Automaty a gramatiky. Uzávěrové vlastnosti v kostce R J BKJ DBKJ. Roman Barták, KTIML. Kvocienty s regulárním jazykem
|
|
- Zuzana Havlová
- před 6 lety
- Počet zobrazení:
Transkript
1 11 Automaty a gramatiky Roman Barták, KTIML bartak@ktiml.mff.cuni.cz Uzávěrové vlastnosti v kostce Sjednocení Průnik Průnik s RJ Doplněk Substituce/ homomorfismus Inverzní homomorfismus R J BKJ DBKJ Kvocienty s regulárním jazykem Bezkontextové jazyky jsou uzavřené na levý (pravý) kvocient s regulárním jazykem. R\L = { w u R uw L}, L/R = { u w R uw L} idea: ZA běží na prázdno (nečte vstup) paralelně s KA je-li KA v koncovém stavu, můžeme začít číst vstup formálně: konečný automat A 1 = (Q 1,X, δ 1,q 1,F 1 ) zásobníkový automat M 2 = (Q 2,X,Y,δ 2,q 2,Z 0,F 2 ) (přijímání koncovým stavem) definujme nový automat M = (Q, X, Y, δ, (q 1,q 2 ), Z 0, F 2 ), kde Q = (Q 1 Q 2 ) Q 2 (dvojice stavů pro paralelní běh ZA a KA) δ ((p,q), λ, Z) = { ((p,q ),u) a X p δ 1 (p, a) (q,u) δ 2 (q, a, Z)} { ((p,q ),u) (q,u) δ 2 (q, λ, Z) } { (q,z) p F 1 } δ (q, a, Z) = δ 2 (q, a, Z) a X {λ}, q Q 2 zřejmě L(M) = L(A 1 )\L(M 2 ) Uzávěrové vlastnosti deterministických BKJ Rozumné programovací jazyky jsou deterministické BKJ. Deterministické bezkontextové jazyky: nejsou uzavřené na průnik, jsou uzavřené na průnik s regulárním jazykem, jsou uzavřené na inverzní homomorfismus. Doplněk deterministického BKJ je opět deterministický BKJ prohodíme koncové a nekoncové stavy potíže: nemusí přečíst celé vstupní slovo krok není definován (např. vyprázdnění zásobníku) snadno ošetříme podložkou na zásobníku cyklus (zásobník roste, zásobník pulsuje) odhalíme pomocí čítače po přečtení slova prochází koncové a nekoncové stavy stačí si pamatovat, zda prošel koncovým stavem 11-1
2 Uzávěrové vlastnosti DBKJ v praxi DBKJ nejsou uzavřené na sjednocení (BKJ ano) L = {a i b j c k i j j k i k} je BKJ, ale není DBKJ sporem: nechť L je DBKJ potom -L (doplněk) je DBKJ -L a*b*c* = {a i b j c k i=j=k} je DBKJ - SPOR DBKJ nejsou uzavřené na homomorfismus (BKJ ano) L 1 = {a i b j c k i=j} je DBKJ L 2 = {a i b j c k j=k} je DBKJ 0L 1 1L 2 je DBKJ, 1L 1 1L 2 není DBKJ položme h(0) = 1 h(x) = x pro ostatní symboly h(0l 1 1L 2 ) = 1L 1 1L 2 Chomského hierarchie gramatiky typu 0 (rekurzivně spočetné jazyky L 0 ) pravidla v obecné formě gramatiky typu 1 (kontextové jazyky L 1 ) gramatiky typu 2 (bezkontextové jazyky L 2 ) pouze pravidla ve tvaru X w, X V N, w (V N V T )* gramatiky typu 3 (regulární/pravé lineární jazyky L 3 ) pouze pravidla ve tvaru X wy, X w, X,Y V N, w V T * Kontextové gramatiky Poznámky: neterminál X se přepisuje na w pouze v kontextu α a β pravidlo S λ slouží pouze pro přidání λ do jazyka L = {a n b n c n n 1} je kontextový jazyk (není BKJ) S asbc abc CB BC pozor, není kontextové pravidlo bb bb bc bc cc cc Separované gramatiky Gramatika je separovaná, pokud obsahuje pouze pravidla tvaru α β, kde: buď α,β V + N (neprázdné posloupnosti neterminálů) nebo α V N a β V T {λ}. Lemma: Ke každé gramatice G lze sestrojit ekvivalentní separovanou gramatiku G. nechť G = (V N,V T,S,P) pro každý terminál x V T zavedeme nový neterminál X v pravidlech z P nahradíme terminály odpovídajícími neterminály a přidáme pravidla X x G = (V N V T,V T,S,P {X x x V T }) zřejmě L(G) = L(G ) 11-2
3 Od monotonie ke kontextovosti Gramatika je monotónní (nevypouštějící), jestliže pro každé pravidlo (u v) P platí u v. Monotónní gramatiky slovo v průběhu generování nezkracují. Věta: Ke každé monotónní gramatice lze nalézt ekvivalentní gramatika kontextovou. nejprve převedeme gramatiku na separovanou tím se monotonie neporuší (+ pravidla X x jsou kontextová) zbývají pravidla A 1 A m B 1 B n (kde m n) převedeme na kontextová pravidla s novými neterminály C A 1 A 2 A m C 1 A 2 A m C 1 A 2 A m C 1 C 2 A m C 1 C m-1 A m C 1 C m-1 C m C 1 C m B 1 C m B 1 C 2 C m B 1 B 2 C m B 1 B m-1 C m B 1 B m-1 B m B n Příklad kontextového jazyka L = {a i b j c k 1 i j k} je kontextový jazyk (není BKJ) S asbc abc generování symbolů a B BBC množení symbolů B C CC množení symbolů C CB BC uspořádání symbolů B a C ab ab začátek přepisu B na b bb bb pokračování přepisu B na b bc bc začátek přepisu C na c cc cc pokračování přepisu C na c CB BC není kontextové pravidlo, nahradíme ho: CB XB, XB XY, XY BY, BY BC Chomského hierarchie gramatiky typu 0 (rekurzivně spočetné jazyky L 0 ) pravidla v obecné formě gramatiky typu 1 (kontextové jazyky L 1 ) gramatiky typu 2 (bezkontextové jazyky L 2 ) pouze pravidla ve tvaru X w, X V N, w (V N V T )* gramatiky typu 3 (regulární/pravé lineární jazyky L 3 ) pouze pravidla ve tvaru X wy, X w, X,Y V N, w V T * Turingovy stroje - historie a motivace pokusy o formalizaci pojmu algoritmu Gödel, Kleene, Church, Turing Turingův stroj zachycení práce matematika (nekonečná) tabule lze z ní číst a lze na ni psát mozek (řídící jednotka) Formalizace TS: místo tabule oboustranně nekonečná páska místo křídy čtecí a zapisovací hlava, kterou lze posouvat místo mozku konečná řídící jednotka (jako u ZA) Další formalizace: λ-kalkul, částečně rekurzivní funkce, RAM 11-3
4 Definice Turingova stroje Turingovým strojem nazýváme pětici T=(Q,X,δ,q 0,F), kde Q - neprázdná konečná množina stavů X - neprázdná konečná množina symbolů obsahuje symbol pro prázdné políčko δ - přechodová funkce δ : (Q-F) X Q X {-1,0,1} popisuje změnu stavu, zápis na pásku a posun hlavy q 0 Q - počáteční stav F Q - množina koncových stavů páska řídící jednotka 1) výpočet začíná ve stavu q 0 2) v každém taktu dojde ke změně stavu k přepisu políčka na pásce k posunu hlavy 3) výpočet končí, když není definována žádná instrukce (speciálně platí pro koncové stavy) Turingovy stroje - konfigurace a modifikace Konfigurace Turingova stroje je souhrn údajů přesně popisující stav výpočtu. Obsahuje: nejmenší souvislou část pásky, která obsahuje všechny neprázdné buňky čtenou buňku obvyklý zápis: uqv vnitřní stav polohu čtené buňky (hlavy) u v TS postupně přepracovává konfigurace. Modifikace Turingova stroje: více pásek, více hlav jednostranná páska omezené činnosti v taktu omezený počet stavů, omezená abeceda dva zásobníky q Příklad Turingova stroje Navrhněte Turingův stroj převádějící konfiguraci q 0 w na q F w R, kde w {a 1,,a n }* (tj. obrácení slova). q 0, q F,,0 prázdné slovo q 0,a i q i,r,a i,+1 přečte písmeno, pamatuje si ve stavu q 0,a i q R,a i,+1 konec (slovo sudé délky) q i,r,a j q i,r,a j,+1 běží doprava q i,r, q i,w,,-1 na konci se otočí q i,r,a j q i,w,a j,-1 q i,w,a j q j,l,a i,-1 vymění písmena q i,w,a i q R,a i,+1 konec (slovo liché délky) q i,l,a j q i,l,a j,-1 a běží zpět (doleva) q i,l,a j q 0,a i,+1 na zarážce uloží písmeno a začne znova q R,a j q R,a j,+1 běží doprava q R, q C,,-1 na konci se otočí q C,a j q C,a j,-1 při běhu doleva ruší označení q C, q F,,+1 slovo je obráceno Výpočet Turingova stroje Turingovým strojem nazýváme pětici T=(Q,X,δ,q 0,F) prázdné políčko u v Konfigurace TS popisuje aktuální stav výpočtu - uqv. c a Krok výpočtu (přímá změna konfigurace): uqv 2 wpz v=av, w=u, z=bv q,a p,b,0 v=av, w=ub, z=v q,a p,b,+1 v=av, u=wc, z=cbv q,a p,b,-1 Poznámky: technicky je potřeba ošetřit případy, kdy v=λ nebo u=λ s u a v lze pracovat jako se dvěma zásobníky Výpočet je posloupnost přímých kroků uqv 2* wpz q 11-4
5 Turingovy stroje a jazyky Slovo w je přijímáno Turingovým strojem T, pokud q 0 w 2* upv, p F někdy je na konci výpočtu vyžadováno smazání pásky (q 0 w 2* λp) Jazyk přijímaný Turingovým strojem T L(T) = {w w (X-{})* q 0 w 2* upv, p F}. Jazyk L nazveme rekurzivně spočetným, pokud je přijímán nějakým Turingovým strojem T (L=L(T)). {a 2n } q 0, q F,,0 prázdné slovo (konec výpočtu) q 0,a q 1,a,+1 zvětší čítač (2k+1 symbolů) q 1,a q 0,a,+1 nuluje čítač (2k symbolů) Od Turingova stroje ke gramatice Každý rekurzivně spočetný jazyk je typu 0. pro Turingův stroj T najdeme gramatiku G tak, že L(T)=L(G) gramatika nejdříve vygeneruje pásku stroje + kopii slova potom simuluje výpočet (stavy jsou součástí slova) v koncovém stavu smažeme pásku, necháme pouze kopii slova w n w R q 0 n ( n představují volný prostor pro výpočet) I) S D Q 0 E D x D X E generuje slovo a jeho reverzní kopii pro výpočet E E generuje volný prostor pro výpočet II) X P Y X Q Y pro δ(p,x)=(q,x,0) X P Y Q X Y pro δ(p,x)=(q,x,+1) X P Y X Y Q pro δ(p,x)=(q,x,-1) III) P C pro p F C A C mazání pásky A C C mazání pásky C λ konec výpočtu Od Turingova stroje ke gramatice - pokračování Ještě L(T) = L(G)? w L(T) existuje konečný výpočet stroje T (konečný prostor) gramatika vygeneruje dostatečně velký prostor pro výpočet simulujeme výpočet a smažeme dvojníky w L(G) pravidla v derivaci nemusí být v pořadí, jakém chceme derivaci můžeme přeuspořádat tak, že pořadí je I, II, III podtržené symboly smazány, tj. vygenerován koncový stav δ(q 0,) = (q F,,0) δ(q 0,a) =(q 1,a,+1) δ(q 1,a) = (q 0,a,+1) Gramatika po zjednodušení S D q 0 D a D a q 0 C a q 0 q 1 a a q 1 q 0 a C a C C λ Od gramatik k Turingově stroji Každý jazyk typu 0 je rekurzivně spočetný. Důkaz (neformálně): idea: Turingův stroj postupně generuje všechny derivace derivaci S w 1 w n =w kódujeme jako slovo #S#w 1 # #w# TS postupně generuje všechna slova #S# w 1 # #w k # pokud w n =w, výpočet končí jinak, TS generuje další derivaci umíme udělat TS, který přijímá slova #u#v#, kde u v umíme udělat TS, který přijímá slova #w 1 # #w k #, kde w 1 *w k umíme udělat TS postupně generující všechna slova stroje spojíme do while cyklu Generuj (další) slovo Slovo tvoří derivaci? ne ano Derivace končí w? ne ano 11-5
Automaty a gramatiky. Roman Barták, KTIML. Separované gramatiky. Kontextové gramatiky. Chomského hierarchie
Chomského hierarchie Automaty a gramatiky Roman Barták, KTIML bartak@ktiml.mff.cuni.cz http://ktiml.mff.cuni.cz/~bartak gramatiky typu 0 (rekurzivně spočetné jazyky L 0 ) pravidla v obecné formě gramatiky
AUTOMATY A GRAMATIKY. Pavel Surynek. Kontextové uzávěrové vlastnosti Turingův stroj Rekurzivně spočetné jazyky Kódování, enumerace
AUTOMATY A 11 GRAMATIKY Pavel Surynek Univerzita Karlova v Praze Matematicko-fyzikální fakulta Katedra teoretické informatiky a matematické logiky Kontextové uzávěrové vlastnosti Turingův stroj Rekurzivně
Automaty a gramatiky. Roman Barták, KTIML. Chomského normální forma
10 Automaty a gramatiky Roman Barták, KTIML bartak@ktiml.mff.cuni.cz http://ktiml.mff.cuni.cz/~bartak Chomského normální forma Podívejme se nyní na derivační stromy. Jak odhadnout výšku stromu podle délky
doplněk, zřetězení, Kleeneho operaci a reverzi. Ukážeme ještě další operace s jazyky, na které je
28 [181105-1236 ] 2.7 Další uzávěrové vlastnosti třídy regulárních jazyků Z předchozích přednášek víme, že třída regulárních jazyků je uzavřena na sjednocení, průnik, doplněk, zřetězení, Kleeneho operaci
Automaty a gramatiky
Automaty a gramatiky Roman Barták, KTIML bartak@ktiml.mff.cuni.cz http://ktiml.mff.cuni.cz/~bartak Co bylo minule Úvod do formálních gramatik produkční systémy generativní gramatika G=(V N,V T,,P) G =
Turingovy stroje. Teoretická informatika Tomáš Foltýnek
Turingovy stroje Teoretická informatika Tomáš Foltýnek foltynek@pef.mendelu.cz Teoretická informatika strana 2 Opakování z minulé přednášky Jaké znáte algebraické struktury s jednou operací? Co je to okruh,
AUTOMATY A GRAMATIKY
AUTOMATY A 1 GRAMATIKY Pavel Surynek Univerzita Karlova v Praze Matematicko-fyzikální fakulta Katedra teoretické informatiky a matematické logiky Stručný přehled přednášky Automaty Formální jazyky, operace
Formální jazyky a automaty Petr Šimeček
Formální jazyky a automaty Petr Šimeček Úvod Formální jazyky a automaty jsou základním kamenem teoretické informatiky. Na počátku se zmíníme o Chomského klasifikaci gramatik, nástroje, který lze aplikovat
Vztah jazyků Chomskeho hierarchie a jazyků TS
Vztah jazyků Chomskeho hierarchie a jazyků TS Jan Konečný; (přednáší Lukáš Havrlant) 15. října 2013 Jan Konečný; (přednáší Lukáš Havrlant) Chomskeho hierarchie a jazyky TS 15. října 2013 1 / 23 Rychlé
Automaty a gramatiky(bi-aag) Motivace. 1. Základní pojmy. 2 domácí úkoly po 6 bodech 3 testy za bodů celkem 40 bodů
BI-AAG (2011/2012) J. Holub: 1. Základní pojmy p. 2/29 Hodnocení předmětu BI-AAG (2011/2012) J. Holub: 1. Základní pojmy p. 4/29 Automaty a gramatiky(bi-aag) 1. Základní pojmy Jan Holub Katedra teoretické
Formální jazyky a gramatiky Teorie programovacích jazyků
Formální jazyky a gramatiky Teorie programovacích jazyků doc. Ing. Jiří Rybička, Dr. ústav informatiky PEF MENDELU v Brně rybicka@mendelu.cz Připomenutí základních pojmů ABECEDA jazyk je libovolná podmnožina
Z. Sawa (VŠB-TUO) Teoretická informatika 5. listopadu / 43
Zásobníkové automaty Z. Sawa (VŠB-TUO) Teoretická informatika 5. listopadu 2018 1/ 43 Zásobníkový automat Chtěli bychom rozpoznávat jazyk L = {a i b i i 1} Snažíme se navrhnout zařízení (podobné konečným
Jednoznačné a nejednoznačné gramatiky
BI-AAG (2011/2012) J. Holub: 11. Bezkontextové gramatiky p. 2/36 Jednoznačné a nejednoznačné gramatiky BI-AAG (2011/2012) J. Holub: 11. Bezkontextové gramatiky p. 4/36 Automaty a gramatiky(bi-aag) 11.
Množinu všech slov nad abecedou Σ značíme Σ * Množinu všech neprázdných slov Σ + Jazyk nad abecedou Σ je libovolná množina slov nad Σ
Abecedou se rozumí libovolná konečná množina Σ. Prvky abecedy nazýváme znaky (symboly) Slovo (řetězec) v nad abecedou Σ je libovolná konečná posloupnost znaků této abecedy. Prázdné posloupnosti znaků odpovídá
Základy teoretické informatiky Formální jazyky a automaty
Základy teoretické informatiky Formální jazyky a automaty Petr Osička KATEDRA INFORMATIKY UNIVERZITA PALACKÉHO V OLOMOUCI Outline Literatura Obsah J.E. Hopcroft, R. Motwani, J.D. Ullman Introduction to
Syntaxí řízený překlad
Syntaxí řízený překlad Překladový automat Šárka Vavrečková Ústav informatiky, FPF SU Opava sarka.vavreckova@fpf.slu.cz Poslední aktualizace: 27. listopadu 2008 Zobecněný překladový automat Překladový automat
Výpočetní modely pro rozpoznávání bezkontextových jazyků zásobníkové automaty LL(k) a LR(k) analyzátory
Plán přednášky Výpočetní modely pro rozpoznávání bezkontextových jazyků zásobníkové automaty LL(k) a LR(k) analyzátory Obecný algoritmus pro parsování bezkontextových jazyků dynamické programování 1 Zásobníkový
Vlastnosti regulárních jazyků
Vlastnosti regulárních jazyků Podobně jako u dalších tříd jazyků budeme nyní zkoumat následující vlastnosti regulárních jazyků: vlastnosti strukturální, vlastnosti uzávěrové a rozhodnutelné problémy pro
Postův korespondenční problém. Meze rozhodnutelnosti 2 p.1/13
Postův korespondenční problém Meze rozhodnutelnosti 2 p.1/13 Postův korespondenční problém Definice 10.1 Postův systém nad abecedou Σ je dán neprázdným seznamem S dvojic neprázdných řetězců nadσ, S = (α
Učební texty k státní bakalářské zkoušce Programování Základy teoretické informatiky. študenti MFF 15. augusta 2008
Učební texty k státní bakalářské zkoušce Programování Základy teoretické informatiky študenti MFF 15. augusta 2008 1 1 Základy teoretické informatiky Požadavky Logika - jazyk, formule, sémantika, tautologie
Zásobníkový automat. SlovoaaaabbbbpatřídojazykaL={a i b i i 1} a a a a b b b b
ChtělibychomrozpoznávatjazykL={a i b i i 1} Snažíme se navrhnout zařízení(podobné konečným automatům), které přečte slovo, a sdělí nám, zda toto slovo patřídojazykalčine. Při čtení a-ček si musíme pamatovat
Bezkontextové jazyky 2/3. Bezkontextové jazyky 2 p.1/27
Bezkontextové jazyky 2/3 Bezkontextové jazyky 2 p.1/27 Transformace bezkontextových gramatik Bezkontextové jazyky 2 p.2/27 Ekvivalentní gramatiky Definice 6.1 Necht G 1 a G 2 jsou gramatiky libovolného
Kapitola 6. LL gramatiky. 6.1 Definice LL(k) gramatik. Definice 6.3. Necht G = (N, Σ, P, S) je CFG, k 1 je celé číslo.
Kapitola 6 LL gramatiky 6.1 Definice LL(k) gramatik Definice 6.1. Necht G = (N, Σ, P, S) je CFG, k 1 je celé číslo. Definujme funkci FIRST G k : (N Σ) + P({w Σ w k}) předpisem FIRST G k (α) = {w Σ (α w
TURINGOVY STROJE. Doc. RNDr. Josef Kolář, CSc. Katedra teoretické informatiky, FIT České vysoké učení technické v Praze
TURINGOVY STROJE Doc. RNDr. Josef Kolář, CSc. Katedra teoretické informatiky, FIT České vysoké učení technické v Praze BI-GRA, LS 2010/2011, Lekce 12 Evropský sociální fond Praha & EU: Investujeme do vaší
Fakulta informačních technologií. Teoretická informatika
Vysoké učení technické v Brně Fakulta informačních technologií Teoretická informatika Třetí úkol 2 Jan Trávníček . Tato úloha je řešena Turingovým strojem, který je zobrazen na obrázku, který si můžeme
Univerzální Turingův stroj a Nedeterministický Turingův stroj
27 Kapitola 4 Univerzální Turingův stroj a Nedeterministický Turingův stroj 4.1 Nedeterministický TS Obdobně jako u konečných automatů zavedeme nedeterminismus. Definice 14. Nedeterministický Turingův
Čísla značí použité pravidlo, šipka směr postupu Analýza shora. Analýza zdola A 2 B 3 B * C 2 C ( A ) 1 a A + B. A Derivace zleva:
1) Syntaktická analýza shora a zdola, derivační strom, kanonická derivace ezkontextová gramatika gramatika typu 2 Nechť G = je gramatika typu 1. Řekneme, že je gramatikou typu 2, platí-li: y
Naproti tomu gramatika je vlastně soupis pravidel, jak
1 Kapitola 1 Úvod V přednášce se zaměříme hlavně na konečný popis obecně nekonečných množin řetězců symbolů dané množiny A. Prvkům množiny A budeme říkat písmena, řetězcům (konečným posloupnostem) písmen
Bezkontextové jazyky. Bezkontextové jazyky 1 p.1/39
Bezkontextové jazyky Bezkontextové jazyky 1 p.1/39 Jazyky typu 2 Definice 4.1 Gramatika G = (N, Σ, P, S) si nazývá bezkontextovou gramatikou, jestliže všechna pravidla z P mají tvar A α, A N, α (N Σ) Lemma
Automaty a gramatiky(bi-aag) Formální překlady. 5. Překladové konečné automaty. h(ε) = ε, h(xa) = h(x)h(a), x, x T, a T.
BI-AAG (2011/2012) J. Holub: 5. Překladové konečné automaty p. 2/41 Formální překlady BI-AAG (2011/2012) J. Holub: 5. Překladové konečné automaty p. 4/41 Automaty a gramatiky(bi-aag) 5. Překladové konečné
Úvod do informatiky. Miroslav Kolařík
Úvod do informatiky přednáška desátá Miroslav Kolařík Zpracováno dle R. Bělohlávek, V. Vychodil: Diskrétní matematika 2, http://phoenix.inf.upol.cz/esf/ucebni/dm2.pdf P. Martinek: Základy teoretické informatiky,
Regulární výrazy. Definice Množina regulárních výrazů nad abecedou Σ, označovaná RE(Σ), je definována induktivně takto:
IB102 Automaty, gramatiky a složitost, 6. 10. 2014 1/29 Regulární výrazy Definice 2.58. Množina regulárních výrazů nad abecedou Σ, označovaná RE(Σ), je definována induktivně takto: 1 ε, a a pro každé a
Automaty a gramatiky
Automty grmtiky Romn Brták, KTIML rtk@ktiml.mff.cuni.cz http://ktiml.mff.cuni.cz/~rtk Úvod do formálních grmtik Grmtiky, všichni je známe, le co to je? Popis jzyk pomocí prvidel, podle kterých se vytvářejí
Teoretická informatika TIN 2013/2014
Teoretická informatika TIN 2013/2014 prof. RNDr. Milan Češka, CSc. ceska@fit.vutbr.cz doc.ing. Tomáš Vojnar, Ph.D. vojnar@fit.vutbr.cz sazba Ing. A. Smrčka, Ing. P. Erlebach, Ing. P. Novosad Vysoké učení
Bezkontextové jazyky 3/3. Bezkontextové jazyky 3 p.1/27
Bezkontextové jazyky 3/3 Bezkontextové jazyky 3 p.1/27 Vlastnosti bezkontextových jazyků Bezkontextové jazyky 3 p.2/27 Pumping teorém pro BJ Věta 6.1 Necht L je bezkontextový jazyk. Pak existuje konstanta
2 Formální jazyky a gramatiky
2 Formální jazyky a gramatiky 2.1 Úvod Teorie formálních gramatik a jazyků je důležitou součástí informatiky. Její využití je hlavně v oblasti tvorby překladačů, kompilátorů. Vznik teorie se datuje přibližně
Konstrukce relace. Postupně konstruujeme na množině všech stavů Q relace i,
[161014-1204 ] 11 2.1.35 Konstrukce relace. Postupně konstruujeme na množině všech stavů Q relace i, kde i = 0, 1,..., takto: p 0 q právě tehdy, když bud p, q F nebo p, q F. Dokud i+1 i konstruujeme p
Teoretická informatika
Teoretická informatika TIN 2017/2018 prof. RNDr. Milan Češka, CSc. ceska@fit.vutbr.cz prof. Ing. Tomáš Vojnar, Ph.D. vojnar@fit.vutbr.cz sazba dr. A. Smrčka, Ing. P. Erlebach, Ing. P. Novosad Vysoké učení
Automaty a gramatiky. Úvod do formáln. lních gramatik. Roman Barták, KTIML. Příklady gramatik
Úvod do formáln lních grmtik Automty grmtiky Romn Brták, KTIML rtk@ktiml.mff.cuni.cz http://ktiml.mff.cuni.cz/~rtk Grmtiky, všichni je známe, le co to je? Popis jzyk pomocí prvidel, podle kterých se vytvářejí
ZÁKLADY TEORETICKÉ INFORMATIKY
KATEDRA INFORMATIKY PŘÍRODOVĚDECKÁ FAKULTA UNIVERZITA PALACKÉHO ZÁKLADY TEORETICKÉ INFORMATIKY PAVEL MARTINEK VÝVOJ TOHOTO UČEBNÍHO TEXTU JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM
Složitost Filip Hlásek
Složitost Filip Hlásek Abstrakt. Příspěvek popisuje dva základní koncepty teoretické informatiky, Turingovy stroje a složitost. Kromě definic důležitých pojmů uvádí také několik souvisejících tvrzení,
Třída PTIME a třída NPTIME. NP-úplnost.
VAS - Přednáška 9 Úvod ke kursu. Složitost algoritmu. Model RAM. Odhady složitosti. Metoda rozděl a panuj. Greedy algoritmy. Metoda dynamického programování. Problémy, třídy složitosti problémů, horní
Vztah teorie vyčíslitelnosti a teorie složitosti. IB102 Automaty, gramatiky a složitost, /31
Vztah teorie vyčíslitelnosti a teorie složitosti IB102 Automaty, gramatiky a složitost, 2. 12. 2013 1/31 IB102 Automaty, gramatiky a složitost, 2. 12. 2013 2/31 Časová složitost algoritmu počet kroků výpočtu
PŘÍJMENÍ a JMÉNO: Login studenta: DATUM:
PŘÍJMENÍ a JMÉNO: Login studenta: DATUM: Závěrečný test z předmětu Vyčíslitelnost a složitost Doba trvání: 90 minut Max. zisk: 100 bodů Obecné pokyny: Po obdržení testu ihned do pravého horního rohu napište
BRNO UNIVERSITY OF TECHNOLOGY FACULTY OF INFORMATION TECHNOLOGY DEPARTMENT OF INTELLIGENT SYSTEMS MASTER S THESIS AUTHOR
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA INFORMAČNÍCH TECHNOLOGIÍ ÚSTAV INTELIGENTNÍCH SYSTÉMŮ FACULTY OF INFORMATION TECHNOLOGY DEPARTMENT OF INTELLIGENT SYSTEMS SYSTÉMY FORMÁLNÍCH
Vektorové podprostory, lineární nezávislost, báze, dimenze a souřadnice
Vektorové podprostory, lineární nezávislost, báze, dimenze a souřadnice Vektorové podprostory K množina reálných nebo komplexních čísel, U vektorový prostor nad K. Lineární kombinace vektorů u 1, u 2,...,u
3. Třídy P a NP. Model výpočtu: Turingův stroj Rozhodovací problémy: třídy P a NP Optimalizační problémy: třídy PO a NPO MI-PAA
Jan Schmidt 2011 Katedra číslicového návrhu Fakulta informačních technologií České vysoké učení technické v Praze Zimní semestr 2011/12 MI-PAA EVROPSKÝ SOCIÁLNÍ FOND PRAHA & EU: INVESTUJENE DO VAŠÍ BUDOUCNOSTI
Bezkontextové jazyky. Bezkontextové jazyky 1 p.1/31
Bezkontextové jazyky Bezkontextové jazyky 1 p.1/31 Jazyky typu 2 Definice 4.1 Gramatika G = (N, Σ, P, S) si nazývá bezkontextovou gramatikou, jestliže všechna pravidla z P mají tvar A α, A N, α (N Σ) Lemma
PŘEDNÁŠKA 5 Konjuktivně disjunktivní termy, konečné distributivní svazy
PŘEDNÁŠKA 5 Konjuktivně disjunktivní termy, konečné distributivní svazy PAVEL RŮŽIČKA Abstrakt. Ukážeme, že každý prvek distributivního svazu odpovídá termu v konjuktivně-disjunktivním (resp. disjunktivně-konjunktivním)
Turingovy stroje. Turingovy stroje 1 p.1/28
Turingovy stroje Turingovy stroje 1 p.1/28 Churchova teze Churchova (Church-Turingova) teze: Turingovy stroje (a jim ekvivalentní systémy) definují svou výpočetní silou to, co intuitivně považujeme za
Vlastnosti Derivační strom Metody Metoda shora dolů Metoda zdola nahoru Pomocné množiny. Syntaktická analýza. Metody a nástroje syntaktické analýzy
Metody a nástroje syntaktické analýzy Šárka Vavrečková Ústav informatiky, FPF SU Opava sarka.vavreckova@fpf.slu.cz Poslední aktualizace: 14. října 2011 Vlastnosti syntaktické analýzy Úkoly syntaktické
Od Turingových strojů k P=NP
Složitost Od Turingových strojů k P=NP Zbyněk Konečný Zimnění 2011 12. 16.2.2011 Kondr (Než vám klesnou víčka 2011) Složitost 12. 16.2.2011 1 / 24 O čem to dnes bude? 1 Co to je složitost 2 Výpočetní modely
Definice 7.2. Nejmenší přirozené číslo k, pro které je graf G k-obarvitelný, se nazývá chromatické číslo (barevnost) grafu G a značí se χ(g).
7 Barevnost grafu Definice 71 Graf G se nazývá k-obarvitelný, jestliže každému jeho uzlu lze přiřadit jednu z barev 1 k tak, že žádné dva sousední uzly nemají stejnou barvu Definice 72 Nejmenší přirozené
Lineární algebra : Násobení matic a inverzní matice
Lineární algebra : Násobení matic a inverzní matice (8. přednáška) František Štampach, Karel Klouda frantisek.stampach@fit.cvut.cz, karel.klouda@fit.cvut.cz Katedra aplikované matematiky Fakulta informačních
Kapitola 1. Úvod. 1.1 Značení. 1.2 Výroky - opakování. N... přirozená čísla (1, 2, 3,...). Q... racionální čísla ( p, kde p Z a q N) R...
Kapitola 1 Úvod 1.1 Značení N... přirozená čísla (1, 2, 3,...). Z... celá čísla ( 3, 2, 1, 0, 1, 2,...). Q... racionální čísla ( p, kde p Z a q N) q R... reálná čísla C... komplexní čísla 1.2 Výroky -
EKO-KOLONIE. Ústav informatiky, Filozoficko-přírodovědecká fakulta Slezské univerzity v Opavě 24.
EKO-KOLONIE OBHAJOBA DISERTAČNÍ PRÁCE RNDr. Šárka Vavrečková Ústav informatiky, Filozoficko-přírodovědecká fakulta Slezské univerzity v Opavě sarka.vavreckova@fpf.slu.cz 24. dubna 2008 Obsah 1 Eko-kolonie
Pumping lemma - podstata problému. Automaty a gramatiky(bi-aag) Pumping lemma - problem resolution. Pumping lemma - podstata problému
BI-AAG (2011/2012) J. Holub: 10. Vlastnosti regulárních jazyků p. 2/22 Pumping lemma - podstata problému BI-AAG (2011/2012) J. Holub: 10. Vlastnosti regulárních jazyků p. 4/22 Automaty a gramatiky(bi-aag)
Konečný automat Teorie programovacích jazyků
Konečný automat Teorie programovacích jazyků oc. Ing. Jiří Rybička, Dr. ústav informatiky PEF MENDELU v Brně rybicka@menelu.cz Automaty v běžném životě Konečný automat Metoy konstrukce konečného automatu
Pro každé formule α, β, γ, δ platí: Pro každé formule α, β, γ platí: Poznámka: Platí právě tehdy, když je tautologie.
Zpracoval: hypspave@fel.cvut.cz 5. Výroková logika, formule výrokové logiky a jejich pravdivostní ohodnocení, splnitelné formule, tautologie, kontradikce, sémantický důsledek, tautologicky ekvivalentní
OSTRAVSKÁ UNIVERZITA V OSTRAVĚ PŘÍRODOVĚDECKÁ FAKULTA
OSTRAVSKÁ UNIVERZITA V OSTRAVĚ PŘÍRODOVĚDECKÁ FAKULTA BAKALÁŘSKÁ PRÁCE 2002 SEDLÁK MARIAN - 1 - OSTRAVSKÁ UNIVERZITA PŘÍRODOVĚDECKÁ FAKULTA KATEDRA INFORMATIKY A POČÍTAČŮ Vizualizace principů výpočtu konečného
NP-úplnost problému SAT
Problém SAT je definován následovně: SAT(splnitelnost booleovských formulí) Vstup: Booleovská formule ϕ. Otázka: Je ϕ splnitelná? Příklad: Formule ϕ 1 =x 1 ( x 2 x 3 )jesplnitelná: např.přiohodnocení ν,kde[x
Popište a na příkladu ilustrujte(rychlý) algoritmus testující, zda dané dva automaty jsou izomorfní.
Teoretická informatika referáty 1 Referátč.1 Vysvětlete, co znamená tvrzení, že operace levého kvocientu je asociativní. Pak toto tvrzení pečlivě dokažte či vyvraťte. Dálevysvětlete,pročprokonečnýautomat
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA INFORMAČNÍCH TECHNOLOGIÍ ÚSTAV INFORMAČNÍCH SYSTÉMŮ FACULTY OF INFORMATION TECHNOLOGY DEPARTMENT OF INFORMATION SYSTEMS GRAMATICKÉ SYSTÉMY
IV. Základní pojmy matematické analýzy IV.1. Rozšíření množiny reálných čísel
Matematická analýza IV. Základní pojmy matematické analýzy IV.1. Rozšíření množiny reálných čísel na množině R je definováno: velikost (absolutní hodnota), uspořádání, aritmetické operace; znázornění:
Automaty a gramatiky. Na zopakování X*/~ Roman Barták, KTIML. Iterační (pumping) lemma. Pravidelnost regulárních jazyků
2 utomaty a gramatiky Roman Barták, KTML bartak@ktiml.mff.cuni.cz http://ktiml.mff.cuni.cz/~bartak Na zopakování Víme, co je konečný automat = (Q,X,δ,q,F) Umíme konečné automaty charakterizovat (Myhill-)Nerodova
Lineární algebra : Násobení matic a inverzní matice
Lineární algebra : Násobení matic a inverzní matice (8. přednáška) František Štampach, Karel Klouda LS 2013/2014 vytvořeno: 17. března 2014, 12:42 1 2 0.1 Násobení matic Definice 1. Buďte m, n, p N, A
Vysoké učení technické v Brně Fakulta informačních technologií. Gramatiky nad volnými grupami Petr Blatný
Vysoké učení technické v Brně Fakulta informačních technologií Gramatiky nad volnými grupami 2005 Petr Blatný Abstrakt Tento dokument zavádí pojmy bezkontextové gramatiky nad volnou grupou a E0L gramatiky
Substituce a morfismy jednoduše
Substituce a morfismy jednoduše Petr Zemek 31. července 2010 Abstrakt Tento text si dává za cíl srozumitelně a formou příkladů osvětlit problematiku substitucí a morfismů v rozsahu předmětu Teoretická
METRICKÉ A NORMOVANÉ PROSTORY
PŘEDNÁŠKA 1 METRICKÉ A NORMOVANÉ PROSTORY 1.1 Prostor R n a jeho podmnožiny Připomeňme, že prostorem R n rozumíme množinu uspořádaných n tic reálných čísel, tj. R n = R } R {{ R }. n krát Prvky R n budeme
Naproti tomu gramatika je vlastně soupis pravidel, jak
1 Kapitola 1 Úvod V přednášce se zaměříme hlavně na konečný popis obecně nekonečných množin řetězců symbolů dané množiny A. Prvkům množiny A budeme říkat písmena, řetězcům (konečným posloupnostem) písmen
MATICE. a 11 a 12 a 1n a 21 a 22 a 2n A = = [a ij]
MATICE Matice typu m/n nad tělesem T je soubor m n prvků z tělesa T uspořádaných do m řádků a n sloupců: a 11 a 12 a 1n a 21 a 22 a 2n A = = [a ij] a m1 a m2 a mn Prvek a i,j je prvek matice A na místě
Přijímací zkouška na navazující magisterské studium 2017
Přijímací zkouška na navazující magisterské studium 207 Řešení příkladů pečlivě odůvodněte. Příklad (25 bodů) Studijní program: Studijní obory: Varianta A Matematika MMUI Navrhněte deterministický konečný
Lineární algebra : Polynomy
Lineární algebra : Polynomy (2. přednáška) František Štampach, Karel Klouda frantisek.stampach@fit.cvut.cz, karel.klouda@fit.cvut.cz Katedra aplikované matematiky Fakulta informačních technologií České
1) Sekvenční a paralelní gramatiky
A. Kapitoly z teorie formálních jazyků a automatů c Milan Schwarz (006) ) Sekvenční a paralelní gramatiky Derivace v gramatikách: Sekvenční postup sekvenční gramatiky (např. gramatiky v Chomského hierarchii)
Strukturální rozpoznávání
Strukturální rozpoznávání 1 Strukturální rozpoznávání obsah hierarchický strukturální popis systém strukturálního rozpoznávání teorie gramatik volba popisu výběr primitiv výběr gramatiky syntaktická analýza
10 Funkce více proměnných
M. Rokyta, MFF UK: Aplikovaná matematika II kap. 10: Funkce více proměnných 16 10 Funkce více proměnných 10.1 Základní pojmy Definice. Eukleidovskou vzdáleností bodů x = (x 1,...,x n ), y = (y 1,...,y
Každé formuli výrokového počtu přiřadíme hodnotu 0, půjde-li o formuli nepravdivou, a hodnotu 1, půjde-li. α neplatí. β je nutná podmínka pro α
1. JAZYK ATEATIKY 1.1 nožiny nožina je souhrn objektů určitých vlastností, které chápeme jako celek. ZNAČENÍ. x A x A θ A = { { a, b a A = B A B 0, 1 2 a, a,..., a n x patří do množiny A x nepatří do množiny
Referát z předmětu Teoretická informatika
Referát z předmětu Téma: Algoritmus Coke-Younger-Kasami pro rozpoznávání bezkontextových jazyků VŠB-TU Ostrava:Fakulta Elektrotechniky a informatiky jaro 2011 Martin Dočkal doc068 dockal.martin@gmail.com
Maticí typu (m, n), kde m, n jsou přirozená čísla, se rozumí soubor mn veličin a jk zapsaných do m řádků a n sloupců tvaru:
3 Maticový počet 3.1 Zavedení pojmu matice Maticí typu (m, n, kde m, n jsou přirozená čísla, se rozumí soubor mn veličin a jk zapsaných do m řádků a n sloupců tvaru: a 11 a 12... a 1k... a 1n a 21 a 22...
PROGRAMOVACÍ JAZYKY A PŘEKLADAČE LL SYNTAKTICKÁ ANALÝZA DOKONČENÍ, IMPLEMENTACE.
PROGRAMOVACÍ JAZYKY A PŘEKLADAČE LL SYNAKICKÁ ANALÝZA DOKONČENÍ, IMPLEMENACE. VLASNOSI LL GRAMAIK A JAZYKŮ. 2011 Jan Janoušek BI-PJP Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti Gramatika
Drsná matematika III 1. přednáška Funkce více proměnných: křivky, směrové derivace, diferenciál
Drsná matematika III 1. přednáška Funkce více proměnných: křivky, směrové derivace, diferenciál Jan Slovák Masarykova univerzita Fakulta informatiky 16. 9. 2008 Obsah přednášky 1 Literatura 2 Funkce a
Bezkontextové gramatiky nad volnými grupami
Vysoké učení technické v Brně Fakulta informačních technologií Bezkontextové gramatiky nad volnými grupami 2004 Radek Bidlo Abstrakt Tento dokument zavádí pojem bezkontextové gramatiky nad volnou grupou
Lineární programování
Lineární programování Petr Tichý 19. prosince 2012 1 Outline 1 Lineární programování 2 Optimalita a dualita 3 Geometrie úlohy 4 Simplexová metoda 2 Lineární programování Lineární program (1) min f(x) za
/1: Teoretická informatika(ti) přednáška 4
456-330/1: Teoretická informatika(ti) přednáška 4 prof. RNDr Petr Jančar, CSc. katedra informatiky FI VŠB-TUO www.cs.vsb.cz/jancar LS 2009/2010 Petr Jančar (FI VŠB-TU) Teoretická informatika(ti) LS 2009/2010
ALGEBRA. Téma 5: Vektorové prostory
SLEZSKÁ UNIVERZITA V OPAVĚ Matematický ústav v Opavě Na Rybníčku 1, 746 01 Opava, tel. (553) 684 611 DENNÍ STUDIUM Téma 5: Vektorové prostory Základní pojmy Vektorový prostor nad polem P, reálný (komplexní)
OSTRAVSKÁ UNIVERZITA V OSTRAVĚ
OSTRAVSKÁ UNIVERZITA V OSTRAVĚ TEORETICKÉ ZÁKLADY INFORMATIKY II HASHIM HABIBALLA OSTRAVA 2003 Tento projekt byl spolufinancován Evropskou unií a českým státním rozpočtem Recenzenti: Doc. Ing. Miroslav
Konečný automat. Jan Kybic.
Konečný automat Jan Kybic http://cmp.felk.cvut.cz/~kybic kybic@fel.cvut.cz 2016 2017 1 / 33 Konečný automat finite state machine Konečný automat = výpočetní model, primitivní počítač Řídící jednotka s
NAIVNÍ TEORIE MNOŽIN, okruh č. 5
NAIVNÍ TEORIE MNOŽIN, okruh č. 5 Definování množiny a jejích prvků Množina je souhrn nějakých věcí. Patří-li věc do množiny X, říkáme, že v ní leží, že je jejím prvkem nebo že množina X tuto věc obsahuje.
Teoretická informatika
Teoretická informatika Ladislav Lhotka lhotka@cesnet.cz 2011-12 Zdroje LINZ, P. Formal Languages and Automata, Fourth Edition. Sudbury: Jones and Bartlett, 2006, 415+xiii s. ISBN 07-63-73798-4. CHYTIL,
= je prostý orientovaný graf., formálně c ( u, v) 0. dva speciální uzly: zdrojový uzel s a cílový uzel t. Dále budeme bez
Síť Síť je čtveřice N = ( G, s, t, c) kde G ( V, A) = je prostý orientovaný graf a každé orientované hraně ( u, v) je přiřazeno nezáporné číslo, které se nazývá kapacita hrany ( u, v), formálně c ( u,
Automaty a gramatiky. Roman Barták, KTIML. Důkaz věty o isomorfismu reduktů. Věta o isomorfismu reduktů. Pro připomenutí
3 Automty grmtiky Romn Brták, KTIML rtk@ktimlmffcunicz http://ktimlmffcunicz/~rtk Pro připomenutí 2 Njít ekvivlentní stvy w X* δ*(p,w) F δ*(q,w) F Vyřdit nedosžitelné stvy 3 Sestrojit podílový utomt Automty
Lineární algebra : Báze a dimenze
Lineární algebra : Báze a dimenze (5. přednáška) František Štampach, Karel Klouda LS 2013/2014 vytvořeno: 9. dubna 2014, 13:33 1 2 5.1 Báze lineárního prostoru Definice 1. O množině vektorů M z LP V řekneme,
Barevnost grafů MFF UK
Barevnost grafů Z. Dvořák MFF UK Plán vztah mezi barevností a maximálním stupněm (Brooksova věta) hranová barevnost (Vizingova věta) příště: vztah mezi barevností a klikovostí, perfektní grafy Barevnost
Minimalizace KA - Úvod
Minimalizace KA - Úvod Tyto dva KA A,A2 jsou jazykově ekvivalentní, tzn. že rozpoznávají tentýž jazyk. L(A) = L(A2) Názorně lze vidět, že automat A2 má menší počet stavů než A, tudíž našim cílem bude ukázat
Matematika B101MA1, B101MA2
Matematika B101MA1, B101MA2 Zařazení předmětu: povinný předmět 1.ročníku bc studia 2 semestry Rozsah předmětu: prezenční studium 2 + 2 kombinované studium 16 + 0 / semestr Zakončení předmětu: ZS zápočet
x 2 = a 2 + tv 2 tedy (a 1, a 2 ) T + [(v 1, v 2 )] T A + V Příklad. U = R n neprázdná množina řešení soustavy Ax = b.
1. Afinní podprostory 1.1. Motivace. Uvažujme R 3. Jeho všechny vektorové podprostory jsou počátek, přímky a roviny procházející počátkem a celé R 3. Chceme-li v R 3 dělat geometrii potřebujeme i jiné
1 Determinanty a inverzní matice
Determinanty a inverzní matice Definice Necht A = (a ij ) je matice typu (n, n), n 2 Subdeterminantem A ij matice A příslušným pozici (i, j) nazýváme determinant matice, která vznikne z A vypuštěním i-tého
7. Lineární vektorové prostory
7. Lineární vektorové prostory Tomáš Salač MÚ UK, MFF UK LS 2017/18 Tomáš Salač ( MÚ UK, MFF UK ) 7. Lineární vektorové prostory LS 2017/18 1 / 62 7.1 Definice a příklady Definice 7.1 Množina G s binární
Výroková a predikátová logika - XII
Výroková a predikátová logika - XII Petr Gregor KTIML MFF UK ZS 2015/2016 Petr Gregor (KTIML MFF UK) Výroková a predikátová logika - XII ZS 2015/2016 1 / 15 Algebraické teorie Základní algebraické teorie
Permutační grupy Cykly a transpozice Aplikace. Permutace. Rostislav Horčík: Y01DMA 11. května 2010: Permutace 1/17
Permutace Rostislav Horčík: Y01DMA 11. května 2010: Permutace 1/17 Motivace Permutace jsou důležitou částí matematiky viz použití v pravděpodobnosti, algebře (např. determinanty) a mnoho dalších. Jsou