ALGEBRA. Téma 4: Grupy, okruhy a pole
|
|
- Iva Dušková
- před 9 lety
- Počet zobrazení:
Transkript
1 SLEZSKÁ UNIVERZITA V OPAVĚ Matematický ústav v Opavě Na Rybníčku 1, Opava, tel. (553) DENNÍ STUDIUM Téma 4: Grupy, okruhy a pole Základní pojmy unární operace, binární operace, asociativita, komutativita, distributivita; grupa, neutrální prvek, inverzní prvek, inverzní operace; komutativní (Abelova) grupa, aditivní grupa, multiplikativní grupa; podgrupa; homomorfismus grup, jádro a obraz homomorfismu, izomorfismus grup; triviální grupa, číselné grupy, maticové grupy, cyklické grupy, symetrické grupy; okruh, komutativní okruh, asociativní okruh, nulový prvek okruhu, jednotkový prvek okruhu, dělitelé nuly, invertibilní prvek; podokruh; homomorfismus a izomorfismus okruhů, triviální okruh, číselné okruhy, okruh polynomů, okruh zbytkových tříd modulo n, okruh funkcí; pole (těleso), charakteristika pole, podpole; číselná pole; Základní úlohy Vyšetřit vlastnosti dané operace, rozhodnout, zda množina s danými operacemi je grupa, okruh, pole; rozhodnout, zda podmnožina grupy (okruhu, pole) je podgrupa (podokruh, podpole), rozhodnout, zda dané zobrazení je homomorfismus (izomorfismus), určit jádro a obraz homomorfismu, určit charakteristiku pole. Základní vzorce asociativní zákon: a (b c) = (a b) c komutativní zákon: a b = b a distributivní zákony: a) a (b + c) = a b + b c, b) (a + b) c = a c + b c. Kontrolní otázky 1. Definujte grupu. 2. Bud G grupa. Je {e} podgrupou G? Je G podgrupou G? 3. Je množina R s operací sčítání reálných čísel grupa? Je R s operací násobení reálných čísel grupa? 4. Je dělení binární operace na množině R? 5. Je sčítání binární operace na množině sudých čísel? 6. Je sčítání binární operace na množině lichých čísel? 7. Na množině R zaved te strukturu (a) grupy, (b) okruhu, (c) pole.
2 8. Vyjmenujte některé podgrupy aditivní grupy reálných čísel (R, +). 9. Lze zavést strukturu okruhu na jednoprvkové množině? Lze zavést na jednoprvkové množině strukturu okruhu s jednotkou? 10. Uved te příklady okruhů, které nejsou poli. 11. Uved te příklady polí. 12. Jakou charakteristiku má pole Q? 13. Uved te příklady podokruhů okruhu R. 14. Je-li f : G G izomorfismus grup, určete podgrupy Ker f G a Im f G. 15. Uved te příklad okruhu na dvouprvkové množině. Příklady 1. Rozhodněte, která z uvedených dvojic (množina, operace) má strukturu grupy, případně Abelovské grupy: (+ značí sčítání, násobení) (Z, +), (Q, +), (R, +), (C, +), (Z, ), (Q, ), (R, ), (C, ), (R +, ), (R \ {0}, ), (C \ {0}, ), (Q \ {0}, ), (matice m/n, +), (matice n/n, ), (regulární čtvercové matice, ). 2. Dokažte, že množina všech sudých čísel s operací sčítání je izomorfní s aditivní grupou celých čísel. 3. Dokažte, že grupy (R +, ) a (R, +) jsou izomorfní. 4. Uvažujme tyto grupy: (Z, +), (C, +), (R +, ), (Q, +), (R, +), (R \ {0}, ). Vyberte všechny dvojice A, G tak, aby platilo, že A je podgrupou G. 5. Dokažte, že je-li f : G G homomorfismus grup a e(e ) je jednotka grupy G(G ), pak f (e) = e. 6. Dokažte, že průnikem dvou podgrup grupy G je podgrupa grupy G. Platí analogické tvrzení pro konečný systém podgrup? A pro libovolný systém podgrup? Dokažte. 7. Cyklické podgrupy. Bud G grupa, a G. Necht n N. n-tou mocninou prvku a nazýváme prvek a a a } {{ } n a označujeme a n. (Dohoda: a 0 = e; je-li G aditivní grupa, nazýváme a n n-násobkem prvku a a píšeme na.) Zápornou mocninu prvku a definujeme vztahem a } 1 a 1 {{ a 1 } = (a 1 ) n ; značíme ji a n. n Dokažte, že (a 1 ) n = (a n ) 1. Dokažte: pro m, n: a n a m = a m a n = a n+m, (a n ) m = a nm. Označme {a} podmnožinu grupy G tvořenou všemi mocninami prvku a. Dokažte, že {a} je podgrupa grupy G nazývá se cyklická podgrupa grupy G vytvořená prvkem a. Je tato podgrupa abelovská? Grupa G se nazývá cyklická, jestliže existuje a G tak, že G = {a}. Ukažte, že (Z, +) je nekonečná cyklická grupa. Dokažte, že všechny nekonečné cyklické grupy jsou navzájem izomorfní. (Návod: Zkoumejte izomorfismus s cyklickou grupou (Z, +).) 8. Prvek a grupy G se nazývá prvek řádu n, jestliže a n = e. Necht v grupě G existuje právě jeden prvek x řádu 2. Pak pro a G platí ax = xa. Dokažte. 2
3 9. Symetrické grupy. Dokažte, že množina všech permutací množiny {1, 2,..., n} s operací skládání permutací je grupa. Nazývá se symetrická grupa stupně n a označuje se S n. Je S n abelovská? Určete parity permutací, složenou permutaci σ τ, resp. τ σ a jejich paritu, je-li σ = ( ), τ = ( Popište tyto podmnožiny grupy S 4 : všechny permutace, které zobrazují množinu {1, 2} do množiny {1, 2}, všechny permutace, které zobrazují {1, 2} bud do {1,2} nebo do {3, 4}. Najděte 4 různé podgrupy grupy S 4 izomorfní s S 3. Uvažujme grupu S 4 a její podmnožinu A = {( Rozhodněte, zda A je podgrupa. ) ( , )}. 10. Uvažujme aditivní grupu celých čísel (Z, +). Dokažte, že podmnožina A všech sudých čísel je podgrupa v (Z, +). 11. Označme GL(n, R) multiplikativní grupu všech regulárních matic řádu n nad R (nazývá se obecná lineární grupa řádu n nad R). Matice A GL(n, R) se nazývá ortogonální, jestliže A 1 = A T. Dokažte, že množina všech ortogonálních matic řádu n je podgrupa grupy G L(n, R); označuje se O(n, R) a nazývá se ortogonální grupa. Dokažte, že pro prvky a i j ortogonální matice A platí ). nk=1 a i k a j k = δi j, nk=1 a k i ak j = δ i j (relace ortogonality). Určete determinant ortogonální matice. 12. Označme GL(n, C) multiplikativní grupu všech regulárních matic řádu n nad C. Matice A GL(n, C) se nazývá unitární, jestliže platí A 1 = A T. Dokažte, že množina U(n, C) všech unitárních matic řádu n je podgrupa grupy GL(n, C) (unitární grupa). Co platí pro determinant unitární matice? Je O(n, R) podgrupa U(n, C)? 13. Označme SL(n, R) množinu všech matic A GL(n, R) pro které det A = 1. Dokažte, že SL(n, R) je podgrupa GL(n, R) (speciální lineární grupa). 14. Euklidova grupa transformací R 3. Uvažujme množinu všech transformací Euklidova prostoru R 3 do sebe, definovaných rovnicemi r = A r + u, ( ) kde r je polohový vektor částice r = (x, y, z), u je libovolný konstantní vektor a A je ortogonální matice (tj. taková, že AA T = E). Pro A = E dostáváme r = r + u a příslušné transformace nazýváme translace. Pro u = 0 máme r = A r a transformace nazýváme rotace). Dokažte, že množina transformací (*) s operací skládání transformací je grupa (Euklidova grupa prostoru R 3 ). Určete její neutrální prvek a k libovolnému prvku prvek inverzní. Je tato grupa abelovská? Stejné otázky zkoumejte pro množinu translací a pak pro množinu rotací. 15. Dokažte, že složením homomorfismu grup a izomorfismu grup vzniká homomorfismus a složením dvou izomorfismů grup vzniká izomorfismus. Co můžete říci o složení dvou homomorfismů? 16. Uved te příklady číselných okruhů. 17. Dokažte, že pole racionálních čísel je nejmenší číselné pole, tj. že je celé obsaženo v každém číselném poli. 18. Rozhodněte, které z uvedených množin mají strukturu podokruhu okruhu reálných čísel: (a) sudá čísla (b) lichá čísla (c) Z (d) R \ Q 3
4 (e) {a + b 2, a, b Q} (f) {a + b 3 2, a, b Q} (g) {a + bi, a, b Q} Které z nich mají strukturu pole? 19. Dokažte, že množina všech polynomů s komplexními koeficienty s operacemi sčítání a násobení polynomů je okruh. Má tento okruh jednotku? Má dělitele nuly? Je polem? 20. Okruh zbytkových tříd modulo n. Uvažujme okruh celých čísel (Z, +, ). Zvolme n N, n 1 pevně. Řekneme, že čísla z 1, z 2 Z jsou ekvivalentní, jestliže jejich zbytky při dělení číslem n jsou si rovny. Prověřte, že takto definovaná relace je ekvivalence na množině Z. Zřejmě tato ekvivalence definuje rozklad množiny Z na n disjunktních tříd Z 0, Z 1,... Z n 1, kde Z i je třída ekvivalence obsahující všechna celá čísla, jejichž zbytek po dělení číslem n je roven i. Vypište rozklad množiny Z pro případy (a) n = 2 (b) n = 3 (c) n = 5 Označme O(n) množinu {Z 0,..., Z n 1 } a definujme operace + a na O(n) takto: Necht z 1, z 2 Z, z 1 Z i, z 2 Z j. Pak platí z 1 = p 1 n + i, z 2 = p 2 n + j, tedy z 1 + z 2 = (p 1 + p 2 )n + (i + j) z 1 z 2 = (p 1 p 2 n + p 1 j + p 2 i)n + i j, což znamená, že součet (součin) libovolných dvou prvků z třídy Z i a Z j padne do téže třídy Z k, kde k je zbytek při dělení čísla i + j číslem n (resp. Z l, kde l je zbytek při dělení čísla i j číslem n). Klademe: Z i + Z j = Z k, Z i Z j = Z l, kde k, l jsou stejné jako výše. Dokažte, že množina O(n) s takto definovanými operacemi sčítání a násobení je komutativní a asociativní okruh s jednotkou (určete jednotku tohoto okruhu!); nazývá se okruh zbytkových tříd modulo n. Určete nulový prvek a inverzní prvek k Z i vzhledem ke sčítání. Dokažte, že pro n = 2 je O(n) pole. Vyšetřete, zda jsou poli okruhy O(3), O(4), O(5). 21. Určete charakteristiku (a) číselného pole, (b) pole O(2). 22. Dokažte, že zobrazení: det GL(n, R) (R \ {0}, ) je homomorfismus grup. Určete jeho jádro Ker(det) a obraz Im(det). Zápočtové příklady 1. Dokažte, že množina A G je podgrupa když pro a, b A platí ab 1 A. 2. Galileiho grupa transformací. Dokažte, že množina transformací R R 3 R R 3 typu r = r + vt, t = t ( ) kde v je konstantní vektor, tvoří grupu s operací skládání transformací. (Transformace (**) nazýváme Galileiho transformace). Dokažte dále, že transformace prostoru R R 3 definované vztahy r = A r + vt + u, t = t tvoří grupu (Galileiho grupa). Ukažte, že libovolnou transformaci z Galileiho grupy lze vyjádřit jako složení rotace, translace a Galileiho transformace. Rozhodněte, zda grupa Galileiho transformací, resp. Galileiho grupa je Abelova. 3. Dokažte, že množina spojitých reálných funkcí s operací sčítání a násobení funkcí je okruh. Rozhodněte, zda tento okruh je (a) komutativní, (b) asociativní Má tento okruh jednotku? Má dělitele nuly? 4
5 4. Uvažujme množinu všech vektorů v R 3 s operacemi sčítání vektorů a vektorového součinu vektorů, definovanými takto: je-li u = (u 1, u 2, u 3 ), v = (v 1, v 2, v 3 ), klademe u + v = (u 1 + v 1, u 2 + v 2, u 3 + v 3 ) u v = (u 2 v 3 u 3 v 2, u 1 v 3 + v 1 u 3, u 1 v 2 u 2 v 1 ); (někdy píšeme také e 1 e 2 e 3 u v = u 1 u 2 u 3 v 1 v 2 v 3, kde e 1, e 2, e 3 jsou jednotkové vektory ve směru souřadnicových os ). Dokažte, že (R 3, +, ) je okruh. Je tento okruh komutativní? Je asociativní? Má dělitele nuly? Má jednotku? 5. Dokažte, že existuje surjektivní homomorfismus obecné lineární grupy G L(n, R) na multiplikativní grupu reálných čísel (R \ {0}, ). 6. Necht f : G G je homomorfismus grup. Dokažte, že Ker f je podgrupa v G a Im f je podgrupa v G. 5
grupa těleso podgrupa konečné těleso polynomy komutativní generovaná prvkem, cyklická, řád prvku charakteristika tělesa
grupa komutativní podgrupa těleso generovaná prvkem, cyklická, řád prvku Malá Fermatova věta konečné těleso charakteristika tělesa polynomy ireducibilní prvky, primitivní prvky definice: G, je grupa kde
ALGEBRA. Téma 5: Vektorové prostory
SLEZSKÁ UNIVERZITA V OPAVĚ Matematický ústav v Opavě Na Rybníčku 1, 746 01 Opava, tel. (553) 684 611 DENNÍ STUDIUM Téma 5: Vektorové prostory Základní pojmy Vektorový prostor nad polem P, reálný (komplexní)
Teorie grup 1 Příklad axiomatické teorie
Teorie grup 1 Příklad axiomatické teorie Alena Šolcová 1 Binární operace Binary operation Binární operací na neprázdné množině A rozumíme každé zobrazení kartézského součinu A x A do A. Multiplikativní
Algebra 2 KMI/ALG2. Zpracováno podle přednášek prof. Jiřího Rachůnka a podle přednášek prof. Ivana Chajdy. slidy k přednáškám
Algebra 2 slidy k přednáškám KMI/ALG2 Zpracováno podle přednášek prof. Jiřího Rachůnka a podle přednášek prof. Ivana Chajdy. Vytvořeno za podpory projektu FRUP_2017_052: Tvorba a inovace výukových opor
Okruhy, podokruhy, obor integrity, těleso, homomorfismus. 1. Rozhodněte, zda daná množina M je podokruhem okruhu (C, +, ): f) M = { a
Sbírka příkladů z okruhů a polynomů Algebra I Okruhy, podokruhy, obor integrity, těleso, homomorfismus 1. Rozhodněte, zda daná množina M je podokruhem okruhu (C, +, ): a) M = {a + i a R}, b) M = {a + i
Matematický ústav Slezské univerzity v Opavě Učební texty k přednášce ALGEBRA I, zimní semestr 2000/2001 Michal Marvan. 2.
Matematický ústav Slezské univerzity v Opavě Učební texty k přednášce ALGEBRA I, zimní semestr 2000/2001 Michal Marvan 2. Homomorfismy V souvislosti se strukturami se v moderní matematice studují i zobrazení,
Učební texty k státní bakalářské zkoušce Matematika Algebra. študenti MFF 15. augusta 2008
Učební texty k státní bakalářské zkoušce Matematika Algebra študenti MFF 15. augusta 2008 1 8 Algebra Požadavky Grupa, okruh, těleso definice a příklady Podgrupa, normální podgrupa, faktorgrupa, ideál
1 Zobrazení 1 ZOBRAZENÍ 1. Zobrazení a algebraické struktury. (a) Ukažte, že zobrazení f : x
1 ZOBRAZENÍ 1 Zobrazení a algebraické struktury 1 Zobrazení Příklad 1.1. (a) Ukažte, že zobrazení f : x na otevřený interval ( 1, 1). x x +1 je bijekce množiny reálných čísel R (b) Necht a, b R, a < b.
Teoretická informatika Tomáš Foltýnek foltynek@pef.mendelu.cz. Algebra Struktury s jednou operací
Teoretická informatika Tomáš Foltýnek foltynek@pef.mendelu.cz Algebra Struktury s jednou operací Teoretická informatika 2 Proč zavádíme algebru hledáme nástroj pro popis objektů reálného světa (zejména
Lineární algebra Kapitola 1 - Základní matematické pojmy
Lineární algebra Kapitola 1 - Základní matematické pojmy 1.1 Relace a funkce V celém textu budeme používat následující označení pro číselné množiny: N množina všech přirozených čísel bez nuly, N={1, 2,
Úlohy k procvičování textu o svazech
Úlohy k procvičování textu o svazech Číslo za pomlčkou v označení úlohy je číslo kapitoly textu, která je úlohou procvičovaná. Každá úloha je vyřešena o několik stránek později. Kontrolní otázky - zadání
Algebra I Cvičení. 4) Množina všech matic s nulou v levém dolním rohu a s jedničkami na diagonále.
Algebra I Cvičení Podle následující sbírky probíhalo cvičení na PřF v semestru Jaro 2003. Příklady jsou rozděleny na ty, které jsme dělali na cvičení (označeno C), úlohy na kterých lze procvičovat probranou
1 Báze a dimenze vektorového prostoru 1
1 Báze a dimenze vektorového prostoru 1 Báze a dimenze vektorového prostoru 1 2 Aritmetické vektorové prostory 7 3 Eukleidovské vektorové prostory 9 Levá vnější operace Definice 5.1 Necht A B. Levou vnější
VI. Maticový počet. VI.1. Základní operace s maticemi. Definice. Tabulku
VI Maticový počet VI1 Základní operace s maticemi Definice Tabulku a 11 a 12 a 1n a 21 a 22 a 2n, a m1 a m2 a mn kde a ij R, i = 1,, m, j = 1,, n, nazýváme maticí typu m n Zkráceně zapisujeme (a ij i=1m
Vektorový prostor. Př.1. R 2 ; R 3 ; R n Dvě operace v R n : u + v = (u 1 + v 1,...u n + v n ), V (E 3 )...množina vektorů v E 3,
Vektorový prostor Příklady: Př.1. R 2 ; R 3 ; R n...aritmetický n-rozměrný prostor Dvě operace v R n : součet vektorů u = (u 1,...u n ) a v = (v 1,...v n ) je vektor u + v = (u 1 + v 1,...u n + v n ),
Pojem binární relace patří mezi nejzákladnější matematické pojmy. Binární relace
RELACE Pojem binární relace patří mezi nejzákladnější matematické pojmy. Binární relace slouží k vyjádření vztahů mezi prvky nějakých množin. Vztahy mohou být různé povahy. Patří sem vztah býti potomkem,
MATICE. a 11 a 12 a 1n a 21 a 22 a 2n A = = [a ij]
MATICE Matice typu m/n nad tělesem T je soubor m n prvků z tělesa T uspořádaných do m řádků a n sloupců: a 11 a 12 a 1n a 21 a 22 a 2n A = = [a ij] a m1 a m2 a mn Prvek a i,j je prvek matice A na místě
Algebra II pro distanční studium
Algebra II pro distanční studium (1) Předmluva................... 3 I. Struktury s jednou binární operací........ 5 1. Základní vlastnosti grup.......... 5 2. Podgrupy................ 22 3. Grupy permutací.............
15. Moduly. a platí (p + q)(x) = p(x) + q(x), 1(X) = id. Vzniká tak struktura P [x]-modulu na V.
Učební texty k přednášce ALGEBRAICKÉ STRUKTURY Michal Marvan, Matematický ústav Slezská univerzita v Opavě 15. Moduly Definice. Bud R okruh, bud M množina na níž jsou zadány binární operace + : M M M,
7 Analytické vyjádření shodnosti
7 Analytické vyjádření shodnosti 7.1 Analytická vyjádření shodných zobrazení v E 2 Osová souměrnost Osová souměrnost O(o) podle osy o s obecnou rovnicí o : ax + by + c =0: x = x 2a (ax + by + c) a 2 +
DEFINICE Z LINEÁRNÍ ALGEBRY
DEFINICE Z LINEÁRNÍ ALGEBRY Skripta Matematické metody pro statistiku a operační výzkum (Nešetřilová, H., Šařecová, P., 2009). 1. definice Vektorovým prostorem rozumíme neprázdnou množinu prvků V, na které
18. První rozklad lineární transformace
Matematický ústav Slezské univerzity v Opavě Učební texty k přednášce ALGEBRA II, letní semestr 2000/2001 Michal Marvan 18. První rozklad lineární transformace Úmluva. Vtéto přednášce V je vektorový prostor
[1] x (y z) = (x y) z... (asociativní zákon), x y = y x... (komutativní zákon).
Grupy, tělesa grupa: množina s jednou rozumnou operací příklady grup, vlastnosti těleso: množina se dvěma rozumnými operacemi příklady těles, vlastnosti, charakteristika tělesa lineární prostor nad tělesem
V předchozí kapitole jsme podstatným způsobem rozšířili naši představu o tom, co je to číslo. Nadále jsou pro nás důležité především vlastnosti
Kapitola 5 Vektorové prostory V předchozí kapitole jsme podstatným způsobem rozšířili naši představu o tom, co je to číslo. Nadále jsou pro nás důležité především vlastnosti operací sčítání a násobení
Matematická analýza 1
Matematická analýza 1 ZS 2019-20 Miroslav Zelený 1. Logika, množiny a základní číselné obory 2. Limita posloupnosti 3. Limita a spojitost funkce 4. Elementární funkce 5. Derivace 6. Taylorův polynom Návod
Věta o dělení polynomů se zbytkem
Věta o dělení polynomů se zbytkem Věta. Nechť R je okruh, f, g R[x], přičemž vedoucí koeficient polynomu g 0 je jednotka okruhu R. Pak existuje jediná dvojice polynomů q, r R[x] taková, že st(r) < st(g)
Algebraické struktury s jednou binární operací
16 Kapitola 1 Algebraické struktury s jednou binární operací 1.1 1. Grupoid, pologrupa, monoid a grupa Chtěli by jste vědět, co jsou to algebraické struktury s jednou binární operací? No tak to si musíte
Co je to univerzální algebra?
Co je to univerzální algebra? Při studiu řadu algebraických struktur (grupoidy, pologrupy, grupy, komutativní grupy, okruhy, obory integrity, tělesa, polosvazy, svazy, Booleovy algebry) se často některé
Matematika pro informatiku 2
Matematika pro informatiku 2 Doc. RNDr. Alena Šolcová, Ph. D., KTI FIT ČVUT v Praze 21. února 2011 Evropský sociální fond Investujeme do vaší budoucnosti Alena Šolcová Lámejte si hlavu - L1 Určete všechny
Teorie množin. Čekají nás základní množinové operace kartézské součiny, relace zobrazení, operace. Teoretické základy informatiky.
Teorie množin V matematice je všechno množina I čísla jsou definována pomocí množin Informatika stojí na matematice Znalosti Teorie množin využijeme v databázových systémech v informačních systémech při
Nechť M je množina. Zobrazení z M M do M se nazývá (binární) operace
Kapitola 2 Algebraické struktury Řada algebraických objektů má podobu množiny s nějakou dodatečnou strukturou. Například vektorový prostor je množina vektorů, ty však nejsou jeden jako druhý : jeden z
Aritmetika s didaktikou I.
Katedra matematiky PF UJEP Aritmetika s didaktikou I. KM / Přednáška Struktury se dvěma binárními operacemi O čem budeme hovořit: opakování struktur s jednou operací struktury se dvěma operacemi Struktury
Vektory a matice. Obsah. Aplikovaná matematika I. Carl Friedrich Gauss. Základní pojmy a operace
Vektory a matice Aplikovaná matematika I Dana Říhová Mendelu Brno Obsah 1 Vektory Základní pojmy a operace Lineární závislost a nezávislost vektorů 2 Matice Základní pojmy, druhy matic Operace s maticemi
Matematika IV - 3. přednáška Rozklady grup
Matematika IV - 3. přednáška Rozklady grup Michal Bulant Masarykova univerzita Fakulta informatiky 3. 3. 2008 Obsah přednášky Rozklady podle podgrup ô Normální podgrupy Martin Panák, Jan Slovák, Drsná
1 Lineární prostory a podprostory
Lineární prostory a podprostory Přečtěte si: Učebnice AKLA, kapitola první, podkapitoly. až.4 včetně. Cvičení. Které z následujících množin jsou lineárními prostory s přirozenými definicemi operací?. C
Matematika B101MA1, B101MA2
Matematika B101MA1, B101MA2 Zařazení předmětu: povinný předmět 1.ročníku bc studia 2 semestry Rozsah předmětu: prezenční studium 2 + 2 kombinované studium 16 + 0 / semestr Zakončení předmětu: ZS zápočet
Karel Klouda c KTI, FIT, ČVUT v Praze 28. února, letní semestr 2010/2011
MI-MPI, Přednáška č. 3 Karel Klouda karel.klouda@fit.cvut.cz c KTI, FIT, ČVUT v Praze 28. února, letní semestr 2010/2011 Množiny s jednou binární operací Neprázdná množina M s binární operací (resp. +
Matematika IV - 2. přednáška Základy teorie grup
Matematika IV - 2. přednáška Základy teorie grup Michal Bulant Masarykova univerzita Fakulta informatiky 25. 2. 2008 oooooooooooo Obsah přednášky Q Grupy - homomorfismy a součiny Martin Panák, Jan Slovák,
Matematika IV - 3. přednáška Rozklady grup
S Matematika IV - 3. přednáška Rozklady grup Michal Bulant Masarykova univerzita Fakulta informatiky 3. 3. 2008 s Obsah přednášky Rozklady podle podgrup ô Normální podgrupy s Doporučene zdroje Martin Panák,
maticeteorie 1. Matice A je typu 2 4, matice B je typu 4 3. Jakých rozměrů musí být matice X, aby se dala provést
Úlohy k zamyšlení 1. Zdůvodněte, proč třetí řádek Hornerova schématu pro vyhodnocení polynomu p v bodě c obsahuje koeficienty polynomu r, pro který platí p(x) = (x c) r(x) + p(c). 2. Dokažte, že pokud
Maticí typu (m, n), kde m, n jsou přirozená čísla, se rozumí soubor mn veličin a jk zapsaných do m řádků a n sloupců tvaru:
3 Maticový počet 3.1 Zavedení pojmu matice Maticí typu (m, n, kde m, n jsou přirozená čísla, se rozumí soubor mn veličin a jk zapsaných do m řádků a n sloupců tvaru: a 11 a 12... a 1k... a 1n a 21 a 22...
INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ. Modernizace studijního programu Matematika na PřF Univerzity Palackého v Olomouci CZ.1.07/2.2.00/28.
INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ Modernizace studijního programu Matematika na PřF Univerzity Palackého v Olomouci CZ.1.07/2.2.00/28.0141 Relace, zobrazení, algebraické struktury Michal Botur Přednáška
Operace s maticemi
Operace s maticemi Seminář druhý 17.10. 2018 Obsah 1 Operace s maticemi 2 Hodnost matice 3 Regulární matice 4 Inverzní matice Matice Definice (Matice). Reálná matice typu m n je obdélníkové schema A =
Kapitola 11: Vektory a matice 1/19
Kapitola 11: Vektory a matice 1/19 2/19 Prostor R n R n = {(x 1,..., x n ) x i R, i = 1,..., n}, n N x = (x 1,..., x n ) R n se nazývá vektor x i je i-tá souřadnice vektoru x rovnost vektorů: x = y i =
Operace s maticemi. 19. února 2018
Operace s maticemi Přednáška druhá 19. února 2018 Obsah 1 Operace s maticemi 2 Hodnost matice (opakování) 3 Regulární matice 4 Inverzní matice 5 Determinant matice Matice Definice (Matice). Reálná matice
6. Vektorový počet Studijní text. 6. Vektorový počet
6. Vektorový počet Budeme se pohybovat v prostoru R n, což je kartézská mocnina množiny reálných čísel R; R n = R R. Obvykle nám bude stačit omezení na případy n = 1, 2, 3; nicméně teorie je platná obecně.
8 Matice a determinanty
M Rokyta, MFF UK: Aplikovaná matematika II kap 8: Matice a determinanty 1 8 Matice a determinanty 81 Matice - definice a základní vlastnosti Definice Reálnou resp komplexní maticí A typu m n nazveme obdélníkovou
Matice. a m1 a m2... a mn
Matice Nechť (R, +, ) je okruh a nechť m, n jsou přirozená čísla Matice typu m/n nad okruhem (R, +, ) vznikne, když libovolných m n prvků z R naskládáme do obdélníkového schematu o m řádcích a n sloupcích
1. Pologrupy, monoidy a grupy
Matematický ústav Slezské univerzity v Opavě Učební textykpřednášce ALGEBRA I, zimní semestr 2002/2003 Michal Marvan 1. Pologrupy, monoidy a grupy Algebra dvacátého století je nauka o algebraických strukturách.
(1) Dokažte, že biprodukt je součin (a tím pádem i součet). Splňují-li homomorfismy. A B je izomorfismus stejně jako A B i+j
1. cvičení (1) Necht A je komutativní grupa. Dokažte, že End(A) společně s operacemi sčítání a skládání zobrazení je okruh. (2) Dokažte přímo z definice, že na každé komutativní grupě existuje právě jedna
Množinu všech matic typu m n nad tělesem T budeme označovat M m n (T ), množinu všech čtvercových matic stupně n nad T pak M n (T ).
Matice Definice 4.1 Necht (T ; +, je číselné těleso, m, n N a dále necht a ij T pro všechny indexy i = 1, 2,..., m a j = 1, 2,..., n. Potom schéma a 11 a 12... a 1n a 21 a 22... a 2n... = (a ij m n a m1
Matematika 2 pro PEF PaE
Vektorové prostory 1 / 17 Matematika 2 pro PEF PaE 8. Vektorové prostory Přemysl Jedlička Katedra matematiky, TF ČZU Vektorové prostory Vektorové prostory a podprostory 2 / 17 vektorového prostoru Množina
Základy matematiky pro FEK
Základy matematiky pro FEK 2. přednáška Blanka Šedivá KMA zimní semestr 2016/2017 Blanka Šedivá (KMA) Základy matematiky pro FEK zimní semestr 2016/2017 1 / 20 Co nás dneska čeká... Závislé a nezávislé
7. Lineární vektorové prostory
7. Lineární vektorové prostory Tomáš Salač MÚ UK, MFF UK LS 2017/18 Tomáš Salač ( MÚ UK, MFF UK ) 7. Lineární vektorové prostory LS 2017/18 1 / 62 7.1 Definice a příklady Definice 7.1 Množina G s binární
Střípky z LA Letem světem algebry
Střípky z LA Letem světem algebry Jaroslav Horáček Pojem Algebra Laicky řečeno algebra je struktura na nějaké množině, společně s nějakými operacemi, které splňují určité vlastnosti. Případy algebry lineární
Matematický ústav Slezské univerzity v Opavě Učební texty k přednášce ALGEBRA II, letní semestr 2000/2001 Michal Marvan. 14.
Matematický ústav Slezské univerzity v Opavě Učební texty k přednášce ALGEBRA II, letní semestr 2000/2001 Michal Marvan 14. Vlastní vektory Bud V vektorový prostor nad polem P. Lineární zobrazení f : V
Cvičení z Lineární algebry 1
Cvičení z Lineární algebry Michael Krbek podzim 2003 2392003 Hodina Jsou dána komplexní čísla z = +2 i a w = 2 i Vyjádřete c algebraickém tvaru (z + w) 3,, (zw), z w 2 Řešte v komplexním oboru rovnice
GRUPY SBÍRKA PŘÍKLADŮ
Masarykova Univerzita v Brně Přírodovědecká fakulta GRUPY SBÍRKA PŘÍKLADŮ bakalářská práce Brno 2005 Vít Musil i Prohlašuji, že jsem tuto bakalářskou práci vypracoval samostatně s použitím uvedené literatury.
1 Vektorové prostory a podprostory
Pro nahrazení účasti v jednotlivých cvičeních (resp. pro studenty kombinované formy) je dostačující vypracování a odevzdání tučně vyznačených příkladů. 1 Vektorové prostory a podprostory Definujte vektorový
Kapitola 11: Vektory a matice:
Kapitola 11: Vektory a matice: Prostor R n R n = {(x 1,, x n ) x i R, i = 1,, n}, n N x = (x 1,, x n ) R n se nazývá vektor x i je i-tá souřadnice vektoru x rovnost vektorů: x = y i = 1,, n : x i = y i
ZÁKLADY ARITMETIKY A ALGEBRY I
1 ZÁKLADY ARITMETIKY A ALGEBRY I (Cvičení) 1. Úvod, jazyk matematiky V učebnici Lineární algebra pročítejte definice a věty, uvědomujte si jejich strukturu, i když prozatím neznáte a nechápete (aaniprozatímchápatnemůžete)jejichmatematický
1. Základní příklady a poznatky o monoidech a grupách
Předmět: Algebra I Semestr: Zimní 2015/2016 Přednášel: J. Žemlička Verze z: 6. ledna 2017 Díky za pomoc s řešeními příkladů: Martin Šerý, Štěpán Hojdar, Petr Houška, Péťa Pelikánová. (A určitě další, ale
Matematika B101MA1, B101MA2
Matematika B101MA1, B101MA2 Zařazení předmětu: povinný předmět 1.ročníku bc studia 2 semestry Rozsah předmětu: prezenční studium 2 + 2 kombinované studium 16 + 0 / semestr Zakončení předmětu: ZS zápočet
Program SMP pro kombinované studium
Zadání příkladů k procvičení na seminář Program SMP pro kombinované studium Nejdůležitější typy příkladů - minimum znalostí před zkouškovou písemkou 1) Matice 1. Pro matice 1 0 2 1 0 3 B = 7 3 4 4 2 0
2. Test 07/08 zimní semestr
2. Test 07/08 zimní semestr Příklad 1. Najděte tříprvkový poset (částečně uspořádanou množinu), která má právě dva maximální a právě dva minimální prvky. Řešení. Takový poset je až na izomorfismus jeden:
Základy maticového počtu Matice, determinant, definitnost
Základy maticového počtu Matice, determinant, definitnost Petr Liška Masarykova univerzita 18.9.2014 Matice a vektory Matice Matice typu m n je pravoúhlé (nebo obdélníkové) schéma, které má m řádků a n
10. DETERMINANTY " # $!
10. DETERMINANTY $ V této kapitole zavedeme determinanty čtvercových matic libovolného rozměru nad pevným tělesem, řekneme si jejich základní vlastnosti a naučíme se je vypočítat včetně příkladů jejich
RELACE, OPERACE. Relace
RELACE, OPERACE Relace Užití: 1. K popisu (evidenci) nějaké množiny objektů či jevů, které lze charakterizovat pomocí jejich vlastnostmi. Entita je popsána pomocí atributů. Ty se vybírají z domén. Různé
transformace je posunutí plus lineární transformace má svou matici vzhledem k homogenním souřadnicím [1]
[1] Afinní transformace je posunutí plus lineární transformace má svou matici vzhledem k homogenním souřadnicím využití například v počítačové grafice Evropský sociální fond Praha & EU. Investujeme do
označme j = (0, 1) a nazvěme tuto dvojici imaginární jednotkou. Potom libovolnou (x, y) = (x, 0) + (0, y) = (x, 0) + (0, 1)(y, 0) = x + jy,
Komplexní čísla Množinu všech uspořádaných dvojic (x, y) reálných čísel x, y nazýváme množinou komplexních čísel C, jestliže pro každé dvě takové dvojice (x, y ), (x 2, y 2 ) je definována rovnost, sčítání
Dosud jsme se zabývali pouze soustavami lineárních rovnic s reálnými koeficienty.
Kapitola 4 Tělesa Dosud jsme se zabývali pouze soustavami lineárních rovnic s reálnými koeficienty. Všechna čísla byla reálná, vektory měly reálné souřadnice, matice měly reálné prvky. Také řešení soustav
Matematika pro informatiku 1
Matematika pro informatiku 1 Alena Šolcová katedra teoretické informatiky Fakulta informačních technologií ČVUT Evropský sociální fond Investujeme do vaší budoucnosti Přednášející Ing. Karel Klouda, Ph.
Vysoké učení technické v Brně Fakulta informačních technologií. Regulární pologrupy. Semestrální práce do předmětu Algebra, Kombinatorika, Grafy
Vysoké učení technické v Brně Fakulta informačních technologií Regulární pologrupy Semestrální práce do předmětu Algebra, Kombinatorika, Grafy Tomáš Masopust Brno, 2006 Obsah Úvod 1 1 Základní definice
Vlastní čísla a vlastní vektory
Vlastní čísla a vlastní vektory 1 Motivace Uvažujme lineární prostor všech vázaných vektorů v rovině, které procházejí počátkem, a lineární zobrazení tohoto prostoru do sebe(lineární transformaci, endomorfismus)
Cílem kapitoly je opakování a rozšíření středoškolských znalostí v oblasti teorie množin.
1.2. Cíle Cílem kapitoly je opakování a rozšíření středoškolských znalostí v oblasti teorie množin. Průvodce studiem Množina je jedním ze základních pojmů moderní matematiky. Teorii množin je možno budovat
KATEDRA INFORMATIKY UNIVERZITA PALACKÉHO LINEÁRNÍ ALGEBRA 1 OLGA KRUPKOVÁ VÝVOJ TOHOTO UČEBNÍHO TEXTU JE SPOLUFINANCOVÁN
KATEDRA INFORMATIKY PŘÍRODOVĚDECKÁ FAKULTA UNIVERZITA PALACKÉHO LINEÁRNÍ ALGEBRA 1 OLGA KRUPKOVÁ VÝVOJ TOHOTO UČEBNÍHO TEXTU JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY
Charakteristika tělesa
16 6 Konečná tělesa V této kapitole budeme pod pojmem těleso mít na mysli vždy konečné komutativní těleso, tedy množinu s dvěma binárními operacemi (T, +, ), kde (T, +) je komutativní grupa s neutrálním
Definujte Gaussovský obor. Vysvětlete, co přesně rozumíme jednoznačností rozkladu.
1.teorie(1bod) Formulujte princip matematické indukce. Napište základní větu aritmetiky. Napište Bézoutovu rovnost v oboru celých čísel. Definujte,coznamenázápis a b(mod n),auveďtezákladnívlastnosti. Napište
3. Algebraické systémy
Markl: 3.1. Morfismy a kongruence /ras31.doc/ Strana 1 3. Algebraické systémy Na rozdíl od klasické algebry, jejíž ústředním tématem jsou rovnice a potřebný aparát pro jejich řešení /matice, polynomy,.../,
V: Pro nulový prvek o lineárního prostoru L platí vlastnosti:
Zpracoval: hypspave@fel.cvut.cz. Základní vlastnosti abstraktních lineárních prostorů. Lineární závislost, nezávislost, báze, souřadnice vzhledem k bázi, matice lineárního zobrazení vzhledem k bázím.skalární
ALGEBRA. Téma 1: Matice a determinanty
SLEZSKÁ UNIVERZITA V OPAVĚ Matematický ústav v Opavě Na Rybníčku 1 746 01 Opava tel (553 684 611 DENNÍ STUDIUM Téma 1: Matice a determinanty 1 Přehled základních pojmů a tvrzení Základní pojmy Číselná
MPI - 5. přednáška. 1.1 Eliptické křivky
MPI - 5. přednáška vytvořeno: 3. října 2016, 10:06 Doteď jsem se zabývali strukturami, které vzniknou přidáním jedné binární operace k neprázdné množině. Jako grupu jsme definovali takovou strukturu, kde
ALGEBRA. 1. Pomocí Eukleidova algoritmu najděte největší společný dělitel čísel a a b. a) a = 204, b = 54, b) a = , b =
ALGEBRA 1 Úkol na 13. 11. 2018 1. Pomocí Eukleidova algoritmu najděte největší společný dělitel čísel a a b. a) a = 204, b = 54, b) a = 353 623, b = 244 571. 2. Připomeňte si, že pro ε = cos 2π 3 + i sin
Aritmetika s didaktikou I.
Katedra matematiky PF UJEP Aritmetika s didaktikou I. KM1 / 0001 Přednáška 10 Dělení se zbytkem O čem budeme hovořit: Binární operace dělení se zbytkem v N Struktury zbytkových tříd podle modulu Seznámíme
Číselné vektory, matice, determinanty
Číselné vektory, matice, determinanty Základy vyšší matematiky LDF MENDELU Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na discipĺıny
Západočeská univerzita v Plzni FAKULTA PEDAGOGICKÁ
Západočeská univerzita v Plzni FAKULTA PEDAGOGICKÁ BAKALÁŘSKÁ PRÁCE KONEČNÉ GRUPY MALÝCH ŘÁDŮ Ivana Čechová Vedoucí práce: doc. RNDr. Jaroslav Hora, CSc. Plzeň 2012 Prohlašuji, že jsem bakalářskou práci
ÚVOD DO ARITMETIKY. Michal Botur
ÚVOD DO ARITMETIKY Michal Botur 2011 2 Obsah 1 Algebraické základy 3 1.1 Binární relace.................................. 3 1.2 Zobrazení a operace............................... 7 1.3 Algebry s jednou
Úlohy k přednášce NMAG 101 a 120: Lineární algebra a geometrie 1 a 2,
Úlohy k přednášce NMAG a : Lineární algebra a geometrie a Verze ze dne. května Toto je seznam přímočarých příkladů k přednášce. Úlohy z tohoto seznamu je nezbytně nutné umět řešit. Podobné typy úloh se
Množiny, relace, zobrazení
Množiny, relace, zobrazení Množiny Množinou rozumíme každý soubor určitých objektů shrnutých v jeden celek. Zmíněné objekty pak nazýváme prvky dané množiny. Pojem množina je tedy synonymem pojmů typu soubor,
Státní závěrečná zkouška z oboru Matematika a její použití v přírodních vědách
Státní závěrečná zkouška z oboru Matematika a její použití v přírodních vědách Ústní zkouška z oboru Náročnost zkoušky je podtržena její ústní formou a komisionálním charakterem. Předmětem bakalářské zkoušky
Zavedení a vlastnosti reálných čísel
Zavedení a vlastnosti reálných čísel jsou základním kamenem matematické analýzy. Konstrukce reálných čísel sice není náplní matematické analýzy, ale množina reálných čísel R je pro matematickou analýzu
Základní pojmy teorie množin Vektorové prostory
Základní pojmy teorie množin Přednáška MATEMATIKA č. 1 Katedra ekonometrie FEM UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz 7. 10. 2010 Základní pojmy teorie množin Základní pojmy
Pavel Horák LINEÁRNÍ ALGEBRA A GEOMETRIE 1 UČEBNÍ TEXT
Pavel Horák LINEÁRNÍ ALGEBRA A GEOMETRIE 1 UČEBNÍ TEXT 2 0 1 7 Obsah 1 Vektorové prostory 2 1 Vektorový prostor, podprostory........................ 2 2 Generování podprostor u............................
Základy teorie grup. Martin Kuřil
Základy teorie grup Martin Kuřil Abstrakt Text je vhodný pro samostudium a jako studijní opora pro studenty distanční a kombinované formy studia. V textu jsou vyloženy základy teorie grup od zavedení pojmu
Faculty of Nuclear Sciences and Physical Engineering Czech Technical University in Prague
Tomáš Faculty of Nuclear Sciences and Physical Engineering Czech Technical University in Prague 1 / 63 1 2 3 4 5 6 7 8 9 10 11 2 / 63 Aritmetický vektor Definition 1 Aritmetický vektor x je uspořádaná
Lineární algebra Operace s vektory a maticemi
Lineární algebra Operace s vektory a maticemi Robert Mařík 26. září 2008 Obsah Operace s řádkovými vektory..................... 3 Operace se sloupcovými vektory................... 12 Matice..................................
Polynomy nad Z p Konstrukce faktorových okruhů modulo polynom. Alena Gollová, TIK Počítání modulo polynom 1/30
Počítání modulo polynom 3. přednáška z algebraického kódování Alena Gollová, TIK Počítání modulo polynom 1/30 Obsah 1 Polynomy nad Zp Okruh Zp[x] a věta o dělení se zbytkem 2 Kongruence modulo polynom,
a + b + c = 2 b + c = 1 a b = a 1 2a 1 + a a 3 + a 5 + 2a 2 + a 2 + a
Zadání A. 1. Polynom P (x) má v uspořádané bázi (x 2 + x 1, 2x 2 x 1, x 2 + x + 2) souřadnice (1, 1, 1). Najděte jeho souřadnice vzhledem k uspořádané bázi (x 2 1, x 2 + x 1, x 2 + x). Nejprve si spočítáme
α 1 α 2 + α 3 = 0 2α 1 + α 2 + α 3 = 0
Vzhledem k tomu, že jsem to psala ve velkém spěchu, mohou se vyskytnout nějaké chybičky. Pokud nějaké najdu, opravím je hned po prázdninách. Zadání A. 1. Vektory u, v, w jsou lineárně nezávislé. Rozhodněte,
Matice lineárních zobrazení
Matice lineárních zobrazení Nechť V, +, a W, +, jsou nenulové vektorové prostory konečných dimenzí n a m nad tělesem T, +,, nechť posloupnosti vektorů g 1, g 2,..., g n V a h 1, h 2,..., h m W tvoří báze