2. Zapište daná racionální čísla ve tvaru zlomku a zlomek uveďte v základním tvaru. 4. Upravte a stanovte podmínky, za kterých má daný výraz smysl:
|
|
- Filip Macháček
- před 9 lety
- Počet zobrazení:
Transkript
1 KVINTA úlohy k opakování 1. Jsou dány množiny: = {xr; x - 9 5} B = {xr; 1 - x } a) zapište dané množiny pomocí intervalů b) stanovte A B, A B, A - B, B A. Zapište daná racionální čísla ve tvaru zlomku a zlomek uveďte v základním tvaru. a =,011 b = 0,79. Největší společný dělitel dvou neznámých čísel je a nejmenší společný násobek těchto čísel je 8. Určete, o která dvě neznámá čísla se jedná.. Upravte a stanovte podmínky, za kterých má daný výraz smysl: a 9b. b c 5c. a 5c : a studentů mělo možnost přihlásit se do matematického nebo fyzikálního semináře. Z celkového počtu studentů se jich 9 7 přihlásilo alespoň do jednoho ze seminářů. Pouze do matematického semináře se přihlásilo třikrát více studentů než do obou seminářů současně. Pouze do fyzikálního se přihlásilo 7 studentů. Kolik se jich přihlásilo do fyzikálního a kolik do matematického semináře? 6. Určete dvě čísla, nichž jedno je o 10 větší než druhé, víte-li, že rozdíl druhých mocnin obou čísel je Vydělte a proveďte zkoušku: (5x +17x 6x +6 1x ) : (1 + x x) = Rozložte následující výrazy na součin: a. 9(m n) 9(m + n) = b. x - (b +6)x + (b ) = 8. Řešte v množině R soustavu nerovnic: 1 x 8 x x x 1 x 1 x x
2 9. V množině Z řešte soustavu nerovnic: 1 5x x 7 x 5x 1 x x 10. S využitím vhodné substituce řešte v R:. x x. x 1 x Řešte v R rovnici : 1 x. x x 1 1. Řešte v R nerovnici : 1 x 1. Řešte v R nerovnici: x _ 1< x 1. Jsou dány úsečky délek a, b. Sestrojte úsečku délky a x. b a b 15. Je dán trojúhelník ABC, c = 8 cm, = 60 o, tc = 5 cm. Trojúhelník sestrojte, zapište konstrukci a sestrojte libovolný obdélník a čtverec, které budou mít stejné obsahy jako trojúhelník ABC. 16. Sestrojte všechny trojúhelníky ABC, je-li dáno: a = 8 cm, vc = 6 cm, ta = 5 cm. Zapište konstrukci a uveďte počet řešení. 17. Jsou dány dvě rovnoběžné přímky a,b tak, že jejich vzdálenost je,5 cm. Uvnitř rovnoběžkového pásu je dán bod M tak, že vzdálenost bodu M od přímky a je 1,5 cm. Sestrojte všechny kružnice k, které se dotýkají přímek a, b a procházení bodem M. Zapište konstrukci a uveďte počet řešení 18. Sestrojte úsečku délky 1.
3 SEXTA úlohy k opakování 1. Je dána funkce f: y = -x x 1. a) sestrojte graf funkce f, jednotku délky na osách x, y volte 1 cm b) stanovte definiční obor a obor hodnot fukce f c) určete, pro která x R platí 0 f(x) d) do téhož obrázku zakreslete graf funkce g: y = x a řešte graficky nerovnici f(x) g(x). Určete definiční obor funkce f: y = x x 5x x 1 x 1. Je dána funkce f: y = x 1 a) sestrojte graf funkce f b) určete definiční obor a obor hodnot funkce f, jednotku délky na osách x, y volte 1 cm c) vypočtěte, pro která x D(f) platí: f(x) = d) určete průsečíky grafu se souřadnými osami x, y. Je dána funkce f: y = x 1 x a) sestrojte graf funkce f, jednotku délky na osách x, y volte 1 cm b) určete definiční obor a obor hodnot funkce f x 5. Je dána funkce f: y =. x 1 a) sestrojte graf funkce f, jednotku délky na osách x, y volte 1 cm b) stanovte definiční obor a obor hodnot funkce f c) určete souřadnice průsečíků grafu funkce s osami x,y 6. Určete definiční obor funkce f: y = log ( x ) log( x 9) 7. Řešte v množině R rovnici a proveďte zkoušku: 65. x1 x Řešte v množině R rovnici: log(x-) log(-x) = 1 0, 9. Řešte v množině R rovnici: cos x 5sin x
4 10. Řešte v množině R rovnici: sin x.cos x 1 x x x 11. Určete hodnotysin x,cos x, tg x,sin,cos, tg je-li dáno cos x < 0 sin x 5 1. V rovnoběžníku ABCD je dáno AB = a = 7cm, BC = b = cm a velikost úhlu DAB = = 55 o. Vypočítejte výšku rovnoběžníka a jeho obsah. Zaokrouhlujte na dvě desetinná místa. 1. Sestrojte graf funkce f: y = sin x. cotg x. Stanovte definiční obor a obor hodnot. 1. Je dána krychle ABCDEFGH s dolní podstavou ABCD. Na hraně BC je dán bod X tak, že BX =.CX. Bod Y je středem hrany EH. Bod Z leží na polopřímce DH (nad bodem H) tak, že platí ZH = 1 DH. Sestrojte řez krychle rovinou = XYZ. Viditelnost vyznačte tak, že z krychle zůstane jen seříznutá část s vrcholem A. 15. V kvádru ABCDEFGH s rozměry AB = cm, BC = cm a AE = 6 cm vypočtěte odchylku přímek: a) BD a EF b) BG a AC 16. V krychli ABCDEFGH s dolní podstavou ABCD je X bodem polopřímky HG (vpravo od bodu G) tak, že platí HX =.GX. Vypočítejte odchylku přímky AX od roviny ABC. 17. Pravidelný čtyřboký jehlan ABCDV má podstavnou hranu BC = 5 cm. Odchylka pobočné hrany AV a roviny ABC je = 60 o. Vypočítejte objem a povrch jehlanu.
5 SEPTIMA úlohy k opakování 1. Je dána přímka p: x y + = 0 a body A = [, 0], B = [1, -], které na ní neleží. Na přímce p určete souřadnice bodu P, který má od obou bodů A, B stejnou vzdálenost.. Je dán trojúhelník ABC, A = [-, 0], B = [, 1], C = [1, 6]. a) určete obecnou rovnici přímky, ve které leží těžnice na stranu b = AC b) napište parametrické vyjádření přímky, ve které leží výška na stranu c = AB c) vypočítejte velikost vnitřního úhlu = BAC trojúhelníka ABC (bez počítačky). V rovině jsou dány dva body K = [-1, ], L = [5, ]. Světelný paprsek prochází bodem K, odrazí se od osy x a projde bodem L. a) určete obecnou rovnici přímky k, ve které leží dopadající paprsek (ten, který prochází bodem K) b) určete souřadnice bodu M na ose x, kde se paprsek odrazí c) určete obecnou rovnici přímky, ve které leží paprsek odražený (procházející bodem L). V rovině jsou dány přímky p: x y -15 = 0 a q: x = 5 - t y = - - 6t t R. a) vyšetřete vzájemnou polohu těchto dvou přímek b) napište vyjádření poloroviny určené přímkou p a bodem X = [6, ] c) leží v této polorovině body R = [5, -10], Q = [, -]? d) leží v této polorovině přímka q? 5. Jsou dány body A=[,1], B=[-1,7], C=[,0], D=[-,] a) napište obecné rovnice přímek p=ab, q=cd b) určete směrnice přímek p,q c) vypočtěte odchylku přímek p,q 7b. 6. Je dána rovnice k: x + y 6x +y + 5 = 0. a) zjistěte, zda se jedná o rovnici kružnice (určete střed a poloměr kružnice) b) určete všechna c R, pro která je přímka t: -x +y + c =0 tečnou kružnice k b. 7. V rovině jsou dány body S=[,1] a A=[,0]. a) napište rovnici kružnice se středem S, která prochází bodem A b) vypočtěte souřadnice průsečíků této kružnice se souřadnou osou y 8. Napište obecné rovnice tečen kružnice k: x + y + y 8 = 0, které jsou rovnoběžné s přímkou p: x y + 5 = Obecnou rovnicí je dána kuželosečka M: x y 8x y 0 0. a) Identifikujte rovnicí danou kuželosečku. b) Napište obecné rovnice tečen dané kuželosečky v jejích bodech T = [?, ] b.
6 10. Obecnou rovnicí je dána elipsa E: 9x 5y 18x 100y Z bodu Q = [ -, 7] veďte tečny k dané elipse a napište jejich obecné rovnice. Na tečnách stanovte rovněž příslušné body dotyku. 11. Identifikujte a narýsujte kuželosečku K: x y x y 8 0. (Podle definice dané kuželosečky sestrojte několik jejích bodů, řádně v obrázku popište její určující prvky). 1. Napište rovnice parabol, které mají vrchol V = [, -7], prochází bodem M = [, -5] a jejich osa je rovnoběžná se souřadnou osou. x 1. Kolikátý člen binomického rozvoje výrazu 15 x obsahuje x? x 1 x 1. Řešte rovnici a proveďte zkoušku: 9 x x 15. V obchodě mají pět druhů kávy balené vždy v sáčcích po 50g. Kolika způsoby je možno koupit 1 kg kávy, když od jednoho druhu kávy mají pouze dva sáčky? Ostatní druhy jsou k dispozici v dostatečném množství. 16. Z osmi mužů, mezi kterými je pan Jiří a pan Pavel a z šesti žen, mezi kterými jsou paní Elvíra a Ivana budeme vybírat skupinu složenou z pěti mužů a čtyřech žen. Kolika způsoby je to možně udělat, když : a. mezi vybranými má být pan Jiří i paní Elvíra? b. mezi vybranými nemá být pan Pavel a má tam být paní Elvíra i Ivana? 17. Kolik existuje šesticiferných čísel, která : a. mají uprostřed dvojčíslí 59? b. začínají i končí stejnou číslicí? c. mají na místě tisíců sudou a na místě jednotek lichou číslici? 1
7 OKTÁVA úlohy k opakování 1. Zjednodušte a výsledné komplexní číslo zapište v algebraickém tvaru: 1 i 1 i 1 i 1 i. V Gaussově rovině komplexních čísel vyznačte množinu: M = {z C ; z - i + i z - i }.. V množině C řešte rovnici : i.( z z 1) ( i).( z z i ). a) Vypočtěte a výsledek zapište v algebraickém tvaru: i 1 i 1 b) V Gaussově rovině komplexních čísel jsou dány obrazy komplexních čísel a,b. Sestrojte obraz čísla z = a.b. 5. Řešte v oboru C rovnici: x ( i). x i 0 6. Řešte v oboru C rovnici: x 9x Vypočtěte: 5 10 ( i i i i ) a) 1 i
8 1 b) 1 i 1 i 8. Určete kr tak, aby číslo z i k. i (5 k). i bylo a) reálné, b) ryze imaginární, c) bylo z Řešte v R: x x x 8x... 1 x x Kolik Kč naspoří střadatel za 7 let, ukládá-li vždy počátkem měsíce, na účet úročený úrokovou mírou ročně, částku 1 00,- Kč? (Úrokovací období je jeden měsíc, úrok se počítá vždy koncem měsíce a daň z úroku se platí 15. Vypočtený kvocient nezaokrouhlujte!) Jaký je střadatelův celkový výnos z tohoto spoření? 11. Sečtěte prvních deset členů aritmetické posloupnosti n n1 a, ve které platí : a, a7 1,. Sečtěte rovněž prvních deset členů posloupnosti, která má stejný první člen, ale poloviční diferenci. 1. Zjistěte, které z následujících nekonečných řad jsou geometrické. Ty z nich, které jsou konvergentní, sečtěte. a) n1 5 n b) n n 1 1 n1 n c) 1
Modelové úlohy přijímacího testu z matematiky
PŘÍRODOVĚDECKÁ FAKULTA UNIVERZITY KARLOVY V PRAZE Modelové úlohy přijímacího testu z matematiky r + s r s r s r + s 1 r2 + s 2 r 2 s 2 ( ) ( ) 1 a 2a 1 + a 3 1 + 2a + 1 ( a b 2 + ab 2 ) ( a + b + b b a
VíceOpakování k maturitě matematika 4. roč. TAD 2 <
8.. Otázka číslo Mocniny a odmocniny. b.) Zjednodušte: 6 b. b Opakování k maturitě matematika. roč. TAD : 6.) Zjednodušte: 6 6.) Vypočtěte: a. y : ( a. y ) =.) Usměrněte zlomek =.. Otázka číslo Lineární
VíceModelové úlohy přijímacího testu z matematiky
PŘÍRODOVĚDECKÁ FAKULTA UNIVERZITY KARLOVY V PRAZE Modelové úlohy přijímacího testu z matematiky r + s r s r s r + s 1 r2 + s 2 r 2 s 2 ( ) ( ) 1 a 2a 1 + a 3 1 + 2a + 1 ( a b 2 + ab 2 ) ( a + b + b b a
Více9. Je-li cos 2x = 0,5, x 0, π, pak tgx = a) 3. b) 1. c) neexistuje d) a) x ( 4, 4) b) x = 4 c) x R d) x < 4. e) 3 3 b
008 verze 0A. Řešeními nerovnice x + 4 0 jsou právě všechna x R, pro která je x ( 4, 4) b) x = 4 c) x R x < 4 e) nerovnice nemá řešení b. Rovnice x + y x = je rovnicí přímky b) dvojice přímek c) paraboly
Více1. Přímka a její části
. Přímka a její části přímka v rovině, v prostoru, přímka jako graf funkce, konstrukce přímky nebo úsečky, analytická geometrie přímky, přímka jako tečna grafu, přímka a kuželosečka Přímka v rovině a v
Více2.1 Pokyny k otevřeným úlohám. Výsledky pište čitelně do vyznačených bílých polí. 2.2 Pokyny k uzavřeným úlohám
MATEMATIKA+ DIDAKTICKÝ TEST Maximální bodové hodnocení: 50 bodů Hranice úspěšnosti: 33 % 1 Základní informace k zadání zkoušky Didaktický test obsahuje 23 úloh. Časový limit pro řešení didaktického testu
VíceMaturitní nácvik 2008/09
Maturitní nácvik 008/09 1. Parabola a) Načrtněte graf funkce y + 4 - ² a z grafu vypište všechny její vlastnosti. b) Určete čísla a,b,c tak, aby parabola s rovnicí y a + b + c procházela body K[1,-], L[0,-1],
VíceFAKULTA STAVEBNÍ VUT V BRNĚ PŘIJÍMACÍ ŘÍZENÍ PRO AKADEMICKÝ ROK
FAKULTA STAVEBNÍ VUT V BRNĚ PŘIJÍMACÍ ŘÍZENÍ PRO AKADEMICKÝ ROK 00 007 TEST Z MATEMATIKY PRO PŘIJÍMACÍ ZKOUŠKY ČÍSLO FAST-M-00-0. tg x + cot gx a) sinx cos x b) sin x + cos x c) d) sin x e) +. sin x cos
VíceII. Zakresli množinu bodů, ze kterých vidíme úsečku délky 3 cm v zorném úhlu větším než 30 0 a menším než 60 0.
Ukázky typových maturitních příkladů z matematiky..reálná čísla. 3} x R; I. Zobrazte množiny A = {x є 3} < + x R; B = {x є II. Zapište ve tvaru zlomku číslo, 486.Komplexní čísla. I. Určete a + b, a - b,
Více[ ] = [ ] ( ) ( ) [ ] ( ) = [ ] ( ) ( ) ( ) ( ) = ( ) ( ) ( ) 2 1 :: MOCNINY A ODMOCNINY
Daniel Nechvátal :: maturitní otázky z matematiky 008 :: MOCNINY A ODMOCNINY ) Zjednodušte následující výrazy a určete, pro které hodnoty proměnných mají smysl a) ( ) ( ) [ ] ( ) ( ) [ ] : n n n n b) [
VíceObecná rovnice kvadratické funkce : y = ax 2 + bx + c Pokud není uvedeno jinak, tak definičním oborem řešených funkcí je množina reálných čísel.
5. Funkce 9. ročník 5. Funkce ZOPAKUJTE SI : 8. ROČNÍK KAPITOLA. Funkce. 5.. Kvadratická funkce Obecná rovnice kvadratické funkce : y = ax + bx + c Pokud není uvedeno jinak, tak definičním oborem řešených
VíceSbírka příkladů z m a t e m a t i k y. Příprava k profilové části maturitní zkoušky
Sbírka příkladů z m a t e m a t i k y Příprava k profilové části maturitní zkoušky školní rok 0/0 . Algebraické výrazy ) Rozložte na součin: a) d) n n a a b + b b c) a + a a b b b n n e) a 0a f) b + 5b
VícePracovní listy MONGEOVO PROMÍTÁNÍ
Technická univerzita v Liberci Fakulta přírodovědně-humanitní a pedagogická Katedra matematiky a didaktiky matematiky MONGEOVO PROMÍTÁNÍ Petra Pirklová Liberec, únor 07 . Zobrazte tyto body a určete jejich
VíceA[a 1 ; a 2 ; a 3 ] souřadnice bodu A v kartézské soustavě souřadnic O xyz
1/15 ANALYTICKÁ GEOMETRIE Základní pojmy: Soustava souřadnic v rovině a prostoru Vzdálenost bodů, střed úsečky Vektory, operace s vektory, velikost vektoru, skalární součin Rovnice přímky Geometrie v rovině
Více11. VEKTOROVÁ ALGEBRA A ANALYTICKÁ GEOMETRIE LINEÁRNÍCH ÚTVARŮ
11. VEKTOROVÁ ALGEBRA A ANALYTICKÁ GEOMETRIE LINEÁRNÍCH ÚTVARŮ Dovednosti: 1. Chápat pojmy orientovaná úsečka a vektor a geometrický význam součtu, rozdílu a reálného násobku orientovaných úseček a vektorů..
Vícec jestliže pro kladná čísla a,b,c platí 3a = 2b a 3b = 5c.
Úloha 1 1 b. Od součtu neznámého čísla a čísla 17 odečteme rozdíl těchto čísel v daném pořadí. Vypočtěte a zapište výsledek v. Úloha 2 1 b. 25 Na číselné ose jsou obrazy čísel 0 a 1 vzdáleny 5 mm. Určete
VícePříklady na testy předmětu Seminář z matematiky pro studenty fakulty strojní TUL.
Příklady na testy předmětu Seminář z matematiky pro studenty fakulty strojní TUL. Jméno a příjmení(čitelně): varianta č. 90 Přezdívka(nepovinné): Zde pište své výsledky Napište rovnici přímky procházející
VíceSTRUČNÉ OPAKOVÁNÍ STŘEDOŠKOLSKÉ MATEMATIKY V PŘÍKLADECH
STRUČNÉ OPAKOVÁNÍ STŘEDOŠKOLSKÉ MATEMATIKY V PŘÍKLADECH RNDr. Milada Rezková RNDr. Vlasta Sudzinová Mgr. Eva Valentová 2016 Předmluva Tento učební text je určen studentům 4. ročníku čtyřletých gymnázií,
VíceMATEMATIKA+ MAIPD14C0T01 DIDAKTICKÝ TEST. 2.1 Pokyny k otevřeným úlohám. 1 Základní informace k zadání zkoušky. 2.2 Pokyny k uzavřeným úlohám
MATEMATIKA+ DIDAKTICKÝ TEST MAIPD14C0T01 Maximální bodové hodnocení: 50 bodů Hranice úspěšnosti: 33 % 1 Základní informace k zadání zkoušky Didaktický test obsahuje 23 úloh. Časový limit pro řešení didaktického
Více0 x 12. x 12. strana Mongeovo promítání - polohové úlohy.
strana 9 3.1a Sestrojte sdružené průměty stopníků přímek a = AB, b = CD, c = EF. A [-2, 5, 1], B [3/2, 2, 5], C [3, 7, 4], D [5, 2, 4], E [-5, 3, 3], F [-5, 3, 6]. 3.1b Určete parametrické vyjádření přímek
Více11. VEKTOROVÁ ALGEBRA A ANALYTICKÁ GEOMETRIE LINEÁRNÍCH ÚTVARŮ. u. v = u v + u v. Umět ho aplikovat při
. VEKTOROVÁ ALGEBRA A ANALYTICKÁ GEOMETRIE LINEÁRNÍCH ÚTVARŮ Dovednosti:. Chápat pojmy orientovaná úsečka a vektor a geometrický význam součtu, rozdílu a reálného násobku orientovaných úseček a vektorů..
Více2.1 Pokyny k otevřeným úlohám. 2.2 Pokyny k uzavřeným úlohám TESTOVÝ SEŠIT NEOTVÍREJTE, POČKEJTE NA POKYN!
MATEMATIKA+ DIDAKTICKÝ TEST Maximální bodové hodnocení: 50 bodů Hranice úspěšnosti: 33 % Základní informace k zadání zkoušky Didaktický test obsahuje 23 úloh. Časový limit pro řešení didaktického testu
Více10. Analytická geometrie kuželoseček 1 bod
10. Analytická geometrie kuželoseček 1 bod 10.1. Kružnice opsaná obdélníku ABCD, kde A[2, 3], C[8, 3], má rovnici a) x 2 10x + y 2 + 7 = 0, b) (x 3) 2 + (y 3) 2 = 36, c) x 2 + 10x + y 2 18 = 0, d) (x 10)
VíceSbírka příkladů ke školní části maturitní zkoušky z matematiky
Sbírka příkladů ke školní části maturitní zkoušky z matematiky. otázka. Řešení logaritmických rovnic Řešte rovnici s neznámou x R:. log(x 2 +) log(x+) = 2 2. log 2 2 x + 2 log 2 x = 0. log x + log x =.
VíceFAKULTA STAVEBNÍ VUT V BRNĚ PŘIJÍMACÍ ŘÍZENÍ PRO AKADEMICKÝ ROK 2003 2004
PŘIJÍMACÍ ŘÍZENÍ PRO AKADEMICKÝ ROK 003 004 TEST Z MATEMATIKY PRO PŘIJÍMACÍ ZKOUŠKY ČÍSLO M 0030 Vyjádřete jedním desetinným číslem (4 ½ 4 ¼ ) (4 ½ + 4 ¼ ) Správné řešení: 0,5 Zjednodušte výraz : ( 4)
VíceMATEMATIKA. vyšší úroveň obtížnosti DIDAKTICKÝ TEST MAGVD10C0T01. Testový sešit neotvírejte, počkejte na pokyn!
MATEMATIKA vyšší úroveň obtížnosti MAGVD10C0T01 DIDAKTICKÝ TEST Didaktický test obsahuje 21 úloh. Časový limit pro řešení didaktického testu je uveden na záznamovém archu. Povolené pomůcky: psací a rýsovací
VíceCVIČNÝ TEST 13. OBSAH I. Cvičný test 2. Mgr. Zdeňka Strnadová. II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17
CVIČNÝ TEST 13 Mgr. Zdeňka Strnadová OBSAH I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17 I. CVIČNÝ TEST VÝCHOZÍ TEXT A OBRÁZEK K ÚLOZE 1 V trojúhelníku ABC na obrázku dělí úsečka
VíceMATEMATIKA. v úpravě pro neslyšící MAMZD19C0T01 DIDAKTICKÝ TEST SP-3-T SP-3-T-A
MATEMATIKA v úpravě pro neslyšící MAMZD9C0T0 DIDAKTICKÝ TEST 2 SP-3-T SP-3-T-A Maximální bodové hodnocení: 50 bodů Hranice úspěšnosti: 33 %. Základní informace k zadání zkoušky Didaktický test obsahuje
VíceObsah Matematická logika, důkazy vět, množiny a operace s nimi Mocninná funkce, výrazy s mocninami a odmocninami Iracionální rovnice a rovnice s absol
Přípravné úlohy k maturitě z matematiky RNDr Miroslav Hruška Přípravné úlohy k maturitě z matematiky Miroslav Hruška, 009 Obsah Matematická logika, důkazy vět, množiny a operace s nimi Mocninná funkce,
VíceAlternace 2012/13 ALTERNACE MATEMATIKA 4. ROČNÍK 2012/13
ALTERNACE MATEMATIKA 4. ROČNÍK 01/13-1- Obsah Posloupnosti... 4 Aritmetická posloupnost... 5 Geometrická posloupnost... 6 Geometrické řady... 7 Finanční matematika... 8 Vektor, operace s vektory... 9 Vzdálenosti
VíceTest Zkušební přijímací zkoušky
Test Zkušební přijímací zkoušky 1. Vypočtěte: ( 10 1.5) ( 4 ).( 15). ( 5 6). Doplňte číslo do rámečku, aby platila rovnost:.1. 4 11 10. 8 16 6.. 49 7 1.. + 1. Proveďte početní operace:.1. 6x 4x ( 4x x)
VíceMATEMATIKA. 2Pravidla správného zápisu odpovědí. 1Základní informace k zadání zkoušky DIDAKTICKÝ TEST. Testový sešit neotvírejte, počkejte na pokyn!
MATEMATIKA DIDAKTICKÝ TEST Maximální bodové hodnocení: 30 bodů Pro přijetí uchazečů je rozhodné umístění v sestupném pořadí uchazečů podle dosaženého bodového hodnocení. 1Základní informace k zadání zkoušky
VíceMATEMATIKA MAIZD14C0T01 DIDAKTICKÝ TEST. 2.1 Pokyny k otevřeným úlohám. 1 Základní informace k zadání zkoušky. 2.2 Pokyny k uzavřeným úlohám
MATEMATIKA DIDAKTICKÝ TEST MAIZD14C0T01 Maximální bodové hodnocení: 50 bodů Hranice úspěšnosti: 33 % 1 Základní informace k zadání zkoušky Didaktický test obsahuje 26 úloh. Časový limit pro řešení didaktického
Více1. Základní poznatky z matematiky
. Základní poznatky z matematiky. Určete opačné číslo k číslu (3 5). a) 8 b) 8 c) 8 d) 8. Čísla,, 0, 3,, 8 9, seřaďte od největšího k nejmenšímu. a), 3,, 8 9,, 0, b), 3,, 8 9,, 0, c) 3,,, 8 9,, 0, d),,
VíceMATEMATIKA vyšší úroveň obtížnosti
MATEMATIKA vyšší úroveň obtížnosti DIDAKTICKÝ TEST MAMVD2C0T0 Maximální bodové hodnocení: 50 bodů Hranice úspěšnosti: 33 % Základní informace k zadání zkoušky Didaktický test obsahuje 23 úloh. Časový limit
Více2. Vyšetřete všechny možné případy vzájemné polohy tří různých přímek ležících v jedné rovině.
ZS1BK_PGE1 Geometrie I: Vybrané úlohy z elementární geometrie 1. Které geometrické útvary mohou vzniknout a) jako průnik dvou polopřímek téže přímky, b) jako průnik dvou polorovin téže roviny? V případě
VíceMATURITNÍ TÉMATA Z MATEMATIKY
MATURITNÍ TÉMATA Z MATEMATIKY 1. Základní poznatky z logiky a teorie množin Pojem konstanty a proměnné. Obor proměnné. Pojem výroku a jeho pravdivostní hodnota. Operace s výroky, složené výroky, logické
VíceOpakovací kurs středoškolské matematiky podzim
. Opakovací kurs středoškolské matematiky podzim František Mráz Ústav technické matematiky, Frantisek.Mraz@fs.cvut.cz I. Mocniny, odmocniny, algeraické výrazy Upravte (zjednodušte), případně určete číselnou
VíceZáklady matematiky pracovní listy
Dagmar Dlouhá, Michaela Tužilová Katedra matematiky a deskriptivní geometrie VŠB - Technická univerzita Ostrava Úvod Pracovní listy jsou určeny pro předmět Základy matematiky vyučovaný Katedrou matematiky
VíceMATEMATIKA základní úroveň obtížnosti
ILUSTRAČNÍ DIDAKTICKÝ TEST MATEMATIKA základní úroveň obtížnosti DIDAKTICKÝ TEST Didaktický test obsahuje 8 úloh. Časový limit pro řešení didaktického testu je uveden na záznamovém archu. Povolené pomůcky:
VíceMgr. Tomáš Kotler. I. Cvičný test 2 II. Autorské řešení 7 III. Klíč 15 IV. Záznamový list 17
Mgr. Tomáš Kotler I. Cvičný test 2 II. Autorské řešení 7 III. Klíč 15 IV. Záznamový list 17 VÝCHOZÍ TEXT A OBRÁZEK K ÚLOZE 1 Je dán rovinný obrazec, v obrázku vyznačený barevnou výplní, který představuje
Více2) Přednáška trvala 80 minut a skončila v 17:35. Jirka na ni přišel v 16:20. Kolik úvodních minut přednášky Jirka
Téma 4: (převody jednotek, funkce, konstrukční úlohy, osová a středová souměrnost) Převody jednotek 1) Kolik gramů je pět třetin z 2,1 kilogramu? a) 1 260 g b) 3 500 g c) 17 000 g d) 700 g 2) Přednáška
VíceANALYTICKÁ GEOMETRIE INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ. Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky
ANALYTICKÁ GEOMETRIE Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro vyšší gymnázia Autoři projektu Student na prahu 21. století - využití ICT ve vyučování matematiky na gymnáziu
VíceVZOROVÉ PŘÍKLADY Z MATEMATIKY A DOPORUČENÁ LITERATURA pro přípravu k přijímací zkoušce studijnímu oboru Nanotechnologie na VŠB TU Ostrava
VZOROVÉ PŘÍKLADY Z MATEMATIKY A DOPORUČENÁ LITERATURA pro přípravu k přijímací zkoušce studijnímu oboru Nanotechnologie na VŠB TU Ostrava I Úprav algebraických výrazů zlomk, rozklad kvadratického trojčlenu,
VíceMATEMATIKA VYŠŠÍ ÚROVEŇ
NOVÁ MATURITNÍ ZKOUŠKA Ilustrační test 008 Vyšší úroveň obtížnosti MAVCZMZ08DT MATEMATIKA VYŠŠÍ ÚROVEŇ DIDAKTICKÝ TEST Testový sešit obsahuje 0 úloh. Na řešení úloh máte 10 minut. Úlohy řešte v testovém
VíceZadání domácích úkolů a zápočtových písemek
Konstruktivní geometrie (KG-L) Zadání domácích úkolů a zápočtových písemek Sestrojte elipsu, je-li dáno a = 5cm a b = 3cm. V libovolném bodě sestrojte její tečnu. Tento úkol je na krásu, tj. udělejte oskulační
Více4 Goniometrické výrazy, rovnice a nerovnice Funkce, grafy funkcí, definiční obory... 14
Vážený čtenáři, sbírka příkladů, kterou jsi právě otevřel Vám chce pomoci při studiu jedné z nejkrásnějších vědních disciplín - matematiky. Sbírka obsahuje všechny typy příkladů, včetně výsledků, které
VíceSBÍRKA n PŘÍKLADŮ Z MATEMATIKY kde n =
SBÍRKA n PŘÍKLADŮ Z MATEMATIKY kde n = 017-1957 Mgr. Petr Říman Gymnázium Ostrava-Zábřeh, Volgogradská a červen 017 1. Vypočítejte: 1 0, 4 1 8 0,75. Vypočítejte:. Vypočítejte: ( 4 4) ( + ) ( i) [ + 4i]
Více( ) ( ) 6. Algebraické nerovnice s jednou neznámou ( ) ( ) ( ) ( 2. e) = ( )
6. Algebraické nerovnice s jednou neznámou Další dovednosti: -iracionální nerovnice -lineární nerovnice s parametrem -kvadratické nerovnice s parametrem Možné maturitní otázky: Lineární a kvadratické nerovnice
VíceANALYTICKÁ GEOMETRIE INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ
ANALYTICKÁ GEOMETRIE Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro vyšší gymnázia Autoři projektu Student na prahu 21. století - využití ICT ve vyučování matematiky na gymnáziu
VíceOdvození středové rovnice kružnice se středem S [m; n] a o poloměru r. Bod X ležící na kružnici má souřadnice [x; y].
Konzultace č. 6: Rovnice kružnice, poloha přímky a kružnice Literatura: Matematika pro gymnázia: Analytická geometrie, kap. 5.1 a 5. Sbírka úloh z matematiky pro SOŠ a studijní obory SOU. část, kap. 6.1
VíceMaturitní okruhy z matematiky - školní rok 2007/2008
Maturitní okruhy z matematiky - školní rok 2007/2008 1. Některé základní poznatky z elementární matematiky: Číselné obory, dělitelnost přirozených čísel, prvočísla a čísla složená, největší společný dělitel,
VíceCvičné texty ke státní maturitě z matematiky
Cvičné texty ke státní maturitě z matematiky Pracovní listy s postupy řešení Brno 2010 RNDr. Rudolf Schwarz, CSc. Státní maturita z matematiky Obsah Obsah NIŽŠÍ úroveň obtížnosti 4 MAGZD10C0K01 říjen 2010..........................
VíceMATEMATIKA ZÁKLADNÍ ÚROVEŇ
NOVÁ MTURITNÍ ZKOUŠK Ilustrační test 2008 Základní úroveň obtížnosti MVCZMZ08DT MTEMTIK ZÁKLDNÍ ÚROVEŇ DIDKTICKÝ TEST Testový sešit obsahuje 8 úloh. Na řešení úloh máte 90 minut. Úlohy řešte v testovém
Více17 Kuželosečky a přímky
17 Kuželosečky a přímky 17.1 Poznámka: Polára bodu M ke kuželosečce Nechť X = [x 0,y 0 ] je bod. Zavedeme následující úpravy: x x 0 x y y 0 y xy (x 0 y + xy 0 )/ x (x 0 + x)/ y (y 0 + y)/ (x m) (x 0 m)(x
VíceCVIČNÝ TEST 9 OBSAH. Mgr. Václav Zemek. I. Cvičný test 2 II. Autorské řešení 5 III. Klíč 17 IV. Záznamový list 19
CVIČNÝ TEST 9 Mgr. Václav Zemek OBSAH I. Cvičný test 2 II. Autorské řešení 5 III. Klíč 17 IV. Záznamový list 19 I. CVIČNÝ TEST 1 Vypočítejte (7,5 10 3 2 10 2 ) 2. Výsledek zapište ve tvaru a 10 n, kde
VíceLineární funkcí se nazývá každá funkce, která je daná rovnicí y = ax + b, kde a, b jsou reálná čísla.
Lineární funkce Lineární funkcí se nazývá každá funkce, která je daná rovnicí y = ax + b, kde a, b jsou reálná čísla. Číslo b je hodnota funkce f v bodě 0. Definičním oborem lineární funkce je množina
VíceÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE. Matematika I/1 BA06. Cvičení, zimní semestr
Vysoké učení technické v Brně Stavební fakulta ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE Matematika I/1 BA06 Cvičení, zimní semestr DOMÁCÍ ÚLOHY Jan Šafařík Brno c 2014 1 (1) Určete rovnici kručnice o
Více2. ANALYTICKÁ GEOMETRIE V PROSTORU Vektory Úlohy k samostatnému řešení... 21
2 ANALYTICKÁ GEOMETRIE V PROSTORU 21 21 Vektory 21 Úlohy k samostatnému řešení 21 22 Přímka a rovina v prostoru 22 Úlohy k samostatnému řešení 22 23 Vzájemná poloha přímek a rovin 25 Úlohy k samostatnému
VíceSBÍRKA ÚLOH PRO PŘÍPRAVU NA PŘIJÍMACÍ ZKOUŠKY Z MATEMATIKY NA VŠ EKONOMICKÉHO SMĚRU
SBÍRKA ÚLOH PRO PŘÍPRAVU NA PŘIJÍMACÍ ZKOUŠKY Z MATEMATIKY NA VŠ EKONOMICKÉHO SMĚRU Tento materiál vznikl v rámci realizace projektu: Globální vzdělávání pro udržitelný rozvoj v sítí spolupracujících škol,
Více1.1 Napište středovou rovnici kružnice, která má střed v počátku soustavy souřadnic a prochází bodem
Analytická geometrie - kružnice Napište středovou rovnici kružnice, která má střed v počátku soustavy souřadnic a prochází bodem A = ; 5 [ ] Napište středový i obecný tvar rovnice kružnice, která má střed
VíceCVIČNÝ TEST 10. OBSAH I. Cvičný test 2. Mgr. Renáta Koubková. II. Autorské řešení 6 III. Klíč 17 IV. Záznamový list 19
CVIČNÝ TEST 10 Mgr. Renáta Koubková OBSAH I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 17 IV. Záznamový list 19 I. CVIČNÝ TEST 1 Pro x R řešte rovnici: 5 x 1 + 5 x + 5 x + 3 = 3 155. 2 Za předpokladu
VíceCVIČNÝ TEST 35. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17
CVIČNÝ TEST 35 Mgr. Tomáš Kotler OBSAH I. Cvičný test II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17 I. CVIČNÝ TEST 1 Vypočtěte [( 3 3 ) ( 1 4 5 3 0,5 ) ] : 1 6 1. 1 bod VÝCHOZÍ TEXT K ÚLOZE
VíceVZOROVÝ TEST PRO 3. ROČNÍK (3. A, 5. C)
VZOROVÝ TEST PRO 3. ROČNÍK (3. A, 5. C) max. 3 body 1 Zjistěte, zda vektor u je lineární kombinací vektorů a, b, je-li u = ( 8; 4; 3), a = ( 1; 2; 3), b = (2; 0; 1). Pokud ano, zapište tuto lineární kombinaci.
VíceMATEMATIKA Maturitní témata společná část MZ základní úroveň (vychází z Katalogu požadavků MŠMT)
MATEMATIKA Maturitní témata společná část MZ základní úroveň (vychází z Katalogu požadavků MŠMT) 1. Číselné obory 1.1 Přirozená čísla provádět aritmetické operace s přirozenými čísly rozlišit prvočíslo
Více2.1 Pokyny k otevřeným úlohám. 2.2 Pokyny k uzavřeným úlohám TESTOVÝ SEŠIT NEOTVÍREJTE, POČKEJTE NA POKYN!
MATEMATIKA DIDAKTICKÝ TEST Maximální bodové hodnocení: 50 bodů Hranice úspěšnosti: % Základní informace k zadání zkoušky Didaktický test obsahuje 26 úloh. Časový limit pro řešení didaktického testu je
VíceCVIČNÝ TEST 39. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 5 III. Klíč 11 IV. Záznamový list 13
CVIČNÝ TEST 9 Mgr. Tomáš Kotler OBSAH I. Cvičný test II. Autorské řešení 5 III. Klíč 11 IV. Záznamový list 1 I. CVIČNÝ TEST 1 bod 1 Do kruhu je vepsán rovnostranný trojúhelník. Jakou část obsahu kruhu
VíceKapitola 5. Seznámíme se ze základními vlastnostmi elipsy, hyperboly a paraboly, které
Kapitola 5 Kuželosečky Seznámíme se ze základními vlastnostmi elipsy, hyperboly a paraboly, které společně s kružnicí jsou známy pod společným názvem kuželosečky. Říká se jim tak proto, že každou z nich
VíceKonstrukční úlohy. Růžena Blažková, Irena Budínová. Milé studentky, milí studenti,
Konstrukční úlohy Růžena Blažková, Irena Budínová Milé studentky, milí studenti, zadání konstrukčních úloh si vylosujete v semináři nebo na přednášce, u každé konstrukční úlohy proveďte: - rozbor obsahuje
VíceCVIČNÝ TEST 51. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17
CVIČNÝ TEST 51 Mgr. Tomáš Kotler OBSAH I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17 I. CVIČNÝ TEST VÝCHOZÍ TEXT A OBRÁZEK K ÚLOZE 1 V obchodě s kouzelnickými potřebami v Kocourkově
VíceMATEMATIKA STUDIJNÍ POŽADAVKY PRO JEDNOTLIVÉ ROČNÍKY STUDIA
MATEMATIKA STUDIJNÍ POŽADAVKY PRO JEDNOTLIVÉ ROČNÍKY STUDIA Osmileté studium 1. ročník 1. Opakování a prohloubení učiva 1. 5. ročníku Číslo, číslice, množiny, přirozená čísla, desetinná čísla, číselné
VíceDERIVACE. ln 7. Urči, kdy funkce roste a klesá a dále kdy je konkávní a
DERIVACE 1. Zderivuj funkci y = ln 2 (sin x + tg x 2 ) 2. Zderivuj funkci y = 2 e x2 cos x 3. Zderivuj funkci y = 3 e sin2 (x 2 ) 4. Zderivuj funkci y = x3 +2x 2 +sin x x 5. Zderivuj funkci y = cos2 x
VíceCZ 1.07/1.1.32/02.0006
PO ŠKOLE DO ŠKOLY CZ 1.07/1.1.32/02.0006 Číslo projektu: CZ.1.07/1.1.32/02.0006 Název projektu: Po škole do školy Příjemce grantu: Gymnázium, Kladno Název výstupu: Prohlubující semináře Matematika (MI
VíceMgr. Ladislav Zemánek Maturitní okruhy Matematika 2013-2014. 1. Obor reálných čísel
Mgr. Ladislav Zemánek Maturitní okruhy Matematika 2013-2014 1. Obor reálných čísel - obor přirozených, celých, racionálních a reálných čísel - vlastnosti operací (sčítání, odčítání, násobení, dělení) -
VíceMATEMATIKA Tematické okruhy ke státní maturitní zkoušce Obor: mechanik elektronik
MATEMATIKA Tematické okruhy ke státní maturitní zkoušce Obor: mechanik elektronik R4 1. ČÍSELNÉ VÝRAZY 1.1. Přirozená čísla počítání s přirozenými čísly, rozlišit prvočíslo a číslo složené, rozložit složené
VíceJak by mohl vypadat test z matematiky
Jak by mohl vypadat test z matematiky 1 Zapište zlomkem trojnásobek rozdílu, 2 Vypočtěte: 2.1 0,05: 0,001 0,7 0,3 = 2.2 : = 3 Vypočtěte a výsledek zapište zlomkem v základním tvaru: 36 3 3 16 + 1 6 = 4
VíceZákladní pojmy: Objemy a povrchy těles Vzájemná poloha bodů, přímek a rovin Opakování: Obsahy a obvody rovinných útvarů
1/13 Základní pojmy: Objemy a povrchy těles Vzájemná poloha bodů, přímek a rovin Opakování: Obsahy a obvody rovinných útvarů STEREOMETRIE Stereometrie - geometrie v prostoru - zabývá se vzájemnou polohou
VíceFunkce 1) Zakreslete body K, L a M do souřadného systému Oxy, jsou-li dány jejich souřadnice: K[-3;0]; L[0;-2]; M[4;3].
Téma 4: (převody jednotek, funkce, konstrukční úlohy, osová a středová souměrnost) Převody jednotek 1) Kolik gramů je pět třetin z 2,1 kilogramu? a) 1 260 g b) 3 500 g c) 17 000 g d) 700 g 2) Přednáška
VíceMATEMATIKA Maturitní témata společná část MZ vyšší úroveň (vychází z Katalogu požadavků MŠMT)
MATEMATIKA Maturitní témata společná část MZ vyšší úroveň (vychází z Katalogu požadavků MŠMT) 1. Číselné obory 1.1 Přirozená čísla provádět aritmetické operace s přirozenými čísly rozlišit prvočíslo a
Víceje číslo vyjádřené výrazem 7n 21n , C cos je iracionální číslo d) 0, 9 = 1
Číselné obory N, Z, Q, R, C (definice, základní operace v jednotlivých oborech, vlastnosti operací s čísly, různé zápisy čísel, znázornění čísel na číselné ose a v Gaussově rovině, řešení rovnic v jednotlivých
VíceMATEMATIKA 5. TŘÍDA. C) Tabulky, grafy, diagramy 1 - Tabulky, doplnění řady čísel podle závislosti 2 - Grafy, jízní řády 3 - Magické čtverce
MATEMATIKA 5. TŘÍDA 1 - Přirozená čísla a číslo nula a číselná osa, porovnávání b zaokrouhlování c zápis čísla v desítkové soustavě d součet, rozdíl e násobek, činitel, součin f dělení, dělení se zbytkem
VíceVZOROVÝ TEST PRO 2. ROČNÍK (2. A, 4. C)
VZOROVÝ TEST PRO. ROČNÍK (. A, 4. C) max. body 1 Vypočtěte danou goniometrickou rovnici a výsledek uveďte ve stupních a radiánech. cos x + sin x = 1 4 V záznamovém archu uveďte celý postup řešení. Řešte
VíceMATEMATIKA vyšší úroveň obtížnosti
ILUSTRAČNÍ DIDAKTICKÝ TEST MATEMATIKA vyšší úroveň obtížnosti DIDAKTICKÝ TEST Didaktický test obsahuje 0 úloh. Časový limit pro řešení didaktického testu je uveden na záznamovém archu. Povolené pomůcky:
Více5.2. Funkce, definiční obor funkce a množina hodnot funkce
5. Funkce 8. ročník 5. Funkce 5.. Opakování - Zobrazení a zápis intervalů a) uzavřený interval d) otevřený interval čísla a,b krajní body intervalu číslo a patří do intervalu (plné kolečko) číslo b patří
VíceA[ 20, 70, 50] a výška v = 70, volte z V > z S ; R[ 40, 20, 80], Q[60, 70, 10]. α(90, 60, 70).
Úkoly k zápočtu z BA008 Všechny úkoly jsou povinné. Úkoly číslo 4, 7, 12, 14 budou uznány automaticky, pokud poslední den semestru, tj. 3. 5. 2019, budou všechny ostatní úkoly odevzdané a uznané. 1. Je
VícePožadavky na konkrétní dovednosti a znalosti z jednotlivých tematických celků
Maturitní zkouška z matematiky 2012 požadované znalosti Zkouška z matematiky ověřuje matematické základy formou didaktického testu. Test obsahuje uzavřené i otevřené úlohy. V uzavřených úlohách je vždy
VíceMATEMATIKA vyšší úroveň obtížnosti
MATEMATIKA vyšší úroveň obtížnosti DIDAKTICKÝ TEST MAMVDC0T03 Maximální bodové hodnocení: 50 bodů Hranice úspěšnosti: 33 % Základní informace k zadání zkoušky Didaktický test obsahuje 23 úloh. Časový limit
VíceKvadratickou funkcí se nazývá každá funkce, která je daná rovnicí. Definičním oborem kvadratické funkce je množina reálných čísel.
Kvadratická funkce Kvadratickou funkcí se nazývá každá funkce, která je daná rovnicí y = ax 2 + bx + c Číslo a je různé od nuly, b,c jsou libovolná reálná čísla. Definičním oborem kvadratické funkce je
VícePokyny k hodnocení MATEMATIKA
Pokyny k hodnocení MTEMTIK Pokyny k hodnocení úlohy Je dán číselný výraz: 6 4 8 Výraz zapište jako mocninu čísla. SPRÁVNÉ ŘEŠENÍ, resp. SPRÁVNÉ ŘEŠENÍ S TOLERNCÍ NEDOSTTEČNÉ ŘEŠENÍ, resp. 4 99 3 0, resp.3
VíceGymnázium Jiřího Ortena, Kutná Hora
Předmět: Náplň: Třída: Počet hodin: Pomůcky: Cvičení z matematiky algebra (CZMa) Systematizace a prohloubení učiva matematiky: Číselné obory, Algebraické výrazy, Rovnice, Funkce, Posloupnosti, Diferenciální
VíceCVIČNÝ TEST 43. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 13 IV. Záznamový list 15
CVIČNÝ TEST 43 Mgr. Tomáš Kotler OBSAH I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 13 IV. Záznamový list 15 I. CVIČNÝ TEST 1 bod 1 Pro a, b R + určete hodnotu výrazu ( a b) 2 ( a + b) 2, víte-li,
VíceUrci parametricke vyjadreni primky zadane body A[2;1] B[3;3] Urci, zda bod P [-3;5] lezi na primce AB, kde A[1;1] B[5;-3]
1 Parametricke vyjadreni primky Priklad 16 Priklad 17 Priklad 18 jestlize Urci parametricke vyjadreni primky zadane body A[2;1] B[3;3] Urci, zda bod P [-3;5] lezi na primce AB, kde A[1;1] B[5;-3] Urci,
VíceNezbytnou součástí ústní zkoušky je řešení matematických příkladů, které student obdrží při zadání otázky.
Maturitní témata Matematika Školní rok 2016/17 Nezbytnou součástí ústní zkoušky je řešení matematických příkladů, které student obdrží při zadání otázky. Příprava ke zkoušce trvá 15 minut, ústní zkouška
VíceMaturitní otázky z předmětu MATEMATIKA
Wichterlovo gymnázium, Ostrava-Poruba, příspěvková organizace Maturitní otázky z předmětu MATEMATIKA 1. Výrazy a jejich úpravy vzorce (a+b)2,(a+b)3,a2-b2,a3+b3, dělení mnohočlenů, mocniny, odmocniny, vlastnosti
VíceCVIČNÝ TEST 1. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 21 IV. Záznamový list 23
CVIČNÝ TEST 1 Mgr. Tomáš Kotler OBSAH I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 21 IV. Záznamový list 23 I. CVIČNÝ TEST 1 Určete výraz V, který je největším společným dělitelem výrazů V 1 V 3 :
VícePRIMA Přirozená čísla Celá čísla Desetinná čísla Číselná osa Pravidla pro násobení a dělení 10, 100, 1000..a 0,1, 0,01, 0,001.. Čísla navzájem opačná
PRIMA Přirozená čísla Celá čísla Desetinná čísla Číselná osa Pravidla pro násobení a dělení 10, 100, 1000..a 0,1, 0,01, 0,001.. Čísla navzájem opačná Racionální čísla Zlomky Rozšiřování a krácení zlomků
VíceCVIČNÝ TEST 41. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 7 III. Klíč 15 IV. Záznamový list 17
CVIČNÝ TEST 41 Mgr. Tomáš Kotler OBSAH I. Cvičný test 2 II. Autorské řešení 7 III. Klíč 15 IV. Záznamový list 17 I. CVIČNÝ TEST VÝCHOZÍ TEXT A OBRÁZEK K ÚLOZE 1 Je dán magický čtverec, pro nějž platí,
VíceCVIČNÝ TEST 6. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 19 IV. Záznamový list 21
CVIČNÝ TEST 6 Mgr. Tomáš Kotler OBSAH I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 19 IV. Záznamový list 21 I. CVIČNÝ TEST VÝCHOZÍ TEXT K ÚLOZE 1 Každý z n žáků jedné třídy z gymnázia v Přelouči se
VíceRozpis výstupů zima 2008 Geometrie
Rozpis výstupů zima 2008 Geometrie 20. 10. porovnávání úseček grafický součet úseček grafický rozdíl úseček... porovnávání úhlů grafický součet úhlů grafický rozdíl úhlů... osa úhlu úhly vedlejší a vrcholové...
VíceGymnázium Česká a Olympijských nadějí, České Budějovice, Česká 64, 37021
Maturitní témata MATEMATIKA 1. Funkce a jejich základní vlastnosti. Definice funkce, def. obor a obor hodnot funkce, funkce sudá, lichá, monotónnost funkce, funkce omezená, lokální a globální extrémy funkce,
Více