Oborové číslo Hodnocení - část A Hodnocení - část B Hodnocení - část A+B
|
|
- Richard Ovčačík
- před 6 lety
- Počet zobrazení:
Transkript
1 PŘIJÍMACÍ TEST Z INFORMATIKY A MATEMATIKY NAVAZUJÍCÍ MAGISTERSKÉ STUDIUM V OBORU APLIKOVANÁ INFORMATIKA FAKULTA INFORMATIKY A MANAGEMENTU UNIVERZITY HRADEC KRÁLOVÉ ČÁST A Oborové číslo Hodnocení - část A Hodnocení - část B Hodnocení - část A+B 1. úloha (6 bodů) V následujícím grafu nejprve vyznačte podgraf indukovaný vrcholy {b,c,f,g,h,j}, pak v tomto vyznačeném indukovaném podgrafu najděte dvě navzájem neizomorfní kostry a nakreslete je. Neizomorfizmus koster zdůvodněte! d 2. úloha (4 body) Lineární zobrazení L :V 3 (R) V 3 (R) je určeno předpisem L(x) = (2x 2 x 3, x 1 + x 2 x 3, x 1 + x 2 + x 3 ). Určete všechny vektory, pro které platí L(x) = 2x
2 3. úloha (4 body) Je dána funkce f: z = exp(ax + by). Určete parametry a, b R, jestliže platí z x + z y = 4z a z x z y = 2z 4. úloha (4 body) Vypočítejte neurčitý integrál 2x3 x+1 x 2 dx úloha (8 bodů) Jsou dány funkce f: y = sin ( x 2 ) a g: y = cx2 tak, že graf funkce g protíná graf funkce f v prvním vrcholu (lokálním maximu) x > 0. a. Načrtněte graf obou funkcí b. Určete souřadnice všech průsečíků obou křivek c. Určete parametr c a předpis funkce g d. Vypočítejte obsah plochy ohraničený oběma křivkami - 2 -
3 6. úloha (7 bodů) Určete definiční obor a najděte intervaly monotónnosti funkce f: y = (x 2 1)e x2 7. úloha (6 bodů) Proces vymírání populace lze přibližně popsat funkcí y = y 0 exp(a(1 b x )), kde y 0 = 10 5, a = , b = 1,11. a. Určete, kolik jedinců z původní populace se dožije věku 90 let? b. V kolika letech zůstává naživu ještě polovina jedinců původní populace y 0 2? - 3 -
4 8. úloha (4 body) Kolik existuje cest z vrcholu A do vrcholu B délky 8 v grafu K15? Vrcholy A a B jsou předem dané. (Výsledek nemusíte vyčíslovat, stačí ho nechat ve tvaru součinu nebo jiného matematického zápisu.) 9. úloha (4 body) Řešte pomocí matic soustavu rovnic Ax = b, platí-li A = ( ); A 1 = 1 ( ) ; b = ( ) 10. úloha (3 body) Na MS v hokeji 2016 v skupině A hraje 8 týmů: Rusko, Švédsko, Česko, Švýcarsko, Lotyšsko, Norsko, Dánsko a Kazachstán. Kolik různých umístění může být na prvních čtyřech místech (záleží na pořadí), které postupují do čtvrtfinále play-off? - 4 -
5 PŘIJÍMACÍ TEST Z INFORMATIKY A MATEMATIKY ČÁST B V úlohách, které nabízejí výběr z odpovědí a), b) atd. zakroužkujte jednu nejvýstižnější možnost. 1. úloha (2 body) Ethernetový switch provádí následující činnosti: a) Obsahuje CAM tabulku se seznamem IP adres pro rychlejší přepínání v LAN b) Obsahuje směrovací tabulku se seznamem IP adres pro rychlejší přepínání v LAN c) Analyzuje IP pakety a posílám je daným směrem d) Obsahuje CAM tabulku se seznamem MAC adres pro rychlejší přepínání v LAN 2. úloha (2 body) Jaké provádíme operace relační algebry v následujícím SQL příkazu? SELECT * FROM transaction WHERE product_id = 4569; a) Pouze selekci b) Projekci a selekci c) Projekci, selekci a spojování d) Pouze projekci 3. úloha (2 body) jquery je a) Technika asynchronního přenosu dat b) Jazyk sloužící k vytváření webových aplikací c) Internetový protokol d) JS knihovna usnadňující manipulaci s HTML dokumentem 4. úloha (5 bodů) Následující skript popisuje strukturu tabulky EMPLOYEES. Tato tabulka je naplněna daty. Napište SQL příkaz, kterým zvýšíte plat o 10% všem zaměstnancům, kteří mají plat menší než CREATE TABLE "EMPLOYEES" ( "EMPLOYEE_ID" NUMBER(6,0), "FIRST_NAME" VARCHAR2(20), "LAST_NAME" VARCHAR2(25), "HIRE_DATE" DATE, "SALARY" NUMBER(8,2), "DEPARTMENT_ID" NUMBER(4,0)) - 5 -
6 5. úloha (7 bodů) Napište metodu (hlavička + tělo), která vypočte n-tý člen Fibonacciho posloupnosti. Hodnota n bude předána jako parametr této metody. Hodnotu n-tého členu metoda vrátí jako návratovou hodnotu. Pro implementaci si vyberte jeden z jazyků Java, C++ nebo C# a vybraný jazyk podtrhněte v zadání. (Fibonacciho poslupnost: Jedná se o posloupnost, jejíž první člen f(0) = 0, druhý člen f(1) = 1 a každý další člen je součet dvou předchozích. Prvních několik členů vypadá následovně: 0, 1, 1, 2, 3, 5, 8, 13, ) 6. úloha (7 bodů) Vytvořte UML diagram tříd informačního systému mobilního operátora. Budeme evidovat klienty (osoby), SIM karty a hlasové a datové tarify. Klient může více SIM karet. SIM karta má přiřazen právě jeden hlasový tarif a žádný nebo jeden datový tarif. SIM karta patří jednomu klientovi. U tříd identifikujte podstatné atributy a operace. V diagramu využijte dědičnost a asociaci, případně i jiné typy vhodných vazeb
7 7. úloha (2 body) Paralelně se vznikem Von Neumannovy architektury byla vyvíjena architektura konkurenční pod názvem: a) Harwardská architektura b) Princeton architektura c) Oxfordská architektura d) Architektura Nehalem 8. úloha (6 bodů) Ve třídě Monitor jsou obsaženy atributy rozlisenihorizontalni (celé číslo), rozlisenivertikalni (celé číslo), model (text) a uhloprickacm (desetinné číslo). Napište konstruktor třídy, který naplní všechny atributy hodnotami předanými v parametrech tohoto konstruktoru. Vyberte si jeden z jazyků Java, C++ nebo C# a vybraný jazyk podtrhněte v zadání. 9. úloha (2 body) K hlavním komponentám znalostního systému nepatří: a) báze faktů b) vysvětlovací modul c) inferenční mechanismus d) báze pravidel 10. úloha (2 body) Pro detekci deadlocku využíváme graf čekání. Vyberte NEPRAVDIVÁ tvrzení o tomto grafu: a) jedná se o neorientovaný graf b) získáváme jej z grafu alokace zdrojů c) slouží pro detekci deadlocku d) slouží pro vyhledání kružnice - 7 -
8 11. úloha (7 bodů) Na následujícím grafu zadaném maticí vzdálenosti určete minimální kostru. Pro nalezení minimální kostry požijte a demonstrujte Kruskalův nebo Jarníkův (Primův) algoritmus pro nalezení minimální kostry. Vypište cenu minimální kostry a posloupnost hran, jak byly postupně přidávány do minimální kostry. Graf nekreslete! a b c d e f g h a b 9 1 c d e 5 10 f g h úloha (2 body) Přísudkem (predikátem) v jazyce RDF označujeme: a) zdroj, ke kterému lze přiřadit metadata b) hodnotu vlastnosti RDF tvrzení c) typový nebo netypový literál d) vlastnost, která vytváří relaci mezi zdrojem a hodnotou vlastnosti zdroje 13. úloha (2 body) Který z vestavěných predikátu v Prologu zastavuje cíleně backtracking? a) REPEAT b) RETRACT c) FAIL d)! (řez) 14. úloha (2 body) Deklarace CSS selektoru pro všechny odstavce textu, které jsou uvnitř těla stránky má tvar: a) p body b) body p c) body:p d) p.body - 8 -
Oborové číslo Hodnocení - část A Hodnocení - část B Hodnocení - část A+B
PŘIJÍMACÍ TEST Z INFORMATIKY A MATEMATIKY NAVAZUJÍCÍ MAGISTERSKÉ STUDIUM V OBORU APLIKOVANÁ INFORMATIKA FAKULTA INFORMATIKY A MANAGEMENTU UNIVERZITY HRADEC KRÁLOVÉ ČÁST A Oborové číslo Hodnocení - část
Oborové číslo Hodnocení - část A Hodnocení - část B Hodnocení - část A+B
PŘIJÍMACÍ TEST Z INFORMATIKY A MATEMATIKY NAVAZUJÍCÍ MAGISTERSKÉ STUDIUM V OBORU APLIKOVANÁ INFORMATIKA FAKULTA INFORMATIKY A MANAGEMENTU UNIVERZITY HRADEC KRÁLOVÉ ČÁST A Oborové číslo Hodnocení - část
Oborové číslo Hodnocení - část A Hodnocení - část B Hodnocení - část A+B. 1. úloha (4 body) Kolik existuje cest délky 4 v grafu K11? 2.
PŘIJÍMACÍ TEST Z INFORMATIKY A MATEMATIKY NAVAZUJÍCÍ MAGISTERSKÉ STUDIUM V OBORU APLIKOVANÁ INFORMATIKA FAKULTA INFORMATIKY A MANAGEMENTU UNIVERZITY HRADEC KRÁLOVÉ ČÁST A Oborové číslo Hodnocení - část
Oborové číslo Hodnocení - část A Hodnocení - část B Hodnocení - část A+B
PŘIJÍMACÍ TEST Z INFORMATIKY A MATEMATIKY NAVAZUJÍCÍ MAGISTERSKÉ STUDIUM V OBORU APLIKOVANÁ INFORMATIKA FAKULTA INFORMATIKY A MANAGEMENTU UNIVERZITY HRADEC KRÁLOVÉ ČÁST A Oborové číslo Hodnocení - část
Registrační číslo Hodnocení - část A Hodnocení - část B Hodnocení - část A+B
PŘIJÍMACÍ TEST Z INFORMATIKY A MATEMATIKY NAVAZUJÍCÍ MAGISTERSKÉ STUDIUM V OBORU APLIKOVANÁ INFORMATIKA FAKULTA INFORMATIKY A MANAGEMENTU UNIVERZITY HRADEC KRÁLOVÉ ČÁST A Registrační číslo Hodnocení -
Oborové číslo Hodnocení - část A Hodnocení - část B Hodnocení - část A+B
PŘIJÍMACÍ TEST Z INFORMATIKY A MATEMATIKY NAVAZUJÍCÍ MAGISTERSKÉ STUDIUM V OBORU APLIKOVANÁ INFORMATIKA FAKULTA INFORMATIKY A MANAGEMENTU UNIVERZITY HRADEC KRÁLOVÉ ČÁST A Oborové číslo Hodnocení - část
Oborové číslo Hodnocení - část A Hodnocení - část B Hodnocení - část A+B
PŘIJÍMACÍ TEST Z INFORMATIKY A MATEMATIKY NAVAZUJÍCÍ MAGISTERSKÉ STUDIUM V OBORU APLIKOVANÁ INFORMATIKA FAKULTA INFORMATIKY A MANAGEMENTU UNIVERZITY HRADEC KRÁLOVÉ ČÁST A Oborové číslo Hodnocení - část
Oborové číslo Hodnocení - část A Hodnocení - část B Hodnocení - část A+B
PŘIJÍMACÍ TEST Z INFORMATIKY A MATEMATIKY NAVAZUJÍCÍ MAGISTERSKÉ STUDIUM V OBORU APLIKOVANÁ INFORMATIKA FAKULTA INFORMATIKY A MANAGEMENTU UNIVERZITY HRADEC KRÁLOVÉ ČÁST A Oborové číslo Hodnocení - část
Provoz Počet zaměstnanců Průměrná nemocnost hod/osoba/rok
PŘIJÍMACÍ TEST z informatiky a matematiky pro navazující magisterské studium Fakulta informatiky a managementu Univerzity Hradec Králové Registrační číslo Hodnocení část A Hodnocení část B Hodnocení A+B
Oborové číslo Hodnocení - část A Hodnocení - část B Hodnocení - část A+B
PŘIJÍMACÍ TEST Z INFORMATIKY A MATEMATIKY NAVAZUJÍCÍ MAGISTERSKÉ STUDIUM V OBORU APLIKOVANÁ INFORMATIKA FAKULTA INFORMATIKY A MANAGEMENTU UNIVERZITY HRADEC KRÁLOVÉ ČÁST A Oborové číslo Hodnocení - část
PŘIJÍMACÍ TEST z informatiky a matematiky pro navazující magisterské studium Fakulta informatiky a managementu Univerzity Hradec Králové
PŘIJÍMACÍ TEST z informatiky a matematiky pro navazující magisterské studium Fakulta informatiky a managementu Univerzity Hradec Králové Registrační číslo Hodnocení část A Hodnocení část B Hodnocení A+B
Část A matematika (otázky 1-10 celkem za 40 bodů)
PŘIJÍMACÍ TEST z informatiky a matematiky pro navazující magisterské studium Fakulta informatiky a managementu Univerzity Hradec Králové Registrační číslo Hodnocení část A Hodnocení část B Hodnocení A+B
PŘIJÍMACÍ TEST z informatiky a matematiky pro navazující magisterské studium Fakulta informatiky a managementu Univerzity Hradec Králové
PŘIJÍMACÍ TEST z informatiky a matematiky pro navazující magisterské studium Fakulta informatiky a managementu Univerzity Hradec Králové Registrační číslo Hodnocení část A Hodnocení část B Hodnocení A+B
PŘIJÍMACÍ TEST z informatiky a matematiky pro navazující magisterské studium Fakulta informatiky a managementu Univerzity Hradec Králové
PŘIJÍMACÍ TEST z informatiky a matematiky pro navazující magisterské studium Fakulta informatiky a managementu Univerzity Hradec Králové Registrační číslo Hodnocení část A Hodnocení část B Hodnocení A+B
Část A matematika (otázky 1-10 celkem za 40 bodů)
PŘIJÍMACÍ TEST z informatiky a matematiky pro navazující magisterské studium Fakulta informatiky a managementu Univerzity Hradec Králové Registrační číslo Hodnocení část A Hodnocení část B Hodnocení A+B
Zadání a řešení testu z matematiky a zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia od jara 2017
Zadání a řešení testu z matematiky a zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia od jara 207 Zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia
PŘIJÍMACÍ TEST z informatiky a matematiky pro navazující magisterské studium Fakulta informatiky a managementu Univerzity Hradec Králové
PŘIJÍMACÍ TEST z informatiky a matematiky pro navazující magisterské studium Fakulta informatiky a managementu Univerzity Hradec Králové Registrační číslo Hodnocení část A Hodnocení část B Hodnocení A+B
Zadání a řešení testu z matematiky a zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia od podzimu 2016
Zadání a řešení testu z matematiky a zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia od podzimu 2016 Zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia
Zadání a řešení testu z matematiky a zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia od jara 2016
Zadání a řešení testu z matematiky a zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia od jara 206 Zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia
Maturitní témata Školní rok: 2015/2016
Maturitní témata Školní rok: 2015/2016 Ředitel školy: Předmětová komise: Předseda předmětové komise: Předmět: PhDr. Karel Goš Informatika a výpočetní technika Mgr. Ivan Studnička Informatika a výpočetní
Zadání a řešení testu z matematiky a zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia od podzimu 2014
Zadání a řešení testu z matematiky a zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia od podzimu 204 Zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia
Matematika I A ukázkový test 1 pro 2011/2012. x + y + 3z = 1 (2a 1)x + (a + 1)y + z = 1 a
Matematika I A ukázkový test 1 pro 2011/2012 1. Je dána soustava rovnic s parametrem a R x y + z = 1 a) Napište Frobeniovu větu. x + y + 3z = 1 (2a 1)x + (a + 1)y + z = 1 a b) Vyšetřete počet řešení soustavy
Zadání a řešení testu z matematiky a zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia od podzimu 2015
Zadání a řešení testu z matematiky a zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia od podzimu 05 Zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia
na magisterský studijní obor Učitelství matematiky pro střední školy
Datum:... Jméno:... Přijímací řízení pro akademický rok 203/4 na magisterský studijní obor Učitelství matematiky pro střední školy Písemná část přijímací zkoušky z matematiky Za každou správnou odpověd
Matematika I A ukázkový test 1 pro 2014/2015
Matematika I A ukázkový test 1 pro 2014/2015 1. Je dána soustava rovnic s parametrem a R x y + z = 1 x + y + 3z = 1 (2a 1)x + (a + 1)y + z = 1 a a) Napište Frobeniovu větu (existence i počet řešení). b)
Kostry. 9. týden. Grafy. Marie Demlová (úpravy Matěj Dostál) 16. dubna 2019
Grafy 16. dubna 2019 Tvrzení. Je dán graf G, pak následující je ekvivalentní. 1 G je strom. 2 Graf G nemá kružnice a přidáme-li ke grafu libovolnou hranu, uzavřeme přesně jednu kružnici. 3 Graf G je souvislý
Zadání a řešení testu z matematiky a zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia od jara 2014
Zadání a řešení testu z matematiky a zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia od jara 2014 Zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia
SII - Informatika. 1. Atribut relace, jehož hodnota jednoznačně určuje prvek v jiné relaci, se nazývá:
SII - Informatika Způsob vyhodnocení: Při vyhodnocení budou za nesprávné odpovědi strhnuty body. 1. Atribut relace, jehož hodnota jednoznačně určuje prvek v jiné relaci, se nazývá: a) sekundární klíč b)
Funkce jedné proměnné
Funkce jedné proměnné Příklad - V následujících příkladech v případě a) pro funkce dané rovnicí zjistěte zda jsou rostoucí klesající nebo konstantní vypočítejte průsečíky grafu s osami souřadnic a graf
Přijímací zkouška - matematika
Přijímací zkouška - matematika Jméno a příjmení pište do okénka Číslo přihlášky Číslo zadání 1 Grafy 1 Pro který z následujících problémů není znám žádný algoritmus s polynomiální časovou složitostí? Problém,
Ukázka testu Informatiky pro přijímací zkoušky do navazujícího magisterského studia
Ukázka testu Informatiky pro přijímací zkoušky do navazujícího magisterského studia 1. Databázový jazyk SQL obsahuje příkaz SELECT. Příkaz SELECT slouží pro: a. definici dat v tabulkách či pohledech b.
a jiné elektronické přístroje včetně mobilů. Pracujte samostatně. Povolen je 1 list A4 vlastnoručně psaných poznámek k předmětu...
Písemný test MA010 Grafy: 17.1. 2007, var A... 1). Vašim úkolem je sestrojit všechny neisomorfní jednoduché souvislé grafy na 6 vrcholech mající posloupnost stupňů 1,2,2,2,2,3. Zároveň zdůvodněte, proč
MATURITNÍ OTÁZKY ELEKTROTECHNIKA - POČÍTAČOVÉ SYSTÉMY 2003/2004 PROGRAMOVÉ VYBAVENÍ POČÍTAČŮ
MATURITNÍ OTÁZKY ELEKTROTECHNIKA - POČÍTAČOVÉ SYSTÉMY 2003/2004 PROGRAMOVÉ VYBAVENÍ POČÍTAČŮ 1) PROGRAM, ZDROJOVÝ KÓD, PŘEKLAD PROGRAMU 3 2) HISTORIE TVORBY PROGRAMŮ 3 3) SYNTAXE A SÉMANTIKA 3 4) SPECIFIKACE
CVIČNÝ TEST 9 OBSAH. Mgr. Václav Zemek. I. Cvičný test 2 II. Autorské řešení 5 III. Klíč 17 IV. Záznamový list 19
CVIČNÝ TEST 9 Mgr. Václav Zemek OBSAH I. Cvičný test 2 II. Autorské řešení 5 III. Klíč 17 IV. Záznamový list 19 I. CVIČNÝ TEST 1 Vypočítejte (7,5 10 3 2 10 2 ) 2. Výsledek zapište ve tvaru a 10 n, kde
Exponenciální funkce. Exponenciální funkcí o základu a se nazývá funkce, která je daná rovnicí. Číslo a je kladné číslo, různé od jedničky a xεr.
Exponenciální funkce Exponenciální funkcí o základu a se nazývá funkce, která je daná rovnicí y = a x Číslo a je kladné číslo, různé od jedničky a xεr. Definičním oborem exponenciální funkce je tedy množina
Maturitní témata. IKT, školní rok 2017/18. 1 Struktura osobního počítače. 2 Operační systém. 3 Uživatelský software.
Maturitní témata IKT, školní rok 2017/18 1 Struktura osobního počítače Von Neumannova architektura: zakreslete, vysvětlete její smysl a popište, jakým způsobem se od ní běžné počítače odchylují. Osobní
PŘIJÍMACÍ TEST z informatiky a matematiky pro navazující magisterské studium Fakulta informatiky a managementu Univerzity Hradec Králové
PŘIJÍMACÍ TEST z informatiky a matematiky pro navazující magisterské studium Fakulta informatiky a managementu Univerzity Hradec Králové Registrační číslo Hodnocení část A Hodnocení část B Hodnocení A+B
2.1 Pokyny k otevřeným úlohám. Výsledky pište čitelně do vyznačených bílých polí. 2.2 Pokyny k uzavřeným úlohám
MATEMATIKA+ DIDAKTICKÝ TEST Maximální bodové hodnocení: 50 bodů Hranice úspěšnosti: 33 % 1 Základní informace k zadání zkoušky Didaktický test obsahuje 23 úloh. Časový limit pro řešení didaktického testu
Okruhy z odborných předmětů
VYŠŠÍ ODBORNÁ ŠKOLA INFORMAČNÍCH STUDIÍ A STŘEDNÍ ŠKOLA ELEKTROTECHNIKY, MULTIMÉDIÍ A INFORMATIKY Novovysočanská 280/48, 190 00 Praha 9 Pracoviště VOŠ: Pacovská 350/4, 140 00 Praha 4 Okruhy z odborných
výsledek 2209 y (5) (x) y (4) (x) y (3) (x) 7y (x) 20y (x) 12y(x) (horní indexy značí derivaci) pro 1. y(x) = sin2x 2. y(x) = cos2x 3.
Vypočtěte y (5) (x) y (4) (x) y (3) (x) 7y (x) 20y (x) 12y(x) (horní indexy značí derivaci) pro 1. y(x) = sin2x 2. y(x) = cos2x 3. y(x) = x sin2x 4. y(x) = x cos2x 5. y(x) = e x 1 6. y(x) = xe x 7. y(x)
MATEMATIKA. 2Pravidla správného zápisu odpovědí. 1Základní informace k zadání zkoušky DIDAKTICKÝ TEST. Testový sešit neotvírejte, počkejte na pokyn!
MATEMATIKA DIDAKTICKÝ TEST Maximální bodové hodnocení: 30 bodů Pro přijetí uchazečů je rozhodné umístění v sestupném pořadí uchazečů podle dosaženého bodového hodnocení. 1Základní informace k zadání zkoušky
Wolfram Alpha. v podobě html stránky, samotný výsledek je často doplněn o další informace (např. graf, jiné možné zobrazení výsledku a
Wolfram Alpha jde o výpočetní prostředí z nejrůznějších oborů (matematika, fyzika, chemie, inženýrství... ) přístupné online: http://www.wolframalpha.com/ Jaké matematické výpočty Wolfram Alpha zvládá?
1. LINEÁRNÍ ALGEBRA Vektory Operace s vektory... 8 Úlohy k samostatnému řešení... 8
1 Lineární algebra 1 LINEÁRNÍ ALGEBRA 8 11 Vektory 8 111 Operace s vektory 8 8 112 Lineární závislost a nezávislost vektorů 8 8 113 Báze vektorového prostoru 9 9 12 Determinant 9 9 13 Matice 1 131 Operace
Jméno... Cvičení den... hodina... Datum...rok... Počet listů... Varianta A
æ æ Jméno... Cvičení den... hodina... Datum...rok... Počet listů.......... Varianta A 4 3 2 1 2 8 0 1 0 3 1. Vzhledem k reálnému parametru a diskutujte hodnost matice 2 1 0 1 2. 0 1 2 1 2 4 3 1 1 a 2.
VZOROVÝ STIPENDIJNÍ TEST Z INFORMAČNÍCH TECHNOLOGIÍ
VZOROVÝ STIPENDIJNÍ TEST Z INFORMAČNÍCH TECHNOLOGIÍ 1. Dědičnost v OOP umožňuje: a) dědit vlastnosti od jiných tříd a dále je rozšiřovat b) dědit vlastnosti od jiných tříd, rozšiřovat lze jen atributy
NALG 001 Lineární algebra a geometrie 1, zimní semestr MFF UK Doba řešení: 3 hodiny
NALG 001 Lineární algebra a geometrie 1, zimní semestr MFF UK Závěrečná zkouška verze cvičná 9.1.2013 Doba řešení: 3 hodiny Přednášející: L. Barto, J. Tůma Křestní jméno: Příjmení: Instrukce Neotvírejte
PŘIJÍMACÍ TEST z informatiky a matematiky pro navazující magisterské studium Fakulta informatiky a managementu Univerzity Hradec Králové
PŘIJÍMACÍ TEST z informatiky a matematiky pro navazující magisterské studium Fakulta informatiky a managementu Univerzity Hradec Králové Registrační číslo Hodnocení část A Hodnocení část B Hodnocení A+B
Maturitní otázky z předmětu PROGRAMOVÁNÍ
Wichterlovo gymnázium, Ostrava-Poruba, příspěvková organizace Maturitní otázky z předmětu PROGRAMOVÁNÍ 1. Algoritmus a jeho vlastnosti algoritmus a jeho vlastnosti, formy zápisu algoritmu ověřování správnosti
Funkce pro učební obory
Variace 1 Funkce pro učební obory Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. 1. Funkce Funkce je přiřazení,
Program SMP pro kombinované studium
Zadání příkladů k procvičení na seminář Program SMP pro kombinované studium Nejdůležitější typy příkladů - minimum znalostí před zkouškovou písemkou 1) Matice 1. Pro matice 1 0 2 1 0 3 B = 7 3 4 4 2 0
MATEMATIKA II - vybrané úlohy ze zkoušek (2015)
MATEMATIKA II - vybrané úlohy ze zkoušek (2015) doplněné o další úlohy 24. 2. 2015 Nalezené nesrovnalosti ve výsledcích nebo připomínky k tomuto souboru sdělte laskavě F. Mrázovi (e-mail: Frantisek.Mraz@fs.cvut.cz
Matematika II, úroveň A ukázkový test č. 1 (2017) 1. a) Napište postačující podmínku pro diferencovatelnost funkce n-proměnných v otevřené
28. 2. 2017 Matematika II, úroveň A ukázkový test č. 1 (2017) 1. a) Napište postačující podmínku pro diferencovatelnost funkce n-proměnných v otevřené mn. M E n. Zapište a načrtněte množinu D, ve které
Základy matematiky kombinované studium 714 0365/06
Základy matematiky kombinované studium 714 0365/06 1. Některé základní pojmy: číselné množiny, intervaly, operace s intervaly (sjednocení, průnik), kvantifikátory, absolutní hodnota čísla, vzorce: 2. Algebraické
Obor: Informatika Únor 2006 Okruh: Základy matematiky Otázka: 1. Jméno: Bodů:...
Inf-M-1 Obor: Informatika Únor 2006 Okruh: Základy matematiky Otázka: 1. Uvažujte funkci f(x) =ln(x 2 x): Najděte její definiční obor, nulové body, vypočtěte jednostranné limity v krajních bodech definičních
Matematika II, úroveň A ukázkový test č. 1 (2016) 1. a) Napište postačující podmínku pro diferencovatelnost funkce n-proměnných v otevřené
22. 2. 2016 Matematika II, úroveň A ukázkový test č. 1 (2016) 1. a) Napište postačující podmínku pro diferencovatelnost funkce n-proměnných v otevřené mn. M E n. Zapište a načrtněte množinu D, ve které
F A,B = Vektory baze vyjádřete jako aritmetické vektory souřadnic vzhledem
Přezdívka: Jméno a příjmení: výsledek 11 8 18 4 1 4 1 1 1 9 4 4 4 Určete které z vektorů B v 1 = 1 B v = 6 leží v oboru hodnot lineárního zobrazení zadaného maticí 1 1 1 5 1 15 1 6 5 Ten, který leží, můžete
Zdrojem většiny příkladů je sbírka úloh 1. cvičení ( ) 2. cvičení ( )
Příklady řešené na cvičení LA II - LS 1/13 Zdrojem většiny příkladů je sbírka úloh http://kam.mff.cuni.cz/~sbirka/ 1. cvičení (..13) 1. Rozhodněte, které z následujících operací jsou skalárním součinem
Profilová část maturitní zkoušky 2017/2018
Střední průmyslová škola, Přerov, Havlíčkova 2 751 52 Přerov Profilová část maturitní zkoušky 2017/2018 TEMATICKÉ OKRUHY A HODNOTÍCÍ KRITÉRIA Studijní obor: 78-42-M/01 Technické lyceum Předmět: TECHNIKA
a jiné elektronické přístroje včetně mobilů. Pracujte samostatně. Povolen je 1 list A4 vlastnoručně psaných poznámek k předmětu...
Písemný test MA010 Grafy: 11.1. 2007, var A... 1). Dány jsou následující tři grafy na 8 vrcholech každý. 1 A B C Vašim úkolem je mezi nimi najít všechny isomorfní dvojice. Pro každou isomorfní dvojici
II. Zakresli množinu bodů, ze kterých vidíme úsečku délky 3 cm v zorném úhlu větším než 30 0 a menším než 60 0.
Ukázky typových maturitních příkladů z matematiky..reálná čísla. 3} x R; I. Zobrazte množiny A = {x є 3} < + x R; B = {x є II. Zapište ve tvaru zlomku číslo, 486.Komplexní čísla. I. Určete a + b, a - b,
Matematika NÁRODNÍ SROVNÁVACÍ ZKOUŠKY DUBNA 2017
NÁRODNÍ SROVNÁVACÍ ZKOUŠKY Matematika T DUBNA 07 : 9. dubna 07 D : 830 P P P : 30 M. M. : 30 : 8,8 M. :, % S : -7,5 M. P : -,5 :,4 Zopakujte si základní informace ke zkoušce: n Test obsahuje 30 úloh a
VZOROVÉ PŘÍKLADY Z MATEMATIKY A DOPORUČENÁ LITERATURA pro přípravu k přijímací zkoušce studijnímu oboru Nanotechnologie na VŠB TU Ostrava
VZOROVÉ PŘÍKLADY Z MATEMATIKY A DOPORUČENÁ LITERATURA pro přípravu k přijímací zkoušce studijnímu oboru Nanotechnologie na VŠB TU Ostrava I Úprav algebraických výrazů zlomk, rozklad kvadratického trojčlenu,
Obor: Informatika Červen 2005 Okruh: Základy matematiky Otázka: 1. Jméno: Bodů:...
Inf-M-1 Obor: Informatika Červen 2005 Okruh: Základy matematiky Otázka: 1. Uvažujte funkci f(x) =ln(x + p x 2 +1): Najděte její definiční obor, vypočtěte jednostranné limity v krajních bodech definičních
CVIČNÝ TEST 24. OBSAH I. Cvičný test 2. Mgr. Kateřina Nováková. II. Autorské řešení 6 III. Klíč 13 IV. Záznamový list 15
CVIČNÝ TEST 24 Mgr. Kateřina Nováková OBSAH I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 13 IV. Záznamový list 15 I. CVIČNÝ TEST VÝCHOZÍ TEXT K ÚLOZE 1 Písemnou práci z chemie psalo všech 28 žáků ze
Matematika II, úroveň A ukázkový test č. 1 (2018) 1. a) Napište postačující podmínku pro diferencovatelnost funkce n-proměnných v otevřené
2. 3. 2018 Matematika II, úroveň A ukázkový test č. 1 (2018) 1. a) Napište postačující podmínku pro diferencovatelnost funkce n-proměnných v otevřené mn. M E n. Zapište a načrtněte množinu D, ve které
Lineární funkcí se nazývá každá funkce, která je daná rovnicí y = ax + b, kde a, b jsou reálná čísla.
Lineární funkce Lineární funkcí se nazývá každá funkce, která je daná rovnicí y = ax + b, kde a, b jsou reálná čísla. Číslo b je hodnota funkce f v bodě 0. Definičním oborem lineární funkce je množina
Přijímací zkoušky z matematiky pro akademický rok 2016/17 NMgr. studium Učitelství matematiky ZŠ, SŠ
Přijímací zkoušky z matematiky pro akademický rok 6/7 NMgr. studium Učitelství matematiky ZŠ, SŠ Datum zkoušky: Varianta Registrační číslo uchazeče: Příklad 3 5 Celkem Body Ke každému příkladu uved te
. Určete hodnotu neznámé x tak, aby
Fakulta informačních technologií ČVUT v Praze Přijímací zkouška z matematiky 015 Kód uchazeče ID:.................. Varianta: 1 1. Původní cena knihy byla 50 Kč. Pak byla zdražena o 15 %. Jelikož nešla
Opakovací kurs středoškolské matematiky podzim
. Opakovací kurs středoškolské matematiky podzim František Mráz Ústav technické matematiky, Frantisek.Mraz@fs.cvut.cz I. Mocniny, odmocniny, algeraické výrazy Upravte (zjednodušte), případně určete číselnou
Základy matematiky pracovní listy
Dagmar Dlouhá, Michaela Tužilová Katedra matematiky a deskriptivní geometrie VŠB - Technická univerzita Ostrava Úvod Pracovní listy jsou určeny pro předmět Základy matematiky vyučovaný Katedrou matematiky
1. Dva dlouhé přímé rovnoběžné vodiče vzdálené od sebe 0,75 cm leží kolmo k rovine obrázku 1. Vodičem 1 protéká proud o velikosti 6,5A směrem od nás.
Příklady: 30. Magnetické pole elektrického proudu 1. Dva dlouhé přímé rovnoběžné vodiče vzdálené od sebe 0,75 cm leží kolmo k rovine obrázku 1. Vodičem 1 protéká proud o velikosti 6,5A směrem od nás. a)
Řešíme tedy soustavu dvou rovnic o dvou neznámých. 2a + b = 3, 6a + b = 27,
Přijímací řízení 2015/16 Přírodovědecká fakulta Ostravská univerzita v Ostravě Navazující magisterské studium, obor Aplikovaná matematika (1. červen 2016) Příklad 1 Určete taková a, b R, aby funkce f()
MATEMATIKA základní úroveň obtížnosti
ILUSTRAČNÍ DIDAKTICKÝ TEST MATEMATIKA základní úroveň obtížnosti DIDAKTICKÝ TEST Didaktický test obsahuje 8 úloh. Časový limit pro řešení didaktického testu je uveden na záznamovém archu. Povolené pomůcky:
Matematická funkce. Kartézský součin. Zobrazení. Uspořádanou dvojici prvků x, y označujeme [x, y] Uspořádané dvojice jsou si rovny, pokud platí:
Matematická funkce Kartézský součin Uspořádanou dvojici prvků x, y označujeme [x, y] Uspořádané dvojice jsou si rovny, pokud platí: [x, y] = [u, v] x = u y = v Pokud K, L jsou libovolné množiny, pak množinu
Inovace tohoto kurzu byla spolufinancována z Evropského sociálního fondu a státního rozpočtu České republiky.
Inovace tohoto kurzu byla spolufinancována z Evropského sociálního fondu a státního rozpočtu České republiky. Projekt ESF OP VK reg.č. CZ.1.07/2.2.00/28.0209 Elektronické opory a e-learning pro obory výpočtového
Mgr. Ladislav Zemánek Maturitní okruhy Matematika 2013-2014. 1. Obor reálných čísel
Mgr. Ladislav Zemánek Maturitní okruhy Matematika 2013-2014 1. Obor reálných čísel - obor přirozených, celých, racionálních a reálných čísel - vlastnosti operací (sčítání, odčítání, násobení, dělení) -
MATEMATIKA II - vybrané úlohy ze zkoušek v letech
MATEMATIKA II - vybrané úlohy ze zkoušek v letech 2009 2012 doplněné o další úlohy 3. část KŘIVKOVÉ INTEGRÁLY, GREENOVA VĚTA, POTENIÁLNÍ POLE, PLOŠNÉ INTEGRÁLY, GAUSSOVA OSTROGRADSKÉHO VĚTA 7. 4. 2013
2. Zapište daná racionální čísla ve tvaru zlomku a zlomek uveďte v základním tvaru. 4. Upravte a stanovte podmínky, za kterých má daný výraz smysl:
KVINTA úlohy k opakování 1. Jsou dány množiny: = {xr; x - 9 5} B = {xr; 1 - x } a) zapište dané množiny pomocí intervalů b) stanovte A B, A B, A - B, B A. Zapište daná racionální čísla ve tvaru zlomku
METODICKÝ NÁVOD MODULU
Centrum celoživotního vzdělávání METODICKÝ NÁVOD MODULU Název Základy matematiky modulu: Zkratka: ZM Počet kreditů: 4 Semestr: Z/L Mentor: Petr Dolanský Tutor: Petr Dolanský I OBSAH BALÍČKU STUDIJNÍCH
MATEMATIKA. vyšší úroveň obtížnosti DIDAKTICKÝ TEST MAGVD10C0T01. Testový sešit neotvírejte, počkejte na pokyn!
MATEMATIKA vyšší úroveň obtížnosti MAGVD10C0T01 DIDAKTICKÝ TEST Didaktický test obsahuje 21 úloh. Časový limit pro řešení didaktického testu je uveden na záznamovém archu. Povolené pomůcky: psací a rýsovací
do magisterské etapy programu ELEKTRONIKA A KOMUNIKACE
JMÉNO A PŘÍJMENÍ: 1 VZOROVÝ TEST K PŘIJÍMACÍ ZKOUŠCE do magisterské etapy programu ELEKTRONIKA A KOMUNIKACE Odpovědi na otázky pište do volného místa za každou otázkou. Pro pomocné výpočty použijte čistou
Text úlohy. Která barva nepatří do základních barev prostoru RGB? Vyberte jednu z nabízených možností: a. Černá b. Červená c. Modrá d.
Úloha 1 Která barva nepatří do základních barev prostoru RGB? a. Černá b. Červená c. Modrá d. Zelená Úloha 2 V rovině je dán NEKONVEXNÍ n-úhelník a bod A. Pokud paprsek (polopřímka) vedený z tohoto bodu
Úlohy k přednášce NMAG 101 a 120: Lineární algebra a geometrie 1 a 2,
Úlohy k přednášce NMAG a : Lineární algebra a geometrie a Verze ze dne. května Toto je seznam přímočarých příkladů k přednášce. Úlohy z tohoto seznamu je nezbytně nutné umět řešit. Podobné typy úloh se
Šablona pro zadávání otázek pro přijímací řízení pro akademický rok 2009/2010
Šablona pro zadávání otázek pro přijímací řízení pro akademický rok 00/010 Zadavatel: Ekonomický přehled: kód 1 Matematické myšlení: kód Společensko historický přehled: kód Zadejte kód místo x do níže
Příklady na testy předmětu Seminář z matematiky pro studenty fakulty strojní TUL.
Příklady na testy předmětu Seminář z matematiky pro studenty fakulty strojní TUL. Jméno a příjmení(čitelně): varianta č. 90 Přezdívka(nepovinné): Zde pište své výsledky Napište rovnici přímky procházející
TGH02 - teorie grafů, základní pojmy
TGH02 - teorie grafů, základní pojmy Jan Březina Technical University of Liberec 28. února 2017 Metainformace materiály: jan.brezina.matfyz.cz/vyuka/tgh (./materialy/crls8.pdf - Introduction to algorithms)
Linearní algebra příklady
Linearní algebra příklady 6. listopadu 008 9:56 Značení: E jednotková matice, E ij matice mající v pozici (i, j jedničku a jinak nuly. [...]... lineární obal dané soustavy vektorů. Popište pomocí maticového
Profilová část maturitní zkoušky 2013/2014
Střední průmyslová škola, Přerov, Havlíčkova 2 751 52 Přerov Profilová část maturitní zkoušky 2013/2014 TEMATICKÉ OKRUHY A HODNOTÍCÍ KRITÉRIA Studijní obor: 78-42-M/01 Technické lyceum Předmět: TECHNIKA
Maturitní nácvik 2008/09
Maturitní nácvik 008/09 1. Parabola a) Načrtněte graf funkce y + 4 - ² a z grafu vypište všechny její vlastnosti. b) Určete čísla a,b,c tak, aby parabola s rovnicí y a + b + c procházela body K[1,-], L[0,-1],
ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE. Matematika I/1 BA06. Cvičení, zimní semestr
Vysoké učení technické v Brně Stavební fakulta ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE Matematika I/1 BA06 Cvičení, zimní semestr DOMÁCÍ ÚLOHY Jan Šafařík Brno c 2014 1 (1) Určete rovnici kručnice o
CZ 1.07/1.1.32/02.0006
PO ŠKOLE DO ŠKOLY CZ 1.07/1.1.32/02.0006 Číslo projektu: CZ.1.07/1.1.32/02.0006 Název projektu: Po škole do školy Příjemce grantu: Gymnázium, Kladno Název výstupu: Prohlubující semináře Matematika (MI
Cvičná bakalářská zkouška, 1. varianta
jméno: studijní obor: PřF BIMAT počet listů(včetně tohoto): 1 2 3 4 5 celkem Cvičná bakalářská zkouška, 1. varianta 1. Matematická analýza Najdětelokálníextrémyfunkce f(x,y)=e 4(x y) x2 y 2. 2. Lineární
Gymnázium Jiřího Ortena, Kutná Hora
Předmět: Náplň: Třída: Počet hodin: Pomůcky: Cvičení z matematiky algebra (CZMa) Systematizace a prohloubení učiva matematiky: Číselné obory, Algebraické výrazy, Rovnice, Funkce, Posloupnosti, Diferenciální
Zpráva o průběhu přijímacího řízení na vysokých školách dle Vyhlášky MŠMT č. 343/2002 a její změně 276/2004 Sb.
Zpráva o průběhu přijímacího řízení na vysokých školách dle Vyhlášky MŠMT č. 343/2002 a její změně 276/2004 Sb. 1. Informace o přijímacích zkouškách Studijní program: Informatika navazující magisterský
MATEMATIKA vyšší úroveň obtížnosti
MATEMATIKA vyšší úroveň obtížnosti DIDAKTICKÝ TEST MAMVD2C0T0 Maximální bodové hodnocení: 50 bodů Hranice úspěšnosti: 33 % Základní informace k zadání zkoušky Didaktický test obsahuje 23 úloh. Časový limit
Gymnázium Česká a Olympijských nadějí, České Budějovice, Česká 64, 37021
Maturitní témata MATEMATIKA 1. Funkce a jejich základní vlastnosti. Definice funkce, def. obor a obor hodnot funkce, funkce sudá, lichá, monotónnost funkce, funkce omezená, lokální a globální extrémy funkce,
Repetitorium matematiky (soubor testů) KMA/P113
Univerzita J. E. Purkyně v Ústí nad Labem Přírodovědecká fakulta Repetitorium matematiky (soubor testů) KMA/P Lenka Součková Ústí nad Labem 0 Obor: Klíčová slova: Anotace: Fyzika (dvouoborové studium),
MATEMATIKA II - vybrané úlohy ze zkoušek ( 2015)
MATEMATIKA II - vybrané úlohy ze zkoušek ( 2015 doplněné o další úlohy 13. 4. 2015 Nalezené nesrovnalosti ve výsledcích nebo připomínky k tomuto souboru sdělte laskavě F. Mrázovi ( e-mail: Frantisek.Mraz@fs.cvut.cz.
Wichterlovo gymnázium, Ostrava-Poruba, příspěvková organizace. Maturitní otázky z předmětu INFORMATIKA A VÝPOČETNÍ TECHNIKA
Wichterlovo gymnázium, Ostrava-Poruba, příspěvková organizace Maturitní otázky z předmětu INFORMATIKA A VÝPOČETNÍ TECHNIKA 1. Algoritmus a jeho vlastnosti algoritmus a jeho vlastnosti, formy zápisu algoritmu
Kvadratickou funkcí se nazývá každá funkce, která je daná rovnicí. Definičním oborem kvadratické funkce je množina reálných čísel.
Kvadratická funkce Kvadratickou funkcí se nazývá každá funkce, která je daná rovnicí y = ax 2 + bx + c Číslo a je různé od nuly, b,c jsou libovolná reálná čísla. Definičním oborem kvadratické funkce je