Relativní Eulerova funkce
|
|
- Helena Staňková
- před 6 lety
- Počet zobrazení:
Transkript
1 MUNDUS SYMBOLICUS 25 (2017) Relativní Eulerova funkce J. Nečas Abstract. The article deals with the sequence of ratios between values of the Euler function of the natural number n and that number n. Klíčová slova. Nesoudělná čísla, prvočísla, Eulerova funkce, provofaktoriál. Eulerovou funkcí φ(n) rozumíme funkci definovanou na množině N všech nenulových přirozených čísel, která každému číslu n N přiřazuje počet všech čísel x N, která jsou s n nesoudělná a pro něž platí x n. Platí φ(1) = 1, pro každé prvočíslo p je φ(p) = p - 1, pro každé prvočíslo p a každé nenulové přirozené číslo k platí φ(p k ) = (p - 1) p k-1. Eulerova funkce je multiplikativní, tj. jsou-li m a n nesoudělná nenulová přirozená čísla, pak φ(mn) = φ(m). φ(n). To ovšem znamená, že je-li (1) n = (p 1 ^ k 1). (p 2 ^ k 2)..... (p m ^ k m) prvočíselný rozklad 1 čísla n, platí (2) φ(n) = (p 1 1).(p 1 ^( k 1 1)). (p 2 1).(p 2 ^( k 2 1))..... (p m 1).(p m ^ (k m 1)) Označme P množinu všech prvočísel. Parcializace 2 Eulerovy funkce na množinu P je lineární rostoucí funkcí. To je určitou motivací pro definování relativní Eulerovy funkce Φ: Pro všechna n N položme Φ(n) = φ(n) / n Ze vztahu (2) plyne, že pro číslo s prvočíselným rozkladem (1) platí (3) Φ(n) = (1 1/p 1). (1 1/p 2)..... (1 1/p m), 1 Zápis a^r znamená totéž jako a r. Závorkování ve výrazu (1) tak není nutné, avšak je použito pro větší názornost. V prvočíselném rozkladu uvádíme jen ty činitele, u nichž je mocnitel větší než 0. 2 Je-li f funkce s definičním oborem B a A B, pak parcializací funkce f na množinu A rozumíme funkci s definičním oborem A, na němž má stejné hodnoty jako původní funkce. Budeme používat takové formulace, abychom mohli pro funkci f na B a její parcializaci na A používat stejné značení.
2 tedy hodnota relativní Eulerovy funkce Φ(n) čísla n závisí jen na tom, jaká prvočísla se v prvočíselném rozkladu čísla n vyskytují, a tedy nezávisí na tom, v jaké mocnině se tam vyskytují. Ze vztahu (3) je vidět, že hodnoty funkce Φ leží pro všechna n N v otevřeném intervalu (0; 1). Uzávěrem množiny H (Φ) hodnot funkce Φ je celý uzavřený interval <0; 1>. Důkaz tohoto tvrzení dělat nebudeme, ukážeme jen, že oba krajní body tohoto intervalu jsou hromadnými body množiny H (Φ). Dokážeme proto, že platí (4) lim sup Φ(n) = 1, (5) lim inf Φ(n) = 0 V posloupnosti Φ(n) najdeme vybranou posloupnost mající limitu 1 a vybranou posloupnost s limitou 0. Jde tedy o to najít takové nekonečné podmnožiny argumentů A, B N, pro něž by platilo lim n A,n Φ(n) = 1, lim n B,n Φ(n) = 0. Vybrat množinu A, která bude splňovat podmínku (4), je snadné, stačí totiž položit A = P. Pro p P platí Φ(p) = 1 1/ p (jde o rostoucí shora omezenou posloupnost), a tedy (6) lim n P,n Φ(n) = 1. Než ukážeme, jak lze najít množinu B s požadovanými vlastnostmi, definujme pojem prvofaktoriál; prvofaktoriál Prfact(n) definujeme jako součin prvních n prvočísel 3, tedy Prfact (1) = 2 Prfact (2) = 2.3 = 6 Prfact (3) = = 30 Prfact (4) = = 210 Prfact (5) = = 2310 Prfact (6) = = atd. 3 Pro r-té prvočíslo budeme někdy používat označení P(r), tedy P(1)=1, P(2)=3,..., P(6) = 13,...
3 Položme nyní PRF = H (Prfact). Posloupnost Φ(Prfact(m)) je vybranou posloupností z posloupnosti Φ(n), je klesající (plyne to ze vztahu (3)) a zdola omezená, a tedy má limitu. Platí (7) Φ(Prfact(m)) = (1 1/P(1)).(1 1/P(2)).....(1 1/(P(m)), Protože pro všechna m N platí 0 < 1/P(m) < 1, platí také 0<1 1/P(m)<1, a tedy Φ(Prfact(m+1)) = Φ(Prfact(m)).(1 1/(P(m+1)) < Φ(Prfact(m)), je posloupnost Φ(Prfact(m)) klesající. Zároveň je zdola omezená (hodnotou 0), a tedy má limitu. Abychom ji našli, zlogaritmujme vztah (7) (8) ln Φ(Prfact(m)) = i=1 m ln (1 1/P(i)) = i=1 m ln (1 q i), kde q i = 1/P(i); pro všechna i N platí q i (0, 1). Použijeme-li Taylorův rozvoj kolem 0 pro funkci ln (1 x) pro x (0; 0,5>, dostaneme ln (1 x) = x x 2 /2 x 3 /3 x 4 /4 < x, a tedy s využitím vztahu (8) dostáváme nerovnost (9) ln Φ(Prfact(m)) < i=1 m q i = i=1 m (1/P(i)), a tedy (10) lim m-> ln Φ(Prfact(m)) i=1 q i = i=1 (1/P(i)),. Je však známo, že podobně jako harmonická řada i 1/i má součet nekonečno, součet nekonečno má i řada převrácených hodnot prvočísel 4, a tak ze vztahu (10) dostáváme lim m-> ln Φ(Prfact(m)) =, a tedy lim m-> Φ(Prfact(m)) = 0, jinak vyjádřeno lim n PRF,n Φ(n) = 0, 4 Viz [1], kap. VIII, 4
4 a tedy skutečně lim inf Φ(n) = 0. Pro představu o tom, jak vybraná posloupnost hodnot funkce Φ(n) omezené na argumenty z PRF konverguje pomalu, uveďme jejích prvních 10 členů: Φ(Prfact(1)) = Φ(2) = 0,5 Φ(Prfact(2)) = Φ(2.3) = Φ(6) = 0,3333 Φ(Prfact(3)) = Φ(6.5) = Φ(30) = 0,2667 Φ(Prfact(4)) = Φ(30.7) = Φ(210) = 0,2286 Φ(Prfact(5)) = Φ(210.11) = Φ(2310) = 0,2078 Φ(Prfact(6)) = Φ( ) = Φ(30030) = 0,1918 Φ(Prfact(7)) = Φ( ) = Φ(510510) = 0,1805 Φ(Prfact(8)) = Φ( ) = Φ( ) = 0,1710 Φ(Prfact(9)) = Φ( ) = Φ( ) = 0,1636 Φ(Prfact(10)) = Φ( ) = Φ( ) = 0,1579 Na závěr uveďme tabulku hodnot Eulerovy funkce φ a relativní Eulerovy funkce Φ pro argumenty od 2 do 211. Hodnoty funkce Φ pro obě zmíněné vybrané monotónní posloupnosti, konvergující k 1, resp. k 0, jsou vyjádřeny kurzívou, resp. tučně. Literatura [1] Michelovič, Š. Ch.: Těorija čisel. Moskva, Vysšaja škola RNDr. Jiří Nečas Department of Mathematics University of Economics Ekonomická Prague 4 necas@vse.cz
5 x φ(x) Φ(x) x φ(x) Φ(x) x φ(x) Φ(x) 2 1 0, , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,491
6 x φ(x) Φ(x) x φ(x) Φ(x) x φ(x) Φ(x) , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,995
Abundantní čísla. J. Nečas
MUNDUS SYMBOLICUS 25 (2017) Abundantní čísla J. Nečas Abstract. The article discusses the relationship between the natural number and the sum of its divisors, and according to it classifies the natural
VícePŘEDNÁŠKA 2 POSLOUPNOSTI
PŘEDNÁŠKA 2 POSLOUPNOSTI 2.1 Zobrazení 2 Definice 1. Uvažujme libovolné neprázdné množiny A, B. Zobrazení množiny A do množiny B je definováno jako množina F uspořádaných dvojic (x, y A B, kde ke každému
Vícep 2 q , tj. 2q 2 = p 2. Tedy p 2 je sudé číslo, což ale znamená, že
KAPITOLA 1: Reálná čísla [MA1-18:P1.1] 1.1. Číselné množiny Přirozená čísla... N = {1,, 3,...} nula... 0, N 0 = {0, 1,, 3,...} = N {0} Celá čísla... Z = {0, 1, 1,,, 3,...} Racionální čísla... { p } Q =
VíceKapitola 1. Úvod. 1.1 Značení. 1.2 Výroky - opakování. N... přirozená čísla (1, 2, 3,...). Q... racionální čísla ( p, kde p Z a q N) R...
Kapitola 1 Úvod 1.1 Značení N... přirozená čísla (1, 2, 3,...). Z... celá čísla ( 3, 2, 1, 0, 1, 2,...). Q... racionální čísla ( p, kde p Z a q N) q R... reálná čísla C... komplexní čísla 1.2 Výroky -
VíceLimita posloupnosti a funkce
Limita posloupnosti a funkce Petr Hasil Přednáška z Matematické analýzy I c Petr Hasil (MUNI) Limita posloupnosti a funkce MA I (M1101) 1 / 90 Obsah 1 Posloupnosti reálných čísel Úvod Limita posloupnosti
VícePosloupnosti a jejich konvergence
a jejich konvergence Pojem konvergence je velmi důležitý pro nediskrétní matematiku. Je nezbytný všude, kde je potřeba aproximovat nějaké hodnoty, řešit rovnice přibližně, používat derivace, integrály.
VícePosloupnosti a řady. 28. listopadu 2015
Posloupnosti a řady Přednáška 5 28. listopadu 205 Obsah Posloupnosti 2 Věty o limitách 3 Řady 4 Kritéria konvergence 5 Absolutní a relativní konvergence 6 Operace s řadami 7 Mocninné a Taylorovy řady Zdroj
VíceLimita a spojitost funkce a zobrazení jedné reálné proměnné
Přednáška 4 Limita a spojitost funkce a zobrazení jedné reálné proměnné V několika následujících přednáškách budeme studovat zobrazení jedné reálné proměnné f : X Y, kde X R a Y R k. Protože pro každé
VíceMatematická analýza pro informatiky I. Limita posloupnosti (I)
Matematická analýza pro informatiky I. 3. přednáška Limita posloupnosti (I) Jan Tomeček tomecek@inf.upol.cz http://aix-slx.upol.cz/ tomecek/index Univerzita Palackého v Olomouci 25. února 2011 tomecek@inf.upol.cz
VíceMatematická analýza pro informatiky I. Limita funkce
Matematická analýza pro informatiky I. 5. přednáška Limita funkce Jan Tomeček tomecek@inf.upol.cz http://aix-slx.upol.cz/ tomecek/index Univerzita Palackého v Olomouci 18. března 2011 Jan Tomeček, tomecek@inf.upol.cz
VíceLimita a spojitost funkce. 3.1 Úvod. Definice: [MA1-18:P3.1]
KAPITOLA 3: Limita a spojitost funkce [MA-8:P3.] 3. Úvod Necht je funkce f definována alespoň na nějakém prstencovém okolí bodu 0 R. Číslo a R je itou funkce f v bodě 0, jestliže pro každé okolí Ua) bodu
VícePosloupnosti a jejich konvergence POSLOUPNOSTI
Posloupnosti a jejich konvergence Pojem konvergence je velmi důležitý pro nediskrétní matematiku. Je nezbytný všude, kde je potřeba aproximovat nějaké hodnoty, řešit rovnice přibližně, používat derivace,
VíceTexty k přednáškám z MMAN3: 4. Funkce a zobrazení v euklidovských prostorech
Texty k přednáškám z MMAN3: 4. Funkce a zobrazení v euklidovských prostorech 1. července 2008 1 Funkce v R n Definice 1 Necht n N a D R n. Reálnou funkcí v R n (reálnou funkcí n proměnných) rozumíme zobrazení
VíceMatematika III. Miroslava Dubcová, Daniel Turzík, Drahoslava Janovská. Ústav matematiky
Matematika III Řady Miroslava Dubcová, Daniel Turzík, Drahoslava Janovská Ústav matematiky Přednášky ZS 202-203 Obsah Číselné řady. Součet nekonečné řady. Kritéria konvergence 2 Funkční řady. Bodová konvergence.
VícePřednáška 3: Limita a spojitost
3 / 1 / 17, 1:38 Přednáška 3: Limita a spojitost Limita funkce Nejdříve je potřeba upřesnit pojmy, které přesněji popisují (topologickou) strukturu množiny reálných čísel, a to zejména pojem okolí 31 Definice
Více1 Topologie roviny a prostoru
1 Topologie roviny a prostoru 1.1 Základní pojmy množin Intervaly a okolí Intervaly v rovině nebo prostoru jsou obdélníky nebo hranoly se stranami rovnoběžnými s osami souřadnic. Podmnožiny intervalů se
VíceČíselné posloupnosti
Číselné posloupnosti Jiří Fišer KMA, PřF UP Olomouc ZS09 Jiří Fišer (KMA, PřF UP Olomouc) KMA MA2AA ZS09 1 / 43 Pojem posloupnosti Každé zobrazení N do R nazýváme číselná posloupnost. 1 a 1, 2 a 2, 3 a
VíceMagická krása pravidelného pětiúhelníka
MUNDUS SYMBOLICUS 25 (2017) Magická krása pravidelného pětiúhelníka J. Nečas Abstract. The article presents various interesting relations in a regular pentagon and then expresses the values of goniometric
VíceIV. Základní pojmy matematické analýzy IV.1. Rozšíření množiny reálných čísel
Matematická analýza IV. Základní pojmy matematické analýzy IV.1. Rozšíření množiny reálných čísel na množině R je definováno: velikost (absolutní hodnota), uspořádání, aritmetické operace; znázornění:
VíceObsah. Euler-Fermatova věta. Reziduální aritmetika. 3. a 4. přednáška z kryptografie
Obsah Počítání modulo n a jeho časová složitost 3. a 4. přednáška z kryptografie 1 Počítání modulo n - dokončení Umocňování v Zn 2 Časová složitost výpočtů modulo n Asymptotická notace Základní aritmetické
Více4. Topologické vlastnosti množiny reálných
Matematická analýza I přednášky M. Málka cvičení A. Hakové a R. Otáhalové Zimní semestr 2004/05 4. Topologické vlastnosti množiny reálných čísel V této kapitole definujeme přirozenou topologii na množině
VíceZáklady matematické analýzy
Základy matematické analýzy Spojitost funkce Ing. Tomáš Kalvoda, Ph.D. 1, Ing. Daniel Vašata 2 1 tomas.kalvoda@fit.cvut.cz 2 daniel.vasata@fit.cvut.cz Katedra aplikované matematiky Fakulta informačních
VíceLEKCE10-RAD Otázky
Řady -ekv ne ŘADY ČÍSEL 1. limita posloupnosti (operace založená na vzdálenosti bodů) 2. supremum nebo infimum posloupnosti (operace založená na uspořádání bodů). Z hlavních struktur reálných čísel zbývá
VíceLineární algebra : Metrická geometrie
Lineární algebra : Metrická geometrie (16. přednáška) František Štampach, Karel Klouda LS 2013/2014 vytvořeno: 6. května 2014, 10:42 1 2 Úvod Zatím jsme se lineární geometrii věnovali v kapitole o lineárních
Více64. ročník matematické olympiády Řešení úloh krajského kola kategorie A
64. ročník matematické olympiády Řešení úloh krajského kola kategorie A 1. Středy stran AC, BC označme postupně, N. Střed kružnice vepsané trojúhelníku KLC označme I. Úvodem poznamenejme, že body K, L
VíceZáklady teorie množin
1 Základy teorie množin Z minula: 1. Cantorovu větu (x P(x)) 2. základní vlastnosti disjunktního sjednocení, kartézského součinu a množinové mocniny (z hlediska relací, ) 3. vztah P(a) a 2 4. větu (2 a
VícePřijímací zkouška na navazující magisterské studium 2014
Přijímací zkouška na navazující magisterské studium 4 Studijní program: Studijní obory: Příklad (5 bodů) Spočtěte Matematika MA, MMIB, MMFT, MSTR, NVM, PMSE, MDU Varianta A M xy dxdy, kde M = {(x, y) R
VíceRiemannův určitý integrál
Riemannův určitý integrál 1. Motivační příklad Příklad (Motivační příklad pro zavedení Riemannova integrálu). Nechť,. Vypočtěme obsah vybarvené oblasti ohraničené grafem funkce, osou a svislými přímkami
Více1. Posloupnosti čísel
1. Posloupnosti čísel 1.1. Posloupnosti a operace s nimi Definice 1.1 Posloupnost reálných čísel ( = reálná posloupnost ) je zobrazení, jehož definičním oborem je množina N a oborem hodnot je nějaká podmnožina
VíceCharakteristika tělesa
16 6 Konečná tělesa V této kapitole budeme pod pojmem těleso mít na mysli vždy konečné komutativní těleso, tedy množinu s dvěma binárními operacemi (T, +, ), kde (T, +) je komutativní grupa s neutrálním
VíceNechť je číselná posloupnost. Pro všechna položme. Posloupnost nazýváme posloupnost částečných součtů řady.
Číselné řady Definice (Posloupnost částečných součtů číselné řady). Nechť je číselná posloupnost. Pro všechna položme. Posloupnost nazýváme posloupnost částečných součtů řady. Definice (Součet číselné
Více10 Funkce více proměnných
M. Rokyta, MFF UK: Aplikovaná matematika II kap. 10: Funkce více proměnných 16 10 Funkce více proměnných 10.1 Základní pojmy Definice. Eukleidovskou vzdáleností bodů x = (x 1,...,x n ), y = (y 1,...,y
VíceZavedení a vlastnosti reálných čísel
Zavedení a vlastnosti reálných čísel jsou základním kamenem matematické analýzy. Konstrukce reálných čísel sice není náplní matematické analýzy, ale množina reálných čísel R je pro matematickou analýzu
Více1 Posloupnosti a řady.
1 Posloupnosti a řady. 1.1 Posloupnosti reálných čísel. Definice 1.1: Posloupností reálných čísel nazýváme zobrazení f množiny N všech přirozených čísel do množiny R všech reálných čísel. Pokud nemůže
VíceMatematická analýza III.
1. - limita, spojitost Miroslav Hušek, Lucie Loukotová UJEP 2010 Úvod Co bychom měli znát limity posloupností v R základní vlastnosti funkcí jedné proměnné (definiční obor, monotónnost, omezenost,... )
VíceLimita a spojitost funkce
Přednáška 5 Limita a spojitost funkce V této přednášce se konečně dostaneme k diferenciálnímu počtu funkce jedné reálné proměnné. Diferenciální počet se v podstatě zabývá lokálním chováním funkce v daném
VíceLogaritmické a exponenciální funkce
Kapitola 4 Logaritmické a exponenciální funkce V této kapitole se budeme zabývat exponenciálními a logaritmickými funkcemi. Uvedeme si definice vlastnosti a vztah mezi nimi. 4.1 Exponenciální funkce Exponenciální
VícePřednáška 6, 6. listopadu 2013
Přednáška 6, 6. listopadu 2013 Kapitola 2. Posloupnosti a řady funkcí. V dalším jsou f, f n : M R, n = 1, 2,..., reálné funkce jedné reálné proměnné definované na (neprázdné) množině M R. Co to znamená,
VíceFunkce jedn e re aln e promˇ enn e Derivace Pˇredn aˇska ˇr ıjna 2015
Funkce jedné reálné proměnné Derivace Přednáška 2 15. října 2015 Obsah 1 Funkce 2 Limita a spojitost funkce 3 Derivace 4 Průběh funkce Informace Literatura v elektronické verzi (odkazy ze STAGu): 1 Lineární
Více3. ledna list a odevzdejte tento zvláštní list (listy) i všechny ostatní listy, které jste při řešení
Jméno a příjmení: Písemná část zkoušky z předmětu AN1E 3. ledna 2019 Skutečná písemná práce bude obsahovat 5 příkladů. Zvolte si pořadí, v jakém budete příklady řešit. Vaše řešení nemusí být kulturně zapsané,
VíceJak funguje asymetrické šifrování?
Jak funguje asymetrické šifrování? Petr Vodstrčil petr.vodstrcil@vsb.cz Katedra aplikované matematiky, Fakulta elektrotechniky a informatiky, Vysoká škola báňská Technická univerzita Ostrava Petr Vodstrčil
VíceMETRICKÉ A NORMOVANÉ PROSTORY
PŘEDNÁŠKA 1 METRICKÉ A NORMOVANÉ PROSTORY 1.1 Prostor R n a jeho podmnožiny Připomeňme, že prostorem R n rozumíme množinu uspořádaných n tic reálných čísel, tj. R n = R } R {{ R }. n krát Prvky R n budeme
VíceNMAF 051, ZS Zkoušková písemná práce 16. ledna 2009
Jednotlivé kroky při výpočtech stručně, ale co nejpřesněji odůvodněte. Pokud používáte nějaké tvrzení, nezapomeňte ověřit splnění předpokladů. Jméno a příjmení: Skupina: Příklad 3 5 Celkem bodů Bodů 8
VíceHlubší věty o počítání modulo
Hlubší věty o počítání modulo Jiří Velebil: A7B01MCS 31. října 2011: Hlubší věty o počítání modulo 1/18 Příklad Vyřešte: Idea řešení: x = 3 v Z 4 x = 2 v Z 5 x = 6 v Z 21 x = 3 + 2 + 6 Musí být: 1 První
VíceAritmetické funkce. Pepa Svoboda
Aritmetické funkce Pepa Svoboda Abstrakt. V přednášce se seznámíme s aritmetickými funkcemi jako je Eulerova funkce nebo součet dělitelů. Ukážeme si jejich vlastnosti a spočítáme nějaké příklady. Ve druhé
VícePOSLOUPNOSTI A ŘADY INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ
POSLOUPNOSTI A ŘADY Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro vyšší gymnázia Autoři projektu Student na prahu 21. století - využití ICT ve vyučování matematiky na gymnáziu
VíceMatematika 2 LS 2012/13. Prezentace vznikla na základě učebního textu, jehož autorem je doc. RNDr. Mirko Rokyta, CSc. J. Stebel Matematika 2
Matematika 2 14. přednáška Číselné a mocninné řady Jan Stebel Fakulta mechatroniky, informatiky a mezioborových studíı Technická univerzita v Liberci jan.stebel@tul.cz http://bacula.nti.tul.cz/~jan.stebel
VíceÚlohy krajského kola kategorie A
64. ročník matematické olympiády Úlohy krajského kola kategorie A 1. Je dán trojúhelník ABC s tupým úhlem při vrcholu C. Osa o 1 úsečky AC protíná stranu AB v bodě K, osa o 2 úsečky BC protíná stranu AB
VíceFREDHOLMOVA ALTERNATIVA
FREDHOLMOVA ALTERNATIVA Pavel Jirásek 1 Abstrakt. V tomto článku se snažíme shrnout dosavadní výsledky týkající se Fredholmovy alternativy (FA). Postupně zmíníme FA na prostorech konečné dimenze, FA pro
VíceVěta o dělení polynomů se zbytkem
Věta o dělení polynomů se zbytkem Věta. Nechť R je okruh, f, g R[x], přičemž vedoucí koeficient polynomu g 0 je jednotka okruhu R. Pak existuje jediná dvojice polynomů q, r R[x] taková, že st(r) < st(g)
VícePoznámka. Je-li f zobrazení, ve kterém potřebujeme zdůraznit proměnnou, píšeme f(x) (resp. f(y), resp. f(t)) je zobrazení místo f je zobrazení.
2. ZOBRAZENÍ A FUNKCE 2.1 Zobrazení 2. 1. 1 Definice: Nechť A a B jsou množiny. Řekneme že f je zobrazení množiny A do množiny B jestliže (i) f A B (ii) ke každému z množiny A eistuje právě jedno y z množiny
VíceTo je samozřejmě základní pojem konvergence, ale v mnoha případech je příliš obecný a nestačí na dokazování některých užitečných tvrzení.
STEJNOMĚRNÁ KONVERGENCE Zatím nebylo v těchto textech věnováno příliš pozornosti konvergenci funkcí, at jako limita posloupnosti nebo součet řady. Jinak byla posloupnosti funkcí nebo řady brána jako. To
VíceOmezenost funkce. Definice. (shora, zdola) omezená na množině M D(f ) tuto vlastnost. nazývá se (shora, zdola) omezená tuto vlastnost má množina
Přednáška č. 5 Vlastnosti funkcí Jiří Fišer 22. října 2007 Jiří Fišer (KMA, PřF UP Olomouc) KMA MMAN1 Přednáška č. 4 22. října 2007 1 / 1 Omezenost funkce Definice Funkce f se nazývá (shora, zdola) omezená
Více11. Číselné a mocninné řady
11. Číselné a mocninné řady Aplikovaná matematika III, NMAF072 M. Rokyta, KMA MFF UK ZS 2017/18 11.1 Základní pojmy Definice Necht {a n } C je posloupnost komplexních čísel. Pro m N položme s m = a 1 +
VícePŘEDNÁŠKA 5 Konjuktivně disjunktivní termy, konečné distributivní svazy
PŘEDNÁŠKA 5 Konjuktivně disjunktivní termy, konečné distributivní svazy PAVEL RŮŽIČKA Abstrakt. Ukážeme, že každý prvek distributivního svazu odpovídá termu v konjuktivně-disjunktivním (resp. disjunktivně-konjunktivním)
Více1. série. Iracionální čísla. Téma: Datumodeslání: Dokažte, že 0, (píšeme za sebou všechna přirozená čísla) je iracionální.
Téma: Datumodeslání: 1. série Iracionální čísla ¾½º Ò ½ ½º ÐÓ Ó µ Dokažte, že 0,12345678910111213... (píšeme za sebou všechna přirozená čísla) je iracionální. ¾º ÐÓ Ó µ Dokažte,že 2+ 3+ 4+ 5jeiracionálníčíslo.
Více7. Funkce jedné reálné proměnné, základní pojmy
, základní pojmy POJEM FUNKCE JEDNÉ PROMĚNNÉ Reálná funkce f jedné reálné proměnné je funkce (zobrazení) f: X Y, kde X, Y R. Jde o zvláštní případ obecného pojmu funkce definovaného v přednášce. Poznámka:
VíceREÁLNÁ FUNKCE JEDNÉ PROMĚNNÉ
REÁLNÁ FUNKCE JEDNÉ PROMĚNNÉ 5 přednáška S funkcemi se setkáváme na každém kroku ve všech přírodních vědách ale i v každodenním životě Každá situace kdy jsou nějaký jev nebo veličina jednoznačně určeny
VícePřednáška 9, 28. listopadu 2014 Část 4: limita funkce v bodě a spojitost funkce
Přednáška 9, 28. listopadu 2014 Část 4: limita funkce v bodě a spojitost funkce Zápisem f : M R rozumíme, že je dána funkce definovaná na neprázdné množině M R reálných čísel, což je množina dvojic f =
VíceLineární algebra Kapitola 1 - Základní matematické pojmy
Lineární algebra Kapitola 1 - Základní matematické pojmy 1.1 Relace a funkce V celém textu budeme používat následující označení pro číselné množiny: N množina všech přirozených čísel bez nuly, N={1, 2,
Vícez nich byla poprvé dokázána v 19. století velikány analytické teorie čísel (Pafnutij Lvovič Čebyšev, Charles-Jean de la Vallée Poussin a další).
0. Tři věty o prvočíslech Martin Mareš Úvodem Při analýze algoritmů se často využívají různá tvrzení o prvočíslech. Většina z nich byla poprvé dokázána v 9. století velikány analytické teorie čísel (Pafnutij
VíceReálné posloupnosti 1. Reálné posloupnosti
Reálné posloupnosti Reálné posloupnosti Intervaly otevřený interval (a, b) = {x R, a < x < b}; polouzavřený interval (a, b = {x R, a < x b}; uzavřený interval a, b = {x R, a x b}; otevřený neomezený interval
VícePřednáška 6, 7. listopadu 2014
Přednáška 6, 7. listopadu 204 Část 3: nekonečné řady Základní definice. Nekonečná řada, krátce řada, je posloupnost reálných čísel (a n ) R uvedená v zápisu a n = a + a 2 + a 3 +..., spolu s metodou přiřazující
Více6 Lineární geometrie. 6.1 Lineární variety
6 Lineární geometrie Motivace. Pojem lineární varieta, který budeme v této kapitole studovat z nejrůznějších úhlů pohledu, není žádnou umělou konstrukcí. Příkladem lineární variety je totiž množina řešení
VíceVztah limity k aritmetickým operacím a uspořádání
Vztah limity k a uspořádání Miroslav Hušek UJEP Prohlížení Celý text je nejlépe čitelný v celoobrazovkovém módu. Toho docílíte stiskem kláves CTRL L. Doprovodný text V textu se užívají definice dle obvyklých
VícePřijímací zkouška na navazující magisterské studium 2018
Přijímací zkouška na navazující magisterské studium 208 Studijní program: Studijní obory: Matematika MA, MMIT, MMFT, MSTR, MNVM, MPMSE Varianta A Řešení příkladů pečlivě odůvodněte. Věnujte pozornost ověření
VíceČíselné posloupnosti. H (å) a. a å
Pokud napíšeme značku H a (ε), je třeba dát pozor, neboť značka je stejná u komplexního i u reálného okolí, ačkoliv jde o jinou množinu (reálné okolí je jen otevřený interval na reálné ose, komplexní zahrnuje
VíceLimita funkce. FIT ČVUT v Praze. (FIT) Limita funkce 3.týden 1 / 39
Limita funkce FIT ČVUT v Praze 3.týden (FIT) Limita funkce 3.týden 1 / 39 Definice funkce. Zobrazení (f, D f ), jehož definiční obor D f i obor hodnot H f je podmnožinou množiny reálných čísel, se nazývá
VíceOBECNOSTI KONVERGENCE V R N
FUNKCE VÍCE PROMĚNNÝCH V reálných situacích závisejí děje obvykle na více proměnných než jen na jedné (např. na teplotě i na tlaku), závislost na jedné proměnné je spíše výjimkou. OBECNOSTI Reálná funkce
VíceSpojitost a limita funkce
Spojitost a ita funkce Okolí bodu Značení: a R ε > 0 označujeme O ε (a) = (a ε, a + ε) ε-ové okolí bodu a O + ε (a) = a, a + ε) pravé okolí, O ε (a) = (a ε, a levé okolí P ε (a) = O ε (a) \ {a} x a ε-ové
VíceJednoduché cykly 35. 36. 37. 38. 39. 40. 41. 42. 43. 44. 45.
Jednoduché cykly Tento oddíl obsahuje úlohy na první procvičení práce s cykly. Při řešení každé ze zde uvedených úloh stačí použít vedle podmíněných příkazů jen jediný cyklus. Nepotřebujeme používat ani
VícePOSLOUPNOSTI A ŘADY INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ. Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky
POSLOUPNOSTI A ŘADY Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro vyšší gymnázia Autoři projektu Student na prahu 21. století - využití ICT ve vyučování matematiky na gymnáziu
VíceFunkce a lineární funkce pro studijní obory
Variace 1 Funkce a lineární funkce pro studijní obory Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. 1. Funkce
VíceMatematická analýza pro informatiky I. Derivace funkce
Matematická analýza pro informatiky I. 7. přednáška Derivace funkce Jan Tomeček tomecek@inf.upol.cz http://aix-slx.upol.cz/ tomecek/index Univerzita Palackého v Olomouci 31. března 2011 Jan Tomeček, tomecek@inf.upol.cz
VíceZimní semestr akademického roku 2014/ prosince 2014
Cvičení k předmětu BI-ZMA Tomáš Kalvoda Katedra aplikované matematiky FIT ČVUT Matěj Tušek Katedra matematiky FJFI ČVUT Obsah Cvičení Zimní semestr akademického roku 2014/2015 2. prosince 2014 Předmluva
VíceUniverzita Karlova v Praze Pedagogická fakulta
Univerzita Karlova v Praze Pedagogická fakulta SEMINÁRNÍ PRÁCE Z ÚVODU DO MATEMATICKÉ ANLÝZY FUNKCE 999/000 CIFRIK Funkce F a) Zadání: Vyšetřete bez užití limit a derivací funkci : y = { x } f Definice:
VíceGenerující kořeny cyklických kódů. Generující kořeny. Alena Gollová, TIK Generující kořeny 1/30
Generující kořeny cyklických kódů 6. přednáška z algebraického kódování Alena Gollová, TIK Generující kořeny 1/30 Obsah 1 Alena Gollová, TIK Generující kořeny 2/30 Hammingovy kódy Hammingovy kódy jsou
VícePříklad 4.1 Zapište pomocí kvantifikátorů definice minima, maxima, infima a suprema podmnožiny R. Čemu se rovná sup a inf? 2n M = 3n + 1 n N.
4 4. týden 4.1 supremum a infimum množiny Příklad 4.1 Zapište pomocí kvantifikátorů definice minima, maxima, infima a suprema podmnožiny R. Čemu se rovná sup a inf? Příklad 4.2 Zkuste uhádnout sup M, inf
VíceMnožiny, relace, zobrazení
Množiny, relace, zobrazení Množiny Množinou rozumíme každý soubor určitých objektů shrnutých v jeden celek. Zmíněné objekty pak nazýváme prvky dané množiny. Pojem množina je tedy synonymem pojmů typu soubor,
Vícex 2 = a 2 + tv 2 tedy (a 1, a 2 ) T + [(v 1, v 2 )] T A + V Příklad. U = R n neprázdná množina řešení soustavy Ax = b.
1. Afinní podprostory 1.1. Motivace. Uvažujme R 3. Jeho všechny vektorové podprostory jsou počátek, přímky a roviny procházející počátkem a celé R 3. Chceme-li v R 3 dělat geometrii potřebujeme i jiné
VíceHistorie matematiky a informatiky Cvičení 2
Historie matematiky a informatiky Cvičení 2 Doc. RNDr. Alena Šolcová, Ph. D., KAM, FIT ČVUT v Praze 2014 Evropský sociální fond Investujeme do vaší budoucnosti Alena Šolcová Číselně teoretické funkce (Number-Theoretic
Více1. přednáška 1. října Kapitola 1. Metrické prostory.
1. přednáška 1. října 2007 Kapitola 1. Metrické prostory. Definice MP, izometrie. Metrický prostor je struktura formalizující jev vzdálenosti. Je to dvojice (M, d) složená z množiny M a funkce dvou proměnných
Více2. přednáška 8. října 2007
2. přednáška 8. října 2007 Konvergence v metrických prostorech. Posloupnost bodů (a n ) M v metrickém prostoru (M, d) konverguje (je konvergentní), když v M existuje takový bod a, že lim n d(a n, a) =
Více5. Náhodná veličina. 2. Házíme hrací kostkou dokud nepadne šestka. Náhodná veličina nabývá hodnot z posloupnosti {1, 2, 3,...}.
5. Náhodná veličina Poznámka: Pro popis náhodného pokusu jsme zavedli pojem jevového pole S jako množiny všech možných výsledků a pravděpodobnost náhodných jevů P jako míru výskytů jednotlivých výsledků.
VíceZáklady elementární teorie čísel
Základy elementární teorie čísel Jiří Velebil: A7B01MCS 3. října 2011: Základy elementární teorie čísel 1/15 Dělení se zbytkem v oboru celých čísel Ať a, b jsou libovolná celá čísla, b 0. Pak existují
VíceNumerické řešení nelineárních rovnic
Numerické řešení nelineárních rovnic Mirko Navara http://cmp.felk.cvut.cz/ navara/ Centrum strojového vnímání, katedra kybernetiky FEL ČVUT Karlovo náměstí, budova G, místnost 104a http://math.feld.cvut.cz/nemecek/nummet.html
VíceKOMPLEXNÍ ČÍSLA A FUNKCE MNOŽINA KOMPLEXNÍCH ČÍSEL C. Alternativní popis komplexních čísel
KOMPLEXNÍ ČÍSLA A FUNKCE V předchozích částech byl důraz kladen na reálná čísla a na reálné funkce. Pokud se komplexní čísla vyskytovala, bylo to z hlediska kartézského součinu dvou reálných přímek, např.
Více6 Skalární součin. u v = (u 1 v 1 ) 2 +(u 2 v 2 ) 2 +(u 3 v 3 ) 2
6 Skalární součin Skalární součin 1 je operace, která dvěma vektorům (je to tedy binární operace) přiřazuje skalár (v našem případě jde o reálné číslo, obecně se jedná o prvek nějakého tělesa T ). Dovoluje
VíceText může být postupně upravován a doplňován. Datum poslední úpravy najdete u odkazu na stažení souboru. Veronika Sobotíková
Tento text není samostatným studijním materiálem. Jde jen o prezentaci promítanou na přednáškách, kde k ní přidávám slovní komentář. Některé důležité části látky píšu pouze na tabuli a nejsou zde obsaženy.
VíceJednou z nejdůležitějších funkcí, které se v matematice a jejích aplikacích používají je
74 Příloha A Funkce Γ(z) Úvod Jednou z nejdůležitějších funkcí, které se v matematice a jejích aplikacích používají je nesporně funkce Γ(z). Její důležitost se vyrovná exponenciální funkci i funkcím goniometrickým.
VíceMetody výpočtu limit funkcí a posloupností
Metody výpočtu limit funkcí a posloupností Martina Šimůnková, 6. listopadu 205 Učební tet k předmětu Matematická analýza pro studenty FP TUL Značení a terminologie R značí množinu reálných čísel, rozšířenou
VíceTEORIE MÍRY V některých předchozích kapitolách jste se setkali s měřením velikostí množin a víte, jaké byly těžkosti s měřením množin i na reálné ose.
TEORIE MÍRY V některých předchozích kapitolách jste se setkali s měřením velikostí množin a víte, jaké byly těžkosti s měřením množin i na reálné ose. Kvůli těmto těžkostem se měření zúžilo jen na délku
VíceFunkce základní pojmy a vlastnosti
Funkce základní pojm a vlastnosti Základ všší matematik LDF MENDELU Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakult MENDELU v Brně (LDF) s ohledem na disciplín společného
VíceO dělitelnosti čísel celých
O dělitelnosti čísel celých 10. kapitola. Některé staré i nové problémy číselné teorie In: František Veselý (author): O dělitelnosti čísel celých. (Czech). Praha: Mladá fronta, 1966. pp. 106 115. Persistent
VíceDiferenciální počet 1 1. f(x) = ln arcsin 1 + x 1 x. 1 x 1 a x 1 0. f(x) = (cos x) cosh x + 3x. x 0 je derivace funkce f(x) v bodě x0.
Nalezněte definiční obor funkce Diferenciální počet f = ln arcsin + Definiční obor funkce f je určen vztahy Z těchto nerovností plyne < + ln arcsin + je tedy D f =, Určete definiční obor funkce arcsin
VícePŘEDNÁŠKA 7 Kongruence svazů
PŘEDNÁŠKA 7 Kongruence svazů PAVEL RŮŽIČKA Abstrakt. Definujeme svazové kongruence a ukážeme jak pro vhodné binární relace svazu ověřit, že se jedná o svazové kongruence. Popíšeme svaz Con(A) kongruencí
Více2 Reálné funkce jedné reálné proměnné
2 Reálné funkce jedné reálné proměnné S funkcemi se setkáváme na každém kroku, ve všech přírodních vědách, ale i v každodenním životě. Každá situace, kd jsou nějaký jev nebo veličina jednoznačně určen
VíceFunkce základní pojmy a vlastnosti
Funkce základní pojm a vlastnosti Základ všší matematik LDF MENDELU Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakult MENDELU v Brně (LDF) s ohledem na discipĺın společného
Více1 Polynomiální interpolace
Polynomiální interpolace. Metoda neurčitých koeficientů Příklad.. Nalezněte polynom p co nejmenšího stupně, pro který platí p() = 0, p(2) =, p( ) = 6. Řešení. Polynom hledáme metodou neurčitých koeficientů,
VíceMatematika I (KMI/5MAT1)
Přednáška první aneb Úvod do algebry (opakování ze SŠ a možná i ZŠ) Seznámení s předmětem Osnova přednášky seznámení s předmětem množiny pojem množiny operace s množinami číselné obory intervaly mocniny
Více