TECHNICKÁ UNIVERZITA V LIBERCI
|
|
- Luděk Valenta
- před 6 lety
- Počet zobrazení:
Transkript
1 TECHNICKÁ UNIVERZITA V LIBERCI Ekonomická fakulta SEMESTRÁLNÍ PRÁCE STATISTICKÝ ROZBOR DAT Z DOTAZNÍKOVÉHO ŠETŘENÍ ANALÝZA VÝSLEDKŮ DOTAZNÍKOVÉHO ŠETŘENÍ (FAKULTNÍ DOTAZNÍK) Datum odevzdání: Tomáš Honc, Martin Toman, Jan Pazourek, Tomáš Pernica, Lucie Nohynková, Petra Čubová
2 Obsah: Seznam tabulek:... 3 Seznam ilustrací: Charakterizujte úroveň a variabilitu barvy vozidel v souboru Mutabilita Nominální variance Závěr Ověřte, zda u modelů Fiesta a Kuga ovlivňuje typ paliva skutečnou spotřebu automobilu. Pokud ano, u kterého modelu je tento vliv větší? Explorační analýza Testování hypotéz průměrná spotřeba naftových motorů vs. benzinové motory Ford Fiesta Test shody rozptylů, popřípadě směrodatných odchylek Testování hypotéz střední hodnota Testování hypotéz průměrná spotřeba naftových motorů vs. benzinové motory Ford Kuga Test shody rozptylů, popřípadě směrodatných odchylek Testování hypotéz střední hodnota Shrnutí Otestujte, zdali střední hodnota počtu návštěv v neautorizovaném servisu je u modelů Kugaa Focus shodná. Předpokládejte, že obě veličiny mají Poissonovo rozdělení Analýza datových souborů Stanovení hypotéz Výsledek
3 Seznam tabulek: Tabulka 1: Četnosti jednotlivých barev vozidel... 5 Tabulka 2: Souhrn automobilů typu Ford Fiesta... 7 Tabulka 3:Souhrn automobilů typu Ford Kuga... 7 Tabulka 4: Statictické údaje vozidel Kuga Tabulka 5: Statictické údaje vozidel Focus
4 Seznam ilustrací: Obrázek 1: Typ paliva... 8 Obrázek 2: Test hypotéz - shoda rozptylu... 9 Obrázek 3: Test hypotéz test shody střední hodnoty (Fiesta)... 9 Obrázek 4 : Test hypotéz - shoda rozptylu Obrázek 5: Test hypotéz test střední hodnota (Kuga)
5 1. Charakterizujte úroveň a variabilitu barvy vozidel v souboru. Máme zde výběrový soubor automobilů značky Ford o celkovém počtu n=256. Tyto auta jsou v následujících barvách a počtech: Tabulka 1: Četnosti jednotlivých barev vozidel Hodnota Absolutní četnosti Relativní četnosti Bíla 100 0,3906 Černá 53 0,2070 Červená 28 0,1094 Modrá 17 0,0664 Stříbrná 38 0,1484 Zelená 20 0,0781 Zdroj: vlastní zpracování Typ dat: Jedná se o slovní, nominální, množnou a diskrétní proměnou. Charakteristiky polohy (úrovně): Jelikož se jedná o nominální proměnnou, můžeme stanovit pouze následující charakteristiku: Modus střední hodnota nominální proměnné ve výběrovém souboru. V tomto souboru se jedná o barvu bílou s n i = 100 Charakteristiky variability: Pro nominální proměnné můžeme použít míru mutability a nominální varianci. 1.1 Mutabilita Vycházíme z absolutních četností jednotlivých barev. M = n2 k 2 i=1 n i n(n 1), M 0,1 (01) M = 2562 ( ) 256(256 1) 5 = 0,763 (02)
6 Z celkového počtu dvojic můžeme vytvořit 76,3% dvojic s různou obměnou. Jedná se tedy o poměrně vysokou míru variability (velká různorodost barev). 1.2 Nominální variance Vycházíme z relativní četnosti jednotlivých barev. NOMVAR = 1 p i 2 k i=1, NOMVAR 0, 1) (03). NOMVAR = 1 (0, , , , , ,078 2 ) = 0,760 (04) Z celkového počtu dvojic můžeme vytvořit 76% dvojic s různou obměnou. Stejně jako u mutability se jedná o vysokou míru variability. 1.3 Závěr Protože známe absolutní četnosti a tedy i rozsah souboru, má mutabilita vyšší vypovídací hodnotu. Oba výsledky jsou nicméně prakticky totožné a poukazují na vysokou míru variability souboru. 6
7 2. Ověřte, zda u modelů Fiesta a Kuga ovlivňuje typ paliva skutečnou spotřebu automobilu. Pokud ano, u kterého modelu je tento vliv větší? 2.1 Explorační analýza Pro provedení testů hypotéz je nejprve nutné provést explorační analýzu, díky které se zjistí základních údaje o statistickém souboru. V konkrétním úkolu byla zvolena ke zkoumání pouze skutečná spotřeba. Ke zjištění potřebných základních informací byla použita funkce One-Variable Analysis. Výsledky jsou uvedeny v tabulkách níže (viz Tab. 1 pro Ford Fiesta a viz Tab. 2 pro Ford Kuga). Tabulky jsou zjednodušené, neboť se jedná pouze o hodnoty potřebné k analýze. Tabulka 2: Souhrn automobilů typu Ford Fiesta Palivo Počet Průměr Směrodatná odchylka Benzin 80 8, , Nafta 36 6, , Celkem 116 7, ,43353 Z tabulky je zřejmé, že základní soubor čítá 116 položek automobilů typu Ford Fiesta, ze kterých má 80 automobilů benzínový motor a 36 automobilů má naftový motor. Průměrná spotřeba u benzínového motoru je 8,28352 l/100km, přičemž směrodatná odchylka je 0, V případě naftového motoru je průměrná spotřeba 6,01667 l/100km a směrodatná odchylka 0, Tabulka 3:Souhrn automobilů typu Ford Kuga Směrodatná Palivo Počet Průměr odchylka Benzin 11 6, , Nafta 10 5,38 0, Celkem 21 5, , Z tabulky je zřejmé, že základní soubor čítá 21 položek automobilů typu Ford Fiesta (celkově 137 automobilů), ze kterých má 11 automobilů benzínový motor a 10 automobilů má naftový motor. Průměrná spotřeba u benzínového motoru je 6,55455 l/100km, přičemž směrodatná 7
8 odchylka je 0, V případě naftového motoru je průměrná spotřeba 5,38 l/100km a směrodatná odchylka 0, Pro ilustraci podílu naftových a benzínových motorů (nezávisle na typu automobilu) je níže přiložen koláčový graf (viz Graf 1). Obrázek 1: Typ paliva Typ paliva 34% 66% Benzín Nafta 2.2 Testování hypotéz průměrná spotřeba naftových motorů vs. benzinové motory Ford Fiesta Díky explorační analýze v kap. 2.1 máme dostatek informací, abychom mohli provést test, na kterém dokážeme, nebo vyvrátíme tvrzení, zda typ paliva ovlivňuje skutečnou spotřebu automobilu typu Ford Fiesta. Aby bylo možné tuto skutečnost odhalit, je nutné provést test shody rozptylů, popřípadě směrodatných odchylek Test shody rozptylů, popřípadě směrodatných odchylek Test shody rozptylů se provádí prostřednictvím funkce Hypothesis Tests, ve kterém byl zvolen test Normal Sigmas. Vše na 5% hladině významnosti. H 0 = směrodatné odchylky se rovnají (NAFTA = BENZÍN), neboli H 0 = 1 H 1 = směrodatné odchylky se nerovnají 8
9 Obrázek 2: Test hypotéz - shoda rozptylu Z výsledku vyplývá, že 95% interval spolehlivosti se nachází v rozmezí od 0, do 1, Jelikož je hodnota P-Value vyšší než hodnota alfa, nemůžeme zamítnout předpoklad H 0 a přijmout alternativní hypotézu H 1. Rozptyly se tedy na 5% hladině významnosti rovnají Testování hypotéz střední hodnota Jelikož rozptyly jsou v rámci 5% spolehlivosti shodné, je možnost provést test, který dokáže, nebo vyvrátí tvrzení, zda typ paliva ovlivňuje skutečnou spotřebu automobilu typu Ford Fiesta. Jako u všech testů hypotéz je nejprve nutné zvolit si základní předpoklady testu. H 0 = spotřeby jednotlivých motorů (naftových a benzínových) u Ford Fiesta se shodují H 1 = spotřeby jednotlivých motorů (naftových a benzínových) u Ford Fiesta se neshodují Obrázek 3: Test hypotéz test shody střední hodnoty (Fiesta) Z výsledků je patrné, že hodnota P-Value je nižší než hodnota alfa. V takovém případě se zamítá předpoklad H 0 a přijímá alternativní hypotéza H 1. Spotřeby jednotlivých motorů u Ford Fiesta se tedy na 5% hladině významnosti nerovnají a je prokázáno, že typ paliva ovlivňuje výši spotřeby u automobilů typu Ford Fiesta. 9
10 2.3 Testování hypotéz průměrná spotřeba naftových motorů vs. benzinové motory Ford Kuga V této kapitole bude postup obdobný jako u kapitoly 2.2. Opět je nejprve potřeba provést analýzu shody rozptylu a až po té je možné určit, zda typ paliva ovlivňuje skutečnou spotřebu automobilu typu Ford Kuga Test shody rozptylů, popřípadě směrodatných odchylek Test shody rozptylů se provádí prostřednictvím funkce Hypothesis Tests, ve kterém byl zvolen test Normal Sigmas. Vše na 5% hladině významnosti. H 0 = směrodatné odchylky se rovnají (NAFTA = BENZÍN), neboli H 0 = 1 H 1 = směrodatné odchylky se nerovnají Obrázek 4 : Test hypotéz - shoda rozptylu Z výsledku vyplývá, že 95% interval spolehlivosti se nachází v rozmezí od 0, do 11,6289. Jelikož je hodnota P-Value vyšší než hodnota alfa, nemůžeme zamítnout předpoklad H 0 a přijmout alternativní hypotézu H 1. Rozptyly se tedy na 5% hladině významnosti rovnají Testování hypotéz střední hodnota Jelikož rozptyly jsou v rámci 5% spolehlivosti shodné, je možnost provést test, který dokáže, nebo vyvrátí tvrzení, zda typ paliva ovlivňuje skutečnou spotřebu automobilu typu Ford Fiesta. Opět je nejprve nutné zvolit si základní předpoklady testu. H 0 = spotřeby jednotlivých motorů (naftových a benzínových) u Ford Kuga se shodují H 1 = spotřeby jednotlivých motorů (naftových a benzínových) u Ford Kuga se neshodují 10
11 Obrázek 5: Test hypotéz test střední hodnota (Kuga) Jelikož je hodnota P-Value nižší než hodnota alfa, můžeme zamítnout předpoklad H 0 a přijmout alternativní hypotézu H 1. Spotřeby jednotlivých motorů u Ford Kuga se tedy na 5% hladině významnosti nerovnají. 2.4 Shrnutí Z výsledků je patrné, že palivo u obou typů automobilu ovlivňuje skutečnou spotřebu. Větší vliv je u automobilů značky Ford Fiesta, neboť P-Value je nižší hodnoty než P-Value u Ford Kuga. 11
12 3. Otestujte, zdali střední hodnota počtu návštěv v neautorizovaném servisu je u modelů Kugaa Focus shodná. Předpokládejte, že obě veličiny mají Poissonovo rozdělení. V této části zjistíme, zdali střední hodnota počtu návštěv v neautorizovaném servisu je u modelů Kuga a Focus shodná. Budeme pracovat s dvěma číselnými proměnnými. Hlavním předpokladem je Poissonovo rozdělení obou veličin. 3.1 Analýza datových souborů Prvním krokem je analýza obou datových souborů, tedy počet návštěv a výběrový průměr v neautorizovaném servisu u obou modelů Kuga a Focus. Tabulka 4: Statictické údaje vozidel Kuga Count 21 Average 2,38095 zdroj: vlastní zpracování Tabulka 5: Statictické údaje vozidel Focus Count 63 Average 3,11111 zdroj: vlastní zpracování 3.2 Stanovení hypotéz Dalším krokem je určení hypotézy H0 a H1, které nám pomohou testovat dané hodnoty: H0: střední hodnota počtu návštěv v neautorizovaném servisu u modelu Kuga a Focus je shodná H1: non H0 (střední hodnota počtu návštěv v neautorizovaném servisu u modelu Kuga a Focus není shodná) H0 : µ1 =µ2 (05) H1: µ1 µ2 (06) 12
13 3.3 Výsledek Na hladině významnosti 5 % nám vyšlo, že P-Value je 0, Je tedy větší než α (0,05). Z toho vyplývá, že nezamítáme H0, nepřijímáme H1. Na základě uvedených údajů lze konstatovat, že střední hodnoty počtu návštěv v neautorizovaném servisu u modelů Kuga a Focus jsou shodné. 13
Technická univerzita v Liberci
Technická univerzita v Liberci Ekonomická fakulta Analýza výsledků z dotazníkového šetření Jména studentů: Adam Pavlíček Michal Karlas Tomáš Vávra Anna Votavová Ročník: 2015/2016 Datum odevzdání: 13/05/2016
VíceTECHNICKÁ UNIVERZITA V LIBERCI
TECHNICKÁ UNIVERZITA V LIBERCI Ekonomická fakulta Semestrální práce STATISTICKÝ ROZBOR DAT Z DOTAZNÍKOVÉHO ŠETŘENÍ Vypracovaly: Renata Němcová, Andrea Zuzánková, Lenka Vítová, Michaela Ťukalová, Kristýna
VíceTECHNICKÁ UNIVERZITA V LIBERCI. Ekonomická fakulta. Semestrální práce. Statistický rozbor dat z dotazníkového šetření školní zadání
TECHNICKÁ UNIVERZITA V LIBERCI Ekonomická fakulta Semestrální práce Statistický rozbor dat z dotazníkového šetření školní zadání Skupina: 51 Vypracovaly: Pavlína Horná, Nikola Loumová, Petra Mikešová,
VíceTECHNICKÁ UNIVERZITA V LIBERCI Ekonomická fakulta
TECHNICKÁ UNIVERZITA V LIBERCI Ekonomická fakulta ANALÝZA VÝSLEDKŮ DOTAZNÍKOVÉHO ŠETŘENÍ (FAKULTNÍ DOTAZNÍK) semestrální práce z předmětu STATISTICKÝ ROZBOR DAT Z DOTAZNÍKOVÉHO ŠETŘENÍ Jan Kubiš, Kateřina
VíceTECHNICKÁ UNIVERZITA V LIBERCI SEMESTRÁLNÍ PRÁCE
TECHNICKÁ UNIVERZITA V LIBERCI Ekonomická fakulta Studentská 2 461 17 Liberec 1 SEMESTRÁLNÍ PRÁCE STATISTICKÝ ROZBOR DAT Z DOTAZNÍKOVÝCH ŠETŘENÍ Gabriela Dlasková, Veronika Bukovinská Sára Kroupová, Dagmar
VíceTECHNICKÁ UNIVERZITA V LIBERCI. Statistický rozbor dat z dotazníkového šetření
TECHNICKÁ UNIVERZITA V LIBERCI Ekonomická fakulta Semestrální práce Statistický rozbor dat z dotazníkového šetření Analýza výsledků dotazníkového šetření - fakultní dotazník Vypracovaly: Klára Habrová,
VíceTECHNICKÁ UNIVERZITA V LIBERCI
TECHNICKÁ UNIVERZITA V LIBERCI Ekonomická fakulta Semestrální práce Statistický rozbor dat z dotazníkového šetření Počet stran: 10 Datum odevzdání: 13. 5. 2016 Pavel Kubát Obsah Úvod... 3 1 Charakterizujte
VíceTECHNICKÁ UNIVERZITA V LIBERCI
TECHNICKÁ UNIVERZITA V LIBERCI Ekonomická fakulta Semestrální práce z předmětu Statistický rozbor dat z dotazníkového šetření Jméno: Lucie Krechlerová, Karel Kozma, René Dubský, David Drobík Ročník: 2015/2016
VíceTECHNICKÁ UNIVERZITA V LIBERCI EKONOMICKÁ FAKULTA
TECHNICKÁ UNIVERZITA V LIBERCI EKONOMICKÁ FAKULTA Semestrální práce Semestrální práce z předmětu Statistický rozbor dat z dotazníkového šetření Vypracoval: Bonaconzová, Bryknarová, Milkovičová, Škrdlová
VíceTECHNICKÁ UNIVERZITA V LIBERCI
TECHNICKÁ UNIVERZITA V LIBERCI Ekonomická fakulta SEMESTRÁLNÍ PRÁCE STATISTICKÝ ROZBOR DAT Z DOTAZNÍKOVÉHO ŠETŘENÍ ANALÝZA VÝSLEDKŮ VYUŢITÍ PROJEKTOVÉHO ŘÍZENÍ V ESN Příjmení a jméno: Hrdá Sabina, Kovalčíková
VíceTestování statistických hypotéz. Ing. Michal Dorda, Ph.D.
Testování statistických hypotéz Ing. Michal Dorda, Ph.D. Testování normality Př. : Při simulaci provozu na křižovatce byla získána data o mezerách mezi přijíždějícími vozidly v [s]. Otestujte na hladině
VíceCharakteristika datového souboru
Zápočtová práce z předmětu Statistika Vypracoval: 10. 11. 2014 Charakteristika datového souboru Zadání: Při kontrole dodržování hygienických norem v kuchyni se prováděl odběr vzduchu a pomocí filtru Pallflex
VíceJednostranné intervaly spolehlivosti
Jednostranné intervaly spolehlivosti hledáme jen jednu z obou mezí Princip: dle zadání úlohy hledáme jen dolní či jen horní mez podle oboustranného vzorce s tou změnou, že výraz 1-α/2 ve vzorci nahradíme
VíceSever Jih Západ Plechovka Točené Sever Jih Západ Součty Plechovka Točené Součty
Neparametrické testy (motto: Hypotézy jsou lešením, které se staví před budovu a pak se strhává, je-li budova postavena. Jsou nutné pro vědeckou práci, avšak skutečný vědec nepokládá hypotézy za předmětnou
VíceTabulka 1. Výběr z datové tabulky
1. Zadání domácího úkolu Vyberte si datový soubor obsahující alespoň jednu kvalitativní a jednu kvantitativní proměnnou s alespoň 30 statistickými jednotkami (alespoň 30 jednotlivých údajů). Zdroje dat
VíceZápočtová práce STATISTIKA I
Zápočtová práce STATISTIKA I Obsah: - úvodní stránka - charakteristika dat (původ dat, důvod zpracování,...) - výpis naměřených hodnot (v tabulce) - zpracování dat (buď bodové nebo intervalové, podle charakteru
VíceStav Svobodný Rozvedený Vdovec. Svobodná 37 10 6. Rozvedená 8 12 8. Vdova 5 8 6
1. Příklad Byly sledovány rodinné stavy nevěst a ženichů při uzavírání sňatků a byla vytvořena následující tabulka četností. Stav Svobodný Rozvedený Vdovec Svobodná 37 10 6 Rozvedená 8 12 8 Vdova 5 8 6
VíceTomáš Karel LS 2012/2013
Tomáš Karel LS 2012/2013 Doplňkový materiál ke cvičení z předmětu 4ST201. Na případné faktické chyby v této presentaci mě prosím upozorněte. Děkuji. Tyto slidy berte pouze jako doplňkový materiál není
VícePravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc.
Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika 010 1.týden (0.09.-4.09. ) Data, typy dat, variabilita, frekvenční analýza
VíceZ mých cvičení dostalo jedničku 6 studentů, dvojku 8 studentů, trojku 16 studentů a čtyřku nebo omluveno 10 studentů.
Neparametricke testy (motto: Hypotézy jsou lešením, které se staví před budovu a pak se strhává, je-li budova postavena. Jsou nutné pro vědeckou práci, avšak skutečný vědec nepokládá hypotézy za předmětnou
VíceADDS cviceni. Pavlina Kuranova
ADDS cviceni Pavlina Kuranova Testy pro dva nezávislé výběry Mannův Whitneyho test - Založen na Wilcoxnově statistice W - založen na pořadí jednotlivých pozorování (oba výběry spojeny do jednoho celku)
VíceJEDNOVÝBĚROVÉ TESTY. Komentované řešení pomocí programu Statistica
JEDNOVÝBĚROVÉ TESTY Komentované řešení pomocí programu Statistica Vstupní data Data umístěná v excelovském souboru překopírujeme do tabulky ve Statistice a pojmenujeme proměnné, viz prezentace k tématu
VíceSOFTWARE STAT1 A R. Literatura 4. kontrolní skupině (viz obr. 4). Proto budeme testovat shodu středních hodnot µ 1 = µ 2 proti alternativní
ŘEŠENÍ PRAKTICKÝCH ÚLOH UŽITÍM SOFTWARE STAT1 A R Obsah 1 Užití software STAT1 1 2 Užití software R 3 Literatura 4 Příklady k procvičení 6 1 Užití software STAT1 Praktické užití aplikace STAT1 si ukažme
VíceStatistika, Biostatistika pro kombinované studium Letní semestr 2011/2012. Tutoriál č. 4: Exploratorní analýza. Jan Kracík
Statistika, Biostatistika pro kombinované studium Letní semestr 2011/2012 Tutoriál č. 4: Exploratorní analýza Jan Kracík jan.kracik@vsb.cz Statistika věda o získávání znalostí z empirických dat empirická
VícePravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz
Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická
VíceCvičící Kuba Kubina Kubinčák Body u závěrečného testu
1. Příklad U 12 studentů jsme sledovali počet dosažených bodů na závěrečném testu (od 0 do 60). Vždy 4 z těchto studentů chodili k jednomu ze 3 cvičících panu Kubovi, panu Kubinovi, nebo panu Kubinčákovi.
VíceTestování hypotéz. 4. přednáška 6. 3. 2010
Testování hypotéz 4. přednáška 6. 3. 2010 Základní pojmy Statistická hypotéza Je tvrzení o vlastnostech základního souboru, o jehož pravdivosti se chceme přesvědčit. Předem nevíme, zda je pravdivé nebo
VíceTestování hypotéz. Analýza dat z dotazníkových šetření. Kuranova Pavlina
Testování hypotéz Analýza dat z dotazníkových šetření Kuranova Pavlina Statistická hypotéza Možné cíle výzkumu Srovnání účinnosti různých metod Srovnání výsledků různých skupin Tzn. prokázání rozdílů mezi
VíceFORD KUGA KUGA_2014_V2_240x185 Cover.indd 1-3 06/08/2013 11:16:19
FORD KUGA 1 2 3 4 5 6 8 9 10 11 12 13 14 15 30 % 30 % 30 % 10 % 16 17 18 19 20 21 22 23 24 25 26 27 28 29 31 32 33 34 35 1 2 3 4 36 38 39 40 41 43 44 46 47 1 2 3 48 51 1 1 3 7 2 2 5 6 4 8 52 3 53 55 58
VíceTestování statistických hypotéz
Testování statistických hypotéz Michal Fusek Ústav matematiky FEKT VUT, fusekmi@feec.vutbr.cz 11. přednáška z ESMAT Michal Fusek (fusekmi@feec.vutbr.cz) 1 / 27 Obsah 1 Testování statistických hypotéz 2
VíceUNIVERZITA OBRANY Fakulta ekonomiky a managementu. Aplikace STAT1. Výsledek řešení projektu PRO HORR2011 a PRO GRAM2011 3. 11.
UNIVERZITA OBRANY Fakulta ekonomiky a managementu Aplikace STAT1 Výsledek řešení projektu PRO HORR2011 a PRO GRAM2011 Jiří Neubauer, Marek Sedlačík, Oldřich Kříž 3. 11. 2012 Popis a návod k použití aplikace
VíceTestování hypotéz. 1. vymezení základních pojmů 2. testování hypotéz o rozdílu průměrů 3. jednovýběrový t-test
Testování hypotéz 1. vymezení základních pojmů 2. testování hypotéz o rozdílu průměrů 3. jednovýběrový t-test Testování hypotéz proces, kterým rozhodujeme, zda přijmeme nebo zamítneme nulovou hypotézu
VíceVzorová prezentace do předmětu Statistika
Vzorová prezentace do předmětu Statistika Popis situace: U 3 náhodně vybraných osob byly zjišťovány hodnoty těchto proměnných: SEX - muž, žena PUVOD Skandinávie, Středomoří, 3 západní Evropa IQ hodnota
VíceIntervalové odhady. Interval spolehlivosti pro střední hodnotu v N(µ, σ 2 ) Interpretace intervalu spolehlivosti. Interval spolehlivosti ilustrace
Intervalové odhady Interval spolehlivosti pro střední hodnotu v Nµ, σ 2 ) Situace: X 1,..., X n náhodný výběr z Nµ, σ 2 ), kde σ 2 > 0 známe měli jsme: bodové odhady odhadem charakteristiky je číslo) nevyjadřuje
VíceNázev testu Předpoklady testu Testová statistika Nulové rozdělení. ( ) (p počet odhadovaných parametrů)
VYBRANÉ TESTY NEPARAMETRICKÝCH HYPOTÉZ TESTY DOBRÉ SHODY Název testu Předpoklady testu Testová statistika Nulové rozdělení test dobré shody Očekávané četnosti, alespoň 80% očekávaných četností >5 ( ) (p
VíceAproximace binomického rozdělení normálním
Aproximace binomického rozdělení normálním Aproximace binomického rozdělení normálním Příklad Sybilla a Kassandra tvrdí, že mají telepatické schopnosti, a chtějí to dokázat následujícím pokusem: V jedné
VíceIntervalové odhady. Interval spolehlivosti pro střední hodnotu v N(µ, σ 2 ) Interpretace intervalu spolehlivosti. Interval spolehlivosti ilustrace
Intervalové odhady Interval spolehlivosti pro střední hodnotu v Nµ, σ 2 ) Situace: X 1,..., X n náhodný výběr z Nµ, σ 2 ), kde σ 2 > 0 známe měli jsme: bodové odhady odhadem charakteristiky je číslo) nevyjadřuje
VícePearsonůvχ 2 test dobré shody. Ing. Michal Dorda, Ph.D.
Ing. Michal Dorda, Ph.D. Př. : Ve vjezdové skupině kolejí byly sledovány počty přijíždějících vlaků za hodinu. Za 5 dní (tedy 360 hodin) přijelo celkem 87 vlaků. Výsledky sledování jsou uvedeny v tabulce.
VíceVysoká škola báňská technická univerzita Ostrava. Fakulta elektrotechniky a informatiky
Vysoká škola báňská technická univerzita Ostrava Fakulta elektrotechniky a informatiky Bankovní účty (semestrální projekt statistika) Tomáš Hejret (hej124) 18.5.2013 Úvod Cílem tohoto projektu, zadaného
Více12. cvičení z PST. 20. prosince 2017
1 cvičení z PST 0 prosince 017 11 test rozptylu normálního rozdělení Do laboratoře bylo odesláno n = 5 stejných vzorků krve ke stanovení obsahu alkoholu X v promilích alkoholu Výsledkem byla realizace
VíceOpakování: Nominální proměnná více hodnotová odpověď.
Analýza dat z dotazníkových šetření Cvičení 4. - Zobecňování výběru na populaci Zdrojová data: dotazník http://www.vyplnto.cz/realizovane-pruzkumy/37771/ - Seznamte se s dotazníkem a strukturou otázek,
VíceFORD FIESTA FIESTA_2013_240x185 Cover_V8.indd /12/ :54
FORD FIESTA 1 6 8 9 10 16 17 18 22 27 28 30 31 35 37 38 39 40 41 1 2 3 4 43 x 87 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 1 4 3 2 5 2 5 60 61 6 7 3 2 1 4 8 6 5 62 63 64 65 66 67 68 69 70
VíceTestování hypotéz testy o tvaru rozdělení. Jiří Neubauer. Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel
Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Statistickou hypotézou se rozumí určité tvrzení o parametrech rozdělení zkoumané náhodné veličiny (µ, σ 2, π,
VíceZáklady biostatistiky II. Veřejné zdravotnictví 3.LF UK - II
Základy biostatistiky II Veřejné zdravotnictví 3.LF UK - II Teoretické rozložení-matematické modely rozložení Naměřená data Výběrové rozložení Teoretické rozložení 1 e 2 x 2 Teoretické rozložení-matematické
VíceTomáš Karel LS 2012/2013
Tomáš Karel LS 2012/2013 Doplňkový materiál ke cvičení z předmětu 4ST201. Na případné faktické chyby v této presentaci mě prosím upozorněte. Děkuji. Tyto slidy berte pouze jako doplňkový materiál není
VíceDiskrétní náhodná veličina
Lekce Diskrétní náhodná veličina Výsledek náhodného pokusu může být vyjádřen slovně to vede k zavedení pojmu náhodného jevu Výsledek náhodného pokusu můžeme někdy vyjádřit i číselně, což vede k pojmu náhodné
VíceMnohorozměrná statistická data
Statistika II Katedra ekonometrie FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Statistický znak, statistický soubor Jednotlivé objekty nebo subjekty, které jsou při statistickém
Více676 + 4 + 100 + 196 + 0 + 484 + 196 + 324 + 64 + 324 = = 2368
Příklad 1 Je třeba prověřit, zda lze na 5% hladině významnosti pokládat za prokázanou hypotézu, že střední doba výroby výlisku je 30 sekund. Přitom 10 náhodně vybraných výlisků bylo vyráběno celkem 540
VícePRAVDĚPODOBNOST A STATISTIKA
PRAVDĚPODOBNOST A STATISTIKA Testování hypotéz Nechť X je náhodná proměnná, která má distribuční funkci F(x, ϑ). Předpokládejme, že známe tvar distribuční funkce (víme jaké má rozdělení) a neznáme parametr
VíceStatgraphics v. 5.0 STATISTICKÁ INDUKCE PRO JEDNOROZMĚRNÁ DATA. Martina Litschmannová 1. Typ proměnné. Požadovaný typ analýzy
Dichotomická proměnná (0-1) Spojitá proměnná STATISTICKÁ INDUKCE PRO JEDNOROZMĚRNÁ DATA Typ proměnné Požadovaný typ analýzy Ověření variability Předpoklady Testy, resp. intervalové odhad Test o rozptylu
VíceZáklady popisné statistiky. Vytvořil Institut biostatistiky a analýz, Masarykova univerzita J. Jarkovský, L. Dušek
Základy popisné statistiky Anotace Realitu můžeme popisovat různými typy dat, každý z nich se specifickými vlastnostmi, výhodami, nevýhodami a vlastní sadou využitelných statistických metod -od binárních
VíceKorelace. Komentované řešení pomocí MS Excel
Korelace Komentované řešení pomocí MS Excel Vstupní data Tabulka se vstupními daty je umístěna v oblasti A2:B84 (viz. obrázek) Prvotní představu o tvaru a síle závislosti docházky a počtu bodů nám poskytne
VíceAnalýza dat z dotazníkových šetření
Analýza dat z dotazníkových šetření Cvičení 6. Rozsah výběru Př. Určete minimální rozsah výběru pro proměnnou věk v souboru dovolena, jestliže 95% interval spolehlivost průměru proměnné nemá být širší
VíceTřídění statistických dat
2.1 Třídění statistických dat Všechny muže ve městě rozdělíme na 2 skupiny: A) muži, kteří chodí k holiči B) muži, kteří se holí sami Do které skupiny zařadíme holiče? prof. Raymond M. Smullyan, Dr. Math.
VíceANOVA. Semestrální práce UNIVERZITA PARDUBICE. Fakulta chemicko-technologická Katedra analytické chemie
UNIVERZITA PARDUBICE Fakulta chemicko-technologická Katedra analytické chemie ANOVA Semestrální práce Licenční studium Galileo Interaktivní statistická analýza dat Brno 2015 Ing. Petra Hlaváčková, Ph.D.
Více7.1. Podstata testu statistické hypotézy
7. TESTOVÁNÍ STATISTICKÝCH HYPOTÉZ 7.1. Podstata testu statistické hypotézy Statistická hypotéza určitý předpoklad o parametrech nebo tvaru rozdělení zkoumaného st. znaku. Testování hypotéz proces ověřování
VíceČeské vysoké učení technické v Praze Fakulta dopravní
České vysoké učení technické v Praze Fakulta dopravní Statistika (11SIS) Semestrální práce Akademický rok 2012/2013 Vypracovali: Veronika Kratochvilová, Antonín Volný skupina 2 36 Obsah Téma... 2 Grafická
VícePříklad 81b. Předpokládejme, že výška chlapců ve věku 9,5 až 10 roků má normální rozdělení N(mi;sig2)
Příklad 1. Za předpokladu, že výška dětí ve věku 10 let má normální rozdělení s rozptylem 38, určete pravostranný 99% interval spolehlivosti, ve kterém bude ležet neznámá střední hodnota výšky dětí, jestliže
VíceStatistické metody - nástroj poznání a rozhodování anebo zdroj omylů a lží
Statistické metody - nástroj poznání a rozhodování anebo zdroj omylů a lží Zdeněk Karpíšek Jsou tři druhy lží: lži, odsouzeníhodné lži a statistiky. Statistika je logická a přesná metoda, jak nepřesně
VíceProblematika analýzy rozptylu. Ing. Michael Rost, Ph.D.
Problematika analýzy rozptylu Ing. Michael Rost, Ph.D. Úvod do problému Již umíte testovat shodu dvou středních hodnot prostřednictvím t-testů. Otázka: Jaké předpoklady musí být splněny, abyste mohli použít
VíceMáte rádi kávu? Statistický výzkum o množství vypité kávy napříč věkovým spektrem.
Máte rádi kávu? Statistický výzkum o množství vypité kávy napříč věkovým spektrem. SEMESTRÁLNÍ PRÁCE STATISTIKA VYPRACOVALA: IRENA VALÁŠKOVÁ A BARBORA SLAVÍKOVÁ DNE: 29. 12. 2012 SKUPINA: 2 36 Obsah Pár
VíceŘešení: máme diskrétní N.V. vzdělání bez maturity, s maturitou, vysokoškoláci, PhD.
Cvičení 13 Opakování 1 Příklad χ 2 test dobré shody Průzkumem bylo zjištěno, že v roce 2005 bylo ve městě 18% lidí bez maturity, 56% s maturitou, 22% absolventů vysokoškolského studia, zbytek tvořili absolventi
VíceNormální (Gaussovo) rozdělení
Normální (Gaussovo) rozdělení Normální (Gaussovo) rozdělení popisuje vlastnosti náhodné spojité veličiny, která vzniká složením různých náhodných vlivů, které jsou navzájem nezávislé, kterých je velký
VíceSTATISTICA Téma 6. Testy na základě jednoho a dvou výběrů
STATISTICA Téma 6. Testy na základě jednoho a dvou výběrů 1) Test na velikost rozptylu Test na velikost rozptylu STATISTICA nemá. 2) Test na velikost střední hodnoty V menu Statistika zvolíme nabídku Základní
VíceTestování hypotéz. 1 Jednovýběrové testy. 90/2 odhad času
Testování hypotéz 1 Jednovýběrové testy 90/ odhad času V podmínkách naprostého odloučení má voák prokázat schopnost orientace v čase. Úkolem voáka e provést odhad časového intervalu 1 hodiny bez hodinek
VíceSEMESTRÁLNÍ PRÁCE STATISTIKA
SEMESTRÁLNÍ PRÁCE STATISTIKA 2012/2013 ZÝKOVÁ LUCIE 2 39 DUFEK JAKUB 1 Pro semestrální práci z předmětu Statistika jsme si naměřili intenzitu a směr aut v křižovatce Ke Krči x Jiskrova. Měření proběhlo
VíceCvičení ze statistiky - 9. Filip Děchtěrenko
Cvičení ze statistiky - 9 Filip Děchtěrenko Minule bylo.. Dobrali jsme normální rozdělení Tyhle termíny by měly být známé: Inferenční statistika Konfidenční intervaly Z-test Postup při testování hypotéz
VíceKarta předmětu prezenční studium
Karta předmětu prezenční studium Název předmětu: Číslo předmětu: 545-0250 Garantující institut: Garant předmětu: Ekonomická statistika Institut ekonomiky a systémů řízení RNDr. Radmila Sousedíková, Ph.D.
VíceUrčujeme neznámé hodnoty parametru základního souboru. Pomocí výběrové charakteristiky vypočtené z náhodného výběru.
1 Statistické odhady Určujeme neznámé hodnoty parametru základního souboru. Pomocí výběrové charakteristiky vypočtené z náhodného výběru. Odhad lze provést jako: Bodový odhad o Jedna číselná hodnota Intervalový
Více{ } ( 2) Příklad: Test nezávislosti kategoriálních znaků
Příklad: Test nezávislosti kategoriálních znaků Určete na hladině významnosti 5 % na základě dat zjištěných v rámci dotazníkového šetření ve Šluknově, zda existuje závislost mezi pohlavím respondenta a
VíceMnohorozměrná statistická data
Mnohorozměrná statistická data Ekonometrie Jiří Neubauer Katedra ekonometrie FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Jiří Neubauer (Katedra ekonometrie UO Brno) Mnohorozměrná
VíceTestování uživatelského rozhraní
České vysoké učení technické v Praze, fakulta elektrotechnická 2012/2013 Semestrální práce na předmět Testování uživatelského rozhraní Kvantitativní test Jiří Blažek blazej18@fel.cvut.cz Obsah Obsah...1
VíceSEMESTRÁLNÍ PRÁCE. Leptání plasmou. Ing. Pavel Bouchalík
SEMESTRÁLNÍ PRÁCE Leptání plasmou Ing. Pavel Bouchalík 1. ÚVOD Tato semestrální práce obsahuje písemné vypracování řešení příkladu Leptání plasmou. Jde o praktickou zkoušku znalostí získaných při přednáškách
VíceADDS cvičení 7. Pavlína Kuráňová
ADDS cvičení 7 Pavlína Kuráňová Analyzujte závislost věku obyvatel na místě kde nejčastěji tráví dovolenou. (dotazník dovolená, sloupce Jaký je Váš věk a Kde nejčastěji trávíte dovolenou) Analyzujte závislost
VíceStatistika. Diskrétní data. Spojitá data. Charakteristiky polohy. Charakteristiky variability
I Přednáška Statistika Diskrétní data Spojitá data Charakteristiky polohy Charakteristiky variability Statistika deskriptivní statistika ˆ induktivní statistika populace (základní soubor) ˆ výběr parametry
VíceObsah Úvod Kapitola 1 Než začneme Kapitola 2 Práce s hromadnými daty před analýzou
Úvod.................................................................. 11 Kapitola 1 Než začneme.................................................................. 17 1.1 Logika kvantitativního výzkumu...........................................
Více(motto: An unsophisticated forecaster uses statistics as a drunken man uses lamp-posts - for support rather than for illumination.
Neparametricke testy (motto: An unsophisticated forecaster uses statistics as a drunken man uses lamp-posts - for support rather than for illumination. Andrew Lang) 1. Příklad V následující tabulce jsou
VíceVymezení důležitých pojmů. nulová hypotéza, alternativní hypotéza testování hypotézy hladina významnosti (alfa) chyba I. druhu, chyba II.
Testování hypotéz 1. vymezení důležitých pojmů 2. testování hypotéz o rozdílu průměrů 3. jednovýběrový t-test 4. t-test pro nezávislé výběry 5. t-test pro závislé výběry Vymezení důležitých pojmů nulová
Více11. cvičení z PSI prosince hodnota pozorovaná četnost n i p X (i) = q i (1 q), i N 0.
11 cvičení z PSI 12-16 prosince 2016 111 (Test dobré shody - geometrické rozdělení Realizací náhodné veličiny X jsme dostali následující četnosti výsledků: hodnota 0 1 2 3 4 5 6 pozorovaná četnost 29 15
VíceZáklady popisné statistiky
Základy popisné statistiky Michal Fusek Ústav matematiky FEKT VUT, fusekmi@feec.vutbr.cz 8. přednáška z ESMAT Michal Fusek (fusekmi@feec.vutbr.cz) 1 / 26 Obsah 1 Základy statistického zpracování dat 2
VíceTest z teorie VÝBĚROVÉ CHARAKTERISTIKY A INTERVALOVÉ ODHADY
VÝBĚROVÉ CHARAKTERISTIKY A INTERVALOVÉ ODHADY Test z teorie 1. Střední hodnota pevně zvolené náhodné veličiny je a) náhodná veličina, b) konstanta, c) náhodný jev, d) výběrová charakteristika. 2. Výběrový
Více7. cvičení 4ST201. Úvod: bodový a intervalový odhad
cvičící 7. cvičení 4ST20 Obsah: Bodový odhad Intervalový odhad Testování hypotéz Vysoká škola ekonomická Úvod: bodový a intervalový odhad Statistický soubor lze popsat pomocípopisných charakteristik jako
VíceNormální (Gaussovo) rozdělení
Normální (Gaussovo) rozdělení f x = 1 2 exp x 2 2 2 f(x) je funkce hustoty pravděpodobnosti, symetrická vůči poloze maxima x = μ μ střední hodnota σ směrodatná odchylka (tzv. pološířka křivky mezi inflexními
VíceVYBRANÉ DVOUVÝBĚROVÉ TESTY. Martina Litschmannová
VYBRANÉ DVOUVÝBĚROVÉ TESTY Martina Litschmannová Obsah přednášky Vybrané dvouvýběrové testy par. hypotéz test o shodě rozptylů (F-test), testy o shodě středních hodnot (t-test, Aspinové-Welchův test),
VíceVŠB Technická univerzita Ostrava Fakulta elektrotechniky a informatiky SMAD
VŠB Technická univerzita Ostrava Fakulta elektrotechniky a informatiky JMÉNO STUDENTKY/STUDENTA: OSOBNÍ ČÍSLO: JMÉNO CVIČÍCÍ/CVIČÍCÍHO: SMAD Cvičení Ostrava, AR 2016/2017 Popis datového souboru Pro dlouhodobý
VíceVýběrové charakteristiky a jejich rozdělení
Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Statistické šetření úplné (vyčerpávající) neúplné (výběrové) U výběrového šetření se snažíme o to, aby výběrový
VícePravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc.
Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika 2010 1.týden (20.09.-24.09. ) Data, typy dat, variabilita, frekvenční analýza
VíceSAMOSTATNÁ STUDENTSKÁ PRÁCE ZE STATISTIKY
SAMOSTATÁ STUDETSKÁ PRÁCE ZE STATISTIKY Váha studentů Kučerová Eliška, Pazdeříková Jana septima červen 005 Zadání: My dvě studentky jsme si vylosovaly zjistit statistickým šetřením v celém ročníku septim
Více1. Příklad U automobilu byla měřena spotřeba benzínu v závislosti na rychlosti:
1. říklad U automobilu byla měřena spotřeba benzínu v závislosti na rychlosti: Rychlost (km/h) 40 50 60 70 80 9010 Spotřeba (l/100 km) 5,7 5,4 5,2 5,2 5,8 6 6,8 8,1 a. Vyrovnejte data regresní přímkou
VícePřednáška 9. Testy dobré shody. Grafická analýza pro ověření shody empirického a teoretického rozdělení
Přednáška 9 Testy dobré shody Grafická analýza pro ověření shody empirického a teoretického rozdělení χ 2 test dobré shody ověření, zda jsou relativní četnosti jednotlivých variant rovny číslům π 01 ;
VíceUni- and multi-dimensional parametric tests for comparison of sample results
Uni- and multi-dimensional parametric tests for comparison of sample results Jedno- a více-rozměrné parametrické testy k porovnání výsledků Prof. RNDr. Milan Meloun, DrSc. Katedra analytické chemie, Universita
VíceZpracování náhodného vektoru. Ing. Michal Dorda, Ph.D.
Ing. Michal Dorda, Ph.D. 1 Př. 1: Cestující na vybraném spoji linky MHD byli dotazováni za účelem zjištění spokojenosti s kvalitou MHD. Legenda 1 Velmi spokojen Spokojen 3 Nespokojen 4 Velmi nespokojen
VíceAnalýza dat z dotazníkových šetření. Zdrojová data: dotazník http://www.vyplnto.cz/realizovane-pruzkumy/konzumace-ryb-a-rybich-vyrob/
Analýza dat z dotazníkových šetření Cvičení 3. - Jednorozměrné třídění Zdrojová data: dotazník http://www.vyplnto.cz/realizovane-pruzkumy/konzumace-ryb-a-rybich-vyrob/ - Seznamte se s dotazníkem a strukturou
VíceCharakteristiky kategoriálních veličin. Absolutní četnosti (FREQUENCY)
Charakteristiky kategoriálních veličin Absolutní četnosti (FREQUENCY) Charakteristiky kategoriálních veličin Relativní četnosti Charakteristiky kategoriálních veličin Relativní četnosti Charakteristiky
VíceKvantitativní testování porovnání Alza.cz a Mall.cz
ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Kvantitativní testování porovnání Alza.cz a Mall.cz Semestrální práce B A4B39TUR Tomáš Novák 2012/2013 Obsah 1 Úvod... 3 1.1 Cíl práce... 3 1.2 Cílová skupina... 3
VíceStatistické vyhodnocování ankety pilotního projektu Kvalita výuky na Západočeské univerzitě v Plzni
Statistické vyhodnocování ankety pilotního projektu Kvalita výuky na Západočeské univerzitě v Plzni Kvantifikace dat Pro potřeby statistického zpracování byly odpovědi převedeny na kardinální intervalovou
VícePřednáška 9. Testy dobré shody. Grafická analýza pro ověření shody empirického a teoretického rozdělení
Přednáška 9 Testy dobré shody Grafická analýza pro ověření shody empirického a teoretického rozdělení χ 2 test dobré shody ověření, zda jsou relativní četnosti jednotlivých variant rovny číslům π 01 ;
VíceTesty. Pavel Provinský. 19. listopadu 2013
Testy Pavel Provinský 19. listopadu 2013 Test a intervalový odhad Testy a intervalové odhady - jsou vlastně to samé. Jiný je jen úhel pohledu. Lze přecházet od jednoho k druhému. Například: Při odvozování
VíceIng. Michael Rost, Ph.D.
Úvod do testování hypotéz, jednovýběrový t-test Ing. Michael Rost, Ph.D. Testovaná hypotéza Pokud nás zajímá zda platí, či neplatí tvrzení o určitém parametru, např. o parametru Θ, pak takovéto tvrzení
VíceSeminář 6 statistické testy
Seminář 6 statistické testy Část I. Volba správného testu Chceme zjistit, zda se středeční a čtvrteční seminární skupiny liší ve výsledcích v 1. průběžné písemce ze statistiky. Chceme zjistit, zda 1. průběžná
Více