 5 47 1 Předpoklad 1: Y i = X i β 0 + e i i = 1,..., n. (X i, e i) je posloupnost nezávislých nestejně rozdělených
Pravděpodobnost a statistika (BI-PST) Cvičení č. 9
Pravděpodobnost a statistika (BI-PST) Cvičení č. 9 R. Blažek, M. Jiřina, J. Hrabáková, I. Petr, F. Štampach, D. Vašata Katedra aplikované matematiky Fakulta informačních technologií České vysoké učení
Regresní analýza. Ekonometrie. Jiří Neubauer. Katedra ekonometrie FVL UO Brno kancelář 69a, tel
Regresní analýza Ekonometrie Jiří Neubauer Katedra ekonometrie FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Jiří Neubauer (Katedra ekonometrie UO Brno) Regresní analýza 1 / 23
Definice 13.1 Kvadratická forma v n proměnných s koeficienty z tělesa T je výraz tvaru. Kvadratická forma v n proměnných je tak polynom n proměnných s
Kapitola 13 Kvadratické formy Definice 13.1 Kvadratická forma v n proměnných s koeficienty z tělesa T je výraz tvaru f(x 1,..., x n ) = a ij x i x j, kde koeficienty a ij T. j=i Kvadratická forma v n proměnných
MATEMATICKÁ STATISTIKA. Katedra matematiky a didaktiky matematiky Technická univerzita v Liberci
MATEMATICKÁ STATISTIKA Dana Černá http://www.fp.tul.cz/kmd/ Katedra matematiky a didaktiky matematiky Technická univerzita v Liberci Matematická statistika Matematická statistika se zabývá matematickým
CITLIVOSTNÍ ANALÝZA DYNAMICKÝCH SYSTÉMŮ I
Informačné a automatizačné technológie v riadení kvality produkcie Vernár,.-4. 9. 005 CITLIVOSTNÍ ANALÝZA DYNAMICKÝCH SYSTÉMŮ I KÜNZEL GUNNAR Abstrakt Příspěvek uvádí základní definice, fyzikální interpretaci
VYUŽITÍ WAVELETŮ PŘI ANALÝZE ČASOVÝCH ŘAD 2. PRAKTICKÁ ČÁST
EMI, Vol., Issue 3, ISSN: -99 (Print), 5-353X (Online) VYUŽITÍ WAVELETŮ PŘI ANALÝZE ČASOVÝCH ŘAD. PRAKTICKÁ ČÁST USING WAVELETS BY TIME SERIES ANALYSIS. PRACTICAL PART Vratislava Mošová Moravská vysoká
Závislost obsahu lipoproteinu v krevním séru na třech faktorech ( Lineární regresní modely )
Úloha M608 Závislost obsahu lipoproteinu v krevním séru na třech faktorech ( Lineární regresní modely ) Zadání : Při kvantitativní analýze lidského krevního séra ovlivňují hodnotu obsahu vysokohustotního
SOUSTAVY LINEÁRNÍCH ROVNIC
MENDELOVA UNIVERZITA V BRNĚ LDF MT MATEMATIKA SOUSTAVY LINEÁRNÍCH ROVNIC Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na discipliny
Analýza lineárních regulačních systémů v časové doméně. V Modelice (ale i v Simulinku) máme blok TransfeFunction
Analýza lineárních regulačních systémů v časové doméně V Modelice (ale i v Simulinku) máme blok TransfeFunction Studijní materiály http://physiome.cz/atlas/sim/regulacesys/ Khoo: Physiological Control
Statistické metody v marketingu. Ing. Michael Rost, Ph.D.
Statistické metody v marketingu Ing. Michael Rost, Ph.D. Jihočeská univerzita v Českých Budějovicích Pojem závislosti Je nutné rozlišit mezi závislostí nepodstatnou a mezi příčinnou čili kauzální závislostí.ta