Úvod do mobilní robotiky NAIL028
|
|
- Leoš Vaněk
- před 10 lety
- Počet zobrazení:
Transkript
1 md at robotika.cz listopadu 2008
2 1 2 PID Sledování cesty
3 Modely kolových vozidel (1/5) Diferenční řízení tank b Encoder Motor Centerpoint Motor Encoder
4 Modely kolových vozidel (2/5) Diferenční řízení výpočet ujetá vzdálenost pravým/levým kolem za daný interval U R, U L změna pozice robota v robocentrických souřadnicích U F = ( U R + U L )/2 θ = ( U R U L )/S wheel base změna pozice robota v globálních souřadnicích θ i = θ i 1 + θ x i = x i 1 + U F cos(θ i ) y i = y i 1 + U F sin(θ i )
5 Modely kolových vozidel (3/5) Tříkolka (zatáčení vpředu/vzadu) Encoder Motor l d
6 Modely kolových vozidel (4/5) Tříkolka výpočet Pohyb po kružnici, střed definován natočení řídícího kola α vzdáleností náprav l ujetá vzdálenost řídícího kola U změna pozice robota v globálních souřadnicích θ i = θ i 1 + U sin(α)/l x i = x i 1 + U cos(α) cos(θ i ) y i = y i 1 + U cos(α) sin(θ i )
7 Modely kolových vozidel (5/5) Akckermanovo řízení pro 4 kola splňuje cot θ i cot θ o = d l θ i natočení vnitřního kola θ o natočení vnějšího kola l vzdálenost náprav (délka) d vzdálenost kol (šířka)
8 Enkodéry i akcelerometry jsou zdrojem pouze relativní informace. Co se stane, když budeme delší dobu uplatňovat následující rovnice? θ i = θ i 1 + θ x i = x i 1 + U F cos(θ i ) y i = y i 1 + U F sin(θ i ) Divergence :-(. Proč?
9 Řešení problémů prvního pokusu Modelovat nepřesnosti používaných senzorů Kolečka prokluzují Akcelerometry šumí Používat i informace globálního charakteru Měřit vzdálenosti ke známým předmětům (mapa, GPS) Měřit orientace (kompas, majáky) Naštěstí nejsme sami, kdo má tento problém :-)
10 Připomenutí Kalmanova filtru (1/2) Stavová rovnice x k+1 = Fx k + w k kde x k je n dimenzionální stavový vektor, F je transformační matice a w k šum/chyba stavu (w k N(0, Q)) Rovnice měření z k = Hx k + v k kde z k je m dimenzionální vektor měření, H je m n matice určující vztah mezi stavem a měřením a v k je šum/chyba měření (v k N(0, R))
11 Připomenutí Kalmanova filtru (2/2) Predikce stavu a chyby pomocí stavové rovnice x k+1 = Fx k P k+1 = FP k F T + Q Korekce pomocí měření pomocí rovnice měření z k = Hx k + v k K k = P k HT (HP k HT + R) 1 x k = x k + K k(z k + Hx k ) P k = (I K k H)P k
12 Monte Carlo Pozice reprezentovaná množinou vážených vzorků 3 fáze pohyb (predikce) měření (korekce) převzorkování Jednoduché ohodnocovací funkce: double eval(pozice p); Zásadní výhoda - jednoduchá implementace
13 Vzorky Prvky konfiguračního prostoru pro robota 2D s otáčením to je (x i, y i, θ i ) Každý má nějakou váhu důležitosti Množství vzorků závisí na složitosti prostředí a výpočetní síle Na startu rovnoměrné pokrytí prostoru (globální lokalizace) nebo v okolí známého startu (tracking)
14 Model pohybu/predikce Model popisuje pravděpodobnostní přechody mezi jednotlivými body konfiguracemi Každý vzorek se počítá nezávisle Triviální modely, kdy se pouze zašumí vstupy (např. data z enkoderů) Pokud by na začátku byly všechny vzorky stejné, tak po predikci dostaneme pravděpodobnostní model
15 Měření/korekce Ohodnocuje pravděpodobnost pozice/vzorku pro dané měření Mění váhu vzorku (nějakým násobícím faktorem > 0) Každý vzorek je zpracováván nezávisle
16 Převzorkovaní Zajišťuje rovnoměrnost vah vzorků Na výstupu všechny váhy stejné, tj. některé vzorky zaniknou a jiné se znásobí Pravděpodobnost výskytu vzorku ve výsledné množině je přímo úměrná jeho váze O(n) algoritmus poskládá normalizované váhy za sebe, náhodně zvolí hodnotu z intervalu < 0, 1) a přičítáním 1 dostane n nových vzorků
17 Slabiny MCL Není jedna pozice, tak podle čeho má robot jet? Možnost skokových změn Problém nastavení parametrů a ladění Manévry nezachycené v distribuční funkci (čelní náraz)
18 PID controller (1/2) PID Sledování cesty Proportional Integral Derivative controller Univerzální metoda řízení Cíl dosáhnout požadované hodnoty (setpoint) pomocí řízené hodnoty (process variable)
19 PID controller (2/2) PID Sledování cesty Proportional rozdíl mezi aktuální a požadovanou hodnotou K P e(t) Integral součet proporcionálních rozdílů Derivative rozdíl chyby t K I e(τ)dτ 0 K D de dt
20 PID příklad PID Sledování cesty rychlosti motoru Vstup aktuální rychlost z enkodérů Ovládání pomocí PWM (Pulse Width Modulation)
21 Úloha sledování cesty PID Sledování cesty Jak vhodně cestu popsat? lomená čára lomená čára s úseky kružnic spline křivky
22 Sledování cesty ver0 PID Sledování cesty Dostatečná je lomená čára, případně se šířkou koridoru Verze 0 jeď rovně do bodu zlomu, zastav, otoč se na místě o požadovaný úhel, opakuj Většinou stačí mírná korekce po malou chybu a v případě velké chyby zastavit a směrovat robota na cílový bod
23 PID Sledování cesty Sledování cesty pomocí PID (R-team) Cílová pozice v každém kroku předbíha robota o určitou vzdálenost Dva proporcionální regulátory: regulace směru a výpočet požadované rychlosti robota
24 PID Sledování cesty Sledování cesty Steering behaviour Craig W. Reynolds: Steering Behaviors For Autonomous Characters Pohyb v koridoru definovaném lomenou čarou a poloměrem kružnice r Predikce pozice s projekcí na nejbližší bod na křivce Je-li vzdálenost menší než r neprovádí se žádá korekce, v opačném případě se přepne do módu seek na projekci na cestě
25 Příště Global Position System (GPS)
Úvod do mobilní robotiky AIL028
Lokalizace zbynek.winkler at mff.cuni.cz http://robotika.cz/guide/umor05/cs 21. listopadu 2005 1 Tank Auto 2 Relativní versus absolutní Kalmanův filtr Lokalizace Kde to jsem? Obsah sledování pozice (position
Pohyb holonomního robota bludištěm
Pohyb holonomního robota bludištěm Hlavní charakteristiky robota : Koncepce: holonomní robot řízený třemi DC motory Celkové rozměry : výška 200 mm, průměr 350 mm Napájení: Akumulátory, 6x LiON Sony 18650,
Cíle lokalizace. Zjištění: 1. polohy a postavení robota (robot pose) 2. vzhledem k mapě 3. v daném prostředí
Cíle lokalizace Zjištění: 1. polohy a postavení robota (robot pose) 2. vzhledem k mapě 3. v daném prostředí 2 Jiný pohled Je to problém transformace souřadnic Mapa je globální souřadnicový systém nezávislý
Úvod do mobilní robotiky AIL028
md at robotika.cz http://robotika.cz/guide/umor07/cs 14. listopadu 2007 1 Diferenciální 2 Motivace Linearizace Metoda Matematický model Global Positioning System - Diferenciální 24 navigačních satelitů
Úvod do mobilní robotiky AIL028
{zw md} at robotika.cz http://robotika.cz/guide/umor07/cs 8. listopadu 2007 1 Komunikace s hardwarem Jedeme rovně Kombinace několika činností Refactoring, code reuse Inside Out 2 Komunikace s hardwarem
Monte Carlo Lokalizace. Martin Skalský
Monte Carlo Lokalizace Martin Skalský Proč Lokalizace? Problém určení pozice robota a věcí kolem něj. (filtrování dat, state estimation) Je důležitá Knowledge about where things are is at the core of any
Matematicko-fyzikální model vozidla
20. února 2012 Obsah 1 2 Reprezentace trasy Řízení vozidla Motivace Motivace Simulátor se snaží přibĺıžit charakteristikám vozu Škoda Octavia Combi 2.0TDI Ověření funkce regulátoru EcoDrive Fyzikální základ
Vzorce počítačové grafiky
Vektorové operace součet vektorů rozdíl vektorů opačný vektor násobení vektoru skalárem úhel dvou vektorů velikost vektoru a vzdálenost dvojice bodů v rovině (v prostoru analogicky) u = B A= b a b a u
Vytyčení polohy bodu polární metodou
Obsah Vytyčení polohy bodu polární metodou... 2 1 Vliv měření na přesnost souřadnic... 3 2 Vliv měření na polohovou a souřadnicovou směrodatnou odchylku... 4 3 Vliv podkladu na přesnost souřadnic... 5
KINEMATIKA HMOTNÉHO BODU. Mgr. Jan Ptáčník - GJVJ - Fyzika - Mechanika - 1. ročník
KINEMATIKA HMOTNÉHO BODU Mgr. Jan Ptáčník - GJVJ - Fyzika - Mechanika - 1. ročník Kinematika hmotného bodu Kinematika = obor fyziky zabývající se pohybem bez ohledu na jeho příčiny Hmotný bod - zastupuje
7. Rozdělení pravděpodobnosti ve statistice
7. Rozdělení pravděpodobnosti ve statistice Statistika nuda je, má však cenné údaje, neklesejte na mysli, ona nám to vyčíslí Jednou z úloh statistiky je odhad (výpočet) hodnot statistického znaku x i,
E(X) = np D(X) = np(1 p) 1 2p np(1 p) (n + 1)p 1 ˆx (n + 1)p. A 3 (X) =
Základní rozdělení pravděpodobnosti Diskrétní rozdělení pravděpodobnosti. Pojem Náhodná veličina s Binomickým rozdělením Bi(n, p), kde n je přirozené číslo, p je reálné číslo, < p < má pravděpodobnostní
Úvod do mobilní robotiky AIL028
Pravděpodobnostní plánování zbynek.winkler at mff.cuni.cz, md at robotika.cz http://robotika.cz/guide/umor05/cs 12. prosince 2005 1 Co už umíme a co ne? Jak řešit složitější případy? Definice konfiguračního
Bayesovské metody. Mnohorozměrná analýza dat
Mnohorozměrná analýza dat Podmíněná pravděpodobnost Definice: Uvažujme náhodné jevy A a B takové, že P(B) > 0. Podmíněnou pravěpodobností jevu A za podmínky, že nastal jev B, nazýváme podíl P(A B) P(A
UNIVERZITA PARDUBICE. 4.4 Aproximace křivek a vyhlazování křivek
UNIVERZITA PARDUBICE Licenční Studium Archimedes Statistické zpracování dat a informatika 4.4 Aproximace křivek a vyhlazování křivek Mgr. Jana Kubátová Endokrinologický ústav V Praze, leden 2012 Obsah
Jan Škoda. 29. listopadu 2013
Matematicko-fyzikální fakulta Univerzity Karlovy v Praze 29. listopadu 2013 Náplň přednášky state estimation Naivní přístup KF Matematický model Problém podmínky linearity EKF. & ukázka Co se nedozvíte:
Kombinatorická minimalizace
Kombinatorická minimalizace Cílem je nalézt globální minimum ve velké diskrétní množině, kde může být mnoho lokálních minim. Úloha obchodního cestujícího Cílem je najít nejkratší cestu, která spojuje všechny
VŘS PŘISTÁVÁNÍ RAKETY V GRAVITAČNÍM POLI ZEMĚ
VŘS PŘISTÁVÁNÍ RAKETY V GRAVITAČNÍM POLI ZEMĚ Tomáš Dvořák A05051 tdvorak@students.zcu.cz 23.8.2009 Zadání Přistávání rakety v gravitačním poli země Gravitační síla působící na těleso o hmotnosti m ve
Odhad stavu matematického modelu křižovatek
Odhad stavu matematického modelu křižovatek Miroslav Šimandl, Miroslav Flídr a Jindřich Duník Katedra kybernetiky & Výzkumné centrum Data-Algoritmy-Rozhodování Fakulta aplikovaných věd Západočeská univerzita
BIOMECHANIKA KINEMATIKA
BIOMECHANIKA KINEMATIKA MECHANIKA Mechanika je nejstarším oborem fyziky (z řeckého méchané stroj). Byla původně vědou, která se zabývala konstrukcí strojů a jejich činností. Mechanika studuje zákonitosti
Kinematika. Tabulka 1: Derivace a integrály elementárních funkcí. Funkce Derivace Integrál konst 0 konst x x n n x n 1 x n 1.
Kinematika Definice: Známe-li časový průběh polohového vektoru r(t), potom určíme vektor okamžité rychlosti hmotného bodu časovou derivací vektoru r(t), v= d r dt Naopak, známe-li časový průběh vektoru
Úvod do mobilní robotiky AIL028
md at robotika.cz, zbynek.winkler at mff.cuni.cz http://robotika.cz/guide/umor07/cs 27. listopadu 2007 1 Mapa světa Exaktní plánování 2 3 Plánování s otáčením Mapa světa - příklad Obsah Mapa světa Exaktní
VYUŽITÍ PRAVDĚPODOBNOSTNÍ METODY MONTE CARLO V SOUDNÍM INŽENÝRSTVÍ
VYUŽITÍ PRAVDĚPODOBNOSTNÍ METODY MONTE CARLO V SOUDNÍM INŽENÝRSTVÍ Michal Kořenář 1 Abstrakt Rozvoj výpočetní techniky v poslední době umožnil také rozvoj výpočetních metod, které nejsou založeny na bázi
I. D i s k r é t n í r o z d ě l e n í
6. T y p y r o z d ě l e n í Poznámka: V odst. 5.5-5.10 jsme uvedli příklady náhodných veličin a jejich distribučních funkcí. Poznali jsme, že se od sebe liší svým typem. V příkladech 5.5, 5.6 a 5.8 jsme
1. Náhodný vektor (X, Y ) má diskrétní rozdělení s pravděpodobnostní funkcí p, kde. p(x, y) = a(x + y + 1), x, y {0, 1, 2}.
VIII. Náhodný vektor. Náhodný vektor (X, Y má diskrétní rozdělení s pravděpodobnostní funkcí p, kde p(x, y a(x + y +, x, y {,, }. a Určete číslo a a napište tabulku pravděpodobnostní funkce p. Řešení:
Úvod do mobilní robotiky AIL028
md at robotika.cz http://robotika.cz/guide/umor07/cs 25. října 2007 1 2 Zadání úlohy Náhodná procházka Tchibot 3 SPA Subsumption architecture 3T architektura Robotika matematický přístup úloha hledání
Úloha 1. Napište matici pro případ lineárního regresního spline vyjádřeného přes useknuté
Úloha 1. Napište matici pro případ lineárního regresního spline vyjádřeného přes useknuté polynomy pro případ dvou uzlových bodů ξ 1 = 1 a ξ 2 = 4. Experimentální body jsou x = [0.2 0.4 0.6 1.5 2.0 3.0
p(x) = P (X = x), x R,
6. T y p y r o z d ě l e n í Poznámka: V odst. 5.5-5.10 jsme uvedli příklady náhodných veličin a jejich distribučních funkcí. Poznali jsme, že se od sebe liší svým typem. V příkladech 5.5, 5.6 a 5.8 jsme
ÚKOLOVÝ LIST. Aktivita projektu Obloha na dlani - Laboratoř vědomostí ROBOT NA PÁSOVÉM PODVOZKU
ÚKOLOVÝ LIST Aktivita projektu Obloha na dlani - Laboratoř vědomostí ROBOT NA PÁSOVÉM PODVOZKU Úkoly Na základě sestavených algoritmů k jednotlivým úkolům naprogramujeme robota pomocí jednoduchého softwaru
3.1. Newtonovy zákony jsou základní zákony klasické (Newtonovy) mechaniky
3. ZÁKLADY DYNAMIKY Dynamika zkoumá příčinné souvislosti pohybu a je tedy zdůvodněním zákonů kinematiky. K pojmům používaným v kinematice zavádí pojem hmoty a síly. Statický výpočet Dynamický výpočet -
Shodnostní Helmertova transformace
Shodnostní Helmertova transformace Toto pojednání ukazuje, jak lze určit transformační koeficienty Helmertovy transformace za požadavku, aby představovaly shodnostní transformaci. Pro jednoduchost budeme
na magisterský studijní obor Učitelství matematiky pro střední školy
Datum:... Jméno:... Přijímací řízení pro akademický rok 203/4 na magisterský studijní obor Učitelství matematiky pro střední školy Písemná část přijímací zkoušky z matematiky Za každou správnou odpověd
Diplomová práce Prostředí pro programování pohybu manipulátorů
Diplomová práce Prostředí pro programování pohybu manipulátorů Štěpán Ulman 1 Úvod Motivace: Potřeba plánovače prostorové trajektorie pro výukové účely - TeachRobot Vstup: Zadávání geometrických a kinematických
Markov Chain Monte Carlo. Jan Kracík.
Markov Chain Monte Carlo Jan Kracík jan.kracik@vsb.cz Princip Monte Carlo integrace Cílem je (přibližný) výpočet integrálu I(g) = E f [g(x)] = g(x)f (x)dx. (1) Umíme-li generovat nezávislé vzorky x (1),
1. a) Určete parciální derivace prvního řádu funkce z = z(x, y) dané rovnicí z 3 3xy 8 = 0 v
. a) Určete parciální derivace prvního řádu funkce z = z(x, y) dané rovnicí z xy 8 = v bodě A =, ]. b) e grafu funkce f najděte tečnou rovinu, která je rovnoběžná s rovinou ϱ. f(x, y) = x + y x, ϱ : x
Jaroslav Machan. Pavel Nedoma. Jiří Plíhal. Představení projektu E-VECTOORC
Představení projektu E-VECTOORC Jaroslav Machan Pavel Nedoma Jiří Plíhal jaroslav.machan@skoda-auto.cz pavel.nedoma@skoda-auto.cz plihal@utia.cas.cz 1 ExFos - Představení projektu E-VECTOORC 25.1.2013/Brno
Kvaterniony, duální kvaterniony a jejich aplikace
1 / 16 Kvaterniony, duální kvaterniony a jejich aplikace Jitka Prošková Západočeská univerzita v Plzni Fakulta aplikovaných věd Katedra matematiky 17. 6. 21 2 / 16 Zadání Základní charakteristika tělesa
8 Střední hodnota a rozptyl
Břetislav Fajmon, UMAT FEKT, VUT Brno Této přednášce odpovídá kapitola 10 ze skript [1]. Také je k dispozici sbírka úloh [2], kde si můžete procvičit příklady z kapitol 2, 3 a 4. K samostatnému procvičení
Digital Control of Electric Drives. Vektorové řízení asynchronních motorů. České vysoké učení technické Fakulta elektrotechnická
Digital Control of Electric Drives Vektorové řízení asynchronních motorů České vysoké učení technické Fakulta elektrotechnická B1M14DEP O. Zoubek 1 MOTIVACE Nevýhody skalárního řízení U/f: Velmi nízká
Doplňky k přednášce 24 Diskrétní řízení Diskrétní metody analogické spojitým
Doplňky k přednášce 24 Diskrétní řízení Diskrétní metody analogické spojitým Michael Šebek Automatické řízení 2013 21-4-13 Metody diskrétního návrhu Metody diskrétního návrhu, které jsou stejné (velmi
scale n_width width center scale left center range right center range value weight_sum left right weight value weight value weight_sum weight pixel
Změna velikosti obrázku Převzorkování pomocí filtrů Ačkoliv jsou výše uvedené metody mnohdy dostačující pro běžné aplikace, občas je zapotřebí dosáhnout lepších výsledků. Pokud chceme obrázky zvětšovat
Úvod do mobilní robotiky AIL028
zbynek.winkler at mff.cuni.cz, md at robotika.cz http://robotika.cz/guide/umor05/cs 24. října 2005 1 Komunikace s hardwarem Jedeme rovně Kombinace několika činností Refactoring, code reuse Inside Out 2
Téma 4: Stratifikované a pokročilé simulační metody
0.007 0.006 0.005 0.004 0.003 0.002 0.001 Dlouhodobé nahodilé Std Distribution: Gumbel Min. EV I Mean Requested: 140 Obtained: 141 Std Requested: 75.5 Obtained: 73.2-100 0 100 200 300 Mean Std Téma 4:
Vzorová písemka č. 1 (rok 2015/2016) - řešení
Vzorová písemka č. rok /6 - řešení Pavla Pecherková. května 6 VARIANTA A. Náhodná veličina X je určena hustotou pravděpodobností: máme hustotu { pravděpodobnosti C x pro x ; na intervalu f x jinde jedná
Markovské metody pro modelování pravděpodobnosti
Markovské metody pro modelování pravděpodobnosti rizikových stavů 1 Markovský řetězec Budeme uvažovat náhodný proces s diskrétním časem (náhodnou posloupnost) X(t), t T {0, 1, 2,... } s konečnou množinou
ZÁKLADY ROBOTIKY Úvod do mobilní robotiky
ZÁKLADY ROBOTIKY Úvod do mobilní ky Ing. Josef Černohorský, Ph.D. TECHNICKÁ UNIVERZITA V LIBERCI Fakulta mechatroniky, informatiky a mezioborových studií Tento materiál vznikl v rámci projektu ESF CZ.1.07/2.2.00/07.0247,
Úvod do mobilní robotiky AIL028
SLAM - souběžná lokalizace a mapování {md zw} at robotika.cz http://robotika.cz/guide/umor07/cs 10. ledna 2008 1 2 3 SLAM intro Obsah SLAM = Simultaneous Localization And Mapping problém typu slepice-vejce
Řešení. Označme po řadě F (z) Odtud plyne, že
Úloha Nechť ~ R(, ) a Y = Jinak řečeno, Y je odmocnina čísla vybraného zcela náhodně z intervalu (, ) Popište rozdělení veličiny Y a určete jeho modus, medián, střední hodnotu a rozptyl Řešení Označme
2. Kinematika bodu a tělesa
2. Kinematika bodu a tělesa Kinematika bodu popisuje těleso nebo také bod, který se pohybuje po nějaké trajektorii, křivce nebo jinak definované dráze v závislosti na poloze bodu na dráze, rychlosti a
Stavový model a Kalmanův filtr
Stavový model a Kalmanův filtr 2 prosince 23 Stav je veličina, kterou neznáme, ale chtěli bychom znát Dozvídáme se o ní zprostředkovaně prostřednictvím výstupů Příkladem může býapř nějaký zašuměný signál,
Metoda Monte Carlo, simulované žíhání
co byste měli umět po dnešní lekci: integrovat pomocí metody Monte Carlo modelovat jednoduché mnočásticové systémy (Brownův pohyb,...) nalézt globální minimum pomocí simulovaného žíhání Určení čísla metodou
Vybraná rozdělení náhodné veličiny
3.3 Vybraná rozdělení náhodné veličiny 0,16 0,14 0,12 0,1 0,08 0,06 0,04 0,02 0 Rozdělení Z 3 4 5 6 7 8 9 10 11 12 13 14 15 Život je umění vytvářet uspokojivé závěry na základě nedostatečných předpokladů.
2D transformací. červen Odvození transformačního klíče vybraných 2D transformací Metody vyrovnání... 2
Výpočet transformačních koeficinetů vybraných 2D transformací Jan Ježek červen 2008 Obsah Odvození transformačního klíče vybraných 2D transformací 2 Meto vyrovnání 2 2 Obecné vyjádření lineárních 2D transformací
Téma: Vektorová grafika. Určete pravdivost následujícího tvrzení: "Grafická data jsou u 2D vektorové grafiky uložena ve voxelech."
Téma: Vektorová grafika. Určete pravdivost následujícího tvrzení: "Grafická data jsou u 2D vektorové grafiky uložena ve voxelech." Téma: Vektorová grafika. Určete pravdivost následujícího tvrzení: "Na
Zada ní 1. Semina rní pra ce z pr edme tu Matematický software (KI/MSW)
Zada ní. Semina rní pra ce z pr edme tu Matematický software (KI/MSW) Datum zadání: 5.. 06 Podmínky vypracování: - Seminární práce se skládá z programové části (kódy v Matlabu) a textové části (protokol
Zápočtový projekt předmětu Robotizace a řízení procesů
Zápočtový projekt předmětu Robotizace a řízení procesů Zpracovali: Vladimír Doležal, Jiří Blažek Projekt: Robot stopař Cíl projektu: Robot sleduje černou čáru na povrchu, po kterém jede Datum: duben 2015
Pohyb tělesa (5. část)
Pohyb tělesa (5. část) A) Co už víme o pohybu tělesa?: Pohyb tělesa se definuje jako změna jeho polohy vzhledem k jinému tělesu. O pohybu tělesa má smysl hovořit jedině v souvislosti s polohou jiných těles.
5. Statika poloha střediska sil
5. Statika poloha střediska sil 5.1 Rovnoběžné sily a jejich střed Uvažujeme soustavu vzájemně rovnoběžných sil v prostoru s pevnými působišti. Každá síla má působiště dané polohovým vektorem. Všechny
Náhodná veličina a rozdělení pravděpodobnosti
3.2 Náhodná veličina a rozdělení pravděpodobnosti Bůh hraje se světem hru v kostky. Jsou to ale falešné kostky. Naším hlavním úkolem je zjistit, podle jakých pravidel byly označeny, a pak toho využít pro
9. T r a n s f o r m a c e n á h o d n é v e l i č i n y
9. T r a n s f o r m a c e n á h o d n é v e l i č i n y Při popisu procesů zpracováváme vstupní údaj, hodnotu x tak, že výstupní hodnota y závisí nějakým způsobem na vstupní, je její funkcí y = f(x).
Rasterizace je proces při kterém se vektorově definovaná grafika konvertuje na. x 2 x 1
Kapitola 4 Rasterizace objektů Rasterizace je proces při kterém se vektorově definovaná grafika konvertuje na rastrově definované obrazy. Při zobrazení reálného modelu ve světových souřadnicích na výstupní
Projekt OPVK - CZ.1.07/1.1.00/ Matematika pro všechny. Univerzita Palackého v Olomouci
Projekt OPVK - CZ.1.07/1.1.00/26.0047 Matematika pro všechny Univerzita Palackého v Olomouci Tematický okruh: Závislosti a funkční vztahy Gradovaný řetězec úloh Téma: graf funkce, derivace funkce a její
9. T r a n s f o r m a c e n á h o d n é v e l i č i n y
9. T r a n s f o r m a c e n á h o d n é v e l i č i n Při popisu procesů zpracováváme vstupní údaj, hodnotu x tak, že výstupní hodnota závisí nějakým způsobem na vstupní, je její funkcí = f(x). Pokud
MATURITNÍ TÉMATA Z MATEMATIKY
MATURITNÍ TÉMATA Z MATEMATIKY 1. Základní poznatky z logiky a teorie množin Pojem konstanty a proměnné. Obor proměnné. Pojem výroku a jeho pravdivostní hodnota. Operace s výroky, složené výroky, logické
Mgr. Ladislav Zemánek Maturitní okruhy Matematika 2013-2014. 1. Obor reálných čísel
Mgr. Ladislav Zemánek Maturitní okruhy Matematika 2013-2014 1. Obor reálných čísel - obor přirozených, celých, racionálních a reálných čísel - vlastnosti operací (sčítání, odčítání, násobení, dělení) -
Řešení úloh 1. kola 60. ročníku fyzikální olympiády. Kategorie D Autor úloh: J. Jírů. = 30 s.
Řešení úloh. kola 60. ročníku fyzikální olympiády. Kategorie D Autor úloh: J. Jírů.a) Doba jízdy na prvním úseku (v 5 m s ): t v a 30 s. Konečná rychlost jízdy druhého úseku je v v + a t 3 m s. Pro rovnoměrně
7 Transformace 2D. 7.1 Transformace objektů obecně. Studijní cíl. Doba nutná k nastudování. Průvodce studiem
7 Transformace 2D Studijní cíl Tento blok je věnován základním principům transformací v rovinné grafice. V následujícím textu bude vysvětlen rozdíl v přístupu k transformacím u vektorového a rastrového
Řízení. Téma 1 VOZ 2 KVM 1
Řízení Téma 1 VOZ 2 KVM 1 Řízení Slouží k udržování nebo změně směru jízdy vozidla Rozdělení podle vztahu k nápravě řízení jednotlivými koly (natáčením kol kolem rejdového čepu) řízení celou nápravou (především
Fyzikální vzdělávání. 1. ročník. Učební obor: Kuchař číšník Kadeřník. Implementace ICT do výuky č. CZ.1.07/1.1.02/ GG OP VK
Fyzikální vzdělávání 1. ročník Učební obor: Kuchař číšník Kadeřník 1 1 Mechanika 1.1 Pohyby přímočaré, pohyb rovnoměrný po kružnici 1.2 Newtonovy pohybové zákony, síly v přírodě, gravitace 1.3 Mechanická
Požadavky k písemné přijímací zkoušce z matematiky do navazujícího magisterského studia pro neučitelské obory
Požadavky k písemné přijímací zkoušce z matematiky do navazujícího magisterského studia pro neučitelské obory Zkouška ověřuje znalost základních pojmů, porozumění teorii a schopnost aplikovat teorii při
Řízení. Slouží k udržování nebo změně směru jízdy vozidla
Řízení Slouží k udržování nebo změně směru jízdy vozidla ozdělení podle vztahu k nápravě 1. řízení jednotlivými koly (natáčením kol kolem rejdového čepu). řízení celou nápravou (především přívěsy) ozdělení
Maturitní témata z matematiky
Maturitní témata z matematiky 1. Lineární rovnice a nerovnice a) Rovnice a nerovnice s absolutní hodnotou absolutní hodnota reálného čísla definice, geometrický význam, srovnání řešení rovnic s abs. hodnotou
Měření dat Filtrace dat, Kalmanův filtr
Měření dat Filtrace dat, Matematické metody pro ITS (11MAMY) Jan Přikryl Ústav aplikované matematiky ČVUT v Praze, Fakulta dopravní 3. přednáška 11MAMY čtvrtek 28. února 2018 verze: 2018-03-21 16:45 Obsah
Algoritmy a struktury neuropočítačů ASN - P11
Aplikace UNS při rozpoznání obrazů Základní úloha segmentace obrazu rozdělení obrazu do několika významných oblastí klasifikační úloha, clusterová analýza target Metody Kohonenova metoda KSOM Kohonenova
SEBELOKALIZACE MOBILNÍCH ROBOTŮ. Tomáš Jílek
SEBELOKALIZACE MOBILNÍCH ROBOTŮ Tomáš Jílek Sebelokalizace Autonomní určení pozice a orientace robotu ve zvoleném souřadnicovém systému Souřadnicové systémy Globální / lokální WGS-84, ETRS-89 globální
Maturitní otázky z předmětu MATEMATIKA
Wichterlovo gymnázium, Ostrava-Poruba, příspěvková organizace Maturitní otázky z předmětu MATEMATIKA 1. Výrazy a jejich úpravy vzorce (a+b)2,(a+b)3,a2-b2,a3+b3, dělení mnohočlenů, mocniny, odmocniny, vlastnosti
Měření dat Filtrace dat, Kalmanův filtr
Měření dat Filtrace dat, Matematické metody pro ITS (11MAMY) Jan Přikryl Ústav aplikované matematiky ČVUT v Praze, Fakulta dopravní 3. přednáška 11MAMY čtvrtek 28. února 2018 verze: 2018-02-28 12:20 Obsah
Určete zákon rozložení náhodné veličiny, která značí součet ok při hodu a) jednou kostkou, b) dvěma kostkami, c) třemi kostkami.
3.1. 3.2. Třikrát vystřelíme na cíl. Pravděpodobnost zásahu při každém výstřelu je p = 0,7. Určete: a) pravděpodobnostní funkci počtu zásahů při třech nezávislých výsledcích, b) distribuční funkci a její
X = x, y = h(x) Y = y. hodnotám x a jedné hodnotě y. Dostaneme tabulku hodnot pravděpodobnostní
..08 8cv7.tex 7. cvičení - transformace náhodné veličiny Definice pojmů a základní vzorce Je-li X náhodná veličina a h : R R je měřitelná funkce, pak náhodnou veličinu Y, která je definovaná vztahem X
Problematika převodu zprávy na body eliptické křivky
Problematika převodu zprávy na body eliptické křivky Ing. Filip Buršík Ústav telekomunikací Fakulta elektrotechniky a komunikačních technologií Vysoké Učení Technické v Brně Purkyňova 118, 612 00 Brno,
Cvičné texty ke státní maturitě z matematiky
Cvičné texty ke státní maturitě z matematiky Pracovní listy s postupy řešení Brno 2010 RNDr. Rudolf Schwarz, CSc. Státní maturita z matematiky Obsah Obsah NIŽŠÍ úroveň obtížnosti 4 MAGZD10C0K01 říjen 2010..........................
MATEMATICKÁ STATISTIKA - XP01MST
MATEMATICKÁ STATISTIKA - XP01MST 1. Úvod. Matematická statistika (statistics) se zabývá vyšetřováním zákonitostí, které v sobě obsahují prvek náhody. Zpracováním hodnot, které jsou výstupem sledovaného
i β i α ERP struktury s asynchronními motory
1. Regulace otáček asynchronního motoru - vektorové řízení Oproti skalárnímu řízení zabezpečuje vektorové řízení vysokou přesnost a dynamiku veličin v ustálených i přechodných stavech. Jeho princip vychází
Mechanika II.A Třetí domácí úkol
Mechanika II.A Třetí domácí úkol (Zadání je částečně ze sbírky: Lederer P., Stejskal S., Březina J., Prokýšek R.: Sbírka příkladů z kinematiky. Skripta, vydavatelství ČVUT, 2003.) Vážené studentky a vážení
4. Aplikace matematiky v ekonomii
4. Aplikace matematiky v ekonomii 1 Lineární algebra Soustavy 1) Na základě statistických údajů se zjistilo, že závislost množství statku z poptávaného v průběhu jednoho týdne lze popsat vztahem q d =
1.3.2 Rovnoměrný pohyb po kružnici I
..2 Rovnoměrný pohyb po kružnici I Předpoklady: 0, 0 Pedagogická poznámka: Na začátku jsem předpokládal, že rovnoměrný pohyb po kružnici je možné probrat za jednu hodinu (díky analogii s běžným rovnoměrným
Někdy lze výsledek pokusu popsat jediným číslem, které označíme X (nebo jiným velkým písmenem). Hodíme dvěma kostkami jaký padl součet?
Náhodné veličiny Náhodné veličiny Někdy lze výsledek pokusu popsat jediným číslem, které označíme X (nebo jiným velkým písmenem). Příklad Vytáhneme tři karty z balíčku zajímá nás, kolik je mezi nimi es.
Pulzní (diskrétní) modulace
EVROPSKÝ SOCIÁLNÍ FOND Pulzní (diskrétní) modulace PRAHA & EU INVESTUJEME DO VAŠÍ BUDOUCNOSTI Podpora kvality výuky informačních a telekomunikačních technologií ITTEL CZ.2.17/3.1.00/36206 Pulzní modulace
ROVNICE NA ČASOVÝCH ŠKÁLÁCH A NÁHODNÉ PROCESY. Michal Friesl
Robust 14, Jetřichovice ROVNICE NA ČASOVÝCH ŠKÁLÁCH A NÁHODNÉ PROCESY Michal Friesl Katedra matematiky Fakulta aplikovaných věd Západočeská univerzita v Plzni Robust 14, Jetřichovice ÚVOD Úvod Analýzníkům
Jasové transformace. Karel Horák. Rozvrh přednášky:
1 / 23 Jasové transformace Karel Horák Rozvrh přednášky: 1. Úvod. 2. Histogram obrazu. 3. Globální jasová transformace. 4. Lokální jasová transformace. 5. Bodová jasová transformace. 2 / 23 Jasové transformace
Algoritmizace diskrétních. Ing. Michal Dorda, Ph.D.
Algoritmizace diskrétních simulačních modelů Ing. Michal Dorda, Ph.D. 1 Úvodní poznámky Při programování simulačních modelů lze hlavní dílčí problémy shrnout do následujících bodů: 1) Zachycení statických
5. Náhodná veličina. 2. Házíme hrací kostkou dokud nepadne šestka. Náhodná veličina nabývá hodnot z posloupnosti {1, 2, 3,...}.
5. Náhodná veličina Poznámka: Pro popis náhodného pokusu jsme zavedli pojem jevového pole S jako množiny všech možných výsledků a pravděpodobnost náhodných jevů P jako míru výskytů jednotlivých výsledků.
Analýza napjatosti PLASTICITA
Analýza napjatosti PLASTICITA TENZOR NAPĚTÍ Teplota v daném bodě je skalár, je to tenzor nultého řádu, který nezávisí na změně souřadného systému Síla je vektor, je to tenzor prvního řádu, v trojrozměrném
Programování LEGO MINDSTORMS s použitím nástroje MATLAB a Simulink
26.1.2018 Praha Programování LEGO MINDSTORMS s použitím nástroje MATLAB a Simulink Jaroslav Jirkovský jirkovsky@humusoft.cz www.humusoft.cz info@humusoft.cz www.mathworks.com Co je MATLAB a Simulink 2
3. ÚVOD DO ANALYTICKÉ GEOMETRIE 3.1. ANALYTICKÁ GEOMETRIE PŘÍMKY
3. ÚVOD DO ANALYTICKÉ GEOMETRIE 3.1. ANALYTICKÁ GEOMETRIE PŘÍMKY V této kapitole se dozvíte: jak popsat bod v rovině a v prostoru; vzorec na výpočet vzdálenosti dvou bodů; základní tvary rovnice přímky
Algoritmizace prostorových úloh
Algoritmizace prostorových úloh Vektorová data Daniela Szturcová Prostorová data Geoobjekt entita definovaná v prostoru. Znalost jeho identifikace, lokalizace umístění v prostoru, vlastností vlastních
SLAM. Simultaneous localization and mapping. Ing. Aleš Jelínek 2015
SLAM Simultaneous localization and mapping Ing. Aleš Jelínek 2015 Komplexní inovace studijních programů a zvyšování kvality výuky na FEKT VUT v Brně OP VK CZ.1.07/2.2.00/28.0193 Obsah Proč sebelokalizace,
Téma 22. Ondřej Nývlt
Téma 22 Ondřej Nývlt nyvlto1@fel.cvut.cz Náhodná veličina a náhodný vektor. Distribuční funkce, hustota a pravděpodobnostní funkce náhodné veličiny. Střední hodnota a rozptyl náhodné veličiny. Sdružené
NÁHODNÉ VELIČINY JAK SE NÁHODNÁ ČÍSLA PŘEVEDOU NA HODNOTY NÁHODNÝCH VELIČIN?
NÁHODNÉ VELIČINY GENEROVÁNÍ SPOJITÝCH A DISKRÉTNÍCH NÁHODNÝCH VELIČIN, VYUŽITÍ NÁHODNÝCH VELIČIN V SIMULACI, METODY TRANSFORMACE NÁHODNÝCH ČÍSEL NA HODNOTY NÁHODNÝCH VELIČIN. JAK SE NÁHODNÁ ČÍSLA PŘEVEDOU