Přednáška 9. Testy dobré shody. Grafická analýza pro ověření shody empirického a teoretického rozdělení
|
|
- Marian Dostál
- před 5 lety
- Počet zobrazení:
Transkript
1 Přednáška 9 Testy dobré shody Grafická analýza pro ověření shody empirického a teoretického rozdělení χ 2 test dobré shody ověření, zda jsou relativní četnosti jednotlivých variant rovny číslům π 01 ; ; π 0k, χ 2 - test dobré shody s očekávaným rozdělením úplně specifikovaný test, neúplně specifikovaných test, Kolmogorovův-Smirnovův jednovýběrový test Exploratorní grafy pro ověření shody empirického a teoretického rozdělení Testy normality (testy na základě šikmosti a špičatosti, Liliefforsův test, Shapiro-Wilkův test, Anderson-Darlingův test) Poznámka: χ 2 čti: chí-kvadrát (česky) nebo kaj skvére (anglicky)
2 Grafická metoda srovnávání empirického rozdělení s teoretickými modely
3 Jak ověřit, zda se empirické rozdělení shoduje s teoretickým? Srovnání histogramu s teoretickou hustotou pravděpodobností Srovnání kum. rel. četností (resp. empirické distr. f-ce) s teoret. distr. f-cí kvantily teoretické distribuční f-ce - F 1 i n V případě ideální shody empirického a teoret. rozdělení by body ležely na ose I. kvadrantu. data
4 Jak ověřit, zda se empirické rozdělení shoduje s teoretickým? Pomocí grafické analýzy můžeme metodou srovnání se standardními modely pouze odhadnout typ rozdělení! Objektivní míru shody dat s teoretickým modelem poskytují tzv. testy dobré shody.
5 Testy dobré shody
6 Testy dobré shody H 0 : Teoretické a empirické rozdělení se shoduje. H A : Teoretické a empirické rozdělení se neshoduje. Vybrané testy dobré shody: χ 2 test dobré shody ověření, zda jsou relativní četnosti jednotlivých variant rovny číslům π 01 ; ; π 0k, χ 2 - test dobré shody s očekávaným rozdělením úplně specifikovaný test, neúplně specifikovaných test, Kolmogorovův-Smirnovův jednovýběrový test
7 χ 2 test dobré shody - - ověření, zda jsou relativní četnosti jednotlivých variant rovny číslům π 01 ; ; π 0k Motivační příklad: Bylo provedeno šetření mezi ženami staršími 15 let. Mezi 246 náhodně oslovenými ženami bylo 80 (32,5%) svobodných, 110 (44,7%) vdaných, 30 (12,2%) rozvedených a 26 (10,6%) ovdovělých. Je známo (viz Český statistický úřad), že v ČR je mezi ženami staršími 15 let cca 24,8% svobodných, 49,0% vdaných, 12,6% rozvedených a 13,6% ovdovělých. Lze provedený výběr označit za reprezentativní? Náznak řešení: Stav svobodná vdaná rozvedená ovdovělá celkem očekávaná rel. četnost π 0i
8 χ 2 test dobré shody - - ověření, zda jsou relativní četnosti jednotlivých variant rovny číslům π 01 ; ; π 0k Motivační příklad: Bylo provedeno šetření mezi ženami staršími 15 let. Mezi 246 náhodně oslovenými ženami bylo 80 (32,5%) svobodných, 110 (44,7%) vdaných, 30 (12,2%) rozvedených a 26 (10,6%) ovdovělých. Je známo (viz Český statistický úřad), že v ČR je mezi ženami staršími 15 let cca 24,8% svobodných, 49,0% vdaných, 12,6% rozvedených a 13,6% ovdovělých. Lze provedený výběr označit za reprezentativní? Náznak řešení: Stav svobodná vdaná rozvedená ovdovělá celkem očekávaná rel. četnost π 0i 0,248 0,490 0,126 0,136 1,000
9 χ 2 test dobré shody - - ověření, zda jsou relativní četnosti jednotlivých variant rovny číslům π 01 ; ; π 0k Motivační příklad: Bylo provedeno šetření mezi ženami staršími 15 let. Mezi 246 náhodně oslovenými ženami bylo 80 (32,5%) svobodných, 110 (44,7%) vdaných, 30 (12,2%) rozvedených a 26 (10,6%) ovdovělých. Je známo (viz Český statistický úřad), že v ČR je mezi ženami staršími 15 let cca 24,8% svobodných, 49,0% vdaných, 12,6% rozvedených a 13,6% ovdovělých. Lze provedený výběr označit za reprezentativní? Náznak řešení: Stav svobodná vdaná rozvedená ovdovělá celkem očekávaná rel. četnost π 0i 0,248 0,490 0,126 0,136 1,000 pozorovaná (angl. observed) četnost O i
10 χ 2 test dobré shody - - ověření, zda jsou relativní četnosti jednotlivých variant rovny číslům π 01 ; ; π 0k Motivační příklad: Bylo provedeno šetření mezi ženami staršími 15 let. Mezi 246 náhodně oslovenými ženami bylo 80 (32,5%) svobodných, 110 (44,7%) vdaných, 30 (12,2%) rozvedených a 26 (10,6%) ovdovělých. Je známo (viz Český statistický úřad), že v ČR je mezi ženami staršími 15 let cca 24,8% svobodných, 49,0% vdaných, 12,6% rozvedených a 13,6% ovdovělých. Lze provedený výběr označit za reprezentativní? Náznak řešení: Stav svobodná vdaná rozvedená ovdovělá celkem očekávaná rel. četnost π 0i 0,248 0,490 0,126 0,136 1,000 pozorovaná (angl. observed) četnost O i
11 χ 2 test dobré shody - - ověření, zda jsou relativní četnosti jednotlivých variant rovny číslům π 01 ; ; π 0k Motivační příklad: Bylo provedeno šetření mezi ženami staršími 15 let. Mezi 246 náhodně oslovenými ženami bylo 80 (32,5%) svobodných, 110 (44,7%) vdaných, 30 (12,2%) rozvedených a 26 (10,6%) ovdovělých. Je známo (viz Český statistický úřad), že v ČR je mezi ženami staršími 15 let cca 24,8% svobodných, 49,0% vdaných, 12,6% rozvedených a 13,6% ovdovělých. Lze provedený výběr označit za reprezentativní? Náznak řešení: Stav svobodná vdaná rozvedená ovdovělá celkem očekávaná rel. četnost π 0i 0,248 0,490 0,126 0,136 1,000 pozorovaná (angl. observed) četnost O i očekávaná (angl. expected) četnost E i
12 χ 2 test dobré shody - - ověření, zda jsou relativní četnosti jednotlivých variant rovny číslům π 01 ; ; π 0k Motivační příklad: Bylo provedeno šetření mezi ženami staršími 15 let. Mezi 246 náhodně oslovenými ženami bylo 80 (32,5%) svobodných, 110 (44,7%) vdaných, 30 (12,2%) rozvedených a 26 (10,6%) ovdovělých. Je známo (viz Český statistický úřad), že v ČR je mezi ženami staršími 15 let cca 24,8% svobodných, 49,0% vdaných, 12,6% rozvedených a 13,6% ovdovělých. Lze provedený výběr označit za reprezentativní? Náznak řešení: Stav svobodná vdaná rozvedená ovdovělá celkem očekávaná rel. četnost π 0i 0,248 0,490 0,126 0,136 1,000 pozorovaná (angl. observed) četnost O i očekávaná (angl. expected) četnost E i 0, , , ,
13 χ 2 test dobré shody - - ověření, zda jsou relativní četnosti jednotlivých variant rovny číslům π 01 ; ; π 0k Motivační příklad: Bylo provedeno šetření mezi ženami staršími 15 let. Mezi 246 náhodně oslovenými ženami bylo 80 (32,5%) svobodných, 110 (44,7%) vdaných, 30 (12,2%) rozvedených a 26 (10,6%) ovdovělých. Je známo (viz Český statistický úřad), že v ČR je mezi ženami staršími 15 let cca 24,8% svobodných, 49,0% vdaných, 12,6% rozvedených a 13,6% ovdovělých. Lze provedený výběr označit za reprezentativní? Náznak řešení: Stav svobodná vdaná rozvedená ovdovělá celkem očekávaná rel. četnost π 0i 0,248 0,490 0,126 0,136 1,000 pozorovaná (angl. observed) četnost O i očekávaná (angl. expected) četnost E i 61,0 120,5 31,0 33,5 --- Liší se pozorované a očekávané četnosti statisticky významně?
14 χ 2 test dobré shody - - ověření, zda jsou relativní četnosti jednotlivých variant rovny číslům π 01 ; ; π 0k V nejjednodušším případě použití χ 2 testu lze konečnou populaci roztřídit podle nějakého znaku do k disjunktních skupin (tzv. variant) a my chceme na základě náhodného výběru ověřit, zda jsou relativní četnosti jednotlivých variant rovny číslům π 01, π 02,, π 0k. Předpoklady testu: Dostatečně velký výběr tj. v praxi: všechny očekávané četnosti větší než 2 a alespoň 80% očekávaných četností větších než 5. Testové kritérium: G = σk O i E 2 i i=1, E i p-hodnota: p hodnota = 1 F 0 x OBS, kde F 0 x je distribuční funkce χ 2 rozdělení s k 1 stupni volnosti.
15 Bylo provedeno šetření mezi ženami staršími 15 let. Mezi 246 náhodně oslovenými ženami bylo 80 (32,5%) svobodných, 110 (44,7%) vdaných, 30 (12,2%) rozvedených a 26 (10,6%) ovdovělých. Je známo (viz Český statistický úřad), že v ČR je mezi ženami staršími 15 let cca 24,8% svobodných, 49,0% vdaných, 12,6% rozvedených a 13,6% ovdovělých. Lze provedený výběr označit za reprezentativní? H 0 : Provedený výběr je výběrem z populace, v níž jsou relativní četnosti jednotlivých variant dány tabulkou: Stav svobodná vdaná rozvedená ovdovělá celkem očekávaná rel. četnost π 0i 0,248 0,490 0,126 0,136 1,000 H A : H 0, tj. provedený výběr není výběrem z populace, v níž jsou relativní četnosti jednotlivých variant dány výše uvedenou tabulkou.
16 Bylo provedeno šetření mezi ženami staršími 15 let. Mezi 246 náhodně oslovenými ženami bylo 80 (32,5%) svobodných, 110 (44,7%) vdaných, 30 (12,2%) rozvedených a 26 (10,6%) ovdovělých. Je známo (viz Český statistický úřad), že v ČR je mezi ženami staršími 15 let cca 24,8% svobodných, 49,0% vdaných, 12,6% rozvedených a 13,6% ovdovělých. Lze provedený výběr označit za reprezentativní? Stav svobodná vdaná rozvedená ovdovělá celkem očekávaná rel. četnost π 0i 0,248 0,490 0,126 0,136 1,000 pozorovaná (angl. observed) četnost O i očekávaná (angl. expected) četnost E i 61,0 120,5 31,0 33,5 --- Ověření předpokladů: Všechny očekávané četnosti jsou větší než 5. Výpočet pozorované hodnoty: x OBS = σ4 O i E 2 i i=1 = 80 61,0 2 E i 61, , , ,0 2 31, ,5 2 33,5 = 8,53
17 Bylo provedeno šetření mezi ženami staršími 15 let. Mezi 246 náhodně oslovenými ženami bylo 80 (32,5%) svobodných, 110 (44,7%) vdaných, 30 (12,2%) rozvedených a 26 (10,6%) ovdovělých. Je známo (viz Český statistický úřad), že v ČR je mezi ženami staršími 15 let cca 24,8% svobodných, 49,0% vdaných, 12,6% rozvedených a 13,6% ovdovělých. Lze provedený výběr označit za reprezentativní? Stav svobodná vdaná rozvedená ovdovělá celkem očekávaná rel. četnost π 0i 0,248 0,490 0,126 0,136 1,000 pozorovaná (angl. observed) četnost O i očekávaná (angl. expected) četnost E i 61,0 120,5 31,0 33,5 --- Výpočet pozorované hodnoty: x OBS = σ4 O i E 2 i i=1 = 80 61, , , ,5 2 E i 61,0 120,5 31,0 33,5 = 8,53 p-hodnota: p hodnota = 1 F 0 x OBS, kde F 0 x je distribuční funkce χ 2 rozdělení s 3 = 4 1 stupni volnosti, tj. p hodnota = 1 F 0 8,53 = 0,036.
18 Bylo provedeno šetření mezi ženami staršími 15 let. Mezi 246 náhodně oslovenými ženami bylo 80 (32,5%) svobodných, 110 (44,7%) vdaných, 30 (12,2%) rozvedených a 26 (10,6%) ovdovělých. Je známo (viz Český statistický úřad), že v ČR je mezi ženami staršími 15 let cca 24,8% svobodných, 49,0% vdaných, 12,6% rozvedených a 13,6% ovdovělých. Lze provedený výběr označit za reprezentativní? Stav svobodná vdaná rozvedená ovdovělá celkem očekávaná rel. četnost π 0i 0,248 0,490 0,126 0,136 1,000 pozorovaná (angl. observed) četnost O i očekávaná (angl. expected) četnost E i 61,0 120,5 31,0 33,5 --- p-hodnota: p hodnota = 1 F 0 x OBS, kde F 0 x je distribuční funkce χ 2 rozdělení s 3 = 4 1 stupni volnosti, tj. p hodnota = 1 F 0 8,53 = 0,036. Na hladině významnosti 0,05 zamítáme H 0, tj. výběr nelze považovat za reprezentativní.
19 χ 2 - test dobré shody s očekávaným rozdělením H 0 : Empirické a teoretické rozdělení se shoduje F x = F 0 x, neboli výběr pochází z určitého teoretického rozdělení. H A : Empirické a teoretické rozdělení se neshoduje F x F 0 x, neboli není pravda, že výběr pochází z určitého teoretického rozdělení. Rozlišujeme: A) Úplně specifikovaný test v nulové hypotéze jsou specifikovány všechny parametry teoretického rozdělení (např. H 0 : Výběr pochází z Poissonova rozdělení se střední hodnotou 12.) B) Neúplně specifikovaný test v nulové hypotéze nejsou specifikovány všechny parametry teoretického rozdělení (např. H 0 : Výběr pochází z Poissonova rozdělení.) V tomto případě musíme nespecifikované parametry teoretického rozdělení odhadnout (bodový odhad) z výběru.
20 χ 2 - test dobré shody s očekávaným rozdělením H 0 : Teoretické a empirické rozdělení se shoduje, neboli výběr pochází z určitého teoretického rozdělení. H A : Teoretické a empirické rozdělení se neshoduje, neboli není pravda, že výběr pochází z určitého teoretického rozdělení. Předpoklady testu: Dostatečně velký výběr tj. v praxi: všechny očekávané četnosti větší než 2 a alespoň 80% očekávaných četností větších než 5. Testové kritérium: k O G = σ i E 2 i i=1, E i p-hodnota: p hodnota = 1 F 0 x OBS, kde F 0 x je distribuční funkce χ 2 rozdělení s k h 1 stupni volnosti, kde h je počet odhadovaných parametrů teoretického rozdělení.
21 χ 2 - test dobré shody s očekávaným rozdělením Je-li teoretické rozdělení diskrétní, pak: 1) stanovíme nulovou a alternativní hypotézu, 2) označíme pozorované varianty NV x i, kde i = 1, 2,, k, 3) určíme pozorované četnosti O i jednotlivých variant NV σ i=1 O i = n, 4) určíme očekávané rel. četnosti π i jednotlivých variant NV π i = P 0 x i, 5) určíme očekávané četnosti E i jednotlivých variant NV E i = nπ i, 6) ověříme předpoklady testu (očekávané četnosti větší než 2, alespoň 80% očekávaných četností větší než 5), 7) určíme pozorovanou hodnotu testové statistiky x OBS = σ i=1 4 O i E i 2 E i, 8) určíme p-hodnotu (p hodnota = 1 F 0 x OBS, kde F 0 x je distribuční funkce χ 2 rozdělení s k h 1 stupni volnosti, kde h je počet odhadovaných parametrů teoretického rozdělení), 9) rozhodneme o výsledku testu. k
22 Výrobní firma odhaduje počet poruch určitého zařízení během dne pomocí Poissonova rozdělení se střední hodnotou 1,2. Zaměstnanci zaznamenali pro kontrolu skutečné počty poruch celkem ve 150 dnech (výsledky jsou uvedeny v níže uvedené tabulce). Ověřte čistým testem významnosti, zda lze počet poruch daného zařízení během dne skutečně modelovat pomocí Poissonova rozdělení s parametrem λt = 1,2. x i počet poruch během dne a více celkem O i počet dní, v nichž byl pozorován počet poruch x i H 0 : Počet poruch daného zařízení během jednoho dne (náhodná veličina X) má Poissonovo rozdělení s parametrem λt = 1,2, neboli výběr pochází z Poissonova rozdělení s parametrem λt = 1,2. H A : H 0
23 Výrobní firma odhaduje počet poruch určitého zařízení během dne pomocí Poissonova rozdělení se střední hodnotou 1,2. Zaměstnanci zaznamenali pro kontrolu skutečné počty poruch celkem ve 150 dnech (výsledky jsou uvedeny v níže uvedené tabulce). Ověřte čistým testem významnosti, zda lze počet poruch daného zařízení během dne skutečně modelovat pomocí Poissonova rozdělení s parametrem λt = 1,2. x i počet poruch během dne a více celkem O i počet dní, v nichž byl pozorován počet poruch x i π i - očekávané pravděpodobnosti výskytu H 0 : Počet poruch daného zařízení během jednoho dne (náhodná veličina X) má Poissonovo rozdělení s parametrem λt = 1,2, neboli výběr pochází z Poissonova rozdělení s parametrem λt = 1,2. H A : H 0
24 Výrobní firma odhaduje počet poruch určitého zařízení během dne pomocí Poissonova rozdělení se střední hodnotou 1,2. Zaměstnanci zaznamenali pro kontrolu skutečné počty poruch celkem ve 150 dnech (výsledky jsou uvedeny v níže uvedené tabulce). Ověřte čistým testem významnosti, zda lze počet poruch daného zařízení během dne skutečně modelovat pomocí Poissonova rozdělení s parametrem λt = 1,2. x i počet poruch během dne a více celkem O i počet dní, v nichž byl pozorován počet poruch x i π i - očekávané pravděpodobnosti výskytu P 0 0 P 0 1 P 0 2 P 0 3 P 0 X 4 1,000 H 0 : Počet poruch daného zařízení během jednoho dne (náhodná veličina X) má Poissonovo rozdělení s parametrem λt = 1,2, neboli výběr pochází z Poissonova rozdělení s parametrem λt = 1,2. H A : H 0 P 0 x je pravd. f-ce Poissonova rozdělení se střední hodnotou 1,2
25 Výrobní firma odhaduje počet poruch určitého zařízení během dne pomocí Poissonova rozdělení se střední hodnotou 1,2. Zaměstnanci zaznamenali pro kontrolu skutečné počty poruch celkem ve 150 dnech (výsledky jsou uvedeny v níže uvedené tabulce). Ověřte čistým testem významnosti, zda lze počet poruch daného zařízení během dne skutečně modelovat pomocí Poissonova rozdělení s parametrem λt = 1,2. x i počet poruch během dne a více celkem O i počet dní, v nichž byl pozorován počet poruch x i π i - očekávané pravděpodobnosti výskytu 0,301 0,361 0,217 0,087 0,034 1,000 E i - očekávané četnosti výskytu H 0 : Počet poruch daného zařízení během jednoho dne (náhodná veličina X) má Poissonovo rozdělení s parametrem λt = 1,2, neboli výběr pochází z Poissonova rozdělení s parametrem λt = 1,2. H A : H 0
26 Výrobní firma odhaduje počet poruch určitého zařízení během dne pomocí Poissonova rozdělení se střední hodnotou 1,2. Zaměstnanci zaznamenali pro kontrolu skutečné počty poruch celkem ve 150 dnech (výsledky jsou uvedeny v níže uvedené tabulce). Ověřte čistým testem významnosti, zda lze počet poruch daného zařízení během dne skutečně modelovat pomocí Poissonova rozdělení s parametrem λt = 1,2. x i počet poruch během dne a více celkem O i počet dní, v nichž byl pozorován počet poruch x i π i - očekávané pravděpodobnosti výskytu 0,301 0,361 0,217 0,087 0,034 1,000 E i - očekávané četnosti výskytu 45,2 54,2 32,6 13,1 5,1 --- H 0 : Počet poruch daného zařízení během jednoho dne (náhodná veličina X) má Poissonovo rozdělení s parametrem λt = 1,2, neboli výběr pochází z Poissonova rozdělení s parametrem λt = 1,2. H A : H 0 = 150 0,301
27 Výrobní firma odhaduje počet poruch určitého zařízení během dne pomocí Poissonova rozdělení se střední hodnotou 1,2. Zaměstnanci zaznamenali pro kontrolu skutečné počty poruch celkem ve 150 dnech (výsledky jsou uvedeny v níže uvedené tabulce). Ověřte čistým testem významnosti, zda lze počet poruch daného zařízení během dne skutečně modelovat pomocí Poissonova rozdělení s parametrem λt = 1,2. x i počet poruch během dne a více celkem O i počet dní, v nichž byl pozorován počet poruch x i π i - očekávané pravděpodobnosti výskytu 0,301 0,361 0,217 0,087 0,034 1,000 E i - očekávané četnosti výskytu 45,2 54,2 32,6 13,1 5,1 --- H 0 : Počet poruch daného zařízení během jednoho dne (náhodná veličina X) má Poissonovo rozdělení s parametrem λt = 1,2, neboli výběr pochází z Poissonova rozdělení s parametrem λt = 1,2. H A : H 0 = 150 0,361
28 Výrobní firma odhaduje počet poruch určitého zařízení během dne pomocí Poissonova rozdělení se střední hodnotou 1,2. Zaměstnanci zaznamenali pro kontrolu skutečné počty poruch celkem ve 150 dnech (výsledky jsou uvedeny v níže uvedené tabulce). Ověřte čistým testem významnosti, zda lze počet poruch daného zařízení během dne skutečně modelovat pomocí Poissonova rozdělení s parametrem λt = 1,2. x i počet poruch během dne a více celkem O i počet dní, v nichž byl pozorován počet poruch x i π i - očekávané pravděpodobnosti výskytu 0,301 0,361 0,217 0,087 0,034 1,000 E i - očekávané četnosti výskytu 45,2 54,2 32,6 13,1 5,1 --- H 0 : Počet poruch daného zařízení během jednoho dne (náhodná veličina X) má Poissonovo rozdělení s parametrem λt = 1,2, neboli výběr pochází z Poissonova rozdělení s parametrem λt = 1,2. H A : H 0 = 150 0,034
29 Výrobní firma odhaduje počet poruch určitého zařízení během dne pomocí Poissonova rozdělení se střední hodnotou 1,2. Zaměstnanci zaznamenali pro kontrolu skutečné počty poruch celkem ve 150 dnech (výsledky jsou uvedeny v níže uvedené tabulce). Ověřte čistým testem významnosti, zda lze počet poruch daného zařízení během dne skutečně modelovat pomocí Poissonova rozdělení s parametrem λt = 1,2. x i počet poruch během dne a více celkem O i počet dní, v nichž byl pozorován počet poruch x i π i - očekávané pravděpodobnosti výskytu 0,301 0,361 0,217 0,087 0,034 1,000 E i - očekávané četnosti výskytu 45,2 54,2 32,6 13,1 5,1 --- Pozorovaná hodnota: x OBS = σ5 O i E 2 i i=1 = 52 45, ,1 2 E i 45,2 5,1 = 3,13. Testové kritérium má za předpokladu platnosti H 0 χ 2 rozdělení s 4 (k 1 h) stupni volnosti. (Počet variant k = 5, počet odhadovaných parametrů h = 0.)
30 Výrobní firma odhaduje počet poruch určitého zařízení během dne pomocí Poissonova rozdělení se střední hodnotou 1,2. Zaměstnanci zaznamenali pro kontrolu skutečné počty poruch celkem ve 150 dnech (výsledky jsou uvedeny v níže uvedené tabulce). Ověřte čistým testem významnosti, zda lze počet poruch daného zařízení během dne skutečně modelovat pomocí Poissonova rozdělení s parametrem λt = 1,2. x i počet poruch během dne a více celkem O i počet dní, v nichž byl pozorován počet poruch x i π i - očekávané pravděpodobnosti výskytu 0,301 0,361 0,217 0,087 0,034 1,000 E i - očekávané četnosti výskytu 45,2 54,2 32,6 13,1 5,1 --- Pozorovaná hodnota: x OBS = σ5 O i E 2 i i=1 = 52 45, ,1 2 E i 45,2 5,1 = 3,13. p hodnota = 1 F 0 x OBS, kde F 0 x je distribuční funkce χ 2 rozdělení s 4 stupni volnosti. p hodnota = 1 F 0 3,13 = 0,54
31 Výrobní firma odhaduje počet poruch určitého zařízení během dne pomocí Poissonova rozdělení se střední hodnotou 1,2. Zaměstnanci zaznamenali pro kontrolu skutečné počty poruch celkem ve 150 dnech (výsledky jsou uvedeny v níže uvedené tabulce). Ověřte čistým testem významnosti, zda lze počet poruch daného zařízení během dne skutečně modelovat pomocí Poissonova rozdělení s parametrem λt = 1,2. x i počet poruch během dne a více celkem O i počet dní, v nichž byl pozorován počet poruch x i π i - očekávané pravděpodobnosti výskytu 0,301 0,361 0,217 0,087 0,034 1,000 E i - očekávané četnosti výskytu 45,2 54,2 32,6 13,1 5,1 --- p hodnota = 1 F 0 3,13 = 0,54 Na hladině významnosti 0,05 nezamítáme nulovou hypotézu, tzn. nemáme námitek proti použití Poissonova rozdělení s parametrem 1,2 pro odhad počtu poruch daného zařízení během jednoho dne.
32 χ 2 - test dobré shody s očekávaným rozdělením Je-li teoretické rozdělení spojité, pak: 1) stanovíme nulovou a alternativní hypotézu, 2) pozorované hodnoty NV roztřídíme do k tříd (obvykle volíme 5 k 15), 3) určíme pozorované četnosti O i v jednotlivých třídách σ i=1 O i = n, 4) určíme očekávané rel. četnosti π i v jednotlivých třídách, 5) určíme očekávané četnosti E i v jednotlivých třídách E i = nπ i, 6) ověříme předpoklady testu (očekávané četnosti větší než 2, alespoň 80% očekávaných četností větší než 5), 7) není-li předpoklad testu splněn, pokusíme se třídy korigovat (nemusí být stejně velké), 2 8) určíme pozorovanou hodnotu testové statistiky x OBS = σk O i E i i=1 E i, 9) určíme p-hodnotu (p hodnota = 1 F 0 x OBS, kde F 0 x je distribuční funkce χ 2 rozdělení s k h 1 stupni volnosti, kde h je počet odhadovaných parametrů teoretického rozdělení) 10) rozhodneme o výsledku testu. k
33 Na dálnici byly v průběhu několika minut měřeny časové odstupy [s] mezi průjezdy jednotlivých vozidel. Zjištěné hodnoty těchto odstupů jsou uvedeny v tabulce: 2,5 6,8 5,0 9,8 4,0 2,3 4,2 19 8,7 7,7 5,9 5,3 8,4 3,6 9,2 4,3 2,6 13,0 5,4 8,6 4,2 2,9 1,5 1,8 1,6 5,9 8,3 5,2 6,9 5,1 1,3 6,4 6,5 5,7 3,6 4,8 4,0 7,3 24,9 10,6 15,0 5,3 4,0 3,3 6,0 4,6 1,6 1,9 1,5 11,1 4,3 5,5 2,1 2,9 3,0 3,8 1,0 1,5 8,6 4,4 6,8 5,2 3,0 8,0 4,0 4,7 7,3 2,3 1,9 1,9 4,6 6,4 5,3 3,9 2,4 1,2 6,2 4,3 2,6 2,7 2,0 0,8 3,7 6,9 2,8 4,3 4,9 4,1 4,5 4,4 11,9 9,0 5,6 4,8 2,8 2,1 4,3 1,0 1,6 2,5 2,2 1,3 1,8 1,6 3,8 3,1 1,6 4,9 1,8 3,9 3,4 1,6 4,5 5,8 6,9 1,8 2,6 6,8 2,5 1,9 3,1 10,8 1,6 2,0 4,9 11,2 1,6 2,2 3,8 1,1 1,8 1,4 Ověřte čistým testem významnosti, zda lze časové odstupy mezi vozidly modelovat pomocí náhodné veličinu s normálním rozdělením. X časový odstup mezi průjezdy jednotlivých vozidel. H 0 : Časové odstupy mezi průjezdy jednotlivých vozidel mají norm. rozdělení. H A : Časové odstupy mezi průjezdy jednotlivých vozidel nemají norm. rozdělení.
34 ҧ X časový odstup mezi průjezdy jednotlivých vozidel. H 0 : Časové odstupy mezi průjezdy jednotlivých vozidel mají norm. rozdělení. H A : Časové odstupy mezi průjezdy jednotlivých vozidel nemají norm. rozdělení. Neúplně specifikovaný test normální rozdělení má 2 parametry (μ a σ 2 ), které je třeba odhadnout. μ Ƹ = n x = σ i=1 n xi = σ 132 i=1 xi 132 = 4,6, σ 2 = s 2 = σ n i=1 x i xҧ 2 n 1 = σ 132 i=1 xi 4, = 10,9 Proč musíme nyní pozorované hodnoty kategorizovat? Pravděpodobnostní f-ce spojité NV je nulová. Pravděpodobnost výskytu spojité NV na určitém intervalu již nulová není!
35 Kategorizace NV: Definiční obor náhodné veličiny rozdělíme například do 13 třídících intervalů. i Třídící interval Empirické [s] četnosti O i 1 ۄ 1,5 ሺ ; 11 2 ۄ 1,8 ሺ1,5; 13 3 ۄ 2,0 ሺ1,8; 7 4 ۄ 2,5 ሺ2,0; 10 5 ۄ 2,9 ሺ2,5; 8 6 ۄ 3,6 ሺ2,9; 8 7 ۄ 4,0 ሺ3,6; 10 8 ۄ 4,4 ሺ4,0; 10 9 ۄ 4,9 ሺ4,4; ۄ 5,8 ሺ4,9; ۄ 6,8 ሺ5,8; ۄ 8,7 ሺ6,8; ,7; 11 Celkem - 132
36 Kategorizace NV: Určíme očekávané pravděpodobnosti: i Třídící interval [s] Empirické četnosti O i Očekávané pravd. π 0i 1 ۄ 1,5 ሺ ; 11 2 ۄ 1,8 ሺ1,5; 13 3 ۄ 2,0 ሺ1,8; 7 4 ۄ 2,5 ሺ2,0; 10 5 ۄ 2,9 ሺ2,5; 8 6 ۄ 3,6 ሺ2,9; 8 7 ۄ 4,0 ሺ3,6; 10 8 ۄ 4,4 ሺ4,0; 10 9 ۄ 4,9 ሺ4,4; ۄ 5,8 ሺ4,9; ۄ 6,8 ሺ5,8; ۄ 8,7 ሺ6,8; ,7; 11 Celkem ,000
37 Kategorizace NV: Určíme očekávané pravděpodobnosti: i Třídící interval [s] Empirické četnosti O i Očekávané pravd. π 0i 1 ۄ 1,5 ሺ ; 11 0,174 2 ۄ 1,8 ሺ1,5; 13 0,024 3 ۄ 2,0 ሺ1,8; 7 0,017 4 ۄ 2,5 ሺ2,0; 10 0,047 5 ۄ 2,9 ሺ2,5; 8 0,041 6 ۄ 3,6 ሺ2,9; 8 0,078 7 ۄ 4,0 ሺ3,6; 10 0,047 8 ۄ 4,4 ሺ4,0; 10 0,048 9 ۄ 4,9 ሺ4,4; 10 0, ۄ 5,8 ሺ4,9; 12 0, ۄ 6,8 ሺ5,8; 10 0, ۄ 8,7 ሺ6,8; 12 0, ,7; 11 0,107 Celkem ,000 P X ሺ ; ۄ 1,5 = P X < 1,5 = F 1,5, kde F x je distr. f-ce rozdělení N 4,6; 10,9
38 Kategorizace NV: Určíme očekávané pravděpodobnosti: i Třídící interval [s] Empirické četnosti O i Očekávané pravd. π 0i 1 ۄ 1,5 ሺ ; 11 0,174 2 ۄ 1,8 ሺ1,5; 13 0,024 3 ۄ 2,0 ሺ1,8; 7 0,017 4 ۄ 2,5 ሺ2,0; 10 0,047 5 ۄ 2,9 ሺ2,5; 8 0,041 6 ۄ 3,6 ሺ2,9; 8 0,078 7 ۄ 4,0 ሺ3,6; 10 0,047 8 ۄ 4,4 ሺ4,0; 10 0,048 9 ۄ 4,9 ሺ4,4; 10 0, ۄ 5,8 ሺ4,9; 12 0, ۄ 6,8 ሺ5,8; 10 0, ۄ 8,7 ሺ6,8; 12 0, ,7; 11 0,107 Celkem ,000 P X ሺ1,5; ۄ 1,8 = F 1,8 F 1,5, kde F x je distr. f-ce rozdělení N 4,6; 10,9
39 Kategorizace NV: Určíme očekávané pravděpodobnosti: i Třídící interval [s] Empirické četnosti O i Očekávané pravd. π 0i 1 ۄ 1,5 ሺ ; 11 0,174 2 ۄ 1,8 ሺ1,5; 13 0,024 3 ۄ 2,0 ሺ1,8; 7 0,017 4 ۄ 2,5 ሺ2,0; 10 0,047 5 ۄ 2,9 ሺ2,5; 8 0,041 6 ۄ 3,6 ሺ2,9; 8 0,078 7 ۄ 4,0 ሺ3,6; 10 0,047 8 ۄ 4,4 ሺ4,0; 10 0,048 9 ۄ 4,9 ሺ4,4; 10 0, ۄ 5,8 ሺ4,9; 12 0, ۄ 6,8 ሺ5,8; 10 0, ۄ 8,7 ሺ6,8; 12 0, ,7; 11 0,107 Celkem ,000 P X ሺ1,8; ۄ 2,0 = F 2,0 F 1,8, kde F x je distr. f-ce rozdělení N 4,6; 10,9
40 Kategorizace NV: Určíme očekávané pravděpodobnosti: i Třídící interval [s] Empirické četnosti O i Očekávané pravd. π 0i 1 ۄ 1,5 ሺ ; 11 0,174 2 ۄ 1,8 ሺ1,5; 13 0,024 3 ۄ 2,0 ሺ1,8; 7 0,017 4 ۄ 2,5 ሺ2,0; 10 0,047 5 ۄ 2,9 ሺ2,5; 8 0,041 6 ۄ 3,6 ሺ2,9; 8 0,078 7 ۄ 4,0 ሺ3,6; 10 0,047 8 ۄ 4,4 ሺ4,0; 10 0,048 9 ۄ 4,9 ሺ4,4; 10 0, ۄ 5,8 ሺ4,9; 12 0, ۄ 6,8 ሺ5,8; 10 0, ۄ 8,7 ሺ6,8; 12 0, ,7; 11 0,107 Celkem ,000 P X 8,7; = P X > 8,7 = 1 F 8,7, kde F x je distr. f-ce rozdělení N 4,6; 10,9
41 Kategorizace NV: Určíme očekávané četnosti. i Třídící interval [s] Empirické četnosti O i Očekávané pravd. π 0i Očekávané četnosti E i 1 ۄ 1,5 ሺ ; 11 0,174 2 ۄ 1,8 ሺ1,5; 13 0,024 3 ۄ 2,0 ሺ1,8; 7 0,017 4 ۄ 2,5 ሺ2,0; 10 0,047 5 ۄ 2,9 ሺ2,5; 8 0,041 6 ۄ 3,6 ሺ2,9; 8 0,078 7 ۄ 4,0 ሺ3,6; 10 0,047 8 ۄ 4,4 ሺ4,0; 10 0,048 9 ۄ 4,9 ሺ4,4; 10 0, ۄ 5,8 ሺ4,9; 12 0, ۄ 6,8 ሺ5,8; 10 0, ۄ 8,7 ሺ6,8; 12 0, ,7; 11 0,107 Celkem ,000 -
42 Kategorizace NV: Určíme očekávané četnosti. i Třídící interval [s] Empirické četnosti O i Očekávané pravd. π 0i Očekávané četnosti E i 1 ۄ 1,5 ሺ ; 11 0,174 22,9 2 ۄ 1,8 ሺ1,5; 13 0,024 3,2 3 ۄ 2,0 ሺ1,8; 7 0,017 2,3 4 ۄ 2,5 ሺ2,0; 10 0,047 6,2 5 ۄ 2,9 ሺ2,5; 8 0,041 5,4 6 ۄ 3,6 ሺ2,9; 8 0,078 10,3 7 ۄ 4,0 ሺ3,6; 10 0,047 6,2 8 ۄ 4,4 ሺ4,0; 10 0,048 6,3 9 ۄ 4,9 ሺ4,4; 10 0,060 8,0 10 ۄ 5,8 ሺ4,9; 12 0,106 14,0 11 ۄ 6,8 ሺ5,8; 10 0,106 13,9 12 ۄ 8,7 ሺ6,8; 12 0,145 19,2 13 8,7; 11 0,107 14,1 Celkem ,000 - E 1 = 132 0,174
43 Kategorizace NV: Určíme očekávané četnosti. i Třídící interval [s] Empirické četnosti O i Očekávané pravd. π 0i Očekávané četnosti E i 1 ۄ 1,5 ሺ ; 11 0,174 22,9 2 ۄ 1,8 ሺ1,5; 13 0,024 3,2 3 ۄ 2,0 ሺ1,8; 7 0,017 2,3 4 ۄ 2,5 ሺ2,0; 10 0,047 6,2 5 ۄ 2,9 ሺ2,5; 8 0,041 5,4 6 ۄ 3,6 ሺ2,9; 8 0,078 10,3 7 ۄ 4,0 ሺ3,6; 10 0,047 6,2 8 ۄ 4,4 ሺ4,0; 10 0,048 6,3 9 ۄ 4,9 ሺ4,4; 10 0,060 8,0 10 ۄ 5,8 ሺ4,9; 12 0,106 14,0 11 ۄ 6,8 ሺ5,8; 10 0,106 13,9 12 ۄ 8,7 ሺ6,8; 12 0,145 19,2 13 8,7; 11 0,107 14,1 Celkem ,000 - E 13 = 132 0,107
44 Kategorizace NV: Ověříme předpoklady testu. i Třídící interval [s] Empirické četnosti O i Očekávané pravd. π 0i Očekávané četnosti E i 1 ۄ 1,5 ሺ ; 11 0,174 22,9 2 ۄ 1,8 ሺ1,5; 13 0,024 3,2 3 ۄ 2,0 ሺ1,8; 7 0,017 2,3 4 ۄ 2,5 ሺ2,0; 10 0,047 6,2 5 ۄ 2,9 ሺ2,5; 8 0,041 5,4 6 ۄ 3,6 ሺ2,9; 8 0,078 10,3 7 ۄ 4,0 ሺ3,6; 10 0,047 6,2 8 ۄ 4,4 ሺ4,0; 10 0,048 6,3 9 ۄ 4,9 ሺ4,4; 10 0,060 8,0 10 ۄ 5,8 ሺ4,9; 12 0,106 14,0 11 ۄ 6,8 ሺ5,8; 10 0,106 13,9 12 ۄ 8,7 ሺ6,8; 12 0,145 19,2 13 8,7; 11 0,107 14,1 Celkem ,000 - Všechny očekávané četnosti jsou větší než 2, sloučíme-li třídy 2 a 3, bude splněn i silnější předpoklad očekávané četnosti budou větší než 5.
45 Kategorizace NV: Ověříme předpoklady testu. i Třídící interval [s] Empirické četnosti O i Očekávané pravd. π 0i Očekávané četnosti E i 1 ۄ 1,5 ሺ ; 11 0,174 22,9 2 ۄ 1,8 ሺ1,5; 13 0,024 3,2 3 ۄ 2,0 ሺ1,8; 7 0,017 2,3 4 ۄ 2,5 ሺ2,0; 10 0,047 6,2 5 ۄ 2,9 ሺ2,5; 8 0,041 5,4 6 ۄ 3,6 ሺ2,9; 8 0,078 10,3 7 ۄ 4,0 ሺ3,6; 10 0,047 6,2 8 ۄ 4,4 ሺ4,0; 10 0,048 6,3 9 ۄ 4,9 ሺ4,4; 10 0,060 8,0 10 ۄ 5,8 ሺ4,9; 12 0,106 14,0 11 ۄ 6,8 ሺ5,8; 10 0,106 13,9 12 ۄ 8,7 ሺ6,8; 12 0,145 19,2 13 8,7; 11 0,107 14,1 Celkem ,000 - Všechny očekávané četnosti jsou větší než 2, sloučíme-li třídy 2 a 3, bude splněn i silnější předpoklad očekávané četnosti budou větší než 5.
46 Kategorizace NV: Určíme pozorovanou hodnotu. i Třídící interval [s] Empirické četnosti O i Očekávané pravd. π 0i Očekávané četnosti E i 1 ۄ 1,5 ሺ ; 11 0,174 22,9 2 ۄ 2,0 ሺ1,5; 20 0,041 5,5 3 ۄ 2,5 ሺ2,0; 10 0,047 6,2 4 ۄ 2,9 ሺ2,5; 8 0,041 5,4 5 ۄ 3,6 ሺ2,9; 8 0,078 10,3 6 ۄ 4,0 ሺ3,6; 10 0,047 6,2 7 ۄ 4,4 ሺ4,0; 10 0,048 6,3 8 ۄ 4,9 ሺ4,4; 10 0,060 8,0 9 ۄ 5,8 ሺ4,9; 12 0,106 14,0 10 ۄ 6,8 ሺ5,8; 10 0,106 13,9 11 ۄ 8,7 ሺ6,8; 12 0,145 19,2 12 8,7; 11 0,107 14,1 Celkem ,000 - x OBS = σ12 O i E 2 i i=1 = 11 22,9 2 E i 22, ,1 2 14,1 = 59,7
47 Kategorizace NV: Určíme p-hodnotu. i Třídící interval [s] Empirické četnosti O i Očekávané pravd. π 0i Očekávané četnosti E i 1 ۄ 1,5 ሺ ; 11 0,174 22,9 2 ۄ 2,0 ሺ1,5; 20 0,041 5,5 3 ۄ 2,5 ሺ2,0; 10 0,047 6,2 4 ۄ 2,9 ሺ2,5; 8 0,041 5,4 5 ۄ 3,6 ሺ2,9; 8 0,078 10,3 6 ۄ 4,0 ሺ3,6; 10 0,047 6,2 7 ۄ 4,4 ሺ4,0; 10 0,048 6,3 8 ۄ 4,9 ሺ4,4; 10 0,060 8,0 9 ۄ 5,8 ሺ4,9; 12 0,106 14,0 10 ۄ 6,8 ሺ5,8; 10 0,106 13,9 11 ۄ 8,7 ሺ6,8; 12 0,145 19,2 12 8,7; 11 0,107 14,1 Celkem ,000 - p hodnota = 1 F 0 59,7 0,001, kde F 0 x je distribuční funkce χ 2 rozdělení s 9 = k 1 h = stupni volnosti.
48 X časový odstup mezi průjezdy jednotlivých vozidel. H 0 : Časové odstupy mezi průjezdy jednotlivých vozidel mají norm. rozdělení. H A : Časové odstupy mezi průjezdy jednotlivých vozidel nemají norm. rozdělení. p hodnota = 1 F 0 59,7 0,001 Na hladině významnosti 0,05 zamítáme nulovou hypotézu, tj. nelze předpokládat, že časové odstupy mezi průjezdy jednotlivých vozidel nemají normální rozdělení.
49 Kolmogorovův-Smirnovův test
50 Kolmogorovův-Smirnovův jednovýběrový test H 0 : Náhodný výběr pochází z rozdělení se spojitou distribuční funkcí F 0 x. H A : Náhodný výběr nepochází z rozdělení se spojitou distribuční funkcí F 0 x. Distribuční funkcí F 0 x POZOR!!! musí být úplně specifikována. Tímto testem nelze ověřit např. hypotézu, že výběr pochází z norm. rozdělení.
51 Kolmogorovův-Smirnovův jednovýběrový test H 0 : Náhodný výběr pochází z rozdělení se spojitou distribuční funkcí F 0 x. H A : Náhodný výběr nepochází z rozdělení se spojitou distribuční funkcí F 0 x. Testové kritérium: D n = sup F n x F 0 x = max D 1, D 2,, D n, kde D i = max F 0 x i 1 n ; F 0 x i n pro i = 1, 2,, n Maximální rozdíl mezi teoretickou a empirickou distr. f-cí
52 Kolmogorovův-Smirnovův jednovýběrový test H 0 : Náhodný výběr pochází z rozdělení se spojitou distribuční funkcí F 0 x. H A : Náhodný výběr nepochází z rozdělení se spojitou distribuční funkcí F 0 x. Testové kritérium: D n = sup F n x F 0 x = max D 1, D 2,, D n, kde D i = max F 0 x i 1 ; F n 0 x i pro i = 1, 2,, n n Rozhodnutí: Nulovou hypotézu zamítáme, pokud x OBS > D n α. Je-li n malé n 100, lze kritické hodnoty D n α najít např. v tabulce T14. Při velkých hodnotách n se kritické hodnoty D n α D n α 1 2n ln 2 α. aproximují pomocí vztahu
53 V tabulce je 10 čísel generovaných jako hodnoty rozdělení N 19; 0,49. Ověřte, zda generované hodnoty pocházejí z předpokládaného rozdělení. x i 19,732 19,108 19,234 19,038 19,270 19,105 19,473 17,660 20,219 18,727 H 0 : Výběr pochází z rozdělení N 19; 0,49, H A : H 0. χ 2 test dobré shody nelze použít - malý rozsah výběru, očekávané četnosti v třídících intervalech by nepřekročily požadovanou hodnotu 5. Kolmogorovův-Smirnovův test (dále K-S test) Testové kritérium: D n = sup F n x F 0 x = max D 1, D 2,, D n, kde D i = max F 0 x i 1 ; F n 0 x i pro i = 1, 2,, n n
54 Testové kritérium: D n = sup F n x F 0 x = max D 1, D 2,, D n, kde D i = max F 0 x i 1 n ; F 0 x i n pro i = 1, 2,, n Seřazené hodnoty x i Pořadí i i 1 n i n F 0 x i F 0 x i i n F 0 x i i 1 n 17, ,00 0,10 0,03 0,07 0,03 18, ,10 0,20 0,35 0,15 0,25 19, ,20 0,30 0,52 0,22 0,32 19, ,30 0,40 0,56 0,16 0,26 19, ,40 0,50 0,56 0,06 0,16 19, ,50 0,60 0,63 0,03 0,13 19, ,60 0,70 0,65 0,05 0,15 19, ,70 0,80 0,75 0,05 0,05 19, ,80 0,90 0,85 0,05 0,05 20, ,90 1,00 0,96 0,04 0,06 D i 0,07 0,25 0,32 0,26 0,16 0,13 0,15 0,05 0,05 0,06
55 V tabulce je 10 čísel generovaných jako hodnoty rozdělení N 19; 0,49. Ověřte, zda generované hodnoty pocházejí z předpokládaného rozdělení. x i 19,732 19,108 19,234 19,038 19,270 19,105 19,473 17,660 20,219 18,727 H 0 : Výběr pochází z rozdělení N 19; 0,49, H A : H 0. χ 2 test dobré shody nelze použít - malý rozsah výběru, očekávané četnosti v třídících intervalech by nepřekročily požadovanou hodnotu 5. K-S test Pozorovaná hodnota: x OBS = 0,32 Kritická hodnota: D 10 0,05 =0,40925 (dle T14) Na hladině významnosti 0,05 nezamítáme H 0 0,32 < 0,41, tj. generované hodnoty lze považovat za výběr z N 19; 0,49.
56 Testy normality ve Statgaphicsu (pro zájemce) H 0 : Výběr pochází z normálního rozdělení. H A : Výběr nepochází z normálního rozdělení.
57 Test na základě šikmosti Výběrový koeficient šikmosti a 3 : a 3 = 1 n s 3 n i=1 x i xҧ 3 Pochází-li výběr z normálního rozdělení, pak a 3 má asymptoticky normální rozdělení se stř. hodnotou E a 3 = 0 a rozptylem D a 3 = 6 n 2 n+1 n+3. Testové kritérium: Z 3 = a 3 D a 3 Rozhodnutí: Nulovou hypotézu zamítáme, překročí-li pozorovaná hodnota kritickou hodnotu, která je tabelována [1], [2]. Máme-li dostatečný rozsah výběru n > 200, pak p hodnota = 2 min Φ x OBS ; 1 Φ x OBS.
58 Test na základě špičatosti Výběrový koeficient špičatosti a 4 : a 4 = 1 n s 4 n i=1 x i xҧ 4 Pochází-li výběr z normálního rozdělení, pak a 3 má asymptoticky normální rozdělení se stř. hodnotou E a 4 = 3 6 n+1 a rozptylem D a 4 = 24n n 2 n 3 n+1 2 n+2 n+3. Testové kritérium: Z 4 = a 4 E a 4 D a 4 Rozhodnutí: Nulovou hypotézu zamítáme, překročí-li pozorovaná hodnota kritickou hodnotu, která je tabelována [1], [3]. Máme-li dostatečný rozsah výběru n > 500, pak p hodnota = 2 min Φ x OBS ; 1 Φ x OBS.
59 Kombinovaný test na základě šikmosti a špičatosti Testy normality na základě šikmosti a špičatosti by se měly používat zároveň. Proto se často používá test založený na šikmosti a špičatosti zároveň. Předpoklad testu: n 200 (existuje modifikace testu, kterou lze použít již pro n 20 [4]) Testové kritérium: Z 34 = Z Z 4 2 p-hodnota: p hodnota = 1 F x OBS, kde F x je distribuční f-ce χ 2 rozdělení s 2 stupni volnosti.
60 Lilieforsův test (modifikace K-S testu pro neúplně specifikovaný test) Testová statistika: totožná s testovou statistikou K-S testu Rozhodnutí: Nulovou hypotézu zamítáme, pokud x OBS > D modif n α. Kritické hodnoty D modif n α jsou tabelovány např. v [5].
61 Andersonův-Darlingův test Nechť y i = x i μ σ. Mějme uspořádaný výběr: y 1 < y 2 < < y n. Testová statistika: n AD = n 1 n i=1 2i 1 ln Φ y i ln Φ y n i+1 Rozhodnutí: Nulovou hypotézu zamítáme, překročí-li pozorovaná hodnota kritickou hodnotu, která je tabelována např. v [5].
62 Shapirův-Wilkův test Jeden z nejsilnějších testů normality. [6] Online výpočetní applet (Simon Dittami, 2009) pro tento test naleznete zde.
63 Literatura 1. Pearson, A. V., and Hartley, H. O. (1972). Biometrica Tables for Statisticians, Vol 2, Cambridge, England, Cambridge University Press. 2. Mulholland, H. P. (1977), On the Null Distribution of b1 for Samples of Size at Most 25, with Tables, Biometrika, 64, D'Agostino, R. B. and Stephens, M. A., eds. (1986). Goodness-of-Fit Techniques. Dekker, New York. 4. D Agostino, Ralph B.; Albert Belanger; Ralph B. D Agostino, Jr (1990). "A suggestion for using powerful and informative tests of normality". The American Statistician 44 (4): JSTOR Sprent, P. (1993). Applied Nonparametric Statistical Methods (Second Edition). Chapman & Hall, London. 6. Shapiro, S.S., Wilk, M.B. An Analysis of Variance Test for Normality (Complete Samples). Biometrika. 1965, roč. 52, č. 3/4, s Dostupné z:
64 Děkuji za pozornost!
Přednáška 9. Testy dobré shody. Grafická analýza pro ověření shody empirického a teoretického rozdělení
Přednáška 9 Testy dobré shody Grafická analýza pro ověření shody empirického a teoretického rozdělení χ 2 test dobré shody ověření, zda jsou relativní četnosti jednotlivých variant rovny číslům π 01 ;
Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc.
Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika 2010 1.týden (20.09.-24.09. ) Data, typy dat, variabilita, frekvenční analýza
Testování hypotéz testy o tvaru rozdělení. Jiří Neubauer. Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel
Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Statistickou hypotézou se rozumí určité tvrzení o parametrech rozdělení zkoumané náhodné veličiny (µ, σ 2, π,
Název testu Předpoklady testu Testová statistika Nulové rozdělení. ( ) (p počet odhadovaných parametrů)
VYBRANÉ TESTY NEPARAMETRICKÝCH HYPOTÉZ TESTY DOBRÉ SHODY Název testu Předpoklady testu Testová statistika Nulové rozdělení test dobré shody Očekávané četnosti, alespoň 80% očekávaných četností >5 ( ) (p
VYBRANÉ DVOUVÝBĚROVÉ TESTY. Martina Litschmannová
VYBRANÉ DVOUVÝBĚROVÉ TESTY Martina Litschmannová Obsah přednášky Vybrané dvouvýběrové testy par. hypotéz test o shodě rozptylů (F-test), testy o shodě středních hodnot (t-test, Aspinové-Welchův test),
Pravděpodobnost a aplikovaná statistika
Pravděpodobnost a aplikovaná statistika MGR. JANA SEKNIČKOVÁ, PH.D. 8. KAPITOLA STATISTICKÉ TESTOVÁNÍ HYPOTÉZ 22.11.2016 Opakování: CLV příklad 1 Zadání: Před volbami je v populaci státu 52 % příznivců
Národníinformačnístředisko pro podporu jakosti
Národníinformačnístředisko pro podporu jakosti OVĚŘOVÁNÍ PŘEDPOKLADU NORMALITY Doc. Ing. Eva Jarošová, CSc. Ing. Jan Král Používané metody statistické testy: Chí-kvadrát test dobré shody Kolmogorov -Smirnov
You created this PDF from an application that is not licensed to print to novapdf printer (http://www.novapdf.com)
Testování statistických hypotéz Testování statistických hypotéz Princip: Ověřování určitého předpokladu zjišťujeme, zda zkoumaný výběr pochází ze základního souboru, který má určité rozdělení zjišťujeme,
Přednáška X. Testování hypotéz o kvantitativních proměnných
Přednáška X. Testování hypotéz o kvantitativních proměnných Testování hypotéz o podílech Kontingenční tabulka, čtyřpolní tabulka Testy nezávislosti, Fisherůvexaktní test, McNemarůvtest Testy dobré shody
Jarqueův a Beryho test normality (Jarque-Bera Test, JB test)
Jarqueův a Beryho test normality (Jarque-Bera Test, JB test) Autoři: Carlos M. Jarque and Anil K. Bera Předpoklady: - Výběrová data mohou obsahovat chybějící pozorování (chybějící hodnoty) vhodné zejména
y = 0, ,19716x.
Grafické ověřování a testování vybraných modelů 1 Grafické ověřování empirického rozdělení Při grafické analýze empirického rozdělení vycházíme z empirické distribuční funkce F n (x) příslušné k náhodnému
Charakteristika datového souboru
Zápočtová práce z předmětu Statistika Vypracoval: 10. 11. 2014 Charakteristika datového souboru Zadání: Při kontrole dodržování hygienických norem v kuchyni se prováděl odběr vzduchu a pomocí filtru Pallflex
Výběrové charakteristiky a jejich rozdělení
Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Statistické šetření úplné (vyčerpávající) neúplné (výběrové) U výběrového šetření se snažíme o to, aby výběrový
Pearsonůvχ 2 test dobré shody. Ing. Michal Dorda, Ph.D.
Ing. Michal Dorda, Ph.D. Př. : Ve vjezdové skupině kolejí byly sledovány počty přijíždějících vlaků za hodinu. Za 5 dní (tedy 360 hodin) přijelo celkem 87 vlaků. Výsledky sledování jsou uvedeny v tabulce.
15. T e s t o v á n í h y p o t é z
15. T e s t o v á n í h y p o t é z Na základě hodnot náhodného výběru činíme rozhodnutí o platnosti hypotézy o hodnotách parametrů rozdělení nebo o jeho vlastnostech. Rozeznáváme dva základní typy testů:
Pravděpodobnost a statistika, Biostatistika pro kombinované studium. Tutoriál č. 5: Bodové a intervalové odhady, testování hypotéz.
Pravděpodobnost a statistika, Biostatistika pro kombinované studium Letní semestr 2015/2016 Tutoriál č. 5: Bodové a intervalové odhady, testování hypotéz Jan Kracík jan.kracik@vsb.cz Obsah: Výběrová rozdělení
Testování hypotéz. 1 Jednovýběrové testy. 90/2 odhad času
Testování hypotéz 1 Jednovýběrové testy 90/ odhad času V podmínkách naprostého odloučení má voák prokázat schopnost orientace v čase. Úkolem voáka e provést odhad časového intervalu 1 hodiny bez hodinek
PRAVDĚPODOBNOST A STATISTIKA. Testování hypotéz o rozdělení
PRAVDĚPODOBNOST A STATISTIKA Testování hypotéz o rozdělení Testování hypotéz o rozdělení Nechť X e náhodná proměnná, která má distribuční funkci F(x, ϑ). Předpokládeme, že neznáme tvar distribuční funkce
Problematika analýzy rozptylu. Ing. Michael Rost, Ph.D.
Problematika analýzy rozptylu Ing. Michael Rost, Ph.D. Úvod do problému Již umíte testovat shodu dvou středních hodnot prostřednictvím t-testů. Otázka: Jaké předpoklady musí být splněny, abyste mohli použít
VŠB Technická univerzita Ostrava Fakulta elektrotechniky a informatiky SMAD
VŠB Technická univerzita Ostrava Fakulta elektrotechniky a informatiky JMÉNO STUDENTKY/STUDENTA: OSOBNÍ ČÍSLO: JMÉNO CVIČÍCÍ/CVIČÍCÍHO: SMAD Cvičení Ostrava, AR 2016/2017 Popis datového souboru Pro dlouhodobý
5. T e s t o v á n í h y p o t é z
5. T e s t o v á n í h y p o t é z Na základě hodnot náhodného výběru činíme rozhodnutí o platnosti hypotézy o hodnotách parametrů rozdělení nebo o jeho vlastnostech. Rozeznáváme dva základní typy testů:
15. T e s t o v á n í h y p o t é z
15. T e s t o v á n í h y p o t é z Na základě hodnot náhodného výběru činíme rozhodnutí o platnosti hypotézy o hodnotách parametrů rozdělení nebo o jeho vlastnostech. Rozeznáváme dva základní typy testů:
Mann-Whitney U-test. Znaménkový test. Vytvořil Institut biostatistiky a analýz, Masarykova univerzita J. Jarkovský, L. Dušek
10. Neparametrické y Mann-Whitney U- Wilcoxonův Znaménkový Shrnutí statistických ů Typ srovnání Nulová hypotéza Parametrický Neparametrický 1 skupina dat vs. etalon Střední hodnota je rovna hodnotě etalonu.
Testy. Pavel Provinský. 19. listopadu 2013
Testy Pavel Provinský 19. listopadu 2013 Test a intervalový odhad Testy a intervalové odhady - jsou vlastně to samé. Jiný je jen úhel pohledu. Lze přecházet od jednoho k druhému. Například: Při odvozování
Statistické metody v ekonomii. Ing. Michael Rost, Ph.D.
Statistické metody v ekonomii Ing. Michael Rost, Ph.D. Jihočeská univerzita v Českých Budějovicích Proč neparametrické testy? Pokud provádíte formální analýzu či testování hypotéz (zejména provádíte-li
PSY117/454 Statistická analýza dat v psychologii Přednáška 10
PSY117/454 Statistická analýza dat v psychologii Přednáška 10 TESTY PRO NOMINÁLNÍ A ORDINÁLNÍ PROMĚNNÉ NEPARAMETRICKÉ METODY... a to mělo, jak sám vidíte, nedozírné následky. Smrť Analýza četností hodnot
Základy biostatistiky II. Veřejné zdravotnictví 3.LF UK - II
Základy biostatistiky II Veřejné zdravotnictví 3.LF UK - II Teoretické rozložení-matematické modely rozložení Naměřená data Výběrové rozložení Teoretické rozložení 1 e 2 x 2 Teoretické rozložení-matematické
JEDNOVÝBĚROVÉ TESTY. Komentované řešení pomocí programu Statistica
JEDNOVÝBĚROVÉ TESTY Komentované řešení pomocí programu Statistica Vstupní data Data umístěná v excelovském souboru překopírujeme do tabulky ve Statistice a pojmenujeme proměnné, viz prezentace k tématu
Testování hypotéz. Analýza dat z dotazníkových šetření. Kuranova Pavlina
Testování hypotéz Analýza dat z dotazníkových šetření Kuranova Pavlina Statistická hypotéza Možné cíle výzkumu Srovnání účinnosti různých metod Srovnání výsledků různých skupin Tzn. prokázání rozdílů mezi
Testování statistických hypotéz. Ing. Michal Dorda, Ph.D. 1
Testování statistických hypotéz Ing. Michal Dorda, Ph.D. 1 Úvodní poznámky Statistickou hypotézou rozumíme hypotézu o populaci (základním souboru) např.: Střední hodnota základního souboru je rovna 100.
ÚVOD DO TEORIE ODHADU. Martina Litschmannová
ÚVOD DO TEORIE ODHADU Martina Litschmannová Obsah lekce Výběrové charakteristiky parametry populace vs. výběrové charakteristiky limitní věty další rozdělení pravděpodobnosti (Chí-kvadrát (Pearsonovo),
UNIVERZITA OBRANY Fakulta ekonomiky a managementu. Aplikace STAT1. Výsledek řešení projektu PRO HORR2011 a PRO GRAM2011 3. 11.
UNIVERZITA OBRANY Fakulta ekonomiky a managementu Aplikace STAT1 Výsledek řešení projektu PRO HORR2011 a PRO GRAM2011 Jiří Neubauer, Marek Sedlačík, Oldřich Kříž 3. 11. 2012 Popis a návod k použití aplikace
Základní statistické metody v rizikovém inženýrství
Základní statistické metody v rizikovém inženýrství Petr Misák Ústav stavebního zkušebnictví Fakulta stavební, VUT v Brně misak.p@fce.vutbr.cz Základní pojmy Jev souhrn skutečností zobrazujících ucelenou
Testování statistických hypotéz. Ing. Michal Dorda, Ph.D.
Testování statistických hypotéz Ing. Michal Dorda, Ph.D. Testování normality Př. : Při simulaci provozu na křižovatce byla získána data o mezerách mezi přijíždějícími vozidly v [s]. Otestujte na hladině
pravděpodobnosti, popisné statistiky
8. Modelová rozdělení pravděpodobnosti, popisné statistiky Rozdělení pravděpodobnosti Normální rozdělení jako statistický model Přehled a aplikace modelových rozdělení Popisné statistiky Anotace Klasickým
Intervalové odhady. Interval spolehlivosti pro střední hodnotu v N(µ, σ 2 ) Interpretace intervalu spolehlivosti. Interval spolehlivosti ilustrace
Intervalové odhady Interval spolehlivosti pro střední hodnotu v Nµ, σ 2 ) Situace: X 1,..., X n náhodný výběr z Nµ, σ 2 ), kde σ 2 > 0 známe měli jsme: bodové odhady odhadem charakteristiky je číslo) nevyjadřuje
VŠB Technická univerzita Ostrava Fakulta elektrotechniky a informatiky
VŠB Technická univerzita Ostrava Fakulta elektrotechniky a informatiky PRAVDĚPODOBNOST A STATISTIKA Zadání 1 JMÉNO STUDENTKY/STUDENTA: OSOBNÍ ČÍSLO: JMÉNO CVIČÍCÍ/CVIČÍCÍHO: DATUM ODEVZDÁNÍ DOMÁCÍ ÚKOL
Intervalové odhady. Interval spolehlivosti pro střední hodnotu v N(µ, σ 2 ) Interpretace intervalu spolehlivosti. Interval spolehlivosti ilustrace
Intervalové odhady Interval spolehlivosti pro střední hodnotu v Nµ, σ 2 ) Situace: X 1,..., X n náhodný výběr z Nµ, σ 2 ), kde σ 2 > 0 známe měli jsme: bodové odhady odhadem charakteristiky je číslo) nevyjadřuje
Testování statistických hypotéz
Testování statistických hypotéz Michal Fusek Ústav matematiky FEKT VUT, fusekmi@feec.vutbr.cz 11. přednáška z ESMAT Michal Fusek (fusekmi@feec.vutbr.cz) 1 / 27 Obsah 1 Testování statistických hypotéz 2
Testování statistických hypotéz
Testování statistických hypotéz 1 Testování statistických hypotéz 1 Statistická hypotéza a její test V praxi jsme nuceni rozhodnout, zda nějaké tvrzeni o parametrech náhodných veličin nebo o veličině samotné
Zápočtová práce STATISTIKA I
Zápočtová práce STATISTIKA I Obsah: - úvodní stránka - charakteristika dat (původ dat, důvod zpracování,...) - výpis naměřených hodnot (v tabulce) - zpracování dat (buď bodové nebo intervalové, podle charakteru
TECHNICKÁ UNIVERZITA V LIBERCI
TECHNICKÁ UNIVERZITA V LIBERCI Ekonomická fakulta Semestrální práce STATISTICKÝ ROZBOR DAT Z DOTAZNÍKOVÉHO ŠETŘENÍ Vypracovaly: Renata Němcová, Andrea Zuzánková, Lenka Vítová, Michaela Ťukalová, Kristýna
Testování statistických hypotéz
Testování statistických hypotéz Na základě náhodného výběru, který je reprezentativním vzorkem základního souboru (který přesně neznáme, k němuž se ale daná statistická hypotéza váže), potřebujeme ověřit,
Jednofaktorová analýza rozptylu
Jednofaktorová analýza rozptylu David Hampel Ústav statistiky a operačního výzkumu, Mendelova univerzita v Brně Kurz pokročilých statistických metod Global Change Research Centre AS CR, 5 7 8 2015 Tato
ÚVOD DO TESTOVÁNÍ HYPOTÉZ. Martina Litschmannová
ÚVOD DO TESTOVÁNÍ HYPOTÉZ Martina Litschmannová Základní metody statistické indukce Intervalové odhady (angl. confidence intervals) umožňují odhadnout nejistotu v odhadu parametru náhodné veličiny Testování
RNDr. Eva Janoušová doc. RNDr. Ladislav Dušek, Dr.
Analýza dat pro Neurovědy RNDr. Eva Janoušová doc. RNDr. Ladislav Dušek, Dr. Jaro 2014 Institut biostatistiky Janoušová, a analýz Dušek: Analýza dat pro neurovědy Blok 3 Jak a kdy použít parametrické a
Jednovýběrové testy. Komentované řešení pomocí MS Excel
Jednovýběrové testy Komentované řešení pomocí MS Excel Vstupní data V dalším budeme předpokládat, že tabulka se vstupními daty je umístěna v oblasti A1:C23 (viz. obrázek) Základní statistiky vložíme vzorce
676 + 4 + 100 + 196 + 0 + 484 + 196 + 324 + 64 + 324 = = 2368
Příklad 1 Je třeba prověřit, zda lze na 5% hladině významnosti pokládat za prokázanou hypotézu, že střední doba výroby výlisku je 30 sekund. Přitom 10 náhodně vybraných výlisků bylo vyráběno celkem 540
Matematika III. 3. prosince Vysoká škola báňská - Technická univerzita Ostrava. Matematika III
Vysoká škola báňská - Technická univerzita Ostrava 3. prosince 2018 Úvod do testování hypotéz Základní metody statistické indukce Intervalové odhady (angl. confidence intervals) umožňují odhadnout nejistotu
PRAVDĚPODOBNOST A STATISTIKA. Neparametrické testy hypotéz čast 1
PRAVDĚPODOBNOST A STATISTIKA Neparametrické testy hypotéz čast 1 Neparametrické testy hypotéz - úvod Neparametrické testy statistických hypotéz se používají v případech, kdy neznáme rozdělení pozorované
Bakalářské studium na MFF UK v Praze Obecná matematika Zaměření: Stochastika. 1 Úvodní poznámky. Verze: 13. června 2013
Bakalářské studium na MFF UK v Praze Obecná matematika Zaměření: Stochastika Podrobnější rozpis okruhů otázek pro třetí část SZZ Verze: 13. června 2013 1 Úvodní poznámky 6 Smyslem SZZ by nemělo být toliko
LIMITNÍ VĚTY DALŠÍ SPOJITÁ ROZDĚLENÍ PR. 8. cvičení
LIMITNÍ VĚTY DALŠÍ SPOJITÁ ROZDĚLENÍ PR. 8. cvičení Způsoby statistického šetření Vyčerpávající šetření prošetření všech jednotek statistického souboru (populace) Výběrové šetření ze základního souboru
6. Testování statistických hypotéz. KGG/STG Zimní semestr 6. Testování statistických hypotéz
6. Testování statistických Testování statistických Princip: Ověř ěřování určit itého předpokladu p zjišťujeme, zda zkoumaný výběr r pochází ze základnz kladního souboru, který mám určit ité rozdělen lení
1 Tyto materiály byly vytvořeny za pomoci grantu FRVŠ číslo 1145/2004.
Testy hypotéz na základě více než 2 výběrů 1 1 Tyto materiály byly vytvořeny za pomoci grantu FRVŠ číslo 1145/2004. Testy hypotéz na základě více než 2 výběrů Na analýzu rozptylu lze pohlížet v podstatě
DVOUVÝBĚROVÉ A PÁROVÉ TESTY Komentované řešení pomocí programu Statistica
DVOUVÝBĚROVÉ A PÁROVÉ TESTY Komentované řešení pomocí programu Statistica Úloha A) koncentrace glukózy v krvi V této části posoudíme pomocí párového testu, zda nový lék prokazatelně snižuje koncentraci
Tomáš Karel LS 2012/2013
Tomáš Karel LS 2012/2013 Doplňkový materiál ke cvičení z předmětu 4ST201. Na případné faktické chyby v této presentaci mě prosím upozorněte. Děkuji. Tyto slidy berte pouze jako doplňkový materiál není
Testy statistických hypotéz
Testy statistických hypotéz Statistická hypotéza je jakýkoliv předpoklad o rozdělení pravděpodobnosti jedné nebo několika náhodných veličin. Na základě náhodného výběru, který je reprezentativním vzorkem
Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz
Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická
PSY117/454 Statistická analýza dat v psychologii seminář 9. Statistické testování hypotéz
PSY117/454 Statistická analýza dat v psychologii seminář 9 Statistické testování hypotéz Základní výzkumné otázky/hypotézy 1. Stanovení hodnoty parametru =stanovení intervalu spolehlivosti na μ, σ, ρ,
Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc.
Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika 010 1.týden (0.09.-4.09. ) Data, typy dat, variabilita, frekvenční analýza
Stručný úvod do testování statistických hypotéz
Stručný úvod do testování statistických hypotéz 1. Formulujeme hypotézu (předpokládáme, že pozorovaný jev je pouze náhodný). 2. Zvolíme hladinu významnosti testu a, tj. riziko, s nímž jsme ochotni se smířit.
Testování statistických hypotéz. Obecný postup
poznámky k MIII, Tomečková I., poslední aktualizace 9. listopadu 016 9 Testování statistických hypotéz Obecný postup (I) Vyslovení hypotézy O datech vyslovíme doměnku, kterou chceme ověřit statistickým
NÁHODNÁ ČÍSLA. F(x) = 1 pro x 1. Náhodná čísla lze generovat některým z následujících generátorů náhodných čísel:
NÁHODNÁ ČÍSLA TYPY GENERÁTORŮ, LINEÁRNÍ KONGRUENČNÍ GENERÁTORY, TESTY NÁHODNOSTI, VYUŽITÍ HODNOT NÁHODNÝCH VELIČIN V SIMULACI CO JE TO NÁHODNÉ ČÍSLO? Náhodné číslo definujeme jako nezávislé hodnoty z rovnoměrného
Statistika. Testování hypotéz statistická indukce Neparametrické testy. Roman Biskup
Statistika Testování hypotéz statistická indukce Neparametrické testy Roman Biskup (zapálený) statistik ve výslužbě, aktuálně analytik v praxi ;-) roman.biskup(at)email.cz 21. února 2012 Statistika by
Úvod do teorie odhadu. Ing. Michael Rost, Ph.D.
Úvod do teorie odhadu Ing. Michael Rost, Ph.D. Náhodný výběr Náhodným výběrem ze základního souboru populace, která je popsána prostřednictvím hustoty pravděpodobnosti f(x, θ), budeme nazývat posloupnost
INDUKTIVNÍ STATISTIKA
10. SEMINÁŘ INDUKTIVNÍ STATISTIKA 3. HODNOCENÍ ZÁVISLOSTÍ HODNOCENÍ ZÁVISLOSTÍ KVALITATIVNÍ VELIČINY - Vychází se z kombinační (kontingenční) tabulky, která je výsledkem třídění druhého stupně KVANTITATIVNÍ
Co je to statistika? Úvod statistické myšlení. Základy statistického hodnocení výsledků zkoušek. Petr Misák
Základy statistického hodnocení výsledků zkoušek Petr Misák misak.p@fce.vutbr.cz Co je to statistika? Statistika je jako bikiny. Odhalí téměř vše, ale to nejdůležitější nám zůstane skryto. (autor neznámý)
VŠB Technická univerzita Ostrava BIOSTATISTIKA
VŠB Technická univerzita Ostrava Fakulta elektrotechniky a informatiky JMÉNO STUDENTKY/STUDENTA: OSOBNÍ ČÍSLO: JMÉNO CVIČÍCÍ/CVIČÍCÍHO: BIOSTATISTIKA Domácí úkoly Zadání 5 DATUM ODEVZDÁNÍ DOMÁCÍ ÚKOL 1:
11. cvičení z PSI prosince hodnota pozorovaná četnost n i p X (i) = q i (1 q), i N 0.
11 cvičení z PSI 12-16 prosince 2016 111 (Test dobré shody - geometrické rozdělení Realizací náhodné veličiny X jsme dostali následující četnosti výsledků: hodnota 0 1 2 3 4 5 6 pozorovaná četnost 29 15
12. cvičení z PST. 20. prosince 2017
1 cvičení z PST 0 prosince 017 11 test rozptylu normálního rozdělení Do laboratoře bylo odesláno n = 5 stejných vzorků krve ke stanovení obsahu alkoholu X v promilích alkoholu Výsledkem byla realizace
Cvičení ze statistiky - 8. Filip Děchtěrenko
Cvičení ze statistiky - 8 Filip Děchtěrenko Minule bylo.. Dobrali jsme normální rozdělení Tyhle termíny by měly být známé: Centrální limitní věta Laplaceho věta (+ korekce na spojitost) Konfidenční intervaly
4ST201 STATISTIKA CVIČENÍ Č. 7
4ST201 STATISTIKA CVIČENÍ Č. 7 testování hypotéz parametrické testy test hypotézy o střední hodnotě test hypotézy o relativní četnosti test o shodě středních hodnot testování hypotéz v MS Excel neparametrické
Přednáška IX. Analýza rozptylu (ANOVA)
Přednáška IX. Analýza rozptylu (ANOVA) Princip a metodika výpočtu Předpoklady analýzy rozptylu a jejich ověření Rozbor rozdílů jednotlivých skupin násobné testování hypotéz Analýza rozptylu jako lineární
ADDS cviceni. Pavlina Kuranova
ADDS cviceni Pavlina Kuranova Testy pro dva nezávislé výběry Mannův Whitneyho test - Založen na Wilcoxnově statistice W - založen na pořadí jednotlivých pozorování (oba výběry spojeny do jednoho celku)
Návrh a vyhodnocení experimentu
Návrh a vyhodnocení experimentu Návrh a vyhodnocení experimentů v procesech vývoje a řízení kvality vozidel Ing. Bohumil Kovář, Ph.D. FD ČVUT Ústav aplikované matematiky kovar@utia.cas.cz Mladá Boleslav
KGG/STG Statistika pro geografy
KGG/STG Statistika pro geografy 4. Teoretická rozdělení Mgr. David Fiedor 9. března 2015 Osnova Úvod 1 Úvod 2 3 4 5 Vybraná rozdělení náhodných proměnných normální rozdělení normované normální rozdělení
Tématické okruhy pro státní závěrečné zkoušky. bakalářské studium. studijní obor "Management jakosti"
Tématické okruhy pro státní závěrečné zkoušky bakalářské studium studijní obor "Management jakosti" školní rok 2010/2011 Management jakosti A 1. Pojem jakosti a význam managementu jakosti v současném období.
Testy dobré shody Máme dvě veličiny, u kterých bychom chtěli prokázat závislost, TESTY DOBRÉ SHODY (angl. goodness-of-fit tests)
Testy dobré shody Máme dvě veličiny, u kterých bychom chtěli prokázat závislost, např. hmotnost a pohlaví narozených dětí. Běžný statistický postup pro ověření závislosti dvou veličin je zamítnutí jejich
Pracovní adresář. Nápověda. Instalování a načtení nového balíčku. Importování datového souboru. Práce s datovým souborem
Pracovní adresář getwd() # výpis pracovního adresáře setwd("c:/moje/pracovni") # nastavení pracovního adresáře setwd("c:\\moje\\pracovni") # nastavení pracovního adresáře Nápověda?funkce # nápověda pro
Rozhodnutí / Skutečnost platí neplatí Nezamítáme správně chyba 2. druhu Zamítáme chyba 1. druhu správně
Testování hypotéz Nechť,, je náhodný výběr z nějakého rozdělení s neznámými parametry. Máme dvě navzájem si odporující hypotézy o parametrech daného rozdělení: Nulová hypotéza parametry (případně jediný
TECHNICKÁ UNIVERZITA V LIBERCI. Ekonomická fakulta. Semestrální práce. Statistický rozbor dat z dotazníkového šetření školní zadání
TECHNICKÁ UNIVERZITA V LIBERCI Ekonomická fakulta Semestrální práce Statistický rozbor dat z dotazníkového šetření školní zadání Skupina: 51 Vypracovaly: Pavlína Horná, Nikola Loumová, Petra Mikešová,
Statistické metody uţívané při ověřování platnosti hypotéz
Statistické metody uţívané při ověřování platnosti hypotéz Hypotéza Domněnka, předpoklad Nejčastěji o rozdělení, středních hodnotách, závislostech, Hypotézy ve vědeckém výzkumu pracovní, věcné hypotézy
Průzkumová analýza dat
Průzkumová analýza dat Proč zkoumat data? Základ průzkumové analýzy dat položil John Tukey ve svém díle Exploratory Data Analysis (odtud zkratka EDA). Často se stává, že data, se kterými pracujeme, se
Tomáš Karel LS 2012/2013
Tomáš Karel LS 2012/2013 Doplňkový materiál ke cvičení z předmětu 4ST201. Na případné faktické chyby v této presentaci mě prosím upozorněte. Děkuji. Tyto slidy berte pouze jako doplňkový materiál není
VŠB-TU OSTRAVA, FAKULTA ELEKTROTECHNIKY A INFORMATIKY, KATEDRA APLIKOVANÉ MATEMATIKY. Statistika. Vzorce a tabulky
VŠB-TU OSTRAVA, FAKULTA ELEKTROTECHNIKY A INFORMATIKY, KATEDRA APLIKOVANÉ MATEMATIKY Statistia Vzorce a tabuly Martina Litschmannová 3. března 05 Oficiální vzorce a tabuly KOMBINATORIKA Bez opaování Uspořádané
Jana Vránová, 3. lékařská fakulta UK
Jana Vránová, 3. lékařská fakulta UK Vznikají při zkoumání vztahů kvalitativních resp. diskrétních znaků Jedná se o analogii s korelační analýzou spojitých znaků Přitom předpokládáme, že každý prvek populace
Normální (Gaussovo) rozdělení
Normální (Gaussovo) rozdělení Normální (Gaussovo) rozdělení popisuje vlastnosti náhodné spojité veličiny, která vzniká složením různých náhodných vlivů, které jsou navzájem nezávislé, kterých je velký
Statistika, Biostatistika pro kombinované studium. Jan Kracík
Statistika, Biostatistika pro kombinované studium Letní semestr 2014/2015 Tutoriál č. 6: ANOVA Jan Kracík jan.kracik@vsb.cz Obsah: Testování hypotéz opakování ANOVA Testování hypotéz (opakování) Testování
Charakterizace rozdělení
Charakterizace rozdělení Momenty f(x) f(x) f(x) μ >μ 1 σ 1 σ >σ 1 g 1 g σ μ 1 μ x μ x x N K MK = x f( x) dx 1 M K = x N CK = ( x M ) f( x) dx ( xi M 1 C = 1 K 1) N i= 1 K i K N i= 1 K μ = E ( X ) = xf
Normální (Gaussovo) rozdělení
Normální (Gaussovo) rozdělení f x = 1 2 exp x 2 2 2 f(x) je funkce hustoty pravděpodobnosti, symetrická vůči poloze maxima x = μ μ střední hodnota σ směrodatná odchylka (tzv. pološířka křivky mezi inflexními
Lékařská biofyzika, výpočetní technika I. Biostatistika Josef Tvrdík (doc. Ing. CSc.)
Lékařská biofyzika, výpočetní technika I Biostatistika Josef Tvrdík (doc. Ing. CSc.) Přírodovědecká fakulta, katedra informatiky josef.tvrdik@osu.cz konzultace úterý 14.10 až 15.40 hod. http://www1.osu.cz/~tvrdik
Testování hypotéz o kvalitativních proměnných
Testování hypotéz o kvalitativních proměnných Předchozí kapitoly byly věnovány hodnocení kvantitativních náhodných veličin, u nichž předpokládáme, že mohou nabývat mnoha rozdílných hodnot (v případě výšky
Aproximace binomického rozdělení normálním
Aproximace binomického rozdělení normálním Aproximace binomického rozdělení normálním Příklad Sybilla a Kassandra tvrdí, že mají telepatické schopnosti, a chtějí to dokázat následujícím pokusem: V jedné
TECHNICKÁ UNIVERZITA V LIBERCI. Statistický rozbor dat z dotazníkového šetření
TECHNICKÁ UNIVERZITA V LIBERCI Ekonomická fakulta Semestrální práce Statistický rozbor dat z dotazníkového šetření Analýza výsledků dotazníkového šetření - fakultní dotazník Vypracovaly: Klára Habrová,
Příklad 1. Řešení 1 ŘEŠENÉ PŘÍKLADY Z MV2 ČÁST 11
Příklad 1 Vyhláška Ministerstva zdravotnictví předpokládala, že doba dojezdu k pacientovi od nahlášení požadavku nepřekročí 17 minut. Hodnoty deseti náhodně vybraných dob příjezdu sanitky k nemocnému byly:
Jednovýběrový Wilcoxonův test a jeho asymptotická varianta (neparametrická obdoba jednovýběrového t-testu)
Jednovýběrový Wilcoxonův test a jeho asymptotická varianta (neparametrická obdoba jednovýběrového t-testu) Frank Wilcoxon (1892 1965): Americký statistik a chemik Nechť X 1,..., X n je náhodný výběr ze
JAK MODELOVAT VÝSLEDKY NÁH. POKUSŮ? Martina Litschmannová
JAK MODELOVAT VÝSLEDKY NÁH. POKUSŮ? Martina Litschmannová Opakování Základní pojmy z teorie pravděpodobnosti Co je to náhodný pokus? Děj, jehož výsledek není předem jednoznačně určen podmínkami, za nichž
Příklad: Test nezávislosti kategoriálních znaků
Příklad: Test nezávislosti kategoriálních znaků Určete na hladině významnosti 5 % na základě dat zjištěných v rámci dotazníkového šetření ve Šluknově, zda existuje závislost mezi pohlavím respondenta a
Tématické okruhy pro státní závěrečné zkoušky. bakalářské studium. studijní obor "Management jakosti"
Tématické okruhy pro státní závěrečné zkoušky bakalářské studium studijní obor "Management jakosti" školní rok 2009/2010 Management jakosti A 1. Pojem jakosti a význam managementu jakosti v současném období.