Program SMP pro kombinované studium
|
|
- Jaromír Kříž
- před 7 lety
- Počet zobrazení:
Transkript
1 Zadání příkladů k procvičení na seminář Program SMP pro kombinované studium Nejdůležitější typy příkladů - minimum znalostí před zkouškovou písemkou 1) Matice 1. Pro matice B = , C = určete A + C, A + B, A 3C, A.B, B.A, A.C, C.A. 2. Určete A.B, B.A a A.B B.A pro matice B = B = ;. 3. Pro matice B = ověřte, že platí (A + B) T = A T + B T
2 2) Lineární vektorové prostory 1. Ukažte, že polynomy q 1 (x) = x 2 + x + 1, q 2 (x) = x + 3, q 3 (x) = x 2 + 2x 1 tvoří bázi prostoru P 2 všech polynomů do stupně 2 (včetně nulového polynomu). Určete souřadnice polynomu p(x) = x 2 3x 6 vzhledem i. k bázi < q i > 3 i=1 prostoru P 2, ii. ke kanonické bázi prostoru P Podprostor U v prostoru R 5 uspořádaných pětic reálných čísel je generován prvky u 1 = 1, 2, 1, 1, 1 T, u 2 = 2, 1, 1, 2, 3 T, u 3 = 3, 2, 1, 1, 2 T, u 4 = 2, 5, 1, 2, 2 T. Určete dimenzi dim(u) podprostoru U a alespoň jednu bázi podprostoru U. 3. Ověřte, zda V je podprostor prostoru L. Pokud ano, určete jeho bázi a dimenzi: L = P 2, V = {p(x) = ax 2 + c; a, c R}; L = P 2, V = {p(x) = bx + 3; b R}; (c) L = R 2,2, V = {B R 2,2 ; A.B = B.A}, kde matice α β 1 1 je pevně daná, např.. γ δ 1 1 3) Determinanty Určete determinant det A matice A : , 2
3 ) Hodnost matice 1. Určete hodnost matice A : Nalezněte inverzní matici k matici A : (c)
4 (d) cos α sin α kde α R je libovolné reálné číslo. 3. Určete matici X z maticové rovnice: sin α cos α, X X = = ) Lineární zobrazení 1. Zobrazení L: R 2,2 P 2 je zobrazení z prostoru R 2,2 všech čtvercových matic řádu 2 do prostoru P 2 všech polynomů do stupně 2 (včetně nulového polynomu): ( ) a b L = (a + 2d)x 2 + (2a c)x + (c + 4d). c d Ověřte, že zobrazení L je lineární zobrazení. Určete jádro KerL zobrazení L, tj. nalezněte alespoň jednu jeho bázi a určete jeho dimenzi. (c) Podobně určete obraz ImL zobrazení L. (d) Určete matici M zobrazení L v kanonických bázích příslušných lineárních vektorových prostorů. 1 2 (e) Pro matici B = nalezněte obraz L(B) a souřadnice 3 1 B a L(B) vzhledem k příslušným kanonickým bázím jednotlivých lineárních prostorů. Ověřte, že platí M. B = L(B). 4
5 (f) Určete matici M zobrazení L vzhledem k bázím B 1 = v prostoru R 2,2, v prostoru P 2., B 2 = , B 3 = , B 4 = r 1 (x) = x 2 1, r 2 (x) = x 2 + 1, r 3 (x) = 2x Určete inverzní zobrazení L 1 k izomorfismu L: R 2,2 R 4 : ( ) a b L = c d = a + b + c + d, a + 2b + 3c + 4d, a + 3b + 6c + 10d, a + 4b + 10c + 20d. 3. Určete matici T přechodu od báze k bázi p 1 (x) = x 2, p 2 (x) = x, p 3 (x) = 1 q 1 (x) = x 2 + x + 1, q 2 (x) = x + 3, q 3 (x) = x 2 + 2x 1 v prostoru P 2 všech polynomů do stupně 2 (včetně nulového polynomu). Pro prvek p(x) = x 2 3x 6 ověřte, že T. p = p, kde p jsou souřadnice prvku p v bázi p 1, p 2, p 3 a p jsou souřadnice prvku p v bázi q 1 (x), q 2 (x), q 3 (x). 6) Soustavy lineárních algebraických rovnic 1. Určete všechna řešení soustavy lineárních algebraických rovnic: 5x 1 + x 2 + x 3 2x 4 = 18, x 1 2x 2 + 3x 3 + 4x 4 = 4, 2x 1 7x 2 + 8x x 4 = 6, 4x 1 + 3x 2 2x 3 6x 4 = 14, 3x 1 5x 2 + 4x 3 + 7x 4 = 7. 5
6 (c) (d) 3x 1 3x 2 + 2x x 4 + 2x 5 = 0, x 1 x 2 + 2x 3 + 3x 4 + 4x 5 = 0, x 1 + x 2 7x 4 + x 5 = 0, 2x 1 2x 2 + 3x 3 + 8x 4 + 8x 5 = 0. x 1 + 2x 2 x 3 + 3x 4 = 5, 2x 1 3x 2 + 3x 3 4x 4 = 17, 3x 1 + 4x 2 + 2x 3 2x 4 = 8, x 1 + 3x 2 2x 3 + 7x 4 = 4. x 1 + 2x 2 x 3 + 3x 4 + 4x 5 = 1, 2x 1 + 4x 2 3x 3 + 5x x 5 = 3, 3x 1 6x 2 + 2x 3 9x 4 3x 5 = 10, x 1 2x 2 + 3x 3 + 4x 4 + 6x 5 = 1, x 1 + 2x 2 + 6x 4 + 7x 5 = 2, 4x 1 + 8x 2 5x 3 + 8x 4 + 9x 5 = Určete všechna řešení soustavy lineárních algebraických rovnic v závislosti na reálném parametru: (c) x 1 + x 2 + λx 3 = 1, x 1 + λx 2 + x 3 = 1, λx 1 + x 2 + x 3 = 1. x 1 + 2x 2 + q.x 3 = 5, x 1 + x 2 + x 3 = 2, 2x 1 + q.x 2 + 8x 3 = 4. x 1 + 2x 2 + x 3 = a 2, 2x 1 3x 2 + a.x 3 = 1, 7x x 2 + a 2.x 3 = 4a K řešení soustavy s regulární maticí využijte postupně všechny tři metody, tj. Gaussovu eliminační metodu, Cramerovo pravidlo a řešení soustavy s využitím inverzní matice: x 1 + 2x 2 + 3x 3 = 3, x 1 + 3x 2 + 2x 3 = 1, 2x 1 + x 2 + 3x 3 = 6. 6
7 7) Polynomy Určete všechny kořeny polynomu p(x) a napište rozklad polynomu p(x) na součin kořenových činitelů a reálný rozklad polynomu p(x). 1. p(x) = 2x x 6 11x 5 153x x x x 96 ; 2. p(x) = x 9 13x 7 10x x x x x x + 72 ; 3. p(x) = x 4 16 ; 4. p(x) = x ; 5. p(x) = x 6 7x ) Jordanův tvar matice 1. Určete všechna vlastní čísla matice A, stanovte k nim příslušné vlastní vektory, určete Jordanův kanonický tvar J matice A. Určete matici T, pro kterou platí T.J.T 1 a ověřte platnost této rovnosti. (c) Pro daný lineární operátor L: R 3 R 3 určete vlastní čísla. Je operátor L diagonizovatelný? Pokud ano, určete bázi v prostoru R 3, pro kterou je matice tohoto lineárního operátoru diagonální. L(x 1, x 2, x 3 T ) = 0, 2x 1, x 2 T, 7
8 L(x 1, x 2, x 3 T ) = 20x 1 +8x 2 12x 3, 3x 1 +10x 2 3x 3, 6x 1 +4x 2 +2x 3 T. 9) Skalární násobení ( Eukleidovský vektorový prostor ) 1. Určete ortogonální bázi podprostoru V prostoru R 4, který je generován prvky y 1 = 1, 2, 1, 3 T, y 2 = 4, 1, 1, 1 T, y 3 = 7, 7, 4, 10 T, y 4 = 3, 1, 1, 0 T (při skalárním násobení (u, v) = u T.v ). 2. Určete ortogonální bázi podprostoru V v lineárním vektorovém prostoru C(a, b) všech reálných funkcí spojitých na intervalu a, b, kde je skalární násobení definováno předpisem (f, g) = b a f(x)g(x)dx pro každé f, g C(a, b). Podprostor V je generován funkcemi na intervalu a, b = 0, π 2, a, b = 0, π. 1, cos x, sin x 3. Určete ortogonální průmět v 0 prvku v L do podprostoru L 1, je-li L = R 5, v = 3, 1, 2, 4, 5 T a podprostor L 1 je generován prvky u 1 = 1, 0, 2, 1, 2 T, u 2 = 1, 1, 2, 0, 1 T, u 3 = 1, 2, 1, 1, 1 T, u 4 = 3, 1, 1, 2, 2 T. 4. Nalezněte polynom z prostoru P 2 všech polynomů do stupně 2 (včetně nulového polynomu), který je nejlepší aproximací funkce f(x) = x v normě indukované skalárním násobením (g, h) = 1 0 g(x)h(x)dx. (Návod: Nalezněte ortogonální průmět funkce f do prostoru P 2. ) 5. Metodou nejmenších čtverců určete polynom p(x) stupně nejvýše 1, který aproximuje naměřené hodnoty : x y(x) -3, ,5 0,5 5 8
9 10) Kvadratické formy 1. Je dána kvadratická forma κ(x) = 31x x x x 1 x x 1 x x 2 x 3. Určete inercii in(κ) a definitnost kvadratické formy κ(x). Napište kvadratickou formu κ(x) ve tvaru lineární kombinace čtverců souřadnic. 9
EUKLIDOVSKÉ PROSTORY
EUKLIDOVSKÉ PROSTORY Necht L je lineární vektorový prostor nad tělesem reálných čísel R. Zobrazení (.,.) : L L R splňující vlastnosti 1. (x, x) 0 x L, (x, x) = 0 x = 0, 2. (x, y) = (y, x) x, y L, 3. (λx,
PROSTORY SE SKALÁRNÍM SOUČINEM. Definice Nechť L je lineární vektorový prostor nad R. Zobrazení L L R splňující vlastnosti
PROSTORY SE SKALÁRNÍM SOUČINEM Definice Nechť L je lineární vektorový prostor nad R. Zobrazení L L R splňující vlastnosti 1. (x, x) 0 x L, (x, x) = 0 x = 0, 2. (x, y) = (y, x) x, y L, 3. (λx, y) = λ(x,
Úlohy k přednášce NMAG 101 a 120: Lineární algebra a geometrie 1 a 2,
Úlohy k přednášce NMAG a : Lineární algebra a geometrie a Verze ze dne. května Toto je seznam přímočarých příkladů k přednášce. Úlohy z tohoto seznamu je nezbytně nutné umět řešit. Podobné typy úloh se
vyjádřete ve tvaru lineární kombinace čtverců (lineární kombinace druhých mocnin). Rozhodněte o definitnosti kvadratické formy κ(x).
Řešené příklady z lineární algebry - část 6 Typové příklady s řešením Příklad 6.: Kvadratickou formu κ(x) = x x 6x 6x x + 8x x 8x x vyjádřete ve tvaru lineární kombinace čtverců (lineární kombinace druhých
A0B01LAA Lineární algebra a aplikace (příklady na cvičení- řešení)
A0B0LAA Lineární algebra a aplikace příklady na cvičení- řešení Martin Hadrava martin@hadrava.eu. ledna 0.týdenod9.9. Řešení soustav lineárních rovnic Gaussovou eliminační metodou diskuse počtu řešení..
1 Zobrazení 1 ZOBRAZENÍ 1. Zobrazení a algebraické struktury. (a) Ukažte, že zobrazení f : x
1 ZOBRAZENÍ 1 Zobrazení a algebraické struktury 1 Zobrazení Příklad 1.1. (a) Ukažte, že zobrazení f : x na otevřený interval ( 1, 1). x x +1 je bijekce množiny reálných čísel R (b) Necht a, b R, a < b.
MATICE. a 11 a 12 a 1n a 21 a 22 a 2n A = = [a ij]
MATICE Matice typu m/n nad tělesem T je soubor m n prvků z tělesa T uspořádaných do m řádků a n sloupců: a 11 a 12 a 1n a 21 a 22 a 2n A = = [a ij] a m1 a m2 a mn Prvek a i,j je prvek matice A na místě
Jedná se o soustavy ve tvaru A X = B, kde A je daná matice typu m n,
Soutavy lineárních algebraických rovnic Jedná se o soustavy ve tvaru A X = B, kde A je daná matice typu m n, X R n je sloupcový vektor n neznámých x 1,..., x n, B R m je daný sloupcový vektor pravých stran
ALGEBRA. Téma 5: Vektorové prostory
SLEZSKÁ UNIVERZITA V OPAVĚ Matematický ústav v Opavě Na Rybníčku 1, 746 01 Opava, tel. (553) 684 611 DENNÍ STUDIUM Téma 5: Vektorové prostory Základní pojmy Vektorový prostor nad polem P, reálný (komplexní)
1 Báze a dimenze vektorového prostoru 1
1 Báze a dimenze vektorového prostoru 1 Báze a dimenze vektorového prostoru 1 2 Aritmetické vektorové prostory 7 3 Eukleidovské vektorové prostory 9 Levá vnější operace Definice 5.1 Necht A B. Levou vnější
ZADÁNÍ ZKOUŠKOVÉ PÍSEMNÉ PRÁCE Z PŘEDMĚTU LINEÁRNÍ ALGEBRA PRO IT. Verze 1.1A
Verze 1.1A Čas na práci: 1 minut Za každý úkol můžete získat maximálně 1 bodů. Řešení každého příkladu zapisujte čitelně a srozumitelně, 2x 1 +4x 3 +3x 4 = 4 x 1 +2x 2 +4x 3 3x 4 = 1 2x 1 +x 2 x 3 3x 4
maticeteorie 1. Matice A je typu 2 4, matice B je typu 4 3. Jakých rozměrů musí být matice X, aby se dala provést
Úlohy k zamyšlení 1. Zdůvodněte, proč třetí řádek Hornerova schématu pro vyhodnocení polynomu p v bodě c obsahuje koeficienty polynomu r, pro který platí p(x) = (x c) r(x) + p(c). 2. Dokažte, že pokud
Primitivní funkce a Riemann uv integrál Lineární algebra Taylor uv polynom Extrémy funkcí více prom ˇenných Matematika III Matematika III Program
Program Primitivní funkce a Riemannův integrál Program Primitivní funkce a Riemannův integrál Lineární algebra Program Primitivní funkce a Riemannův integrál Lineární algebra Taylorův polynom Program Primitivní
DEFINICE Z LINEÁRNÍ ALGEBRY
DEFINICE Z LINEÁRNÍ ALGEBRY Skripta Matematické metody pro statistiku a operační výzkum (Nešetřilová, H., Šařecová, P., 2009). 1. definice Vektorovým prostorem rozumíme neprázdnou množinu prvků V, na které
Učební texty k státní bakalářské zkoušce Matematika Skalární součin. študenti MFF 15. augusta 2008
Učební texty k státní bakalářské zkoušce Matematika Skalární součin študenti MFF 15. augusta 2008 1 10 Skalární součin Požadavky Vlastnosti v reálném i komplexním případě Norma Cauchy-Schwarzova nerovnost
2. Určete jádro KerL zobrazení L, tj. nalezněte alespoň jednu jeho bázi a určete jeho dimenzi.
Řešené příklady z lineární algebry - část 3 Typové příklady s řešením Příklad 3.1: Zobrazení L: P 3 R 23 je zobrazení z prostoru P 3 všech polynomů do stupně 3 (včetně nulového polynomu) do prostoru R
Polynomy. Matice a determinanty. 1. Rozložte na součin kořenových činitelů polynom. P(x) = x 4 6x Řešení: x 4 6x 2 +8 = (x+2)(x 2)(x+ 2)(x 2)
Polynomy 1 Rozložte na součin kořenových činitelů polynom P(x = x 4 6x 2 +8 x 4 6x 2 +8 = (x+2(x 2(x+ 2(x 2 2 Rozložte na součin ireducibilních reálných polynomů polynom P(x = x 6 64 x 6 64 = (x 2(x 2
a počtem sloupců druhé matice. Spočítejme součin A.B. Označme matici A.B = M, pro její prvky platí:
Řešené příklady z lineární algebry - část 1 Typové příklady s řešením Příklady jsou určeny především k zopakování látky před zkouškou, jsou proto řešeny se znalostmi učiva celého semestru. Tento fakt se
Cvičení z Lineární algebry 1
Cvičení z Lineární algebry Michael Krbek podzim 2003 2392003 Hodina Jsou dána komplexní čísla z = +2 i a w = 2 i Vyjádřete c algebraickém tvaru (z + w) 3,, (zw), z w 2 Řešte v komplexním oboru rovnice
Eukleidovský prostor a KSS Eukleidovský prostor je bodový prostor, ve kterém je definována vzdálenost dvou bodů (metrika)
Eukleidovský prostor a KSS Eukleidovský prostor je bodový prostor, ve kterém je definována vzdálenost dvou bodů (metrika) Kartézská soustava souřadnic je dána počátkem O a uspořádanou trojicí bodů E x,
a + b + c = 2 b + c = 1 a b = a 1 2a 1 + a a 3 + a 5 + 2a 2 + a 2 + a
Zadání A. 1. Polynom P (x) má v uspořádané bázi (x 2 + x 1, 2x 2 x 1, x 2 + x + 2) souřadnice (1, 1, 1). Najděte jeho souřadnice vzhledem k uspořádané bázi (x 2 1, x 2 + x 1, x 2 + x). Nejprve si spočítáme
15 Maticový a vektorový počet II
M. Rokyta, MFF UK: Aplikovaná matematika III kap. 15: Maticový a vektorový počet II 1 15 Maticový a vektorový počet II 15.1 Úvod Opakování z 1. ročníku (z kapitoly 8) Označení. Množinu všech reálných resp.
NALG 001 Lineární algebra a geometrie 1, zimní semestr MFF UK Doba řešení: 3 hodiny
NALG 001 Lineární algebra a geometrie 1, zimní semestr MFF UK Závěrečná zkouška verze cvičná 9.1.2013 Doba řešení: 3 hodiny Přednášející: L. Barto, J. Tůma Křestní jméno: Příjmení: Instrukce Neotvírejte
Požadavky ke zkoušce. Ukázková písemka
Požadavky ke zkoušce Zkouška z předmětu MATEMATIKA 1 má dvě části Písemná část: Písemná část se ještě dále rozděluje na praktickou část písemku a teoretickou část test. Písemka trvá 90 minut a je v ní
α 1 α 2 + α 3 = 0 2α 1 + α 2 + α 3 = 0
Vzhledem k tomu, že jsem to psala ve velkém spěchu, mohou se vyskytnout nějaké chybičky. Pokud nějaké najdu, opravím je hned po prázdninách. Zadání A. 1. Vektory u, v, w jsou lineárně nezávislé. Rozhodněte,
Matematika 1 sbírka příkladů
Matematika 1 sbírka příkladů RNDr. Rudolf SCHWARZ, CSc. Brno 2012 1. Poznámka Výsledky jednotlivých příkladů mají tuto barvu. 2. Poznámka Pokud je v hranatých závorkách uvedeno písmeno, označuje, ze které
1 Vektorové prostory a podprostory
Pro nahrazení účasti v jednotlivých cvičeních (resp. pro studenty kombinované formy) je dostačující vypracování a odevzdání tučně vyznačených příkladů. 1 Vektorové prostory a podprostory Definujte vektorový
Vektorový prostor. Př.1. R 2 ; R 3 ; R n Dvě operace v R n : u + v = (u 1 + v 1,...u n + v n ), V (E 3 )...množina vektorů v E 3,
Vektorový prostor Příklady: Př.1. R 2 ; R 3 ; R n...aritmetický n-rozměrný prostor Dvě operace v R n : součet vektorů u = (u 1,...u n ) a v = (v 1,...v n ) je vektor u + v = (u 1 + v 1,...u n + v n ),
Požadavky k písemné přijímací zkoušce z matematiky do navazujícího magisterského studia pro neučitelské obory
Požadavky k písemné přijímací zkoušce z matematiky do navazujícího magisterského studia pro neučitelské obory Zkouška ověřuje znalost základních pojmů, porozumění teorii a schopnost aplikovat teorii při
z = a bi. z + v = (a + bi) + (c + di) = (a + c) + (b + d)i. z v = (a + bi) (c + di) = (a c) + (b d)i. z v = (a + bi) (c + di) = (ac bd) + (bc + ad)i.
KOMLEXNÍ ČÍSLA C = {a + bi; a, b R}, kde i 2 = 1 Číslo komplexně sdružené k z = a + bi je číslo z = a bi. Operace s komplexními čísly: z = a + bi, kde a, b R v = c + di, kde c, d R Sčítání Odčítání Násobení
7. Lineární vektorové prostory
7. Lineární vektorové prostory Tomáš Salač MÚ UK, MFF UK LS 2017/18 Tomáš Salač ( MÚ UK, MFF UK ) 7. Lineární vektorové prostory LS 2017/18 1 / 62 7.1 Definice a příklady Definice 7.1 Množina G s binární
VĚTY Z LINEÁRNÍ ALGEBRY
VĚTY Z LINEÁRNÍ ALGEBRY Skripta Matematické metody pro statistiku a operační výzkum (Nešetřilová, H., Šařecová, P., 2009). 1. věta Nechť M = {x 1, x 2,..., x k } je množina vektorů z vektorového prostoru
Matice. Je dána matice A R m,n, pak máme zobrazení A : R n R m.
Matice lineárních zobrazení [1] Připomenutí Zobrazení A : L 1 L 2 je lineární, když A( x + y ) = A( x ) + A( y ), A(α x ) = α A( x ). Což je ekvivalentní s principem superpozice: A(α 1 x 1 + + α n x n
8 Matice a determinanty
M Rokyta, MFF UK: Aplikovaná matematika II kap 8: Matice a determinanty 1 8 Matice a determinanty 81 Matice - definice a základní vlastnosti Definice Reálnou resp komplexní maticí A typu m n nazveme obdélníkovou
Požadavky ke zkoušce
Požadavky ke zkoušce Zkouška z předmětu MATEMATIKA 2 má dvě části Písemná část: Písemná část se ještě dále rozděluje na praktickou část písemku a teoretickou část test. Písemka trvá 90 minut a je v ní
Operace s maticemi. 19. února 2018
Operace s maticemi Přednáška druhá 19. února 2018 Obsah 1 Operace s maticemi 2 Hodnost matice (opakování) 3 Regulární matice 4 Inverzní matice 5 Determinant matice Matice Definice (Matice). Reálná matice
Matematika 2 (Fakulta ekonomická) Cvičení z lineární algebry. TU v Liberci
Matematika 2 (Fakulta ekonomická) Cvičení z lineární algebry TU v Liberci Jiří Hozman 1. dubna 2010 Cvičení 2 Příklad 1. Rozhodněte, zda lze vektor x vyjádřit jako lineární kombinaci vektorů u, v, w, v
AVDAT Vektory a matice
AVDAT Vektory a matice Josef Tvrdík Katedra informatiky Přírodovědecká fakulta Ostravská univerzita Vektory x = x 1 x 2. x p y = y 1 y 2. y p Řádkový vektor dostaneme transpozicí sloupcového vektoru x
Okruhy, podokruhy, obor integrity, těleso, homomorfismus. 1. Rozhodněte, zda daná množina M je podokruhem okruhu (C, +, ): f) M = { a
Sbírka příkladů z okruhů a polynomů Algebra I Okruhy, podokruhy, obor integrity, těleso, homomorfismus 1. Rozhodněte, zda daná množina M je podokruhem okruhu (C, +, ): a) M = {a + i a R}, b) M = {a + i
Učební texty k státní bakalářské zkoušce Matematika Vlastní čísla a vlastní hodnoty. študenti MFF 15. augusta 2008
Učební texty k státní bakalářské zkoušce Matematika Vlastní čísla a vlastní hodnoty študenti MFF 15. augusta 2008 1 14 Vlastní čísla a vlastní hodnoty Požadavky Vlastní čísla a vlastní hodnoty lineárního
(2) [B] Nechť G je konečná grupa tvořena celočíselnými maticemi roměru 2 2 s operací násobení. Nalezněte všechny takové grupy až na izomorfizmus.
(1 [B] Nechť A : R 6 R 6 je lineární zobrazební takové, že A 26 = I. Najděte lineární prostory V 1, V 2 a V 3 takové, že R 6 = V 1 V 2 V 3 dim V 1 = dim V 2 = dim V 3 AV 1 V 1, AV 2 V 2 a AV 3 V 3 (2 [B]
Faculty of Nuclear Sciences and Physical Engineering Czech Technical University in Prague
Tomáš Faculty of Nuclear Sciences and Physical Engineering Czech Technical University in Prague 1 / 63 1 2 3 4 5 6 7 8 9 10 11 2 / 63 Aritmetický vektor Definition 1 Aritmetický vektor x je uspořádaná
Zdrojem většiny příkladů je sbírka úloh 1. cvičení ( ) 2. cvičení ( )
Příklady řešené na cvičení LA II - LS 1/13 Zdrojem většiny příkladů je sbírka úloh http://kam.mff.cuni.cz/~sbirka/ 1. cvičení (..13) 1. Rozhodněte, které z následujících operací jsou skalárním součinem
Matematika B101MA1, B101MA2
Matematika B101MA1, B101MA2 Zařazení předmětu: povinný předmět 1.ročníku bc studia 2 semestry Rozsah předmětu: prezenční studium 2 + 2 kombinované studium 16 + 0 / semestr Zakončení předmětu: ZS zápočet
Matematický ústav Slezské univerzity v Opavě Učební texty k přednášce ALGEBRA II, letní semestr 2000/2001 Michal Marvan. 14.
Matematický ústav Slezské univerzity v Opavě Učební texty k přednášce ALGEBRA II, letní semestr 2000/2001 Michal Marvan 14. Vlastní vektory Bud V vektorový prostor nad polem P. Lineární zobrazení f : V
Co byste měl/a zvládnout po 6. týdnu
Co byste měl/a zvládnout po 6. týdnu Zde je uveden naprostý základ. Nejde o úplný výčet všech dovedností. Jiří Velebil: A7B01LAG Zvládnutá látka po 6. týdnu 1/8 Slovník základních pojmů Monomorfismus,
Vlastní číslo, vektor
[1] Vlastní číslo, vektor motivace: směr přímky, kterou lin. transformace nezmění invariantní podprostory charakteristický polynom báze, vzhledem ke které je matice transformace nejjednodušší podobnost
Řešené úlohy z Úvodu do algebry 1
Řešené úlohy z Úvodu do algebry Veronika Sobotíková katedra matematiky FEL ČVUT Vzhledem k tomu, že se ze strany studentů často setkávám s nepochopením požadavku zdůvodnit jednotlivé kroky postupu řešení,
Z teorie je nutné znát pojmy: lineární funkcionál, jádro, hodnost a defekt lineárního funkcionálu. Také využijeme 2. větu o dimenzi.
Lineární funkcionál Z teorie je nutné znát pojm: lineární funkcionál jádro hodnost a defekt lineárního funkcionálu Také vužijeme větu o dimenzi [cvičení] Nechť je definován funkcionál ϕ : C C pro každé
1 Linearní prostory nad komplexními čísly
1 Linearní prostory nad komplexními čísly V této přednášce budeme hledat kořeny polynomů, které se dále budou moci vyskytovat jako složky vektorů nebo matic Vzhledem k tomu, že kořeny polynomu (i reálného)
VÝSLEDKY Písemný test z předmětu BI-LIN( ), varianta R
VÝSLEDKY Písemný test z předmětu BI-LIN(19. 4. 2011), varianta R 1.Nechť p, q, rjsoupolynomy,všechnymajístupeňroven n.pakpolynom má stupeň: a)vždyroven n 2, b)vždyroven2n, c)vždyroven n, d)nejvýšeroven
ftp://math.feld.cvut.cz/pub/olsak/linal/
Petr Olšák Výcuc z textu Lineární algebra určeno pro promítání na přednášce Úvod do algebry http://www.olsak.net/linal.html ftp://math.feld.cvut.cz/pub/olsak/linal/ http://math.feld.cvut.cz/skripta/ua/
z textu Lineární algebra
2 Úvodní poznámky Petr Olšák Výcuc z textu Lineární algebra určeno pro promítání na přednášce Úvod do algebry http://www.olsak.net/linal.html ftp://math.feld.cvut.cz/pub/olsak/linal/ http://math.feld.cvut.cz/skripta/ua/
ÚlohykpřednášceNMAG101a120: Lineární algebra a geometrie 1,
ÚlohykpřednášceNMAGa: Lineární algebra a geometrie 5 Verzezedne9.prosince Toto je seznam přímočarých příkladů k přednášce. Úlohy z tohoto seznamu je nezbytně nutné umět řešit. Podobné typy úloh se budou
těchto písemek (bez řešení) najdete na (odkazy v posledních dvou odstavcích před sekcí Literatura ).
Vážení studenti, předkládám vám zde vzorová řešení písemek, které proběhly letos v semestru, a také řešení vzorové písemky. Zadání těchto písemek (bez řešení) najdete na http://math.feld.cvut.cz/0educ/pozad/y01alg.htm
Vlastní čísla a vlastní vektory
Kapitola 15 Vlastní čísla a vlastní vektory V této a následujících kapitolách budeme zkoumat jeden z nejdůležitějších pojmů tohoto kurzu. Definice15.1 Buď A:V Vlineárnízobrazení,Vvektorovýprostornad tělesem
Kapitola 11: Lineární diferenciální rovnice 1/15
Kapitola 11: Lineární diferenciální rovnice 1/15 Lineární diferenciální rovnice 2. řádu Definice: Lineární diferenciální rovnice 2-tého řádu je rovnice tvaru kde: y C 2 (I) je hledaná funkce a 0 (x)y +
Definice 13.1 Kvadratická forma v n proměnných s koeficienty z tělesa T je výraz tvaru. Kvadratická forma v n proměnných je tak polynom n proměnných s
Kapitola 13 Kvadratické formy Definice 13.1 Kvadratická forma v n proměnných s koeficienty z tělesa T je výraz tvaru f(x 1,..., x n ) = a ij x i x j, kde koeficienty a ij T. j=i Kvadratická forma v n proměnných
Pro jakou hodnotu parametru α jsou zadané vektory kolmé? (Návod: Vektory jsou kolmé, je-li jejich skalární součin roven nule.)
Vybrané příklady ze skript J. Neustupa, S. Kračmar: Sbírka příkladů z Matematiky I I. LINEÁRNÍ ALGEBRA I.. Vektory, vektorové prostory Jsou zadány vektory u, v, w a reálná čísla α, β, γ. Vypočítejte vektor
Matematika I A ukázkový test 1 pro 2011/2012. x + y + 3z = 1 (2a 1)x + (a + 1)y + z = 1 a
Matematika I A ukázkový test 1 pro 2011/2012 1. Je dána soustava rovnic s parametrem a R x y + z = 1 a) Napište Frobeniovu větu. x + y + 3z = 1 (2a 1)x + (a + 1)y + z = 1 a b) Vyšetřete počet řešení soustavy
Interpolace, ortogonální polynomy, Gaussova kvadratura
Interpolace, ortogonální polynomy, Gaussova kvadratura Petr Tichý 20. listopadu 2013 1 Úloha Lagrangeovy interpolace Dán omezený uzavřený interval [a, b] a v něm n + 1 různých bodů x 0, x 1,..., x n. Nechť
)(x 2 + 3x + 4),
3 IREDUCIBILNÍ ROZKLADY POLYNOMŮ V T [X] 3 Ireducibilní rozklady polynomů v T [x] - rozklady polynomů na ireducibilní (dále nerozložitelné) prvky v oboru integrity polynomů jedné neurčité x nad tělesem
Všechno, co jste kdy chtěli vědět o maticích, ale báli jste se zeptat
Všechno, co jste kdy chtěli vědět o maticích, ale báli jste se zeptat Čtvercová matice n n, např. může reprezentovat: A = A A 2 A 3 A 2 A 22 A 23 A 3 A 32 A 33 matici koeficientů soustavy n lineárních
Operace s maticemi
Operace s maticemi Seminář druhý 17.10. 2018 Obsah 1 Operace s maticemi 2 Hodnost matice 3 Regulární matice 4 Inverzní matice Matice Definice (Matice). Reálná matice typu m n je obdélníkové schema A =
Skalární součin dovoluje zavedení metriky v afinním bodovém prostoru, tj. umožňuje nám určovat vzdálenosti, odchylky, obsahy a objemy.
6 Skalární součin Skalární součin dovoluje zavedení metriky v afinním bodovém prostoru, tj. umožňuje nám určovat vzdálenosti, odchylky, obsahy a objemy. Příklad: Určete odchylku přímek p, q : p : x =1+3t,
ALGEBRA. Téma 4: Grupy, okruhy a pole
SLEZSKÁ UNIVERZITA V OPAVĚ Matematický ústav v Opavě Na Rybníčku 1, 746 01 Opava, tel. (553) 684 611 DENNÍ STUDIUM Téma 4: Grupy, okruhy a pole Základní pojmy unární operace, binární operace, asociativita,
Matematika I A ukázkový test 1 pro 2014/2015
Matematika I A ukázkový test 1 pro 2014/2015 1. Je dána soustava rovnic s parametrem a R x y + z = 1 x + y + 3z = 1 (2a 1)x + (a + 1)y + z = 1 a a) Napište Frobeniovu větu (existence i počet řešení). b)
Základy maticového počtu Matice, determinant, definitnost
Základy maticového počtu Matice, determinant, definitnost Petr Liška Masarykova univerzita 18.9.2014 Matice a vektory Matice Matice typu m n je pravoúhlé (nebo obdélníkové) schéma, které má m řádků a n
Linearní algebra příklady
Linearní algebra příklady 6. listopadu 008 9:56 Značení: E jednotková matice, E ij matice mající v pozici (i, j jedničku a jinak nuly. [...]... lineární obal dané soustavy vektorů. Popište pomocí maticového
[1] Motivace. p = {t u ; t R}, A(p) = {A(t u ); t R} = {t A( u ); t R}
Vlastní číslo, vektor motivace: směr přímky, kterou lin. transformace nezmění invariantní podprostory charakteristický polynom báze, vzhledem ke které je matice transformace nejjednodušší podobnost s diagonální
Vlastní čísla a vlastní vektory
Kapitola 11 Vlastní čísla a vlastní vektory Základní motivace pro studium vlastních čísel a vektorů pochází z teorie řešení diferenciálních rovnic Tato teorie říká, že obecné řešení lineární diferenciální
Vlastní čísla a vlastní vektory
5 Vlastní čísla a vlastní vektor Poznámka: Je-li A : V V lineární zobrazení z prostoru V do prostoru V někd se takové zobrazení nazývá lineárním operátorem, pak je přirozeným požadavkem najít takovou bázi
1 Projekce a projektory
Cvičení 3 - zadání a řešení úloh Základy numerické matematiky - NMNM20 Verze z 5. října 208 Projekce a projektory Opakování ortogonální projekce Definice (Ortogonální projekce). Uvažujme V vektorový prostor
Lineární algebra : Skalární součin a ortogonalita
Lineární algebra : Skalární součin a ortogonalita (15. přednáška) František Štampach, Karel Klouda LS 2013/2014 vytvořeno: 30. dubna 2014, 09:00 1 2 15.1 Prehilhertovy prostory Definice 1. Buď V LP nad
Soustavy linea rnı ch rovnic
[1] Soustavy lineárních rovnic vlastnosti množin řešení metody hledání řešení nejednoznačnost zápisu řešení a) soustavy, 10, b) P. Olšák, FEL ČVUT, c) P. Olšák 2010, d) BI-LIN, e) L, f) 2009/2010, g)l.
Symetrické a kvadratické formy
Symetrické a kvadratické formy Aplikace: klasifikace kvadrik(r 2 ) a kvadratických ploch(r 3 ), optimalizace(mpi) BI-LIN (Symetrické a kvadratické formy) 1 / 20 V celé přednášce uvažujeme číselné těleso
6. Vektorový počet Studijní text. 6. Vektorový počet
6. Vektorový počet Budeme se pohybovat v prostoru R n, což je kartézská mocnina množiny reálných čísel R; R n = R R. Obvykle nám bude stačit omezení na případy n = 1, 2, 3; nicméně teorie je platná obecně.
výsledek 2209 y (5) (x) y (4) (x) y (3) (x) 7y (x) 20y (x) 12y(x) (horní indexy značí derivaci) pro 1. y(x) = sin2x 2. y(x) = cos2x 3.
Vypočtěte y (5) (x) y (4) (x) y (3) (x) 7y (x) 20y (x) 12y(x) (horní indexy značí derivaci) pro 1. y(x) = sin2x 2. y(x) = cos2x 3. y(x) = x sin2x 4. y(x) = x cos2x 5. y(x) = e x 1 6. y(x) = xe x 7. y(x)
1. Jordanův kanonický tvar
. Jordanův kanonický tvar Obecně nelze pro zadaný lineární operátor ϕ : U U najít bázi α takovou, že (ϕ) α,α by byla diagonální. Obecně však platí, že pro každý lineární operátor ϕ : U U nad komplexními
Diferenˇcní rovnice Diferenciální rovnice Matematika IV Matematika IV Program
Program Diferenční rovnice Program Diferenční rovnice Diferenciální rovnice Program Frisch a Samuelson: Systém je dynamický, jestliže jeho chování v čase je určeno funkcionální rovnicí, jejíž neznámé závisí
Dnešní látka Opakování: normy vektorů a matic, podmíněnost matic Jacobiova iterační metoda Gaussova-Seidelova iterační metoda
Předmět: MA 4 Dnešní látka Opakování: normy vektorů a matic, podmíněnost matic Jacobiova iterační metoda Gaussova-Seidelova iterační metoda Četba: Text o lineární algebře v Příručce přežití na webových
ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE. Matematika 0A1. Cvičení, zimní semestr. Samostatné výstupy. Jan Šafařík
Vysoké učení technické v Brně Stavební fakulta ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE Matematika 0A1 Cvičení, zimní semestr Samostatné výstupy Jan Šafařík Brno c 2003 Obsah 1. Výstup č.1 2 2. Výstup
Četba: Texty o lineární algebře (odkazy na webových stránkách přednášejícího).
Předmět: MA 4 Dnešní látka Vektorový (lineární) prostor (připomenutí) Normovaný lineární prostor Normy matic a vektorů Symetrické matice, pozitivně definitní matice Gaussova eliminační metoda, podmíněnost
Četba: Texty o lineární algebře (odkazy na webových stránkách přednášejícího).
Předmět: MA 4 Dnešní látka Lineární (vektorový) prostor Normovaný lineární prostor Normy matic a vektorů Symetrické matice, pozitivně definitní matice Gaussova eliminační metoda, podmíněnost matic Četba:
2. Určte hromadné body, limitu superior a limitu inferior posloupností: 2, b n = n. n n n.
Písemka matematika 3 s řešením 1. Vypočtěte lim n( 1 + n 2 n), n lim n (( 1 + 1 n e ) n ) n. 1/2, 1/ e 2. Určte hromadné body, limitu superior a limitu inferior posloupností: a n = sin nπ ( 2, b n = n
V: Pro nulový prvek o lineárního prostoru L platí vlastnosti:
Zpracoval: hypspave@fel.cvut.cz. Základní vlastnosti abstraktních lineárních prostorů. Lineární závislost, nezávislost, báze, souřadnice vzhledem k bázi, matice lineárního zobrazení vzhledem k bázím.skalární
Podobnost matic. Definice 8.6. Dány matice A, B M n (C). Jestliže existuje regulární matice P M n (C) tak,
Podobnost matic Definice 84 Dány matice A, B M n (C) Jestliže existuje regulární matice P M n (C) tak, že B = P 1 AP, pak říkáme, že matice B je podobná matici A a píšeme A B Takto zavedená binární relace
LDF MENDELU. Simona Fišnarová (MENDELU) LDR druhého řádu VMAT, IMT 1 / 22
Lineární diferenciální rovnice druhého řádu Vyšší matematika, Inženýrská matematika LDF MENDELU Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF)
CHARAKTERISTICKÉ VEKTORY
Kapitola 3 CHARAKTERISTICKÉ VEKTORY Nyní se budeme zabývat vlastnostmi matic lineárních zobrazení A: V V, kde V je vektorový prostor dimenze n Protože každý komplexní n -dimenzionální vektorový prostor
Arnoldiho a Lanczosova metoda
Arnoldiho a Lanczosova metoda 1 Částečný problém vlastních čísel Ne vždy je potřeba (a někdy to není ani technicky možné) nalézt celé spektrum dané matice (velké řídké matice). Úloze, ve které chceme aproximovat
V předchozí kapitole jsme podstatným způsobem rozšířili naši představu o tom, co je to číslo. Nadále jsou pro nás důležité především vlastnosti
Kapitola 5 Vektorové prostory V předchozí kapitole jsme podstatným způsobem rozšířili naši představu o tom, co je to číslo. Nadále jsou pro nás důležité především vlastnosti operací sčítání a násobení
0.1 Úvod do lineární algebry
Matematika KMI/PMATE 1 01 Úvod do lineární algebry 011 Vektory Definice 011 Vektorem aritmetického prostorur n budeme rozumět uspořádanou n-tici reálných čísel x 1, x 2,, x n Definice 012 Definice sčítání
Státní závěrečná zkouška z oboru Matematika a její použití v přírodních vědách
Státní závěrečná zkouška z oboru Matematika a její použití v přírodních vědách Ústní zkouška z oboru Náročnost zkoušky je podtržena její ústní formou a komisionálním charakterem. Předmětem bakalářské zkoušky
Katedra aplikované matematiky FEI VŠB Technická univerzita Ostrava
Lineární algebra 9. přednáška: Ortogonalita Dalibor Lukáš Katedra aplikované matematiky FEI VŠB Technická univerzita Ostrava email: dalibor.lukas@vsb.cz http://www.am.vsb.cz/lukas/la Text byl vytvořen
VIDEOSBÍRKA DERIVACE
VIDEOSBÍRKA DERIVACE. Zderivuj funkci y = ln 2 (sin x + tg x 2 ) 2. Zderivuj funkci y = 2 e x2 cos 3x 3. Zderivuj funkci y = 3 e sin2 (x 2 ). Zderivuj funkci y = x3 +2x 2 +sin x x 5. Zderivuj funkci y
Učební texty k státní bakalářské zkoušce Matematika Diferenciální rovnice. študenti MFF 15. augusta 2008
Učební texty k státní bakalářské zkoušce Matematika Diferenciální rovnice študenti MFF 15. augusta 2008 1 7 Diferenciální rovnice Požadavky Soustavy lineárních diferenciálních rovnic prvního řádu lineární
1 Analytická geometrie
1 Analytická geometrie 11 Přímky Necht A E 3 a v R 3 je nenulový Pak p = A + v = {X E 3 X = A + tv, t R}, je přímka procházející bodem A se směrovým vektorem v Rovnici X = A + tv, t R, říkáme bodová rovnice
POŽADAVKY K SOUBORNÉ ZKOUŠCE Z MATEMATIKY
POŽADAVKY K SOUBORNÉ ZKOUŠCE Z MATEMATIKY Bakalářský studijní program B1101 (studijní obory - Aplikovaná matematika, Matematické metody v ekonomice, Aplikovaná matematika pro řešení krizových situací)
1. LINEÁRNÍ ALGEBRA Vektory Operace s vektory... 8 Úlohy k samostatnému řešení... 8
1 Lineární algebra 1 LINEÁRNÍ ALGEBRA 8 11 Vektory 8 111 Operace s vektory 8 8 112 Lineární závislost a nezávislost vektorů 8 8 113 Báze vektorového prostoru 9 9 12 Determinant 9 9 13 Matice 1 131 Operace
9. přednáška 26. listopadu f(a)h < 0 a pro h (0, δ) máme f(a 1 + h, a 2,..., a m ) f(a) > 1 2 x 1
9 přednáška 6 listopadu 007 Věta 11 Nechť f C U, kde U R m je otevřená množina, a a U je bod Pokud fa 0, nemá f v a ani neostrý lokální extrém Pokud fa = 0 a H f a je pozitivně negativně definitní, potom