Počítačová grafika III Důležitost, BPT. Jaroslav Křivánek, MFF UK
|
|
- Kristýna Říhová
- před 6 lety
- Počet zobrazení:
Transkript
1 Počítačová grafika III Důležitost, BPT Jaroslav Křivánek, MFF UK
2 Davis Cup Premier international team competition in men s tennis World group: 16 teams Total: 137 (in 2007) Founded 1900 US vs. Britain PG III (NPGR010) - J. Křivánek
3 Davis Cup History Founded by Dwight Filley Davis ( ) Harvard University Designed the tournament format Commissioned the trophy design ($1000 then, appro. $27,600 in 2011 according to purchasing power) : US vs. British Isles 1905: Included Belgium, Austria, France, and Australasia by 1920: 20 nations 2012: 101th anniversary (some years were skipped) PG III (NPGR010) - J. Křivánek
4 Czechoslovakia / Czech Republic in DC 1921: first entered the competition 59 years played 12 years in world group Most wins: Jan Kodeš Runners Up: 1975 (SWE), 2009 (ESP) Years won: 1980, 2012 PG III (NPGR010) - J. Křivánek
5 Davis Cup Trophy PG III (NPGR010) - J. Křivánek
6 Davis Cup: The 2012 Final in an randomly picked Czech household PG III (NPGR010) - J. Křivánek
7 Davis Cup: The 2012 Final in an randomly picked Czech household PG III (NPGR010) - J. Křivánek
8 Davis Cup: The 2012 Final in an randomly picked Czech household PG III (NPGR010) - J. Křivánek
9 Davis Cup: The 2012 Final in an randomly picked Czech household PG III (NPGR010) - J. Křivánek
10 PG III (NPGR010) - J. Křivánek
11 Impact of the 2012 Czech Republic DC victory on CG education PG III (NPGR010) - J. Křivánek
12 Path Tracing funguje! Jerome White PG III (NPGR010) - J. Křivánek
13 Path Tracing funguje! Martin Geupel (DeadClown) PG III (NPGR010) - J. Křivánek
14 Path Tracing funguje! Chakib Rabia PG III (NPGR010) - J. Křivánek
15 PG III (NPGR010) - J. Křivánek Ondra Karlík
16 Demo Vývoj: Ondra Karlík PG III (NPGR010) - J. Křivánek
17 Image: Eric Veach Omezení algoritmu sledování cest Sekundární světelné zdroje Kaustiky PG III (NPGR010) - J. Křivánek
18 Důležitost a dualita v zobrazování
19 Měřicí rovnice Dosud: výpočet radiance v izolovaných bodech Ve skutečnosti nás zajímá průměrná radiance přes piel: integrál Měřicí rovnice (Measurement equation) PG III (NPGR010) - J. Křivánek
20 Měřicí rovnice odezva virtuálního (lineárního) senzoru na radianci (barva pielu) relativní odezva senzoru (váha) různé W e pro každý senzor (piel) I W M H ( ) e (, ) L (, ) cos d da i přes celou plochu scény a všechny směry (virtuální senzory musí být součástí scény, nenulový příspěvek pouze na ploše senzoru kvůli W e ) PG III (NPGR010) - J. Křivánek
21 Příklad: Zářivý tok přes oblast jako měřicí rovnice Dána oblast S S M H (podmnožina povrchu scény a příslušných směrů) Pro W e definované W e (, ) 1 0 pro(, ) S jinak je výsledkem měřicí rovnice zářivý tok F(S). PG III (NPGR010) - J. Křivánek
22 Měřicí rovnice jako skalární součin funkcí Definujeme skalární součin funkcí f a g: f, g f (, ) g(, ) cos d da M H ( ) Měřicí rovnice I W e, L i PG III (NPGR010) - J. Křivánek
23 Propagace radiance a důležitosti L (radiance) W (důležitost) PG III (NPGR010) - J. Křivánek
24 Důležitost (importance) W e popisuje, jak důležitá je příchozí radiance pro odezvu senzoru 1 krok do scény: Příchozí radiance na senzoru = odchozí radiance z bodů scény 2, 3, kroky do scény: W e interpretujeme jako veličinu emitovanou ze senzorů (stejně jako je radiance L e emitovaná ze zdrojů světla) Takto interpretovanou veličinu W e nazýváme emitovanou funkcí důležitosti (emitted importance function, emitted potential function) PG III (NPGR010) - J. Křivánek
25 Přenos důležitosti Funkce důležitosti se přenáší podobně jako radiance a dosahuje ustáleného stavu popsaného ustálenou funkcí důležitosti W: W (, ) o W e (, ) o H ( ) W (r(, ), i ) i f r (, o ) cos d i i i Jako zobrazovací rovnice, s tím rozdílem, že argumenty BRDF jsou přehozeny (pro odraz identické, nikoli však pro lom) PG III (NPGR010) - J. Křivánek
26 Dualita důležitosti a radiance emitovaná importance I W e, L i ustálená příchozí radiance ustálená příchozí importance W i, L e emitovaná radiance PG III (NPGR010) - J. Křivánek
27 Dualita důležitosti a radiance V dané scéně je pouze jediná emitovaná a ustálená funkce radiance Ale každý piel má jinou emitovanou a ustálenou funkci důležitosti PG III (NPGR010) - J. Křivánek
28 Dualita v prai: Sledování světla Sledování cest (path tracing) Rekurzivně řeší zobrazovací rovnici Sledování světla (light tracing) Rekurzivně řeší rovnici přenosu důležitosti Cesty začínají na zdrojích světla Mohou náhodně zasáhnout senzor Nebo eplicitní napojení na senzor (jako přímé osvětlení v PT) Pozor: argumenty BRDF musí být obráceny PG III (NPGR010) - J. Křivánek
29 Image: Dutre et al. Advanced Global Illumination Sledování světla (light tracing) v prai PG III (NPGR010) - J. Křivánek
30 Sledování světla (light tracing) v prai Obvykle mnohem menší účinnost než PT Může být účinnější pro některé světelné efekty (kaustiky) Základ obousměrných metod: Obousměrné sledování cest (bidirectional path tracing, BPT) photon mapping, etc. PG III (NPGR010) - J. Křivánek
31 Image: Eric Veach Obousměrné sledování cest (BPT) vs. Sledování cest (PT) BPT, 25 vzorků (cest) na piel PT, 56 vzorků (cest) na piel PG III (NPGR010) - J. Křivánek
32 Přenos světla jako integrál přes prostor cest
33 Transport světla jako integrál Cíl: místo integrální rovnice chceme formulovat transport světla jako integrál přes cesty: Příspěvek cesty k hodnotě pielu ( contribution function ) Míra na množině světelných cest I j f ( ) d( ) j Hodnota ( měření ) j-tého pielu Prostor všech světelných cest Spojujících zdroj světla s pielem j PG III (NPGR010) - J. Křivánek
34 Transport světla jako integrál Výhoda Možnost aplikovat klasické MC metody Aplikace kombinovaných estimátorů (MIS) Aplikace Metropolis vzorkování PG III (NPGR010) - J. Křivánek
35 Tříbodová formulace přenosu světla Eliminace směrů (pouze body na ploše) o ' i L( ) L(, ) f r ( ) f ( r, i o) PG III (NPGR010) - J. Křivánek
36 Zobrazovací rovnice v 3b formulaci M r da G f L L L ) ( ) ( ) ( ) ( ) ( e 2 cos cos ) ( ) ( i o V G o ' i PG III (NPGR010) - J. Křivánek
37 Měřicí rovnice v 3b formulaci Důležitost emitovaná z do (Značení: šipka = směr šíření světla, nikoli důležitosti)... na senzoru na ploše scnény M M j A A G L W I d d ) ( ) ( ) ( (j) e PG III (NPGR010) - J. Křivánek
38 Definice funkce příspěvku (contribution function) Např f j ( ) L e ( 0 1 ) G( 0 1 ) f r ( ) G( 1 2 ) f r ( ) G( 2 3 ) W ( e j) ( 2 3 ) L ( 1) e 0 0 G( 1) 0 1 G( 2) 2 1 G( 3) 2 3 W ( j) e ( 3) 2 f r ( 2) 0 1 f r ( 3) 1 2 PG III (NPGR010) - J. Křivánek
39 Definice funkce příspěvku (contribution function) Z rekurzivní epanze 3b formulace zobrazovací rce ) ( ) ( ) ( ) ( ) ( ) ( 1 ) ( e e k k j k i i i i i i r j W G f G L f PG III (NPGR010) - J. Křivánek
40 Obor integrování množina cest délky k 0 1 k množina cest všech možných délek
41 Míra na prostoru cest Diferenciální míra pro cesty délky k d( ) d( 0 k ) da da 0 k Tj. násobný integrál přes plochu scény, pro každý vrchol cesty jedna fajfka
42 Transport světla jako integrál I j f ( ) d( ) j PG III (NPGR010) - J. Křivánek
43 Aplikace integrálu přes cesty I j f ( ) d( ) j Odhad integrálu pomocí klasických Monte Carlo metod: I j ( X ) p( X ) Jak definovat a spočítat hustotu na prostoru cest? f j
44 Hustota p-nosti na prostoru cest Hustota pravděpodobnosti cesty Sdružená hustota pozic vrcholů cesty: Součin podmíněných hustot pro jednotlivé vrcholy (vzhledem k plošné míře) k 1 0 ), ( ) ( ) ( ),,, ( ) ( p p p p p k
45 Hustota pro vzrokování směru Hustota p-nosti není invariantní vůči míře Nutno konvertovat z d na da o ' i o PG III (NPGR010) - J. Křivánek
46 Path / light tracing v jako integrál přes prostor cest Path tracing odpovídá jedné možné technice pro vzorkování světlených cest Hustota vzorkování cesty: vykrátí se geometrické faktory Light tracing je jen jiná možná technika pro vzorkování světlených cest PG III (NPGR010) - J. Křivánek
47 Obousměrné sledování cest (Bidirectional path tracing)
48 Obousměrné sledování cest Kombinace různých vzorkovacích technik pro integrál na prostoru cest I j f ( ) d( ) j PG III (NPGR010) - J. Křivánek
49 Image: Dutre et al. Advanced Global Illumination Vzorkovací strategie PG III (NPGR010) - J. Křivánek
50 Obousměrné sledování cest Zobecnění kombinované strategie pro výpočet přímého osvětlení v path traceru Přímé osvětlení Různé strategie nalezení vzorkování bodu na zdroji světla BPT Různé strategie generovaní celých světelných cest PG III (NPGR010) - J. Křivánek
51 Obousměrné sledování cest Pro danou světelnou cestu: Funkce příspěvku f j () nezávisí na způsobu vzorkování Hustota pravděpodobnosti závisí na způsobu vzorkování PG III (NPGR010) - J. Křivánek
52 Image: Eric Veach Vzorkovací techniky v BPT Příklad: Čtyři vzorkovací techniky pro k = 2 PG III (NPGR010) - J. Křivánek
53 Vzorkovací techniky v BPT Podcesta o t vrcholech vzorkovaná z kamery Podcesta o s vrcholech vzorkovaná ze světla Spojovací segment délky 1 Celková délka cesty: k = s + t 1 (segmentů) k+2 možností pro generování cesty délky k PG III (NPGR010) - J. Křivánek
54 Vzorkovací techniky v BPT Každá technika má jinou hustotu p s,t Každá je účinná při vzorkování jiných světelných efektů Všechny techniky odhadují stejný integrál PG III (NPGR010) - J. Křivánek
55 Kombinace vzorkovacích technik Kombinovaný estimátor (MIS) kombinační strategie (např. vyvážená heuristika) PG III (NPGR010) - J. Křivánek
56 Implementace: Generování cest po skupinách Generuj podcestu náhodné délky od světla Generuj podcestu náhodné délky od kamery Spoj každý prefi cesty od světla s každým sufiem cesty od kamery (cesta = vzorek z hustoty p s,t ) PG III (NPGR010) - J. Křivánek
57 Image: Dutre et al. Advanced Global Illumination Generování cest po skupinách PG III (NPGR010) - J. Křivánek
58 k = 2 (2) k = 3 (4) k = 4 (8) s = 1 s = 2... t = 2 t = 1 s / t = počet vrcholů na podcestě od světla / kamery k = 5 (16) PG III (NPGR010) - J. Křivánek
59 Porovnání algoritmů F. Suykens Path tracing Light tracing Bidirectional path tracing Kvíz: Proč je skleněná koule černá? PG III (NPGR010) - J. Křivánek
60 Konec E. Veach: Robust Monte Carlo methods for light transport simulation, PhD thesis, Stanford University, 1997, pp , PG III (NPGR010) - J. Křivánek
Počítačová grafika III Bidirectional path tracing. Jaroslav Křivánek, MFF UK
Počítačová grafika III Bidirectional path tracing Jaroslav Křivánek, MFF UK Jaroslav.Krivanek@mff.cuni.cz Science, it works (bitches!) Quote from Richard Dawkins http://www.youtube.com/watch?v=n6hxo1sc-du
Počítačová grafika III Multiple Importance Sampling. Jaroslav Křivánek, MFF UK
Počítačová grafika III Multiple Importance Sampling Jaroslav Křivánek, MFF UK Jaroslav.Krivanek@mff.cuni.cz MIS 300 + 300 samples EM IS 600 samples BRDF IS 600 samples Sampling strategies Diffuse only
Počítačová grafika III Multiple Importance Sampling. Jaroslav Křivánek, MFF UK
Počítačová grafika III Multiple Importance Sampling Jaroslav Křivánek, MFF UK Jaroslav.Krivanek@mff.cuni.cz MIS 300 + 300 samples EM IS 600 samples BRDF IS 600 samples Sampling strategies Diffuse only
Počítačová grafika III Photon mapping. Jaroslav Křivánek, MFF UK
Počítačová grafika III Photon mapping Jaroslav Křivánek, MFF UK Jaroslav.Krivanek@mff.cuni.cz Obousměrné sledování cest - opakování Transport světla jako integrál Cíl: místo integrální rovnice chceme formulovat
Počítačová grafika III Všehochuť. Jaroslav Křivánek, MFF UK
Počítačová grafika III Všehochuť Jaroslav Křivánek, MFF UK Jaroslav.Krivanek@mff.cuni.cz Science, it works (bitches!) Quote from Richard Dawkins http://www.youtube.com/watch?v=n6hxo1sc-du PG III (NPGR010)
Fotonové mapy. Leonid Buneev
Fotonové mapy Leonid Buneev 21. 01. 2012 Popis algoritmu Photon mapping algoritmus, který, stejně jako path tracing a bidirectional path tracing, vyřeší zobrazovací rovnice, ale podstatně jiným způsobem.
Počítačová grafika III Úvod
Počítačová grafika III Úvod Jaroslav Křivánek, MFF UK Jaroslav.Krivanek@mff.cuni.cz Syntéza obrazu (Rendering) Vytvoř obrázek z matematického popisu scény. Popis scény Geometrie Kde je jaký objekt ve scéně
Zobrazování a osvětlování
Zobrazování a osvětlování Petr Felkel Katedra počítačové grafiky a interakce, ČVUT FEL místnost KN:E-413 na Karlově náměstí E-mail: felkel@fel.cvut.cz S použitím materiálů Bohuslava Hudce, Jaroslava Sloupa
Počítačová grafika III Photon mapping. Jaroslav Křivánek, MFF UK
Počítačová grafika III Photon mapping Jaroslav Křivánek, MFF UK Jaroslav.Krivanek@mff.cuni.cz Kvíz 1 Proč BPT neumí zobrazit kaustiku na dně bazénu (bodové světlo, pinhole kamera)? Řešení kvízu 2 Problem
Photon-Mapping Josef Pelikán CGG MFF UK Praha.
Photon-Mapping 2009-2016 Josef Pelikán CGG MFF UK Praha pepca@cgg.mff.cuni.cz http://cgg.mff.cuni.cz/~pepca/ Photon-mapping 2016 Josef Pelikán, http://cgg.mff.cuni.cz/~pepca 1 / 25 Základy Photon-mappingu
Realistický rendering
Realistický rendering 2010-2017 Josef Pelikán, CGG MFF UK http://cgg.mff.cuni.cz/ http://cgg.mff.cuni.cz/~pepca/ Festival fantazie, Chotěboř, 4. 7. 2017 1 / 47 Obsah přednášky co je realistický rendering?
Počítačová grafika III Úvod
Počítačová grafika III Úvod Jaroslav Křivánek, MFF UK Jaroslav.Krivanek@mff.cuni.cz Syntéza obrazu (Rendering) Vytvoř obrázek z matematického popisu scény. Popis scény Geometrie Kde je jaký objekt ve scéně
Radiometrie, radiační metody
Radiometrie, radiační metody 1996-2018 Josef Pelikán CGG MFF UK Praha pepca@cgg.mff.cuni.cz http://cgg.mff.cuni.cz/~pepca/ Radiometry 2018 Josef Pelikán, http://cgg.mff.cuni.cz/~pepca 1 / 34 Globální výpočet
Odraz světla, BRDF. Petr Kadleček
Odraz světla, BRDF Petr Kadleček 17. října 2011 Úvod V minulé přednášce jsme si představili matematický model scény včetně geometrie, materiálů, zdroje světla, kamery, atd. Ukázali jsme si, že při formulaci
Distribuované sledování paprsku
Distribuované sledování paprsku 1996-2015 Josef Pelikán, CGG MFF UK Praha http://cgg.mff.cuni.cz/~pepca/ pepca@cgg.mff.cuni.cz DistribRT 2015 Josef Pelikán, http://cgg.mff.cuni.cz/~pepca 1 / 24 Distribuované
Počítačová grafika III Monte Carlo integrování II. Jaroslav Křivánek, MFF UK
Počítačová grafika III Monte Carlo integrování II Jaroslav Křivánek, MFF UK Jaroslav.Krivanek@mff.cuni.cz Monte Carlo integrování Obecný nástroj k numerickému odhadu určitých integrálů f(x) p(x) Integrál:
Počítačová grafika III Monte Carlo rendering 2. Jaroslav Křivánek, MFF UK
Počítačová grafika III Monte Carlo rendering 2 Jaroslav Křivánek, MFF UK Jaroslav.Krivanek@mff.cuni.cz Path Tracing Implicitní osvětlení getli(x, w) { Color thrput = (1,1,1) Color accum = (0,0,0) while(1)
X39RSO/A4M39RSO Vychýlené (biased) metody globálního osvětlení. Vlastimil Havran ČVUT v Praze CTU Prague Verze 2011
X39RSO/A4M39RSO Vychýlené (biased) metody globálního osvětlení Vlastimil Havran ČVUT v Praze CTU Prague Verze 2011 Vychýlené versus nestranné metody Vychýlené vs. nestranné odhady (Biased vs. Unbiased
Fotorealistická syntéza obrazu Josef Pelikán, MFF UK Praha
Fotorealistická sntéza obrazu 2006 Josef Pelikán MFF UK Praha Josef.Pelikan@mff.cuni.cz 10.4.2006 Obsah přednášk cíle a aplikace realistického zobrazování historie přehled používaných přístupů teoretické
Počítačová grafika III Monte Carlo integrování II. Jaroslav Křivánek, MFF UK
Počítačová grafika III Monte Carlo integrování II Jaroslav Křivánek, MFF UK Jaroslav.Krivanek@mff.cuni.cz Monte Carlo integrování Obecný nástroj k numerickému odhadu určitých integrálů f(x) p(x) Integrál:
Počítačová grafika III Radiometrie. Jaroslav Křivánek, MFF UK
Počítačová grafika III Radiometrie Jaroslav Křivánek, MFF UK Jaroslav.Krivanek@mff.cuni.cz Směr, prostorový úhel, integrování na jednotkové kouli Směr ve 3D Směr = jednotkový vektor ve 3D Kartézské souřadnice
Počítačová grafika III Path tracing II. Jaroslav Křivánek, MFF UK
Počítačová grafika III Path tracing II Jaroslav Křivánek, MFF UK Jaroslav.Krivanek@mff.cuni.cz Opakování Path Tracing Implicitní osvětlení getli(x, w) { Color thrput = (1,1,1) Color accum = (0,0,0) while(1)
A4M39RSO. Sledování cest (Path tracing) Vlastimil Havran ČVUT v Praze CTU Prague Verze 2014
A4M39RSO Sledování cest (Path tracing) Vlastimil Havran ČVUT v Praze CTU Prague Verze 2014 1 Rendering = integrování Antialiasing Integrál přes plochu pixelu Osvětlení plošným zdrojem Integrál přes plochu
Počítačová grafika III Světlo, Radiometrie. Jaroslav Křivánek, MFF UK
Počítačová grafika III Světlo, Radiometrie Jaroslav Křivánek, MFF UK Jaroslav.Krivanek@mff.cuni.cz Syntéza obrazu (Rendering) Vytvoř obrázek z matematického popisu scény. Fotorealistická syntéza obrazu
STŘEDOŠKOLSKÁ ODBORNÁ ČINNOST
Vyšší odborná škola a Střední průmyslová škola elektrotechnická v Plzni STŘEDOŠKOLSKÁ ODBORNÁ ČINNOST Tomáš Šváb Fotonové mapy v realistickém osvětlení Únor 2009, Plzeň Konzultant práce: RNDr. Josef Pelikán,
Principy fotorealistického zobrazování
Principy fotorealistického zobrazování 2010-2013 Josef Pelikán, CGG MFF UK Praha http://cgg.mff.cuni.cz/~pepca/ MaSo jaro 2013, doprovodná přednáška, 16. 5. 2013 1 / 101 Obsah přednášky cíle a aplikace
Počítačová grafika III Radiometrie. Jaroslav Křivánek, MFF UK
Počítačová grafika III Radiometrie Jaroslav Křivánek, MFF UK Jaroslav.Krivanek@mff.cuni.cz Směr, prostorový úhel, integrování na jednotkové kouli Směr ve 3D Směr = jednotkový vektor ve 3D Kartézské souřadnice
Fotonové mapy. Martin Bulant 21. března Fotonové mapy jsou podobné obousměrnému sledování cest, ale odlišují se tím,
Fotonové mapy Martin Bulant 21. března 2011 1 Photon mapping Fotonové mapy jsou podobné obousměrnému sledování cest, ale odlišují se tím, že se nedělá vše najednou. Je oddělena propagace světla do scény
Počítačová grafika III Globální osvětlení ve filmové produkci. Jaroslav Křivánek, MFF UK
Počítačová grafika III Globální osvětlení ve filmové produkci Jaroslav Křivánek, MFF UK Jaroslav.Krivanek@mff.cuni.cz Opakování Kvíz 1 F. Suykens Path tracing Light tracing Bidirectional path tracing Kvíz:
Rekurzivní sledování paprsku
Rekurzivní sledování paprsku 1996-2016 Josef Pelikán CGG MFF UK Praha pepca@cgg.mff.cuni.cz http://cgg.mff.cuni.cz/~pepca/ 1 / 21 Model dírkové kamery 2 / 21 Zpětné sledování paprsku L D A B C 3 / 21 Skládání
Precomputed radiance transfer
Precomputed radiance transfer Martin Bulant 11. dubna 2011 Reprezentace funkce na sféře Reálnou funkci na sféře G(x) aproximujeme pomocí lineární kombinace lineárně nezávislých bázových funkcí B i (x):
Global illumination with many-light methods. Martin Kahoun (2011)
Zápisky z přednášky Global illumination with many-light methods Tomáš Zámečník (2012) Martin Kahoun (2011) 1 1 Výpočet globálního osvětlení 1.1 Zobrazovací rovnice v 3b formulaci V této úvodní části se
Monte Carlo rendering
Monte Carlo rendering Jan Havlíček 27. listopadu 2011 1 Základní algoritmus path traceru g e t L i ( x, w) { Color thrput = ( 1, 1, 1 ) Color accum = ( 0, 0, 0 ) while ( 1 ) { h i t = N e a r e s t I n
Bayesovské metody. Mnohorozměrná analýza dat
Mnohorozměrná analýza dat Podmíněná pravděpodobnost Definice: Uvažujme náhodné jevy A a B takové, že P(B) > 0. Podmíněnou pravěpodobností jevu A za podmínky, že nastal jev B, nazýváme podíl P(A B) P(A
Počítačová grafika Radiozita
Počítačová grafika Radiozita V. Chalupecký chalupec@kmlinux.fjfi.cvut.cz Obsah 1 Literatura 1 2 Úvod 5 3 Radiometrie a fotometrie 6 3.1 Prostorový úhel.......................... 6 3.2 Zářivý tok.............................
Markov Chain Monte Carlo. Jan Kracík.
Markov Chain Monte Carlo Jan Kracík jan.kracik@vsb.cz Princip Monte Carlo integrace Cílem je (přibližný) výpočet integrálu I(g) = E f [g(x)] = g(x)f (x)dx. (1) Umíme-li generovat nezávislé vzorky x (1),
Kombinatorická minimalizace
Kombinatorická minimalizace Cílem je nalézt globální minimum ve velké diskrétní množině, kde může být mnoho lokálních minim. Úloha obchodního cestujícího Cílem je najít nejkratší cestu, která spojuje všechny
Fotorealistická grafika
Fotorealistická grafika RNDr. Josef Pelikán Kurz vznikl v rámci projektu Rozvoj systému vzdělávacích příležitostí pro nadané žáky a studenty v přírodních vědách a matematice s využitím online prostředí,
Výpočet průsečíků paprsku se scénou
Výpočet průsečíků paprsku se scénou 1996-2008 Josef Pelikán, MFF UK Praha http://cgg.ms.mff.cuni.cz/~pepca/ Josef.Pelikan@mff.cuni.cz NPGR004, intersection.pdf 2008 Josef Pelikán, http://cgg.ms.mff.cuni.cz/~pepca
Počítačová grafika III Světlo, Radiometrie. Jaroslav Křivánek, MFF UK
Počítačová grafika III Světlo, Radiometrie Jaroslav Křivánek, MFF UK Jaroslav.Krivanek@mff.cuni.cz Syntéza obrazu (Rendering) Vytvoř obrázek z matematického popisu scény. 2 Fotorealistická syntéza obrazu
Moderní fotorealistický rendering
Moderní fotorealistický rendering 2010-2016 Josef Pelikán, CGG MFF UK 2016 Jiří Vorba a Jaroslav Křivánek, dtto http://cgg.mff.cuni.cz/ http://cgg.mff.cuni.cz/~pepca/ Seminář Ústavu teoretické fyziky,
X39RSO/A4M39RSO. Integrace a syntéza obrazu pomocí metody Monte Carlo. Vlastimil Havran, ČVUT v Praze
X39RSO/A4M39RSO Integrace a syntéza obrazu pomocí metody Monte Carlo Vlastimil Havran, ČVUT v Praze havran@fel.cvut.cz Osnova Historie Výpočet integrálu metodou Monte Carlo Aplikace v syntéze obrazu Antialiasing
Vícerozměrná rozdělení
Vícerozměrná rozdělení 7. září 0 Učivo: Práce s vícerozměrnými rozděleními. Sdružené, marginální, podmíněné rozdělení pravděpodobnosti. Vektorová střední hodnota. Kovariance, korelace, kovarianční matice.
Požadavky k písemné přijímací zkoušce z matematiky do navazujícího magisterského studia pro neučitelské obory
Požadavky k písemné přijímací zkoušce z matematiky do navazujícího magisterského studia pro neučitelské obory Zkouška ověřuje znalost základních pojmů, porozumění teorii a schopnost aplikovat teorii při
terminologie předchozí kapitoly: (ϕ, Ω) - plocha, S - geometrický obraz plochy
2. Plošný integrál. Poznámka. Obecně: integrování přes k-rozměrné útvary (k-plochy) v R n. Omezíme se na případ k = 2, n = 3. Definice. Množina S R 3 se nazve plocha, pokud S = ϕ(), kde R 2 je otevřená
Náhodný vektor. Náhodný vektor. Hustota náhodného vektoru. Hustota náhodného vektoru. Náhodný vektor je dvojice náhodných veličin (X, Y ) T = ( X
Náhodný vektor Náhodný vektor zatím jsme sledovali jednu náhodnou veličinu, její rozdělení a charakteristik často potřebujeme všetřovat vzájemný vztah několika náhodných veličin musíme sledovat jejich
Náhodné signály. Honza Černocký, ÚPGM
Náhodné signály Honza Černocký, ÚPGM Signály ve škole a v reálném světě Deterministické Rovnice Obrázek Algoritmus Kus kódu } Můžeme vypočítat Málo informace! Náhodné Nevíme přesně Pokaždé jiné Především
Osvětlování a stínování
Osvětlování a stínování Pavel Strachota FJFI ČVUT v Praze 21. dubna 2010 Obsah 1 Vlastnosti osvětlovacích modelů 2 Světelné zdroje a stíny 3 Phongův osvětlovací model 4 Stínování 5 Mlha Obsah 1 Vlastnosti
Monte Carlo metody Josef Pelikán CGG MFF UK Praha.
Monte Carlo metody 996-7 Josef Pelkán CGG MFF UK Praha pepca@cgg.mff.cun.cz http://cgg.mff.cun.cz/~pepca/ Monte Carlo 7 Josef Pelkán, http://cgg.ms.mff.cun.cz/~pepca / 44 Monte Carlo ntegrace Odhadovaný
cv3.tex. Vzorec pro úplnou pravděpodobnost
3 cvičení - pravděpodobnost 2102018 18cv3tex n i=1 Vzorec pro úplnou pravděpodobnost Systém náhodných jevů nazýváme úplným, jestliže pro něj platí: B i = 1 a pro i k je B i B k = 0 Jestliže je (Ω, A, P
Počítačová grafika III Přibližný výpočet globálního osvětlení. Jaroslav Křivánek, MFF UK Jaroslav.Krivanek@mff.cuni.cz
Počítačová grafika III Přibližný výpočet globálního osvětlení Jaroslav Křivánek, MFF UK Jaroslav.Krivanek@mff.cuni.cz Opakování Kvíz 1 F. Suykens Path tracing Light tracing Bidirectional path tracing Kvíz:
SIGNÁLY A SOUSTAVY, SIGNÁLY A SYSTÉMY
SIGNÁLY A SOUSTAVY, SIGNÁLY A SYSTÉMY TEMATICKÉ OKRUHY Signály se spojitým časem Základní signály se spojitým časem (základní spojité signály) Jednotkový skok σ (t), jednotkový impuls (Diracův impuls)
aneb jiný úhel pohledu na prvák
Účelná matematika aneb jiný úhel pohledu na prvák Jan Hejtmánek FEL, ČVUT v Praze 24. června 2015 Jan Hejtmánek (FEL, ČVUT v Praze) Technokrati 2015 24. června 2015 1 / 18 Outline 1 Motivace 2 Proč tolik
DIPLOMOVÁ PRÁCE. BRDF dílna
Univerzita Karlova v Praze Matematicko-fyzikální fakulta DIPLOMOVÁ PRÁCE Jiří Matějka BRDF dílna Kabinet software a výuky informatiky Vedoucí diplomové práce: RNDr. Josef Pelikán, KSVI Studijní program:
14. Věty Gauss-Ostrogradského, Greenova a Stokesova věta
14. Věty Gauss-Ostrogradského, Greenova a Stokesova věta Aplikovaná matematika II, NMAF072 M. Rokyta, KMA MFF UK LS 2010/11 14.1 Úvod Definice (zobecněná plocha) Řekneme, že S R n (n 2) je zobecněná (n
Progressive photon mapping na GPU
2015 http://excel.fit.vutbr.cz Progressive photon mapping na GPU Tomáš Lysek* Abstrakt Pro tvorbu fotorealistických obrazů je nutné použít časově náročné výpočetní techniky - global illumination techniky.
Náhodný vektor. Náhodný vektor. Hustota náhodného vektoru. Hustota náhodného vektoru. Náhodný vektor je dvojice náhodných veličin (X, Y ) T = ( X
Náhodný vektor Náhodný vektor zatím jsme sledovali jednu náhodnou veličinu, její rozdělení a charakteristiky často potřebujeme vyšetřovat vzájemný vztah několika náhodných veličin musíme sledovat jejich
Fotorealistická syntéza obrazu
Fotorealistická syntéza obrazu 2006-2008 Josef Pelikán, CGG MFF UK Praha http://cgg.ms.mff.cuni.cz/~pepca/ 10. a 17. 12. 2008 Photorealistic 10.-17. 12. 2008 Josef Pelikán, http://cgg.ms.mff.cuni.cz/~pepca
VEKTOROVÁ POLE Otázky
VEKTOROVÁ POLE VEKTOROVÁ POLE Je-li A podmnožina roviny a f je zobrazení A do R 2, které je dáno souřadnicemi f 1, f 2, tj., f(x, y) = (f 1 (x, y), f 2 (x, y)) pro (x, y) A, lze chápat dvojici (f 1 (x,
Výpočet průsečíků paprsku se scénou
Výpočet průsečíků paprsku se scénou 1996-2018 Josef Pelikán CGG MFF UK Praha pepca@cgg.mff.cuni.cz http://cgg.mff.cuni.cz/~pepca/ Intersection 2018 Josef Pelikán, http://cgg.mff.cuni.cz/~pepca 1 / 26 Průsečík
Matematika 1 Jiˇr ı Fiˇser 19. z aˇr ı 2016 Jiˇr ı Fiˇser (KMA, PˇrF UP Olomouc) KMA MAT1 19. z aˇr ı / 19
Matematika 1 Jiří Fišer 19. září 2016 Jiří Fišer (KMA, PřF UP Olomouc) KMA MAT1 19. září 2016 1 / 19 Zimní semestr KMA MAT1 1 Úprava algebraických výrazů. Číselné obory. 2 Kombinatorika, základy teorie
Matice. Předpokládejme, že A = (a ij ) je matice typu m n: diagonálou jsou rovny nule.
Matice Definice. Maticí typu m n nazýváme obdélníkové pole, tvořené z m n reálných čísel (tzv. prvků matice), zapsaných v m řádcích a n sloupcích. Značíme např. A = (a ij ), kde i = 1,..., m, j = 1,...,
Výpočet nejistot metodou Monte carlo
Výpočet nejistot metodou Monte carlo Mgr. Martin Šíra, Ph.D. (ČMI, Brno) červen 2012 Tato prezentace je spolufinancována Evropským sociálním fondem a státním rozpočtem České republiky. p. 1 Výpočty nejistot
Laplaceova transformace
Laplaceova transformace Modelování systémů a procesů (11MSP) Bohumil Kovář, Jan Přikryl, Miroslav Vlček Ústav aplikované matematiky ČVUT v Praze, Fakulta dopravní 5. přednáška 11MSP pondělí 23. března
Skalární a vektorový popis silového pole
Skalární a vektorový popis silového pole Elektrické pole Elektrický náboj Q [Q] = C Vlastnost materiálových objektů Interakce (vzájemné silové působení) Interakci (vzájemné silové působení) mezi dvěma
Číslicové filtry. Honza Černocký, ÚPGM
Číslicové filtry Honza Černocký, ÚPGM Aliasy Digitální filtry Diskrétní systémy Systémy s diskrétním časem atd. 2 Na co? Úprava signálů Zdůraznění Potlačení Detekce 3 Zdůraznění basy 4 Zdůraznění výšky
Matematika pro chemické inženýry
Matematika pro chemické inženýry Drahoslava Janovská Plošný integrál Přednášky Z 216-217 ponzorováno grantem VŠCHT Praha, PIGA 413-17-6642, 216 Povinná látka. Bude v písemkách a bude se zkoušet při ústní
Zjednodušení generativního systému redukcí rozlišení
Zjednodušení generativního systému redukcí rozlišení Ze studie zahrnující dotaz na vzdělání. Obor hodnot v i : e základní vzdělání h střední vzdělání c bakalář g magistr Možné redukce rozlišení cg vysoké
HDR obraz (High Dynamic Range)
HDR obraz (High Dynamic Range) 2010-2016 Josef Pelikán CGG MFF UK Praha pepca@cgg.mff.cuni.cz http://cgg.mff.cuni.cz/~pepca/ 1 / 24 Velká dynamika obrazu světlé partie (krátká expozice) tmavé partie (dlouhá
ZÁKLADY AUTOMATICKÉHO ŘÍZENÍ
VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA FAKULTA STROJNÍ ZÁKLADY AUTOMATICKÉHO ŘÍZENÍ 1. týden doc. Ing. Renata WAGNEROVÁ, Ph.D. Ostrava 2013 doc. Ing. Renata WAGNEROVÁ, Ph.D. Vysoká škola báňská
B) výchovné a vzdělávací strategie jsou totožné se strategiemi vyučovacího předmětu Matematika.
4.8.3. Cvičení z matematiky Předmět Cvičení z matematiky je vyučován v sextě a v septimě jako volitelný předmět. Vzdělávací obsah vyučovacího předmětu Cvičení z matematiky vychází ze vzdělávací oblasti
[1] samoopravné kódy: terminologie, princip
[1] Úvod do kódování samoopravné kódy: terminologie, princip blokové lineární kódy Hammingův kód Samoopravné kódy, k čemu to je [2] Data jsou uložena (nebo posílána do linky) kodérem podle určitého pravidla
Kristýna Bémová. 13. prosince 2007
Křivky v počítačové grafice Kristýna Bémová Univerzita Karlova v Praze 13. prosince 2007 Kristýna Bémová (MFF UK) Křivky v počítačové grafice 13. prosince 2007 1 / 36 Pojmy - křivky a jejich parametrické
Asociativní sítě (paměti) Asociace známého vstupního vzoru s daným výstupním vzorem. Typická funkce 1 / 44
Asociativní paměti Asociativní sítě (paměti) Cíl učení Asociace známého vstupního vzoru s daným výstupním vzorem Okoĺı známého vstupního vzoru x by se mělo také zobrazit na výstup y odpovídající x správný
Josef Pelikán, 1 / 51
1 / 51 Náhodné rozmisťování bodů v rovině 2014-15 Josef Pelikán, CGG MFF UK Praha http://cgg.mff.cuni.cz/~pepca/ Seminář strojového učení a modelování, 26. 3. 2015 2 / 51 Jiří Matoušek (1963-2015) 3 /
Netradiční výklad tradičních témat
Netradiční výklad tradičních témat J. Musilová, P. Musilová: Matematika pro porozumění i praxi I. VUTIUM, Brno 2006 (291 s.), 2009 (349 s.). J. Musilová, P. Musilová: Matematika pro porozumění i praxi
Pokročilé osvětlovací techniky. 2005 Josef Pelikán, MFF UK Praha http://cgg.ms.mff.cuni.cz/~pepca/ Josef.Pelikan@mff.cuni.cz
Pokročilé osvětlovací techniky 2005 Josef Pelikán, MFF UK Praha http://cgg.ms.mff.cuni.cz/~pepca/ Josef.Pelikan@mff.cuni.cz Obsah nefotorealistické techniky hrubé tónování kreslení obrysů ( siluety ) složitější
A5M13VSO MĚŘENÍ INTENZITY A SPEKTRA SLUNEČNÍHO ZÁŘENÍ
MĚŘENÍ INTENZITY A SPEKTRA SLUNEČNÍHO ZÁŘENÍ Zadání: 1) Pomocí pyranometru SG420, Light metru LX-1102 a měřiče intenzity záření Mini-KLA změřte intenzitu záření a homogenitu rozložení záření na povrchu
FAKULTA INFORMAČNÍCH TECHNOLOGIÍ
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA INFORMAČNÍCH TECHNOLOGIÍ ÚSTAV POČÍTAČOVÉ GRAFIKY A MULTIMÉDIÍ FACULTY OF INFORMATION TECHNOLOGY DEPARTMENT OF COMPUTER GRAPHICS AND
Transformace obrazu Josef Pelikán KSVI MFF UK Praha
Transformace obrazu 99725 Josef Pelikán KSVI MFF UK Praha email: Josef.Pelikan@mff.cuni.cz WWW: http://cgg.ms.mff.cuni.cz/~pepca/ Transformace 2D obrazu dekorelace dat potlačení závislosti jednotlivých
Mgr. Ladislav Zemánek Maturitní okruhy Matematika 2013-2014. 1. Obor reálných čísel
Mgr. Ladislav Zemánek Maturitní okruhy Matematika 2013-2014 1. Obor reálných čísel - obor přirozených, celých, racionálních a reálných čísel - vlastnosti operací (sčítání, odčítání, násobení, dělení) -
1 Projekce a projektory
Cvičení 3 - zadání a řešení úloh Základy numerické matematiky - NMNM20 Verze z 5. října 208 Projekce a projektory Opakování ortogonální projekce Definice (Ortogonální projekce). Uvažujme V vektorový prostor
Poznámka. V některých literaturách se pro označení vektoru také používá symbolu u.
Vektory, operace s vektory Ž3 Orientovaná úsečka Mějme dvojici bodů, (na přímce, v rovině nebo prostoru), které spojíme a vznikne tak úsečka. Pokud budeme rozlišovat, zda je spojíme od k nebo od k, říkáme,
7 Ortogonální a ortonormální vektory
7 Ortogonální a ortonormální vektory Ze vztahu (5) pro výpočet odchylky dvou vektorů vyplývá, že nenulové vektory u, v jsou na sebe kolmé právě tehdy, když u v =0. Tato skutečnost nám poslouží k zavedení
Smyková pevnost zemin
Smyková pevnost zemin 30. března 2017 Vymezení pojmů Smyková pevnost zemin - maximální vnitřní únosnost zeminy proti působícímu smykovému napětí Efektivní úhel vnitřního tření - část smykové pevnosti zeminy
Počítačová grafika III (NPGR010) Přednáška: Path tracing II
Počítačová grafika III (PGR010) Přednáška: Path tracing II Petr Vévoda 15 listopadu 01 1 Přímé osvětlení v path traceru a minulé přednášce jsme si představili základní verzi algoritmu path tracing: Pro
Osadníci z Katanu. a Monte Carlo Tree Search. David Pěgřímek. http://davpe.net MFF UK (2013) 1 / 24
.. Osadníci z Katanu a Monte Carlo Tree Search David Pěgřímek http://davpe.net MFF UK (2013) 1 / 24 Osadníci z Katanu autor hry Klaus Teuber (1995 Německo) strategická desková hra pro 3 až 4 hráče hra
VEKTOROVÁ POLE VEKTOROVÁ POLE
Je-li A podmnožina roviny a f je zobrazení A do R 2, které je dáno souřadnicemi f 1, f 2, tj., f(x, y) = (f 1 (x, y), f 2 (x, y)) pro (x, y) A, lze chápat dvojici (f 1 (x, y), f 2 (x, y)) jako vektor s
Jasové transformace. Karel Horák. Rozvrh přednášky:
1 / 23 Jasové transformace Karel Horák Rozvrh přednášky: 1. Úvod. 2. Histogram obrazu. 3. Globální jasová transformace. 4. Lokální jasová transformace. 5. Bodová jasová transformace. 2 / 23 Jasové transformace
Matematicko-fyzikální fakulta Univerzity Karlovy
Oceňování finančních derivátů ve spojitém čase Václav Kozmík Matematicko-fyzikální fakulta Univerzity Karlovy 4. 10. 2010 Úvod Stochastický kalkulus Wienerův proces stochastické procesy Itoovo lemma změna
Matematika B101MA1, B101MA2
Matematika B101MA1, B101MA2 Zařazení předmětu: povinný předmět 1.ročníku bc studia 2 semestry Rozsah předmětu: prezenční studium 2 + 2 kombinované studium 16 + 0 / semestr Zakončení předmětu: ZS zápočet
V: Pro nulový prvek o lineárního prostoru L platí vlastnosti:
Zpracoval: hypspave@fel.cvut.cz. Základní vlastnosti abstraktních lineárních prostorů. Lineární závislost, nezávislost, báze, souřadnice vzhledem k bázi, matice lineárního zobrazení vzhledem k bázím.skalární
Relativní Eulerova funkce
MUNDUS SYMBOLICUS 25 (2017) Relativní Eulerova funkce J. Nečas Abstract. The article deals with the sequence of ratios between values of the Euler function of the natural number n and that number n. Klíčová
Stanovení akustického výkonu Nejistoty měření. Ing. Miroslav Kučera, Ph.D.
Stanovení akustického výkonu Nejistoty měření Ing. Miroslav Kučera, Ph.D. Využití měření intenzity zvuku pro stanovení akustického výkonu klapek? Výhody: 1) přímé stanovení akustického výkonu zvláště při
Úvod do mobilní robotiky NAIL028
md at robotika.cz http://robotika.cz/guide/umor08/cs 11. listopadu 2008 1 2 PID Sledování cesty Modely kolových vozidel (1/5) Diferenční řízení tank b Encoder Motor Centerpoint Motor Encoder Modely kolových
Aproximace funkcí. x je systém m 1 jednoduchých, LN a dostatečně hladkých funkcí. x c m. g 1. g m. a 1. x a 2. x 2 a k. x k b 1. x b 2.
Aproximace funkcí Aproximace je výpočet funkčních hodnot funkce z nějaké třídy funkcí, která je v určitém smyslu nejbližší funkci nebo datům, která chceme aproximovat. Třída funkcí, ze které volíme aproximace
Monte Carlo. Simulační metoda založená na užití stochastických procesů a generace náhodných čísel.
Monte Carlo Simulační metoda založená na užití stochastických procesů a generace náhodných čísel. Typy MC simulací a) MC integrace b) Geometrické MC c) Termodynamické MC d) Modelování vývoje na strukturální
Maturitní okruhy z matematiky - školní rok 2007/2008
Maturitní okruhy z matematiky - školní rok 2007/2008 1. Některé základní poznatky z elementární matematiky: Číselné obory, dělitelnost přirozených čísel, prvočísla a čísla složená, největší společný dělitel,
Základy teorie pravděpodobnosti
Základy teorie pravděpodobnosti Náhodný jev Pravděpodobnost náhodného jevu Roman Biskup (zapálený) statistik ve výslužbě, aktuálně analytik v praxi ;-) roman.biskup(at)email.cz 15. srpna 2012 Statistika
Zpětnovazební učení Michaela Walterová Jednoocí slepým,
Zpětnovazební učení Michaela Walterová Jednoocí slepým, 17. 4. 2019 V minulých dílech jste viděli Tři paradigmata strojového učení: 1) Učení s učitelem (supervised learning) Trénovací data: vstup a požadovaný