Alternativní přístup k analýze vícefaktorových dat
|
|
- Petra Vítková
- před 5 lety
- Počet zobrazení:
Transkript
1 Alternativní přístup k analýze vícefaktorových dat Kamila Fačevicová 1, Peter Filzmoser 2, Karel Hron 1 1 Katedra matematické analýzy a aplikací matematiky, Přírodovědecká fakulta Univerzity Palackého v Olomouci, 2 Institute of Statistics and Mathematical Methods in Economics, Vienna University of Technology kamila.facevicova@gmail.com
2 Motivace Vektorová kompoziční data Kompoziční krychle
3 Motivace Struktura zaměstnanosti ve 42 zemích v roce Např. pro Českou republiku (v tis.): x = Žena Muž ( FT PT FT PT FT PT ) Zdroj:
4 Struktura zaměstnanosti v ČR Věková struktura zaměstnanců v České republice v roce 2015: x věk = (0.09, 0.62, 0.29) vektorová kompoziční data
5 Vektorová kompoziční data Kompoziční data, standardně definovaná jako D-složkový vektor kladných hodnot x = (x 1,..., x D ), se vyznačují vlastností, že veškerá relevantní informace je obsažena v poměrech mezi složkami: (5, 10) (100, 105). Výběrovým prostorem je D-rozměrný simplex namísto celého R D : S D = {(x 1,..., x D ) R D, x i > 0, i, D x i = κ}. Data se řídí Aitchisonovou geometríı namísto Euclidovské: i=1 x y = C(x 1 y 1,..., x D y D ) a α x = C(x α 1,..., x α D ), x, y A = 1 D i<j ln x i x j ln y i y j.
6 Vektorová kompoziční data Vzhledem k relativní povaze dat není vhodné použití standardních metod. Data nejprve vyjádříme v reálných souřadnicích a následně je analyzujeme pomocí standardních (klasických/robustních) analytických metod.
7 Vektorová kompoziční data Vzhledem k relativní povaze dat není vhodné použití standardních metod. Data nejprve vyjádříme v reálných souřadnicích a následně je analyzujeme pomocí standardních (klasických/robustních) analytických metod. Isometrické log-ratio (ilr) souřadnice ilr(x) = ( x, e 1 A,..., x, e D 1 A ) představují isometrický isomorfismus mezi S D a R D ilr(x y) = ilr(x) + ilr(x), ilr(α x) = α ilr(x), neexistuje žádná standardní báze. x, y A = ilr(x), ilr(x),
8 Vektorová kompoziční data Pomocí postupného binárního dělení získáme systém D 1 log-kontrastů ξ i = (ξ i1,..., ξ id ) s prvky ξ i+ = 1 u uv u + v, ortonormálních vektorů ξ i = 1 v uv u + v a ξ i0 = 0, a ilr souřadnic - bilancí D z i = ξ ij ln x j = j=1 e i = exp(ξ i ) uv u + v ln (x j 1 x j2 x ju ) 1/u (x k1 x k2 x kv ) 1/v. i x 1 x 2 x 3 u v ξ 1 = ξ 2 = ( ) 2 3, 1 23, ( ) 0, 12, 12 z 1 = z 2 = 23 x ln 1 x2 x 3 12 ln x 2 x3
9 Struktura zaměstnanosti Věková struktura zaměstnanců v České republice v roce 2015: x věk = (0.09, 0.62, 0.29) i u v z věk 1 = z věk 2 = 2 ( ) 3 ln x1 x2 x 3 = 1.25 ( 1.53) ( ) 1 2 ln x2 x 3 = 0.55 (0.78)
10 Struktura zaměstnanosti Věková struktura zaměstnanců v České republice v roce 2015, podle jejich pohlaví a věku: x = Žena Muž ( ) kompoziční tabulky
11 Struktura zaměstnanosti Věková struktura zaměstnanců v České republice v roce 2015, podle jejich pohlaví, věku a typu prac. poměru: x = Žena Muž ( FT PT FT PT FT PT ) kompoziční krychle
12 Kompoziční krychle Kompoziční krychle x 111 x 1J1 x 11K x 1JK x = x I 11 x IJ1 x I 1K x IJK, kde x ijk > 0, i, j, k, představuje třífaktorové zobecnění I J K-složkových kompozičních dat, Výběrovým prostorem je I J K-složkový simplex I S IJK = x = (x,j,k 111,..., x IJK ) x ijk > 0, i, j, k; x ijk = κ. i,j,k=1 Základní operace Aitchisonovy geometrie je potřeba modifikovat x y = (x ijk y ijk ) I,J,K i,j,k=1 a α x = (x α ijk) I,J,K i,j,k=1,
13 Souřadnicová reprezentace CoDa krychĺı Souřadnicový systém navržený pro vektorová kompoziční data (bilance) nerespektuje trojrozměrnou povahu krychĺı, možnost jejich rozkladu na část nezávislou a části interakční alternativní souřadnicový systém.
14 Souřadnicová reprezentace CoDa krychĺı - konstrukce 1. Definice PBD pro celé řádky, sloupce a řezy, 2. výpočet log-kontrastů ξ i, 3. výpočet dalších log-kontrastů pomocí Hadamardova součinu dvojic a trojic log-kontrastů z různých PBD, 4. normování nových log-kontrastů, 5. výpočet IJK 1 ortonormálních souřadnic s využitím vztahu z i = D ξ ij ln x j. j=1
15 Souřadnicová reprezentace CoDa krychĺı Takto získaný systém je tvořen třemi skupinami souřadnic popisujícími: bilance mezi úrovněmi jednotlivých faktorů např. zi r stjk = ln [g(x j 1..) g(x js.. )] 1/s s+t [g(x k1..) g(x k t.)] 1/t interakce mezi dvojicemi faktorů interakce mezi všemi faktory např. z rc = A D ln g(x A)g(x D ) A + B + C + D g(x B )g(x C ) např. z rcs = K ln g(x A )g(x D )g(x F )g(x G ) g(x B )g(x C )g(x E )g(x H )
16 Struktura zaměstnanosti x = ( ) i Ženy Muži s t j Full time Part time u v k m n
17 Struktura zaměstnanosti Bilance - pohlaví z1 r = ( ) 3 ln g(x1..) g(x 2..) = 0.31 (0.18) Bilance - typ z1 c = ( ) 3 ln g(x.1.) g(x.2.) = 4.67 (2.70) Bilance - věk ( z1 s = 8 3 ln z s 2 = 2 ln g(x..1) g(x..2)g(x..3) ) = 2.50 (-1.53) ( ) g(x..2) g(x..3) = 1.10 (0.78)
18 Employment structure Interakce - pohlaví, typ ( ) z1 rc = 3 4 ln g(x11.)g(x 22.) g(x 12.)g(x 21.) = 0.97 (-1.12) Interakce - pohlaví, věk ( 1 = 2 3 ln z rs g(x 1.1) g(x 2.2)g(x 2.3) g(x 2.1) g(x 1.2)g(x 1.3) ) = 0.25 (-0.30) ( ) z2 rs = 1 2 ln g(x1.2)g(x 2.3) g(x 2.2)g(x 1.3) = 0.38 (0.54) Interakce - typ, věk ( 1 = 2 3 ln z cs z cs g(x.11) g(x.22)g(x.23) g(x.21) g(x.12)g(x.13) ) = 0.51 (-0.63) ( ) 2 = 1 2 ln g(x.12)g(x.23) g(x.13)g(x.22) = 1.12 (1.59)
19 Employment structure Plná interakce ( z1 rcs 1 = 6 ln ) x111x 221 x122x 123 x212x 213 x 211x 121 x112x 113 x222x 223 = 0.12 (0.30) ( ) z2 rcs 1 = 8 ln x 112x 222x 123x 213 x 122x 212x 113x 223 = 0.30 (-0.86)
20 Struktura zaměstnanosti Celkově jsme měli k dispozici údaje o 42 zemích. Data jsou nyní připravena k analýze pomocí standardních analytických metod.
21 Struktura zaměstnanosti Při tradiční analýze souboru původních tabulek můžeme využít např. log-lineárních modelů. Tyto modely jsou však spíše konstruované pro analýzu jedné tabulky ne celého výběru. Zahrneme-li do analýzy čtvrtý faktor (stát), je výsledný model velmi ovlivněn různými velikostmi států, které zastírají efekt sledovaných faktorů.
22 References Agresti A (2002) Categorical data analysis. John Wiley & Sons, Inc., New Jersey. Aitchison J (1986) The statistical analysis of compositional data. Chapman and Hall, London. Egozcue JJ, Pawlowsky-Glahn V (2005) Groups of parts and their balances in compositional data analysis. Math Geol 37: Fačevicová K, Hron K, Todorov V, Templ M (2016) Compositional tables analysis in coordinates. Scandinavian Journal of Statistics, 43(4): Fačevicová K, Hron K, Todorov V, Templ M (2016) General approach to coordinate representation of compositional tables. Under review.
Robust 2014, 19. - 24. ledna 2014, Jetřichovice
K. Hron 1 C. Mert 2 P. Filzmoser 2 1 Katedra matematické analýzy a aplikací matematiky Přírodovědecká fakulta, Univerzita Palackého, Olomouc 2 Department of Statistics and Probability Theory Vienna University
Aplikace T -prostorů při modelování kompozičních časových řad
Aplikace T -prostorů při modelování kompozičních časových řad P. Kynčlová 1,3 P. Filzmoser 1, K. Hron 2,3 1 Department of Statistics and Probability Theory Vienna University of Technology 2 Katedra matematické
kompoziční data s aplikací v metabolomice
Metoda dílčích nejmenších čtverců pro kompoziční data s aplikací v metabolomice Karel Hron a,b, Peter Filzmoser c, Lukáš Najdekr d a Katedra matematické analýzy a aplikací matematiky b Katedra geoinformatiky
Předzpracování kompozičních dat
Předzpracování kompozičních dat Karel Hron Katedra matematické analýzy a aplikací matematiky, Přírodovědecká fakulta Univerzity Palackého, Olomouc Robust 2012, Němčičky, 10. září 2012 Karel Hron (UP) Předzpracování
EKONOMICKÁ APLIKACE KOMPOZIČNÍHO REGRESNÍHO MODELU
EKONOMICKÁ APLIKACE KOMPOZIČNÍHO REGRESNÍHO MODELU Klára Hrůzová 1,2, Karel Hron 1,2 1 Katedra matematické analýzy a aplikací matematiky, Přírodovědecká fakulta, Univerzita Palackého v Olomouci 2 Katedra
Statistick anal 0 5za kompozi 0 0n ͺch tabulek
Statistick anal 0 5za kompozi 0 0n ͺch tabulek Kamila Fa 0 0evicov, Karel Hron Katedra matematick anal 0 5zy a aplikac ͺ matematiky, Univerzita Palack ho v Olomouci Od kontingen 0 0n ͺch ke kompozi 0 0n
Klasická a robustní ortogonální regrese mezi složkami kompozice
Klasická a robustní ortogonální regrese mezi složkami kompozice K. Hrůzová, V. Todorov, K. Hron, P. Filzmoser 13. září 2016 Kompoziční data kladná reálná čísla nesoucí pouze relativní informaci, x = (x
Eva Fišerová a Karel Hron. Katedra matematické analýzy a aplikací matematiky Přírodovědecká fakulta Univerzity Palackého v Olomouci.
Ortogonální regrese pro 3-složkové kompoziční data využitím lineárních modelů Eva Fišerová a Karel Hron Katedra matematické analýzy a aplikací matematiky Přírodovědecká fakulta Univerzity Palackého v Olomouci
Imputace nulovy ch hodnot v metabolomice
Imputace nulovy ch hodnot v metabolomice Alz be ta Gardloa, Matthias Templb, Karel Hronc, Peter Filzmoserb alzbetagardlo@gmail.com a Laborator metabolomiky, U stav molekula rnı a translac nı medicı ny,
Úvod do lineární algebry
Úvod do lineární algebry 1 Aritmetické vektory Definice 11 Mějme n N a utvořme kartézský součin R n R R R Každou uspořádanou n tici x 1 x 2 x, x n budeme nazývat n rozměrným aritmetickým vektorem Prvky
Lineární algebra : Skalární součin a ortogonalita
Lineární algebra : Skalární součin a ortogonalita (15. přednáška) František Štampach, Karel Klouda frantisek.stampach@fit.cvut.cz, karel.klouda@fit.cvut.cz Katedra aplikované matematiky Fakulta informačních
1 Projekce a projektory
Cvičení 3 - zadání a řešení úloh Základy numerické matematiky - NMNM20 Verze z 5. října 208 Projekce a projektory Opakování ortogonální projekce Definice (Ortogonální projekce). Uvažujme V vektorový prostor
Eukleidovský prostor a KSS Eukleidovský prostor je bodový prostor, ve kterém je definována vzdálenost dvou bodů (metrika)
Eukleidovský prostor a KSS Eukleidovský prostor je bodový prostor, ve kterém je definována vzdálenost dvou bodů (metrika) Kartézská soustava souřadnic je dána počátkem O a uspořádanou trojicí bodů E x,
maticeteorie 1. Matice A je typu 2 4, matice B je typu 4 3. Jakých rozměrů musí být matice X, aby se dala provést
Úlohy k zamyšlení 1. Zdůvodněte, proč třetí řádek Hornerova schématu pro vyhodnocení polynomu p v bodě c obsahuje koeficienty polynomu r, pro který platí p(x) = (x c) r(x) + p(c). 2. Dokažte, že pokud
Četba: Texty o lineární algebře (odkazy na webových stránkách přednášejícího).
Předmět: MA 4 Dnešní látka Lineární (vektorový) prostor Normovaný lineární prostor Normy matic a vektorů Symetrické matice, pozitivně definitní matice Gaussova eliminační metoda, podmíněnost matic Četba:
příkladů do cvičení. V textu se objeví i pár detailů, které jsem nestihl (na které jsem zapomněl) a(b u) = (ab) u, u + ( u) = 0 = ( u) + u.
Několik řešených příkladů do Matematiky Vektory V tomto textu je spočteno několik ukázkových příkladů které vám snad pomohou při řešení příkladů do cvičení. V textu se objeví i pár detailů které jsem nestihl
KMA/GPM Barycentrické souřadnice a
KMA/GPM Barycentrické souřadnice a trojúhelníkové pláty František Ježek jezek@kma.zcu.cz Katedra matematiky Západočeské univerzity v Plzni, 2008 19. dubna 2009 1 Trojúhelníkové pláty obecně 2 Barycentrické
Teorie informace a kódování (KMI/TIK) Reed-Mullerovy kódy
Teorie informace a kódování (KMI/TIK) Reed-Mullerovy kódy Lukáš Havrlant Univerzita Palackého 10. ledna 2014 Primární zdroj Jiří Adámek: Foundations of Coding. Strany 137 160. Na webu ke stažení, heslo:
Lineární algebra - I. část (vektory, matice a jejich využití)
Lineární algebra - I. část (vektory, matice a jejich využití) Michal Fusek Ústav matematiky FEKT VUT, fusekmi@feec.vutbr.cz 2. přednáška z ESMAT Michal Fusek (fusekmi@feec.vutbr.cz) 1 / 40 Obsah 1 Vektory
PROSTORY SE SKALÁRNÍM SOUČINEM. Definice Nechť L je lineární vektorový prostor nad R. Zobrazení L L R splňující vlastnosti
PROSTORY SE SKALÁRNÍM SOUČINEM Definice Nechť L je lineární vektorový prostor nad R. Zobrazení L L R splňující vlastnosti 1. (x, x) 0 x L, (x, x) = 0 x = 0, 2. (x, y) = (y, x) x, y L, 3. (λx, y) = λ(x,
ALGEBRA. Téma 5: Vektorové prostory
SLEZSKÁ UNIVERZITA V OPAVĚ Matematický ústav v Opavě Na Rybníčku 1, 746 01 Opava, tel. (553) 684 611 DENNÍ STUDIUM Téma 5: Vektorové prostory Základní pojmy Vektorový prostor nad polem P, reálný (komplexní)
Četba: Texty o lineární algebře (odkazy na webových stránkách přednášejícího).
Předmět: MA 4 Dnešní látka Vektorový (lineární) prostor (připomenutí) Normovaný lineární prostor Normy matic a vektorů Symetrické matice, pozitivně definitní matice Gaussova eliminační metoda, podmíněnost
Četba: Texty o lineární algebře (odkazy na webových stránkách přednášejícího).
Předmět: MA 4 Dnešní látka Vlastní čísla a vektory Google Normovaný lineární prostor Normy matic a vektorů Symetrické matice, pozitivně definitní matice Gaussova eliminační metoda, podmíněnost matic Četba:
Základní pojmy teorie množin Vektorové prostory
Základní pojmy teorie množin Přednáška MATEMATIKA č. 1 Katedra ekonometrie FEM UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz 7. 10. 2010 Základní pojmy teorie množin Základní pojmy
Základy navrhování průmyslových experimentů DOE
Základy navrhování průmyslových experimentů DOE cílová hodnota V. Vícefaktoriální experimenty Gejza Dohnal střední hodnota cílová hodnota Vícefaktoriální návrhy experimentů počet faktorů: počet úrovní:
Matice. Předpokládejme, že A = (a ij ) je matice typu m n: diagonálou jsou rovny nule.
Matice Definice. Maticí typu m n nazýváme obdélníkové pole, tvořené z m n reálných čísel (tzv. prvků matice), zapsaných v m řádcích a n sloupcích. Značíme např. A = (a ij ), kde i = 1,..., m, j = 1,...,
0.1 Úvod do lineární algebry
Matematika KMI/PMATE 1 01 Úvod do lineární algebry 011 Lineární rovnice o 2 neznámých Definice 011 Lineární rovnice o dvou neznámých x, y je rovnice, která může být vyjádřena ve tvaru ax + by = c, kde
Základy matematiky pro FEK
Základy matematiky pro FEK 2. přednáška Blanka Šedivá KMA zimní semestr 2016/2017 Blanka Šedivá (KMA) Základy matematiky pro FEK zimní semestr 2016/2017 1 / 20 Co nás dneska čeká... Závislé a nezávislé
Matematika (CŽV Kadaň) aneb Úvod do lineární algebry Matice a soustavy rovnic
Přednáška třetí (a pravděpodobně i čtvrtá) aneb Úvod do lineární algebry Matice a soustavy rovnic Lineární rovnice o 2 neznámých Lineární rovnice o 2 neznámých Lineární rovnice o dvou neznámých x, y je
Rovnovážné modely v teorii portfolia
3. září 2013, Podlesí Obsah Portfolio a jeho charakteristiky Definice portfolia Výnosnost a riziko aktiv Výnosnost a riziko portfolia Klasická teorie portfolia Markowitzův model Tobinův model CAPM - model
Dá se ukázat, že vzdálenost dvou bodů má tyto vlastnosti: 2.2 Vektor, souřadnice vektoru a algebraické operace s vektory
Vektorový počet.1 Eklidovský prostor E 3 Eklidovský prostor E 3 je prostor spořádaných trojic (tj. bodů), v němž je definována vzdálenost dvo jeho bodů A, B (značíme ji AB ). Vzdálenost bodů A = [a 1,
Lineární algebra : Skalární součin a ortogonalita
Lineární algebra : Skalární součin a ortogonalita (15. přednáška) František Štampach, Karel Klouda LS 2013/2014 vytvořeno: 30. dubna 2014, 09:00 1 2 15.1 Prehilhertovy prostory Definice 1. Buď V LP nad
MATEMATICKÉ PRINCIPY VÍCEROZMĚRNÉ ANALÝZY DAT
8. licenční studium Univerzita Pardubice Fakulta chemicko-technologická Katedra analytické chemie MATEMATICKÉ PRINCIPY VÍCEROZMĚRNÉ ANALÝZY DAT Příklady: ) Najděte vlastní (charakteristická) čísla a vlastní
0.1 Úvod do lineární algebry
Matematika KMI/PMATE 1 01 Úvod do lineární algebry 011 Vektory Definice 011 Vektorem aritmetického prostorur n budeme rozumět uspořádanou n-tici reálných čísel x 1, x 2,, x n Definice 012 Definice sčítání
Úvod do kvantového počítání
2. přednáška Katedra počítačů, Fakulta elektrotechnická České vysoké učení technické v Praze 17. března 2005 Opakování Část I Přehled z minulé hodiny Opakování Alternativní výpočetní modely Kvantové počítače
Matematika I 12a Euklidovská geometrie
Matematika I 12a Euklidovská geometrie Jan Slovák Masarykova univerzita Fakulta informatiky 3. 12. 2012 Obsah přednášky 1 Euklidovské prostory 2 Odchylky podprostorů 3 Standardní úlohy 4 Objemy Plán přednášky
Učební texty k státní bakalářské zkoušce Matematika Skalární součin. študenti MFF 15. augusta 2008
Učební texty k státní bakalářské zkoušce Matematika Skalární součin študenti MFF 15. augusta 2008 1 10 Skalární součin Požadavky Vlastnosti v reálném i komplexním případě Norma Cauchy-Schwarzova nerovnost
Simulace (nejen) fyzikálních jevů na počítači
Simulace (nejen) fyzikálních jevů na počítači V. Kučera Katedra numerické matematiky, MFFUK Praha 7.2.2013 Aerodynamický flutter Tacoma bridge, 1940 Fyzikální model Realita je komplikovaná Navier-Stokesovy
Katedra aplikované matematiky FEI VŠB Technická univerzita Ostrava
Lineární algebra 9. přednáška: Ortogonalita Dalibor Lukáš Katedra aplikované matematiky FEI VŠB Technická univerzita Ostrava email: dalibor.lukas@vsb.cz http://www.am.vsb.cz/lukas/la Text byl vytvořen
DEFINICE Z LINEÁRNÍ ALGEBRY
DEFINICE Z LINEÁRNÍ ALGEBRY Skripta Matematické metody pro statistiku a operační výzkum (Nešetřilová, H., Šařecová, P., 2009). 1. definice Vektorovým prostorem rozumíme neprázdnou množinu prvků V, na které
6. Vektorový počet Studijní text. 6. Vektorový počet
6. Vektorový počet Budeme se pohybovat v prostoru R n, což je kartézská mocnina množiny reálných čísel R; R n = R R. Obvykle nám bude stačit omezení na případy n = 1, 2, 3; nicméně teorie je platná obecně.
MENDELOVA UNIVERZITA V BRNĚ LDF MT MATEMATIKA VEKTORY, MATICE
MENDELOVA UNIVERZITA V BRNĚ LDF MT MATEMATIKA VEKTORY, MATICE Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na discipliny společného
1 Determinanty a inverzní matice
Determinanty a inverzní matice Definice Necht A = (a ij ) je matice typu (n, n), n 2 Subdeterminantem A ij matice A příslušným pozici (i, j) nazýváme determinant matice, která vznikne z A vypuštěním i-tého
Kapitola 11: Vektory a matice:
Kapitola 11: Vektory a matice: Prostor R n R n = {(x 1,, x n ) x i R, i = 1,, n}, n N x = (x 1,, x n ) R n se nazývá vektor x i je i-tá souřadnice vektoru x rovnost vektorů: x = y i = 1,, n : x i = y i
MENDELOVA UNIVERZITA V BRNĚ LDF MT MATEMATIKA VEKTORY, MATICE
MENDELOVA UNIVERZITA V BRNĚ LDF MT MATEMATIKA VEKTORY, MATICE Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na discipliny společného
Definice 13.1 Kvadratická forma v n proměnných s koeficienty z tělesa T je výraz tvaru. Kvadratická forma v n proměnných je tak polynom n proměnných s
Kapitola 13 Kvadratické formy Definice 13.1 Kvadratická forma v n proměnných s koeficienty z tělesa T je výraz tvaru f(x 1,..., x n ) = a ij x i x j, kde koeficienty a ij T. j=i Kvadratická forma v n proměnných
í š í é ů ý í Í í í ú Ž ý í í í š é ží í ú í é í ů í í š í é ů ý í í í í í ú Ž ý í š é ží í ú í é í í š í é ů ý í Ťí í í í ú Ž ý í í š é ží í ú í ó é š ý í Í ý é ý í ň ů ý í í š í é ů ý í Ťí í í í ú ž
A0B01LAA Lineární algebra a aplikace (příklady na cvičení- řešení)
A0B0LAA Lineární algebra a aplikace příklady na cvičení- řešení Martin Hadrava martin@hadrava.eu. ledna 0.týdenod9.9. Řešení soustav lineárních rovnic Gaussovou eliminační metodou diskuse počtu řešení..
Skalární součin dovoluje zavedení metriky v afinním bodovém prostoru, tj. umožňuje nám určovat vzdálenosti, odchylky, obsahy a objemy.
6 Skalární součin Skalární součin dovoluje zavedení metriky v afinním bodovém prostoru, tj. umožňuje nám určovat vzdálenosti, odchylky, obsahy a objemy. Příklad: Určete odchylku přímek p, q : p : x =1+3t,
Operace s maticemi
Operace s maticemi Seminář druhý 17.10. 2018 Obsah 1 Operace s maticemi 2 Hodnost matice 3 Regulární matice 4 Inverzní matice Matice Definice (Matice). Reálná matice typu m n je obdélníkové schema A =
a + b + c = 2 b + c = 1 a b = a 1 2a 1 + a a 3 + a 5 + 2a 2 + a 2 + a
Zadání A. 1. Polynom P (x) má v uspořádané bázi (x 2 + x 1, 2x 2 x 1, x 2 + x + 2) souřadnice (1, 1, 1). Najděte jeho souřadnice vzhledem k uspořádané bázi (x 2 1, x 2 + x 1, x 2 + x). Nejprve si spočítáme
Lineární a logistická regrese
Lineární a logistická regrese Martin Branda Univerzita Karlova v Praze Matematicko-fyzikální fakulta Katedra pravděpodobnosti a matematické statistiky Výpočetní prostředky finanční a pojistné matematiky
Teorie. Hinty. kunck6am
kytaristka@gmail.com www.natur.cuni.cz/ kunck6am 5. cvičení Teorie Definice. Necht funkce f je definována na neprázdném otevřeném intervalu I. Řekneme, že funkce F je primitivní funkce k f na I, jestliže
6. ANALYTICKÁ GEOMETRIE
Vektorová algebra 6. ANALYTICKÁ GEOMETRIE Pravoúhlé souřadnice bodu v prostoru Poloha bodu v prostoru je vzhledem ke třem osám k sobě kolmým určena třemi souřadnicemi, které tvoří uspořádanou trojici reálných
2 Hlavní charakteristiky v analýze přežití
2 Hlavní charakteristiky v analýze přežití Předpokládané výstupy z výuky: 1. Student umí definovat funkci přežití, rizikovou funkci a kumulativní rizikovou funkci a zná funkční vazby mezi nimi 2. Student
VEKTORY. Obrázek 1: Jediný vektor. Souřadnice vektoru jsou jeho průměty do souřadných os x a y u dvojrozměrného vektoru, AB = B A
VEKTORY Vektorem se rozumí množina všech orientovaných úseček, které mají stejnou velikost, směr a orientaci, což vidíme na obr. 1. Jedna konkrétní orientovaná úsečka se nazývá umístění vektoru na obr.
6 Skalární součin. u v = (u 1 v 1 ) 2 +(u 2 v 2 ) 2 +(u 3 v 3 ) 2
6 Skalární součin Skalární součin 1 je operace, která dvěma vektorům (je to tedy binární operace) přiřazuje skalár (v našem případě jde o reálné číslo, obecně se jedná o prvek nějakého tělesa T ). Dovoluje
IB112 Základy matematiky
IB112 Základy matematiky Řešení soustavy lineárních rovnic, matice, vektory Jan Strejček IB112 Základy matematiky: Řešení soustavy lineárních rovnic, matice, vektory 2/53 Obsah Soustava lineárních rovnic
Matematická analýza ve Vesmíru. Jiří Bouchala
Matematická analýza ve Vesmíru Jiří Bouchala Katedra aplikované matematiky jiri.bouchala@vsb.cz www.am.vsb.cz/bouchala - p. 1/19 typu: m x (sin x, cos x) R(x, ax +...)dx. Matematická analýza ve Vesmíru.
7 Regresní modely v analýze přežití
7 Regresní modely v analýze přežití Předpokládané výstupy z výuky: 1. Student rozumí významu regresního modelování dat o přežití 2. Student dokáže definovat pojmy poměr rizik a základní riziková funkce
Fisherův exaktní test
Katedra pravděpodobnosti a matematické statistiky Karel Kozmík Fisherův exaktní test 4. prosince 2017 Motivace Máme kontingenční tabulku 2x2 a předpokládáme, že četnosti vznikly z pozorování s multinomickým
Teorie. Hinty. kunck6am
kytaristka@gmail.com www.natur.cuni.cz/ kunck6am 5. cvičení Teorie Definice. Necht funkce f je definována na neprázdném otevřeném intervalu I. Řekneme, že funkce F je primitivní funkce k f na I, jestliže
Algoritmus pro hledání vlastních čísel kvaternionových matic
Úvod Algoritmus pro hledání vlastních čísel kvaternionových matic Bc. Martin Veselý Fakulta jaderná a fyzikálně inženýrská Katedra softwarového inženýrství v ekonomii Skupina aplikované matematiky a stochastiky
Symetrické a kvadratické formy
Symetrické a kvadratické formy Aplikace: klasifikace kvadrik(r 2 ) a kvadratických ploch(r 3 ), optimalizace(mpi) BI-LIN (Symetrické a kvadratické formy) 1 / 20 V celé přednášce uvažujeme číselné těleso
CVIČNÝ TEST 37. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 5 III. Klíč 13 IV. Záznamový list 15
CVIČNÝ TEST 37 Mgr. Tomáš Kotler OBSAH I. Cvičný test 2 II. Autorské řešení 5 III. Klíč 13 IV. Záznamový list 15 I. CVIČNÝ TEST VÝCHOZÍ TEXT A OBRÁZEK K ÚLOZE 1 Na staré hliněné desce je namalován čtverec
9 Kolmost vektorových podprostorů
9 Kolmost vektorových podprostorů Od kolmosti dvou vektorů nyní přejdeme ke kolmosti dvou vektorových podprostorů. Budeme se zabývat otázkou, kdy jsou dva vektorové podprostory na sebe kolmé a jak to poznáme.
Afinita je stručný název pro afinní transformaci prostoru, tj.vzájemně jednoznačné afinní zobrazení bodového prostoru A n na sebe.
4 Afinita Afinita je stručný název pro afinní transformaci prostoru, tj.vzájemně jednoznačné afinní zobrazení bodového prostoru A n na sebe. Poznámka. Vzájemně jednoznačným zobrazením rozumíme zobrazení,
Základy matematiky pro FEK
Základy matematiky pro FEK 12. přednáška Blanka Šedivá KMA zimní semestr 216/21 Blanka Šedivá (KMA) Základy matematiky pro FEK zimní semestr 216/21 1 / 15 Integrování jako inverzní operace příklady inverzních
α 1 α 2 + α 3 = 0 2α 1 + α 2 + α 3 = 0
Vzhledem k tomu, že jsem to psala ve velkém spěchu, mohou se vyskytnout nějaké chybičky. Pokud nějaké najdu, opravím je hned po prázdninách. Zadání A. 1. Vektory u, v, w jsou lineárně nezávislé. Rozhodněte,
19 Eukleidovský bodový prostor
19 Eukleidovský bodový prostor Eukleidovským bodovým prostorem rozumíme afinní bodový prostor, na jehož zaměření je definován skalární součin. Víme, že pomocí skalárního součinu jsou definovány pojmy norma
a počtem sloupců druhé matice. Spočítejme součin A.B. Označme matici A.B = M, pro její prvky platí:
Řešené příklady z lineární algebry - část 1 Typové příklady s řešením Příklady jsou určeny především k zopakování látky před zkouškou, jsou proto řešeny se znalostmi učiva celého semestru. Tento fakt se
Korelační analýza pro kompoziční data
UNIVERZITA PALACKÉHO V OLOMOUCI PŘÍRODOVĚDECKÁ FAKULTA KATEDRA MATEMATICKÉ ANALÝZY A APLIKACÍ MATEMATIKY BAKALÁŘSKÁ PRÁCE Korelační analýza pro kompoziční data Vedoucí bakalářské práce: RNDr. Karel Hron,
1 Připomenutí vybraných pojmů
1 Připomenutí vybraných pojmů 1.1 Grupa Definice 1 ((Komutativní) grupa). Grupou (M, ) rozumíme množinu M spolu s operací na M, která má tyto vlastnosti: i) x, y M; x y M, Operace je neomezeně definovaná
Kapitola 11: Vektory a matice 1/19
Kapitola 11: Vektory a matice 1/19 2/19 Prostor R n R n = {(x 1,..., x n ) x i R, i = 1,..., n}, n N x = (x 1,..., x n ) R n se nazývá vektor x i je i-tá souřadnice vektoru x rovnost vektorů: x = y i =
8. Základy lomové mechaniky. Únava a lomová mechanika Pavel Hutař, Luboš Náhlík
Únava a lomová mechanika Koncentrace napětí nesingulární koncentrátor napětí singulární koncentrátor napětí 1 σ = σ + a r 2 σ max = σ 1 + 2( / ) r 0 ; σ max Nekonečný pás s eliptickým otvorem [Pook 2000]
Transformace obrazu Josef Pelikán KSVI MFF UK Praha
Transformace obrazu 99725 Josef Pelikán KSVI MFF UK Praha email: Josef.Pelikan@mff.cuni.cz WWW: http://cgg.ms.mff.cuni.cz/~pepca/ Transformace 2D obrazu dekorelace dat potlačení závislosti jednotlivých
Vektorový prostor. Př.1. R 2 ; R 3 ; R n Dvě operace v R n : u + v = (u 1 + v 1,...u n + v n ), V (E 3 )...množina vektorů v E 3,
Vektorový prostor Příklady: Př.1. R 2 ; R 3 ; R n...aritmetický n-rozměrný prostor Dvě operace v R n : součet vektorů u = (u 1,...u n ) a v = (v 1,...v n ) je vektor u + v = (u 1 + v 1,...u n + v n ),
Kapitola 12: Soustavy diferenciálních rovnic 1. řádu
Kapitola 12: Soustavy diferenciálních rovnic 1. řádu Základní pojmy Definice: Rovnice tvaru = f(t, x, y) = g(t, x, y), t I nazýváme soustavou dvou diferenciálních rovnic 1. řádu. Řešením soustavy rozumíme
6.1 Vektorový prostor
6 Vektorový prostor, vektory Lineární závislost vektorů 6.1 Vektorový prostor Nechť je dán soubor nějakých prvků, v němž je dána jistá struktura vztahů mezi jednotlivými prvky nebo v němž jsou předepsána
Definice 28 (Ortogonální doplněk vektorového podprostoru). V k V n ; V k V. (Pech:AGLÚ/str D.5.1)
14.3 Kolmost podprostorů 14.3.1 Ortogonální doplněk vektorového prostou Ve vektorovém prostoru dimenze 3 je ortogonálním doplňkem roviny (přesněji vektorového prostoru dimenze ) přímka na ní kolmá (vektorový
ODHADY NÁVRATOVÝCH HODNOT
ODHADY NÁVRATOVÝCH HODNOT KLIMATOLOGICKÝCH DAT Katedra aplikované matematiky Fakulta přírodovědně-humanitní a pedagogická Technická univerzita v Liberci Robust 2018 ÚVOD Velká pozornost v analýze extrémních
Transformace souřadnic
Transformace souřadnic Odpřednesenou látku naleznete v kapitolách 8.2 a 8.3 skript Abstraktní a konkrétní lineární algebra. Jiří Velebil: A7B01AG 5.11.2015: Transformace souřadnic 1/17 Minulá přednáška
(Cramerovo pravidlo, determinanty, inverzní matice)
KMA/MAT1 Přednáška a cvičení, Lineární algebra 2 Řešení soustav lineárních rovnic se čtvercovou maticí soustavy (Cramerovo pravidlo, determinanty, inverzní matice) 16 a 21 října 2014 V dnešní přednášce
0.1 Funkce a její vlastnosti
0.1 Funkce a její vlastnosti Veličina - pojem, který popisuje kvantitativní (číselné) vlastnosti reálných i abstraktních objektů. Příklady veličin: hmotnost (m) čas (t) výše úrokové sazby v bance (i) cena
Matematika (KMI/PMATE)
Úvod do matematické analýzy Funkce a její vlastnosti Funkce a její vlastnosti Veličina Veličina - pojem, který popisuje kvantitativní (číselné) vlastnosti reálných i abstraktních objektů. Funkce a její
Formální konceptuální analýza
moderní metoda analýzy dat 14. října 2011 Osnova Informatika 1 Informatika 2 3 4 Co je to informatika? Co je to informatika? Computer science is no more about computers than astronomy is about telescopes.
( ) ( ) 9.2.7 Nezávislé jevy I. Předpoklady: 9204
9.2.7 Nezávislé jevy I Předpoklady: 9204 Př. : Předpokládej, že pravděpodobnost narození chlapce je stejná jako pravděpodobnost narození dívky (a tedy v obou případech rovna 0,5) a není ovlivněna genetickými
Vektory a matice. Obsah. Aplikovaná matematika I. Carl Friedrich Gauss. Základní pojmy a operace
Vektory a matice Aplikovaná matematika I Dana Říhová Mendelu Brno Obsah 1 Vektory Základní pojmy a operace Lineární závislost a nezávislost vektorů 2 Matice Základní pojmy, druhy matic Operace s maticemi
Bakalářská matematika I
1. Funkce Diferenciální počet Mgr. Jaroslav Drobek, Ph. D. Katedra matematiky a deskriptivní geometrie Bakalářská matematika I Některé užitečné pojmy Kartézský součin podrobnosti Definice 1.1 Nechť A,
8 Coxův model proporcionálních rizik I
8 Coxův model proporcionálních rizik I Předpokládané výstupy z výuky: 1. Student umí formulovat Coxův model proporcionálních rizik 2. Student rozumí významu regresních koeficientů modelu 3. Student zná
Matematika vzorce. Ing. Petr Šídlo. verze
Matematika vzorce Ing. Petr Šídlo verze 0050409 Obsah Jazyk matematiky 3. Výrokový počet.......................... 3.. Logické spojky...................... 3.. Tautologie výrokového počtu...............
Interpolace, ortogonální polynomy, Gaussova kvadratura
Interpolace, ortogonální polynomy, Gaussova kvadratura Petr Tichý 20. listopadu 2013 1 Úloha Lagrangeovy interpolace Dán omezený uzavřený interval [a, b] a v něm n + 1 různých bodů x 0, x 1,..., x n. Nechť
INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ. Modernizace studijního programu Matematika na PřF Univerzity Palackého v Olomouci CZ.1.07/2.2.00/28.
INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ Modernizace studijního programu Matematika na PřF Univerzity Palackého v Olomouci CZ.1.07/2.2.00/28.0141 Báze vektorových prostorů, transformace souřadnic Michal Botur Přednáška
MODELU A KOMPOZIČNÍHO MODELU PŘI ANALÝZE DAT
UNIVERZITA PALACKÉHO V OLOMOUCI PŘÍRODOVĚDECKÁ FAKULTA KATEDRA MATEMATICKÉ ANALÝZY A APLIKACÍ MATEMATIKY DIPLOMOVÁ PRÁCE POROVNÁNÍ ZOBECNĚNÉHO LINEÁRNÍHO MODELU A KOMPOZIČNÍHO MODELU PŘI ANALÝZE DAT Vedoucí
11 Vzdálenost podprostorů
11 Vzdálenost podprostorů 11.1 Vzdálenost bodů Eukleidovský bodový prostor E n = afinní bodový prostor, na jehož zaměření je definován skalární součin. (Pech:AGLÚ/str.126) Definováním skalárního součinu
Matematická analýza pro informatiky I.
Matematická analýza pro informatiky I. 2. přednáška Jan Tomeček tomecek@inf.upol.cz http://aix-slx.upol.cz/ tomecek/index Univerzita Palackého v Olomouci 17. února 2010 Jan Tomeček, tomecek@inf.upol.cz
Odpřednesenou látku naleznete v kapitole 3.3 skript Diskrétní matematika.
Lineární kódy, část 2 Odpřednesenou látku naleznete v kapitole 3.3 skript Diskrétní matematika. Jiří Velebil: A7B01LAG 22.12.2014: Lineární kódy, část 2 1/12 Dnešní přednáška 1 Analýza Hammingova (7, 4)-kódu.
METODA ROZHOVORU V RÁMCI DOPRAVNĚPSYCHOLOGICKÉHO VYŠETŘENÍ. Bc. Kateřina Böhmová
METODA ROZHOVORU V RÁMCI DOPRAVNĚPSYCHOLOGICKÉHO VYŠETŘENÍ Bc. Kateřina Böhmová OBSAH Úvod Problematika rozhovoru z pohledu teorie a praxe Cíle práce Výsledky výzkumu (popis a interpretace) Závěr a diskuze
Soustavy lineárních rovnic
Přednáška MATEMATIKA č 4 Katedra ekonometrie FEM UO Brno kancelář 69a, tel 973 442029 email:jirineubauer@unobcz 27 10 2010 Soustava lineárních rovnic Definice Soustava rovnic a 11 x 1 + a 12 x 2 + + a
5. cvičení z Matematiky 2
5. cvičení z Matematiky 2 21.-25. března 2016 5.1 Nalezněte úhel, který v bodě 1, 0, 0 svírají grafy funkcí fx, y ln x 2 + y 2 a gx, y sinxy. Úhel, který svírají grafy funkcí je dán jako úhel mezi jednotlivými