Postův korespondenční problém. Meze rozhodnutelnosti 2 p.1/13
|
|
- Kryštof Ovčačík
- před 10 lety
- Počet zobrazení:
Transkript
1 Postův korespondenční problém Meze rozhodnutelnosti 2 p.1/13
2 Postův korespondenční problém Definice 10.1 Postův systém nad abecedou Σ je dán neprázdným seznamem S dvojic neprázdných řetězců nadσ, S = (α 1,β 1 ),...,(α k,β k ), α i,β i Σ +, k 1. Řešením Postova systému je každá neprázdná posloupnost přirozených čísel I = i 1,i 2,...,i m, 1 i j k, m 1, taková, že: α i1 α i2...α im = β i1 β i2...β im (Pozor: m není omezené a indexy se mohou opakovat!) Postův problém (PCP) zní: Existuje pro daný Postův systém řešení? Příklad 10.1 Uvažujme Postův systéms 1 = {(b,bbb),(babbb,ba),(ba,a)} nad Σ = {a,b}. Tento systém má řešení I = 2,1,1,3 : babbb b b ba = ba bbb bbb a. Naopak Postův systéms 2 = {(ab,abb),(a,ba),(b,bb)} nad Σ = {a,b} nemá řešení, protože α i < β i pro i = 1,2,3. Meze rozhodnutelnosti 2 p.2/13
3 Nerozhodnutelnost PCP Věta 10.1 Postův korespondenční problém je nerozhodnutelný. Důkaz. (Idea) Dá se ukázat, že nerozhodnutelnost PCP plyne z nerozhodnutelnosti tzv. iniciálního PCP, u kterého požadujeme, aby řešení začínalo vždy jedničkou. Nerozhodnutelnost iniciálního PCP se dá ukázat redukcí z problému náležitosti pro TS: Konfiguraci výpočtu TS lze zakódovat do řetězce: použitý obsah pásky ohraničíme speciálními značkami (a jen ten si pamatujeme), řídicí stav vložíme na aktuální pozici hlavy na pásce. Posloupnost konfigurací TS při přijetí řetězce budeme reprezentovat jako konkatenaci řetězců, která vzniká řešením PCP. Jedna z uvažovaných konkatenací bude celou dobu (až na poslední fázi) delší: na začátku bude obsahovat počáteční konfiguraci a pak bude vždy o krok napřed. V posledním fázi výpočtu konkatenace zarovnáme (bude-li možné výpočet simulovaného TS ukončit přijetím). Výpočet TS budeme modelovat tak, že vždy jednu konkatenaci postupně prodloužíme o aktuální konfiguraci simulovaného TS a současně v druhé konkatenaci vygenerujeme novou konfiguraci TS. Důkaz pokračuje dále. Meze rozhodnutelnosti 2 p.3/13
4 Pokračování důkazu. Jednotlivé dvojice PCP budou modelovat následující kroky: Vložení počáteční konfigurace simulovaného TS do jedné z konkatenací např. pravostranné (#,#počáteční_konfigurace), # Γ používáme jako oddělovač konfigurací. Kopírování symbolů na pásce před a po aktuální pozici hlavy (z,z) pro každé z Γ {#,<,>}, kde <, > ohraničují použitou část pásky. Základní změna konfigurace: přepis δ(q 1,a) = (q 2,b): (q 1 a,q 2 b), posuv doprava δ(q 1,a) = (q 2,R): (q 1 a,aq 2 ), posuv doleva δ(q 1,b) = (q 2,L): (aq 1 b,q 2 ab) pro každé a Γ {<}. Navíc je zapotřebí ošetřit nájezd na >: čtení, rozšiřování použité části pásky. Pravidla pro zarovnání obou konkatenací při přijetí: na levé straně umožníme přidat symbol v okolí q F, aniž bychom ho přidali na pravé straně. Simulace výpočtu TS, který načte a, posune hlavu doprava, přepíše a na b a zastaví, na vstupu aa by pak vypadala takto: # < q 0 a a > # < a q 1 a > # < a q F b > # < q F b > # < q F > # q F > # q F # # # < q 0 a a > # < a q 1 a > # < a q F b > # < q F b > # < q F > # q F > # q F # # Obecná korektnost konstrukce se dá dokázat indukcí nad délkou výpočtu. Meze rozhodnutelnosti 2 p.4/13
5 Nerozhodnutelnost redukcí z PCP Redukce z PCP (resp. jeho doplňku) se velmi často používají k důkazům, že určitý problém není rozhodnutelný (resp. není ani částečně rozhodnutelný). Jako příklad uvedeme důkaz faktu, že problém prázdnosti jazyka dané kontextové gramatiky není ani částečně rozhodnutelný: Použijeme redukci z komplementu PCP. Redukce přiřadí seznamu S = (α 1,β 1 ),...,(α k,β k ), definujícímu instanci PCP, kontextovou gramatiku G takovou, že PCP založený na S nemá řešení právě tehdy, když L(G) =. Uvažme jazyky L α, L β nad Σ {#,1,...,k} (předp. Σ {#,1,...,k} = ): L α = {α i1...α im #i m...i 1 1 i j k,j = 1,...,m,m 1}, L β = {β i1...β im #i m...i 1 1 i j k,j = 1,...,m,m 1}. Je zřejmé, že L α, L β jsou kontextové (dokonce deterministické bezkontextové) a tudíž L α L β je také kontextový jazyk (věta 8.10) a můžeme tedy efektivně sestavit gramatiku G, která tento jazyk generuje (např. konstrukcí přes LOA). L α L β zřejmě obsahuje právě řetězce u#v, kde v odpovídá reverzi řešení dané instance PCP. Hledaná redukce tedy přiřadí dané instanci PCP gramatiku G. Meze rozhodnutelnosti 2 p.5/13
6 Souhrn některých vlastností jazyků Uvedeme nyní souhrn některých důležitých vlastností různých tříd jazyků; některé jsme dokázali, důkazy jiných lze nalézt v literatuře a (u otázek nerozhodnutelnosti se často užívá redukce z PCP) R = rozhodnutelný, N = nerozhodnutelný, A = vždy splněno: Reg DCF CF CS Rec RE w L(G)? R R R R R N L(G) prázdný? konečný? R R R N N N L(G) = Σ? R R N N N N L(G) = R, R L 3? R R N N N N L(G 1 ) = L(G 2 )? R R N N N N L(G 1 ) L(G 2 )? R N N N N N L(G 1 ) L 3? A R N N N N L(G 1 ) L(G 2 ) je stejného typu? A N N A A A L(G 1 ) L(G 2 ) je stejného typu? A N A A A A Komplement L(G) je stejného typu? A A N A A N L(G 1 ).L(G 2 ) je stejného typu? A N A A A A L(G) je stejného typu? A N A A A A Je G víceznačná? R N N N N N a Např. I. Černá, M. Křetínský, A. Kučera. Automaty a formální jazyky I. FI MU, Meze rozhodnutelnosti 2 p.6/13
7 Riceova věta Nerozhodnutelnost je pravidlo, ne výjimka. Meze rozhodnutelnosti 2 p.7/13
8 Riceova věta první část Věta 10.2 Každá netriviální vlastnost rekurzívně vyčíslitelných jazyků je nerozhodnutelná. Definice 10.2 Budiž dána abeceda Σ. Vlastnost rekurzívně vyčíslitelných množin je zobrazení P : { rekurzívně vyčíslitelné podmnožiny množiny Σ } {, }, kde, resp. reprezentují pravdu, resp. nepravdu. Příklad 10.2 Vlastnost prázdnosti můžeme reprezentovat jako zobrazení {, jestliže A =, P(A) =, jestliže A. Zdůrazněme, že nyní mluvíme o vlastnostech rekurzívně vyčíslitelných množin, nikoliv TS, které je přijímají následující vlastnosti tedy nejsou vlastnostmi r. v. množin: TS M má alespoň 2005 stavů. TS M zastaví na všech vstupech. Definice 10.3 Vlastnost rekurzívně vyčíslitelných množin je netriviální, pokud není vždy pravdivá ani vždy nepravdivá. Meze rozhodnutelnosti 2 p.8/13
9 Důkaz 1. části Riceovy věty Důkaz. Necht P je netriviální vlastnost r.v. množin. Předpokládejme beze ztráty obecnosti, že P( ) =, pro P( ) = můžeme postupovat analogicky. Jelikož P je netriviální vlastnost, existuje r.v. množina A taková, že P(A) =. Necht K je TS přijímající A. Redukujeme HP na { M P(L(M)) = }. Z M # w sestrojíme σ( M # w ) = M, kde M je 2-páskový TS, který na vstupu x: 1. Uloží x na 2. pásku. 2. Zapíše na 1. pásku w w je uložen v řízení M. 3. Odsimuluje na 1. pásce M M je rovněž uložen v řízení M. 4. Pokud M zastaví na w, odsimuluje K na x a přijme, pokud K přijme. Dostáváme: M zastaví na w L(M ) = A P(L(M )) = P(A) =, M cyklí na w L(M ) = P(L(M )) = P( ) =, A máme tedy skutečně redukci HP na { M P(L(M)) = }. Protože HP není rekurzivní, není rekurzivní ani P(L(M)) a tudíž není rozhodnutelné, zda L(M) splňuje vlastnost P. Meze rozhodnutelnosti 2 p.9/13
10 Riceova věta druhá část Definice 10.4 Vlastnost P r.v. množin nazveme monotónní, pokud pro každé dvě r.v. množiny A, B takové, že A B, P(A) P(B). Příklad 10.3 Mezi monotónní vlastnosti patří např.: A je nekonečné. A = Σ. Naopak mezi nemonotónní vlastnosti patří např.: A je konečné. A =. Věta 10.3 Každá netriviální nemonotónní vlastnost rekurzívně vyčíslitelných jazyků není ani částečně rozhodnutelná. Důkaz. Redukcí z co-hp viz např. D. Kozen. Automata and Computability. Meze rozhodnutelnosti 2 p.10/13
11 Alternativy k TS Meze rozhodnutelnosti 2 p.11/13
12 Některé alternativy k TS Mezi výpočetní mechanismy mající ekvivalentní výpočetní sílu jako TS patří např. automaty s (jednou) frontou: Uvažme stroj s konečným řízením, (neomezenou) FIFO frontou a přechody na nichž je možno načíst ze začátku fronty a zapsat na konec fronty symboly z frontové abecedy Γ. Pomocí rotace fronty je zřejmě možné simulovat pásku TS. Ekvivalentní výpočetní sílu jako TS mají také zásobníkové automaty se dvěma (a více) zásobníky: Intuitivně: obsah pásky simulovaného TS máme v jednom zásobníku; chceme-li ho změnit (obecně nejen na vrcholu), přesuneme část do druhého zásobníku, abychom se dostali na potřebné místo, provedeme patřičnou změnu a vrátíme zpět odloženou část zásobníku. Poznámka: rovněž víme, že pomocí dvou zásobníků můžeme implementovat frontu. Meze rozhodnutelnosti 2 p.12/13
13 Jiným výpočetním modelem s plnou Turingovskou silou jsou automaty s čítači (pro dva a více čítačů) a operacemi+1, 1 a test na 0: Zmíněné automaty mají konečné řízení a k čítačů, přičemž v každém kroku je možné tyto čítače nezávisle inkrementovat, dekrementovat a testovat na nulu (přechod je podmíněn tím, že jistý čítač obsahuje nulu). Pomocí čtyř čítačů je snadné simulovat dva zásobníky: U ZA postačí mít Γ = {0,1}: různé symboly můžeme kódovat určitým počtem 0 oddělených 1. Obsah zásobníku má pak charakter binárně zapsaného čísla. Vložení 0 odpovídá vynásobení 2, odebrání 0 vydělení 2. Podobně je tomu s vložením/odebráním 1. Binární zásobník můžeme simulovat dvěma čítači: při násobení/dělení 2 odečítáme 1 (resp. 2) z jednoho čítače a přičítáme 2 (resp. 1) k druhému. Postačí ovšem i čítače dva: Obsah čtyř čítačůi, j, k, l je možné zakódovat jako 2 i 3 j 5 k 7 l. Přičtení/odečtení je pak možné realizovat násobením/dělením 2, 3, 5, či 7. Mezi další Turingovsky úplné výpočetní mechanismy pak patří např. λ-kalkul či parciálně-rekurzívní funkce (viz další přednáška). Meze rozhodnutelnosti 2 p.13/13
Fakulta informačních technologií. Teoretická informatika
Vysoké učení technické v Brně Fakulta informačních technologií Teoretická informatika Třetí úkol 2 Jan Trávníček . Tato úloha je řešena Turingovým strojem, který je zobrazen na obrázku, který si můžeme
doplněk, zřetězení, Kleeneho operaci a reverzi. Ukážeme ještě další operace s jazyky, na které je
28 [181105-1236 ] 2.7 Další uzávěrové vlastnosti třídy regulárních jazyků Z předchozích přednášek víme, že třída regulárních jazyků je uzavřena na sjednocení, průnik, doplněk, zřetězení, Kleeneho operaci
Vlastnosti regulárních jazyků
Vlastnosti regulárních jazyků Podobně jako u dalších tříd jazyků budeme nyní zkoumat následující vlastnosti regulárních jazyků: vlastnosti strukturální, vlastnosti uzávěrové a rozhodnutelné problémy pro
Turingovy stroje. Teoretická informatika Tomáš Foltýnek
Turingovy stroje Teoretická informatika Tomáš Foltýnek foltynek@pef.mendelu.cz Teoretická informatika strana 2 Opakování z minulé přednášky Jaké znáte algebraické struktury s jednou operací? Co je to okruh,
AUTOMATY A GRAMATIKY. Pavel Surynek. Kontextové uzávěrové vlastnosti Turingův stroj Rekurzivně spočetné jazyky Kódování, enumerace
AUTOMATY A 11 GRAMATIKY Pavel Surynek Univerzita Karlova v Praze Matematicko-fyzikální fakulta Katedra teoretické informatiky a matematické logiky Kontextové uzávěrové vlastnosti Turingův stroj Rekurzivně
Univerzální Turingův stroj a Nedeterministický Turingův stroj
27 Kapitola 4 Univerzální Turingův stroj a Nedeterministický Turingův stroj 4.1 Nedeterministický TS Obdobně jako u konečných automatů zavedeme nedeterminismus. Definice 14. Nedeterministický Turingův
Z. Sawa (VŠB-TUO) Teoretická informatika 5. listopadu / 43
Zásobníkové automaty Z. Sawa (VŠB-TUO) Teoretická informatika 5. listopadu 2018 1/ 43 Zásobníkový automat Chtěli bychom rozpoznávat jazyk L = {a i b i i 1} Snažíme se navrhnout zařízení (podobné konečným
Vztah jazyků Chomskeho hierarchie a jazyků TS
Vztah jazyků Chomskeho hierarchie a jazyků TS Jan Konečný; (přednáší Lukáš Havrlant) 15. října 2013 Jan Konečný; (přednáší Lukáš Havrlant) Chomskeho hierarchie a jazyky TS 15. října 2013 1 / 23 Rychlé
Třída PTIME a třída NPTIME. NP-úplnost.
VAS - Přednáška 9 Úvod ke kursu. Složitost algoritmu. Model RAM. Odhady složitosti. Metoda rozděl a panuj. Greedy algoritmy. Metoda dynamického programování. Problémy, třídy složitosti problémů, horní
Naproti tomu gramatika je vlastně soupis pravidel, jak
1 Kapitola 1 Úvod V přednášce se zaměříme hlavně na konečný popis obecně nekonečných množin řetězců symbolů dané množiny A. Prvkům množiny A budeme říkat písmena, řetězcům (konečným posloupnostem) písmen
Automaty a gramatiky(bi-aag) Motivace. 1. Základní pojmy. 2 domácí úkoly po 6 bodech 3 testy za bodů celkem 40 bodů
BI-AAG (2011/2012) J. Holub: 1. Základní pojmy p. 2/29 Hodnocení předmětu BI-AAG (2011/2012) J. Holub: 1. Základní pojmy p. 4/29 Automaty a gramatiky(bi-aag) 1. Základní pojmy Jan Holub Katedra teoretické
Teoretická informatika průběh výuky v semestru 1
Teoretická informatika průběh výuky v semestru 1 Týden 7 Přednáška (Výpočetní) problémy, rozhodovací(ano/ne) problémy,... Připomněli jsme si obecné definice a konkrétní problémy, jako např. SAT[problém
Z. Sawa (VŠB-TUO) Teoretická informatika 11. prosince / 63
Výpočetní modely Z. Sawa (VŠB-TUO) Teoretická informatika 11. prosince 2018 1/ 63 Nutnost upřesnění pojmu algoritmus Dosavadní definice pojmu algoritmus byla poněkud vágní. Pokud bychom pro nějaký problém
Regulární výrazy. Definice Množina regulárních výrazů nad abecedou Σ, označovaná RE(Σ), je definována induktivně takto:
IB102 Automaty, gramatiky a složitost, 6. 10. 2014 1/29 Regulární výrazy Definice 2.58. Množina regulárních výrazů nad abecedou Σ, označovaná RE(Σ), je definována induktivně takto: 1 ε, a a pro každé a
Třída PTIME a třída NPTIME. NP-úplnost.
VAS - Přednáška 9 Úvod ke kursu. Složitost algoritmu. Model RAM. Odhady složitosti. Metoda rozděl a panuj. Greedy algoritmy. Metoda dynamického programování. Problémy, třídy složitosti problémů, horní
Konstrukce relace. Postupně konstruujeme na množině všech stavů Q relace i,
[161014-1204 ] 11 2.1.35 Konstrukce relace. Postupně konstruujeme na množině všech stavů Q relace i, kde i = 0, 1,..., takto: p 0 q právě tehdy, když bud p, q F nebo p, q F. Dokud i+1 i konstruujeme p
Bezkontextové jazyky 3/3. Bezkontextové jazyky 3 p.1/27
Bezkontextové jazyky 3/3 Bezkontextové jazyky 3 p.1/27 Vlastnosti bezkontextových jazyků Bezkontextové jazyky 3 p.2/27 Pumping teorém pro BJ Věta 6.1 Necht L je bezkontextový jazyk. Pak existuje konstanta
Automaty a gramatiky. Roman Barták, KTIML. Separované gramatiky. Kontextové gramatiky. Chomského hierarchie
Chomského hierarchie Automaty a gramatiky Roman Barták, KTIML bartak@ktiml.mff.cuni.cz http://ktiml.mff.cuni.cz/~bartak gramatiky typu 0 (rekurzivně spočetné jazyky L 0 ) pravidla v obecné formě gramatiky
Formální jazyky a automaty Petr Šimeček
Formální jazyky a automaty Petr Šimeček Úvod Formální jazyky a automaty jsou základním kamenem teoretické informatiky. Na počátku se zmíníme o Chomského klasifikaci gramatik, nástroje, který lze aplikovat
Automaty a gramatiky. Uzávěrové vlastnosti v kostce R J BKJ DBKJ. Roman Barták, KTIML. Kvocienty s regulárním jazykem
11 Automaty a gramatiky Roman Barták, KTIML bartak@ktiml.mff.cuni.cz http://ktiml.mff.cuni.cz/~bartak Uzávěrové vlastnosti v kostce Sjednocení Průnik Průnik s RJ Doplněk Substituce/ homomorfismus Inverzní
Množinu všech slov nad abecedou Σ značíme Σ * Množinu všech neprázdných slov Σ + Jazyk nad abecedou Σ je libovolná množina slov nad Σ
Abecedou se rozumí libovolná konečná množina Σ. Prvky abecedy nazýváme znaky (symboly) Slovo (řetězec) v nad abecedou Σ je libovolná konečná posloupnost znaků této abecedy. Prázdné posloupnosti znaků odpovídá
(viztakéslidyktétopřednášce...) Poznámka. Neudělali jsme vše tak podrobně, jak je to v zápisu.
Teoretická informatika průběh výuky v semestru 1 Týden 8 Přednáška- první část (viztakéslidyktétopřednášce...) Poznámka. Neudělali jsme vše tak podrobně, jak je to v zápisu. Turingovy stroje,(výpočetní)
Teoretická informatika průběh výuky v semestru 1
Teoretická informatika průběh výuky v semestru 1 Týden 8 Přednáška Model RAM Ve studijním textu je detailně popsán model RAM, který je novějším výpočetním modelem než Turingův stroj a vychází z architektury
Turingovy stroje. Turingovy stroje 1 p.1/28
Turingovy stroje Turingovy stroje 1 p.1/28 Churchova teze Churchova (Church-Turingova) teze: Turingovy stroje (a jim ekvivalentní systémy) definují svou výpočetní silou to, co intuitivně považujeme za
Důkaz Heineho Borelovy věty. Bez újmy na obecnosti vezmeme celý prostor A = M (proč? úloha 1). Implikace. Nechť je (M, d) kompaktní a nechť.
Přednáška 3, 19. října 2015 Důkaz Heineho Borelovy věty. Bez újmy na obecnosti vezmeme celý prostor A = M (proč? úloha 1). Implikace. Nechť je (M, d) kompaktní a nechť X i = M i I je jeho pokrytí otevřenými
1 Linearní prostory nad komplexními čísly
1 Linearní prostory nad komplexními čísly V této přednášce budeme hledat kořeny polynomů, které se dále budou moci vyskytovat jako složky vektorů nebo matic Vzhledem k tomu, že kořeny polynomu (i reálného)
Složitost Filip Hlásek
Složitost Filip Hlásek Abstrakt. Příspěvek popisuje dva základní koncepty teoretické informatiky, Turingovy stroje a složitost. Kromě definic důležitých pojmů uvádí také několik souvisejících tvrzení,
Vektorové podprostory, lineární nezávislost, báze, dimenze a souřadnice
Vektorové podprostory, lineární nezávislost, báze, dimenze a souřadnice Vektorové podprostory K množina reálných nebo komplexních čísel, U vektorový prostor nad K. Lineární kombinace vektorů u 1, u 2,...,u
Zásobníkový automat. SlovoaaaabbbbpatřídojazykaL={a i b i i 1} a a a a b b b b
ChtělibychomrozpoznávatjazykL={a i b i i 1} Snažíme se navrhnout zařízení(podobné konečným automatům), které přečte slovo, a sdělí nám, zda toto slovo patřídojazykalčine. Při čtení a-ček si musíme pamatovat
Výpočetní modely pro rozpoznávání bezkontextových jazyků zásobníkové automaty LL(k) a LR(k) analyzátory
Plán přednášky Výpočetní modely pro rozpoznávání bezkontextových jazyků zásobníkové automaty LL(k) a LR(k) analyzátory Obecný algoritmus pro parsování bezkontextových jazyků dynamické programování 1 Zásobníkový
Poznámky k přednášce NTIN090 Úvod do složitosti a vyčíslitelnosti. Petr Kučera
Poznámky k přednášce NTIN090 Úvod do složitosti a vyčíslitelnosti Petr Kučera 12. února 2016 Obsah I Úvod 1 1 Motivace 2 II Vyčíslitelnost 3 2 Algoritmy a výpočetní modely 4 2.1 Churchova-Turingova teze..............................
Formální jazyky a gramatiky Teorie programovacích jazyků
Formální jazyky a gramatiky Teorie programovacích jazyků doc. Ing. Jiří Rybička, Dr. ústav informatiky PEF MENDELU v Brně rybicka@mendelu.cz Připomenutí základních pojmů ABECEDA jazyk je libovolná podmnožina
Kapitola 6. LL gramatiky. 6.1 Definice LL(k) gramatik. Definice 6.3. Necht G = (N, Σ, P, S) je CFG, k 1 je celé číslo.
Kapitola 6 LL gramatiky 6.1 Definice LL(k) gramatik Definice 6.1. Necht G = (N, Σ, P, S) je CFG, k 1 je celé číslo. Definujme funkci FIRST G k : (N Σ) + P({w Σ w k}) předpisem FIRST G k (α) = {w Σ (α w
Pumping lemma - podstata problému. Automaty a gramatiky(bi-aag) Pumping lemma - problem resolution. Pumping lemma - podstata problému
BI-AAG (2011/2012) J. Holub: 10. Vlastnosti regulárních jazyků p. 2/22 Pumping lemma - podstata problému BI-AAG (2011/2012) J. Holub: 10. Vlastnosti regulárních jazyků p. 4/22 Automaty a gramatiky(bi-aag)
NP-úplnost problému SAT
Problém SAT je definován následovně: SAT(splnitelnost booleovských formulí) Vstup: Booleovská formule ϕ. Otázka: Je ϕ splnitelná? Příklad: Formule ϕ 1 =x 1 ( x 2 x 3 )jesplnitelná: např.přiohodnocení ν,kde[x
AUTOMATY A GRAMATIKY
AUTOMATY A 1 GRAMATIKY Pavel Surynek Univerzita Karlova v Praze Matematicko-fyzikální fakulta Katedra teoretické informatiky a matematické logiky Stručný přehled přednášky Automaty Formální jazyky, operace
Syntaxí řízený překlad
Syntaxí řízený překlad Překladový automat Šárka Vavrečková Ústav informatiky, FPF SU Opava sarka.vavreckova@fpf.slu.cz Poslední aktualizace: 27. listopadu 2008 Zobecněný překladový automat Překladový automat
Čísla značí použité pravidlo, šipka směr postupu Analýza shora. Analýza zdola A 2 B 3 B * C 2 C ( A ) 1 a A + B. A Derivace zleva:
1) Syntaktická analýza shora a zdola, derivační strom, kanonická derivace ezkontextová gramatika gramatika typu 2 Nechť G = je gramatika typu 1. Řekneme, že je gramatikou typu 2, platí-li: y
Doporučené příklady k Teorii množin, LS 2018/2019
Doporučené příklady k Teorii množin, LS 2018/2019 1. přednáška, 21. 2. 2019 1. Napište množina x je prázdná (přesněji množina x nemá žádné prvky ) formulí základního jazyka teorie množin. 2. Dokažte ((x
Od Turingových strojů k P=NP
Složitost Od Turingových strojů k P=NP Zbyněk Konečný Zimnění 2011 12. 16.2.2011 Kondr (Než vám klesnou víčka 2011) Složitost 12. 16.2.2011 1 / 24 O čem to dnes bude? 1 Co to je složitost 2 Výpočetní modely
TURINGOVY STROJE. Doc. RNDr. Josef Kolář, CSc. Katedra teoretické informatiky, FIT České vysoké učení technické v Praze
TURINGOVY STROJE Doc. RNDr. Josef Kolář, CSc. Katedra teoretické informatiky, FIT České vysoké učení technické v Praze BI-GRA, LS 2010/2011, Lekce 12 Evropský sociální fond Praha & EU: Investujeme do vaší
3. Třídy P a NP. Model výpočtu: Turingův stroj Rozhodovací problémy: třídy P a NP Optimalizační problémy: třídy PO a NPO MI-PAA
Jan Schmidt 2011 Katedra číslicového návrhu Fakulta informačních technologií České vysoké učení technické v Praze Zimní semestr 2011/12 MI-PAA EVROPSKÝ SOCIÁLNÍ FOND PRAHA & EU: INVESTUJENE DO VAŠÍ BUDOUCNOSTI
Báze a dimenze vektorových prostorů
Báze a dimenze vektorových prostorů Buď (V, +, ) vektorový prostor nad tělesem (T, +, ). Nechť u 1, u 2,..., u n je konečná posloupnost vektorů z V. Existují-li prvky s 1, s 2,..., s n T, z nichž alespoň
Poznámky k přednášce NTIN090 Úvod do složitosti a vyčíslitelnosti. Petr Kučera
Poznámky k přednášce NTIN090 Úvod do složitosti a vyčíslitelnosti Petr Kučera 16. září 2014 Obsah Sylabus a literatura Úvod a motivace iv v I Vyčíslitelnost 1 1 Algoritmy a výpočetní modely 2 1.1 Churchova-Turingova
Modely Herbrandovské interpretace
Modely Herbrandovské interpretace Petr Štěpánek S využitím materialu Krysztofa R. Apta 2006 Logické programování 8 1 Uvedli jsme termové interpretace a termové modely pro logické programy a také nejmenší
Kapitola Základní množinové pojmy Princip rovnosti. Dvě množiny S a T jsou si rovny (píšeme S = T ) prvek T je také prvkem S.
1 Kapitola 1 Množiny 11 Základní množinové pojmy Pojem množiny nedefinujeme, pouze připomínáme, že množina je souhrn, nebo soubor navzájem rozlišitelných objektů, kterým říkáme prvky 111 Princip rovnosti
p 2 q , tj. 2q 2 = p 2. Tedy p 2 je sudé číslo, což ale znamená, že
KAPITOLA 1: Reálná čísla [MA1-18:P1.1] 1.1. Číselné množiny Přirozená čísla... N = {1,, 3,...} nula... 0, N 0 = {0, 1,, 3,...} = N {0} Celá čísla... Z = {0, 1, 1,,, 3,...} Racionální čísla... { p } Q =
PŘÍJMENÍ a JMÉNO: Login studenta: DATUM:
PŘÍJMENÍ a JMÉNO: Login studenta: DATUM: Závěrečný test z předmětu Vyčíslitelnost a složitost Doba trvání: 90 minut Max. zisk: 100 bodů Obecné pokyny: Po obdržení testu ihned do pravého horního rohu napište
Vztah teorie vyčíslitelnosti a teorie složitosti. IB102 Automaty, gramatiky a složitost, /31
Vztah teorie vyčíslitelnosti a teorie složitosti IB102 Automaty, gramatiky a složitost, 2. 12. 2013 1/31 IB102 Automaty, gramatiky a složitost, 2. 12. 2013 2/31 Časová složitost algoritmu počet kroků výpočtu
Teoretická informatika - Úkol č.1
Teoretická informatika - Úkol č.1 Lukáš Sztefek, xsztef01 18. října 2012 Příklad 1 (a) Gramatika G 1 je čtveřice G 1 = (N, Σ, P, S) kde, N je konečná množina nonterminálních symbolů N = {A, B, C} Σ je
Úvod do informatiky. Miroslav Kolařík
Úvod do informatiky přednáška desátá Miroslav Kolařík Zpracováno dle R. Bělohlávek, V. Vychodil: Diskrétní matematika 2, http://phoenix.inf.upol.cz/esf/ucebni/dm2.pdf P. Martinek: Základy teoretické informatiky,
Teoretická informatika TIN
Teoretická informatika TIN Studijní opora M. Češka, T. Vojnar, A. Smrčka 20. srpna 2014 Tento učební text vznikl za podpory projektu "Zvýšení konkurenceschopnosti IT odborníků absolventů pro Evropský trh
Lineární algebra Kapitola 1 - Základní matematické pojmy
Lineární algebra Kapitola 1 - Základní matematické pojmy 1.1 Relace a funkce V celém textu budeme používat následující označení pro číselné množiny: N množina všech přirozených čísel bez nuly, N={1, 2,
Jednoznačné a nejednoznačné gramatiky
BI-AAG (2011/2012) J. Holub: 11. Bezkontextové gramatiky p. 2/36 Jednoznačné a nejednoznačné gramatiky BI-AAG (2011/2012) J. Holub: 11. Bezkontextové gramatiky p. 4/36 Automaty a gramatiky(bi-aag) 11.
Logika. 6. Axiomatický systém výrokové logiky
Logika 6. Axiomatický systém výrokové logiky RNDr. Luděk Cienciala, Ph. D. Tato inovace předmětu Úvod do logiky je spolufinancována Evropským sociálním fondem a Státním rozpočtem ČR, projekt č. CZ. 1.07/2.2.00/28.0216,
Lineární algebra : Násobení matic a inverzní matice
Lineární algebra : Násobení matic a inverzní matice (8. přednáška) František Štampach, Karel Klouda LS 2013/2014 vytvořeno: 17. března 2014, 12:42 1 2 0.1 Násobení matic Definice 1. Buďte m, n, p N, A
Pravděpodobnost a statistika
Pravděpodobnost a statistika 1 Náhodné pokusy a náhodné jevy Činnostem, jejichž výsledek není jednoznačně určen podmínkami, za kterých probíhají, a které jsou (alespoň teoreticky) neomezeně opakovatelné,
Matice. a m1 a m2... a mn
Matice Nechť (R, +, ) je okruh a nechť m, n jsou přirozená čísla Matice typu m/n nad okruhem (R, +, ) vznikne, když libovolných m n prvků z R naskládáme do obdélníkového schematu o m řádcích a n sloupcích
Třídy složitosti P a NP, NP-úplnost
Třídy složitosti P a NP, NP-úplnost Cíle přednášky: 1. Definovat, za jakých okolností můžeme problém považovat za efektivně algoritmicky řešitelný. 2. Charakterizovat určitou skupinu úloh, pro které není
4 Pojem grafu, ve zkratce
Petr Hliněný, FI MU Brno, 2014 1 / 24 FI: IB000: Pojem grafu 4 Pojem grafu, ve zkratce Třebaže grafy jsou jen jednou z mnoha struktur v matematice a vlastně pouze speciálním případem binárních relací,
5 Orientované grafy, Toky v sítích
Petr Hliněný, FI MU Brno, 205 / 9 FI: IB000: Toky v sítích 5 Orientované grafy, Toky v sítích Nyní se budeme zabývat typem sít ových úloh, ve kterých není podstatná délka hran a spojení, nýbž jejich propustnost
Lineární algebra : Násobení matic a inverzní matice
Lineární algebra : Násobení matic a inverzní matice (8. přednáška) František Štampach, Karel Klouda frantisek.stampach@fit.cvut.cz, karel.klouda@fit.cvut.cz Katedra aplikované matematiky Fakulta informačních
BRNO UNIVERSITY OF TECHNOLOGY FACULTY OF INFORMATION TECHNOLOGY DEPARTMENT OF INTELLIGENT SYSTEMS MASTER S THESIS AUTHOR
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA INFORMAČNÍCH TECHNOLOGIÍ ÚSTAV INTELIGENTNÍCH SYSTÉMŮ FACULTY OF INFORMATION TECHNOLOGY DEPARTMENT OF INTELLIGENT SYSTEMS SYSTÉMY FORMÁLNÍCH
Základy matematické analýzy
Základy matematické analýzy Spojitost funkce Ing. Tomáš Kalvoda, Ph.D. 1, Ing. Daniel Vašata 2 1 tomas.kalvoda@fit.cvut.cz 2 daniel.vasata@fit.cvut.cz Katedra aplikované matematiky Fakulta informačních
Výpočetní složitost I
Výpočetní složitost I prooborlogikanaffuk Petr Savický 1 Úvod Složitostí algoritmické úlohy se rozumí především její časová a paměťová náročnost při řešení na počítači. Časová náročnost se měří počtem
Definice 9.4. Nedeterministický algoritmus se v některých krocích může libovolně rozhodnout pro některé z několika možných různých pokračování.
9.5 Třída NP Definice 9.4. Nedeterministický algoritmus se v některých krocích může libovolně rozhodnout pro některé z několika možných různých pokračování. Příklad. Uvažujme problém IND a následující
Principy indukce a rekursivní algoritmy
Principy indukce a rekursivní algoritmy Jiří Velebil: A7B01MCS 19. září 2011: Indukce 1/20 Příklad Místností rozměru n budeme rozumět šachovnici rozměru 2 n 2 n, ze které je jedno (libovolné) pole vyjmuto.
Maticí typu (m, n), kde m, n jsou přirozená čísla, se rozumí soubor mn veličin a jk zapsaných do m řádků a n sloupců tvaru:
3 Maticový počet 3.1 Zavedení pojmu matice Maticí typu (m, n, kde m, n jsou přirozená čísla, se rozumí soubor mn veličin a jk zapsaných do m řádků a n sloupců tvaru: a 11 a 12... a 1k... a 1n a 21 a 22...
Bezkontextové gramatiky nad volnými grupami
Vysoké učení technické v Brně Fakulta informačních technologií Bezkontextové gramatiky nad volnými grupami 2004 Radek Bidlo Abstrakt Tento dokument zavádí pojem bezkontextové gramatiky nad volnou grupou
[1] samoopravné kódy: terminologie, princip
[1] Úvod do kódování samoopravné kódy: terminologie, princip blokové lineární kódy Hammingův kód Samoopravné kódy, k čemu to je [2] Data jsou uložena (nebo posílána do linky) kodérem podle určitého pravidla
α β ) právě tehdy, když pro jednotlivé hodnoty platí β1 αn βn. Danou relaci nazýváme relace
Monotónní a Lineární Funkce 1. Relace předcházení a to Uvažujme dva vektory hodnot proměnných α = α,, 1 αn ( ) a β = ( β β ) 1,, n x,, 1 xn. Říkáme, že vekto r hodnot α předchází vektor hodnot β (značíme
Cvičení ke kursu Vyčíslitelnost
Cvičení ke kursu Vyčíslitelnost (23. prosince 2017) 1. Odvoďte funkci [x, y, z] x y z ze základních funkcí pomocí operace. 2. Dokažte, že relace nesoudělnosti je 0. Dokažte, že grafy funkcí Mod a Div jsou
Matematická analýza pro informatiky I. Limita funkce
Matematická analýza pro informatiky I. 5. přednáška Limita funkce Jan Tomeček tomecek@inf.upol.cz http://aix-slx.upol.cz/ tomecek/index Univerzita Palackého v Olomouci 18. března 2011 Jan Tomeček, tomecek@inf.upol.cz
Matematická analýza pro informatiky I. Limita posloupnosti (I)
Matematická analýza pro informatiky I. 3. přednáška Limita posloupnosti (I) Jan Tomeček tomecek@inf.upol.cz http://aix-slx.upol.cz/ tomecek/index Univerzita Palackého v Olomouci 25. února 2011 tomecek@inf.upol.cz
Matematická logika. Miroslav Kolařík
Matematická logika přednáška třetí Miroslav Kolařík Zpracováno dle textu R. Bělohlávka: Matematická logika poznámky k přednáškám, 2004. a dle učebního textu R. Bělohlávka a V. Vychodila: Diskrétní matematika
Rozhodnutelné a nerozhodnutelné problémy. M. Kot, Z. Sawa (VŠB-TU Ostrava) Úvod do teoretické informatiky 24. dubna / 49
Rozhodnutelné a nerozhodnutelné problémy M. Kot, Z. Sawa (VŠB-TU Ostrava) Úvod do teoretické informatiky 24. dubna 2007 1/ 49 Co je to algoritmus? Algoritmus Algoritmus je mechanický postup skládající
GRAFY A GRAFOVÉ ALGORITMY
KATEDRA INFORMATIKY PŘÍRODOVĚDECKÁ FAKULTA UNIVERZITA PALACKÉHO GRAFY A GRAFOVÉ ALGORITMY ARNOŠT VEČERKA VÝVOJ TOHOTO UČEBNÍHO TEXTU JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ
Množiny, relace, zobrazení
Množiny, relace, zobrazení Množiny Množinou rozumíme každý soubor určitých objektů shrnutých v jeden celek. Zmíněné objekty pak nazýváme prvky dané množiny. Pojem množina je tedy synonymem pojmů typu soubor,
PROGRAMOVACÍ JAZYKY A PŘEKLADAČE LL SYNTAKTICKÁ ANALÝZA DOKONČENÍ, IMPLEMENTACE.
PROGRAMOVACÍ JAZYKY A PŘEKLADAČE LL SYNAKICKÁ ANALÝZA DOKONČENÍ, IMPLEMENACE. VLASNOSI LL GRAMAIK A JAZYKŮ. 2011 Jan Janoušek BI-PJP Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti Gramatika
Automaty a gramatiky(bi-aag) Formální překlady. 5. Překladové konečné automaty. h(ε) = ε, h(xa) = h(x)h(a), x, x T, a T.
BI-AAG (2011/2012) J. Holub: 5. Překladové konečné automaty p. 2/41 Formální překlady BI-AAG (2011/2012) J. Holub: 5. Překladové konečné automaty p. 4/41 Automaty a gramatiky(bi-aag) 5. Překladové konečné
Unární je také spojka negace. pro je operace binární - příkladem může být funkce se signaturou. Binární je velká většina logických spojek
Otázka 06 - Y01MLO Zadání Predikátová logika, formule predikátové logiky, sentence, interpretace jazyka predikátové logiky, splnitelné sentence, tautologie, kontradikce, tautologicky ekvivalentní formule.
3. Podmíněná pravděpodobnost a Bayesův vzorec
3. Podmíněná pravděpodobnost a Bayesův vzorec Poznámka: V některých úlohách řešíme situaci, kdy zkoumáme pravděpodobnost náhodného jevu za dalších omezujících podmínek. Nejčastěji má omezující podmínka
Grafy. doc. Mgr. Jiří Dvorský, Ph.D. Katedra informatiky Fakulta elektrotechniky a informatiky VŠB TU Ostrava. Prezentace ke dni 13.
Grafy doc. Mgr. Jiří Dvorský, Ph.D. Katedra informatiky Fakulta elektrotechniky a informatiky VŠB TU Ostrava Prezentace ke dni 13. března 2017 Jiří Dvorský (VŠB TUO) Grafy 104 / 309 Osnova přednášky Grafy
Kapitola 1. Úvod. 1.1 Značení. 1.2 Výroky - opakování. N... přirozená čísla (1, 2, 3,...). Q... racionální čísla ( p, kde p Z a q N) R...
Kapitola 1 Úvod 1.1 Značení N... přirozená čísla (1, 2, 3,...). Z... celá čísla ( 3, 2, 1, 0, 1, 2,...). Q... racionální čísla ( p, kde p Z a q N) q R... reálná čísla C... komplexní čísla 1.2 Výroky -
FEI, VŠB-TUO, Teoretická informatika(460-4005/01) zadání referátů 1
FEI, VŠB-TUO, Teoretická informatika(460-4005/01) zadání referátů 1 Referáty Referáty jsou studentům přiděleny během prvních(tří) týdnů v semestru, způsobem popsaným na aktuální webovské stránce předmětu,
Matematická indukce, sumy a produkty, matematická logika
Matematická indukce, sumy a produkty, matematická logika 8.9. -.0.009 Matematická indukce Jde o následující vlastnost přirozených čísel: Předpokládejme:. Nějaké tvrzení platí pro.. Platí-li tvrzení pro
ZÁKLADY TEORETICKÉ INFORMATIKY
KATEDRA INFORMATIKY PŘÍRODOVĚDECKÁ FAKULTA UNIVERZITA PALACKÉHO ZÁKLADY TEORETICKÉ INFORMATIKY PAVEL MARTINEK VÝVOJ TOHOTO UČEBNÍHO TEXTU JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM
PŘEDNÁŠKA 2 POSLOUPNOSTI
PŘEDNÁŠKA 2 POSLOUPNOSTI 2.1 Zobrazení 2 Definice 1. Uvažujme libovolné neprázdné množiny A, B. Zobrazení množiny A do množiny B je definováno jako množina F uspořádaných dvojic (x, y A B, kde ke každému
Vrcholová barevnost grafu
Vrcholová barevnost grafu Definice: Necht G = (V, E) je obyčejný graf a k N. Zobrazení φ : V {1, 2,..., k} nazýváme k-vrcholovým obarvením grafu G. Pokud φ(u) φ(v) pro každou hranu {u, v} E, nazveme k-vrcholové
Úvod do vybíravosti grafů, Nullstellensatz, polynomiální metoda
Úvod do vybíravosti grafů, Nullstellensatz, polynomiální metoda Zdeněk Dvořák 12. prosince 2017 1 Vybíravost Přiřazení seznamů grafu G je funkce L, která každému vrcholu G přiřadí množinu barev. L-obarvení
Minimalizace KA - Úvod
Minimalizace KA - Úvod Tyto dva KA A,A2 jsou jazykově ekvivalentní, tzn. že rozpoznávají tentýž jazyk. L(A) = L(A2) Názorně lze vidět, že automat A2 má menší počet stavů než A, tudíž našim cílem bude ukázat
Stromové rozklady. Definice 1. Stromový rozklad grafu G je dvojice (T, β) taková, že T je strom,
Stromové rozklady Zdeněk Dvořák 25. října 2017 Definice 1. Stromový rozklad grafu G je dvojice (T, β) taková, že T je strom, β je funkce přiřazující každému vrcholu T podmnožinu vrcholů v G, pro každé
TOPOLOGIE A TEORIE KATEGORIÍ (2017/2018) 4. PREDNÁŠKA - SOUČIN PROSTORŮ A TICHONOVOVA VĚTA.
TOPOLOGIE A TEORIE KATEGORIÍ (2017/2018) 4. PREDNÁŠKA - SOUČIN PROSTORŮ A TICHONOVOVA VĚTA. PAVEL RŮŽIČKA 4.1. (Kvazi)kompaktnost a sub-báze. Buď (Q, ) uspořádaná množina. Řetězcem v Q budeme rozumět lineárně
UČEBNÍ TEXTY OSTRAVSKÉ UNIVERZITY. Vyčíslitelnost a složitost 1. Mgr. Viktor PAVLISKA
UČEBNÍ TEXTY OSTRAVSKÉ UNIVERZITY Přírodovědecká fakulta Vyčíslitelnost a složitost 1 Mgr. Viktor PAVLISKA Ostravská univerzita 2002 Vyčíslitelnost a složitost 1 KIP/VYSL1 texty pro distanční studium
Přednáška 6, 6. listopadu 2013
Přednáška 6, 6. listopadu 2013 Kapitola 2. Posloupnosti a řady funkcí. V dalším jsou f, f n : M R, n = 1, 2,..., reálné funkce jedné reálné proměnné definované na (neprázdné) množině M R. Co to znamená,
PQ-stromy a rozpoznávání intervalových grafů v lineárním čase
-stromy a rozpoznávání intervalových grafů v lineárním čase ermutace s předepsanými intervaly Označme [n] množinu {1, 2,..., n}. Mějme permutaci π = π 1, π 2,..., π n množiny [n]. Řekneme, že množina S
Automaty a gramatiky
Automaty a gramatiky Roman Barták, KTIML bartak@ktiml.mff.cuni.cz http://ktiml.mff.cuni.cz/~bartak Co bylo minule Úvod do formálních gramatik produkční systémy generativní gramatika G=(V N,V T,,P) G =
Teoretická informatika TIN 2013/2014
Teoretická informatika TIN 2013/2014 prof. RNDr. Milan Češka, CSc. ceska@fit.vutbr.cz doc.ing. Tomáš Vojnar, Ph.D. vojnar@fit.vutbr.cz sazba Ing. A. Smrčka, Ing. P. Erlebach, Ing. P. Novosad Vysoké učení
Výroková a predikátová logika - II
Výroková a predikátová logika - II Petr Gregor KTIML MFF UK ZS 2017/2018 Petr Gregor (KTIML MFF UK) Výroková a predikátová logika - II ZS 2017/2018 1 / 17 Předběžnosti Základní pojmy n-ární relace a funkce
Stromy, haldy, prioritní fronty
Stromy, haldy, prioritní fronty prof. Ing. Pavel Tvrdík CSc. Katedra počítačů FEL České vysoké učení technické DSA, ZS 2008/9, Přednáška 6 http://service.felk.cvut.cz/courses/x36dsa/ prof. Pavel Tvrdík