Rozvrhování na více procesorech

Rozměr: px
Začít zobrazení ze stránky:

Download "Rozvrhování na více procesorech"

Transkript

1 Rozvrhování na více procesorech Rozvrhování na více procesorech je složitjší úloha než na jednom procesoru. Uvažujeme m procesor. Rozlišujeme typy procesor - paralelní nebo dedikované a jejich rychlosti - identické, uniformní nebo nesouvztažné. Úloha rozvrhování na dvou paralelních procesorech je již NP-úplný problém! 1) Rozvrhování na paralelních procesorech Algoritmus LPT (Longest Processing Time): Mjme n úkol, dány procesní asy p j, asy pipravenosti r j = 0 a m paralelních procesor. Algoritmus minimalizuje délku rozvrhu C max. Algoritmus má složitost O(n log n). Algoritmus: begin Vytvo seznam úkol a seti ho podle nerostoucích procesních as, tzn. p 1 p 2... p n ; for j = 1 to m do t j := 0; {Procesory jsou na zaátku volné} j := 1; repeat Uri k takové, že t k = min{ t }; 1 i m i {Vyber procesor s nejkratším rozvrhem} Pia úkol T j procesoru P k v ase t k ; {První nenaplánovaný úkol ze seznamu je pidlen prvnímu volnému procesoru} s k := s k + p j ; j := j + 1; until j = n; end. Nalezené ešení je v nejhorším pípad p LPT -krát horší, než optimum. Pro p LPT platí 4 1 p LPT =. 3 3m

2 Píklad 1: Máme výpoetní procesy A, B, C, D, E a F, které je nutno rozvrhnout pro ti identické výpoetní procesory. Proces A trvá asové kvantum 3 ms, proces B trvá asové kvantum 4 ms, proces C trvá asové kvantum 5 ms, proces D trvá asové kvantum 6 ms, proces E trvá asové kvantum 2 ms a proces F trvá asové kvantum 7 ms. Naleznte rozvrh. Upravte rozvrh v pípad, že je možné zmenšit délku rozvrhu. Procesní asy úkol charakterizuje vektor p = (3,4,5,6,2,7) Aplikací LPT algoritmu dostaneme rozvrh, který má délku C max = 9 a je optimální: T P 1 F E P 2 D A P 3 C B 2) Rozvrhování na dedikovaných procesorech Pi rozvrhování na dedikovaných procesorech vychází strom ešení mén "košatý" než u paralelních procesor, jeho konstrukce je obtížnjší. Nalezení obecných heuristik pro úplné prohledání stromu a nalezení odhad pro metodu vtví a mezí je velmi složitá úloha. Pro dedikované procesory rozlišujeme klasické úlohy bez preempce: flow-shop, open-shop a job-shop. A. Úloha flow-shop Úloha klasické kombinatorické optimalizace. Existuje jen nkolik málo pípad ešitelných v polynomiálním ase, mezi n patí úloha flow-shop na dvou procesorech a úloha flow-shop na tech procesorech splující uritá omezení. Úlohu flow-shop na dvou procesorech lze ešit tzv. Johnsonovým algoritmem. Úlohy flow-shop lze ešit obecn metodou vtví a mezí (permutaní rozvrhy).

3 Johnsonv algoritmus (1954): Mjme N zakázek, každá zakázka nech se skládá ze dvou operací s danými procesní asy p ij, asy pipravenosti jsou r j = 0. Algoritmus minimalizuje délku rozvrhu C max. Algoritmus: Z množiny J všech zakázek vytvoíme dva seznamy L 1 a L 2 : L 1 Ji p1i p2i} a = { L = J L. Seznam L 1 uspoádáme podle neklesajících procesních as p 1i : p 11 p p 1n (první vybíráme nejkratší) a seznam L 2 uspoádáme podle nerostoucích procesních as p 2i : p 21 p p 2n (první vybíráme nejdelší). Potom ve smyslu minima délky rozvrhu C max je optimální rozvrh tvoen zetzením seznam L 1 a L Píklad 2: Máme zakázky A, B, C, D, E a F, které se skládají ze dvou úkol. První operací je obrábní obrobku na soustruhu a druhá následující operace je dobroušení obrobku frézou. Doby operací, které jsou provádné na jednotlivých strojích, lze vyjádit následující tabulkou: J i (zakázky) A B C D E F p 1i (soustruh) p 2i (fréza) Naleznte rozvrh a upravte ho v pípad, že je možné jej optimalizovat vzhledem k délce rozvrhu nebo odstranit prostoje.

4 Do seznamu L 1 patí po uspoádání zakázky: L 1 = {E,C,B} nebo {C,E,B}, do seznamu L 2 patí po uspoádání zakázky: L 2 = {A,F,D}. Výsledný permutaní rozvrh je v poadí zakázek: E-C-B-A-F-D nebo C-E-B-A-F-D: (i) Permutaní rozvrh E-C-B-A-F-D P 1 E C B A F D P 2 E C B A F D Permutaní rozvrh (i) má délku C max = 23 a obsahuje jeden prostoj. (ii) Permutaní rozvrh C-E-B-A-F-D P 1 C E B A F D P 2 C E B A F D Permutaní rozvrh (ii) má délku C max = 23 a obsahuje jeden prostoj. Po úprav rozvrhu mžeme odstranit prostoj, délka rozvrhu zstane zachována: P 1 C E B A F D P 2 C E B A F D B. Úloha open-shop Analogie úlohy flow-shop. Nezáleží na poadí úkol. ešení úlohy flow-shop je i ešením úlohy open-shop. ešení v polynomiálním ase jen pro dva procesory. C. Úloha job-shop Nejsložitjší diskrétní optimalizaní úloha. Precedenní omezení již v definici úlohy. Nejjednodušší formulace úlohy je již NP-úplný problém. Možno ešit graficky nebo použít model úlohy a ešit pomocí grafové teorie.

5 Navazující pedmt, 35RDU - Rozvrhování v systémech diskrétních událostí, dr. Hanzálek Úlohy Úloha 11.1: Máme výpoetní procesy A, B, C, D, E a F, které je nutno rozvrhnout pro ti identické výpoetní procesory. Proces A trvá asové 5 ms, proces B trvá asové kvantum 4 ms, proces C trvá asové kvantum 3 ms, proces D trvá asové kvantum 7 ms, proces E trvá asové kvantum 3 ms a proces F trvá asové kvantum 6 ms. Naleznte rozvrh. Upravte rozvrh v pípad, že je možné zmenšit délku rozvrhu. Úloha 11.2: Máme zakázky A, B, C, D, E a F, které se skládají ze dvou úkol. První operací je obrábní obrobku na soustruhu a druhá následující operace je dobroušení obrobku frézou. Doby operací, které jsou provádné na jednotlivých strojích, lze vyjádit následující tabulkou: J i (zakázky) A B C D E F p 1i (soustruh) p 2i (fréza) Naleznte rozvrh a upravte ho v pípad, že je možné jej optimalizovat vzhledem k délce rozvrhu nebo odstranit prostoje.

Plánování úloh na jednom stroji

Plánování úloh na jednom stroji Plánování úloh na jednom stroji 15. dubna 2015 1 Úvod 2 Řídící pravidla 3 Metoda větví a mezí 4 Paprskové prohledávání Jeden stroj a paralelní stroj Dekompoziční problémy pro složité (flexible) job shop

Více

Plánování se zabývá především kauzálními vztahy mezi akcemi a otázkou. Rozvrhování se soustředí na alokaci naplánovaných akcí v čase a prostoru.

Plánování se zabývá především kauzálními vztahy mezi akcemi a otázkou. Rozvrhování se soustředí na alokaci naplánovaných akcí v čase a prostoru. Plánováníá a rozvrhování Roman Barták, KTIML roman.bartak@mff.cuni.cz cz http://ktiml.mff.cuni.cz/~bartak Od plánů k rozvrhům Plánování se zabývá především kauzálními vztahy mezi akcemi a otázkou výběru

Více

Informační systémy plánování výroby - pokročilé rozvrhování

Informační systémy plánování výroby - pokročilé rozvrhování Tento materiál vznikl jako součást projektu EduCom, který je spolufinancován Evropským sociálním fondem a státním rozpočtem ČR. Informační systémy plánování výroby - pokročilé rozvrhování Technická univerzita

Více

Rozvrhování výroby. František Koblasa Technická univerzita v Liberci. TU v Liberci

Rozvrhování výroby. František Koblasa Technická univerzita v Liberci. TU v Liberci Tento materiál vznikl jako součást projektu EduCom, který je spolufinancován Evropským sociálním fondem a státním rozpočtem ČR. Rozvrhování výroby Technická univerzita v Liberci INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ

Více

Úvod do rozvrhování. 21. února Příklady. 2 Terminologie. 3 Klasifikace rozvrhovacích problémů. 4 Složitost.

Úvod do rozvrhování. 21. února Příklady. 2 Terminologie. 3 Klasifikace rozvrhovacích problémů. 4 Složitost. Úvod do rozvrhování 21. února 2019 1 Příklady 2 Terminologie 3 Klasifikace rozvrhovacích problémů 4 Složitost 5 Reálné problémy Hana Rudová, FI MU: Úvod do rozvrhování 2 21. února 2019 Definice pojmu rozvrhování

Více

Úvod do rozvrhování. 20. února Příklady a reálné problémy. 2 Terminologie. 3 Klasifikace rozvrhovacích problémů.

Úvod do rozvrhování. 20. února Příklady a reálné problémy. 2 Terminologie. 3 Klasifikace rozvrhovacích problémů. Úvod do rozvrhování 20. února 2018 1 Příklady a reálné problémy 2 Terminologie 3 Klasifikace rozvrhovacích problémů 4 Složitost Hana Rudová, FI MU: Úvod do rozvrhování 2 20. února 2018 Definice pojmu rozvrhování

Více

Pravdpodobnost výskytu náhodné veliiny na njakém intervalu urujeme na základ tchto vztah: f(x)

Pravdpodobnost výskytu náhodné veliiny na njakém intervalu urujeme na základ tchto vztah: f(x) NÁHODNÁ VELIINA Náhodná veliina je veliina, jejíž hodnota je jednoznan urena výsledkem náhodného pokusu (je-li tento výsledek dán reálným íslem). Jde o reálnou funkci definovanou na základním prostoru

Více

Úvod do lineárního programování

Úvod do lineárního programování Úvod do lieárího programováí ) Defiice úlohy Jedá se o optimalizaí problémy které jsou popsáy soustavou lieárích rovic a erovic. Kritéria optimalizace jsou rovž lieárí. Promé v této úloze abývají reálých

Více

Dynamické programování

Dynamické programování Dynamické programování prof. Ing. Pavel Tvrdík CSc. Katedra počítačových systémů Fakulta informačních technologií České vysoké učení technické v Praze c Pavel Tvrdík, 2010 Efektivní algoritmy (BI-EFA)

Více

Bakalářská práce. České vysoké učení technické v Praze Fakulta elektrotechnická. Optimální řízení nákladních výtahů

Bakalářská práce. České vysoké učení technické v Praze Fakulta elektrotechnická. Optimální řízení nákladních výtahů České vysoké učení technické v Praze Fakulta elektrotechnická Bakalářská práce Optimální řízení nákladních výtahů Vypracoval: Miloslav Stibor Vedoucí práce: Ing. Michal Kutil České vysoké učení technické

Více

Replikace. Pro a proti replikaci. Vztah ke škálovatelnosti (1)

Replikace. Pro a proti replikaci. Vztah ke škálovatelnosti (1) Replikace Pednášky z distribuovaných systém Pro a proti replikaci 1. Zvýšení spolehlivosti. 2. Zvýšení výkonnosti. 3. Nutnost zachování škálovatelnosti systému co do potu komponent i geografické rozlehlosti.

Více

Cykly Intermezzo. FOR cyklus

Cykly Intermezzo. FOR cyklus Cykly Intermezzo Rozhodl jsem se zaadit do série nkolika lánk o základech programování v Delphi/Pascalu malou vsuvku, která nám pomže pochopit principy a zásady pi používání tzv. cykl. Mnoho ástí i jednoduchých

Více

MATEMATIKA A 3 Metodický list č. 1

MATEMATIKA A 3 Metodický list č. 1 Metodický list č. 1 Název tématického celku: Úvod do problematiky diskrétní matematiky Cíl: Cílem tohoto tématického celku je vymezení oblasti diskrétní matematiky a příprava na další výklad kurzu. Jedná

Více

Datový typ POLE. Jednorozmrné pole - vektor

Datový typ POLE. Jednorozmrné pole - vektor Datový typ POLE Vodítkem pro tento kurz Delphi zabývající se pedevším konzolovými aplikacemi a základy programování pro mne byl semestr na vysoké škole. Studenti nyní pipravují semestrální práce pedevším

Více

4EK311 Operační výzkum. 5. Teorie grafů

4EK311 Operační výzkum. 5. Teorie grafů 4EK311 Operační výzkum 5. Teorie grafů 5. Teorie grafů definice grafu Graf G = uspořádaná dvojice (V, E), kde V označuje množinu n uzlů u 1, u 2,, u n (u i, i = 1, 2,, n) a E označuje množinu hran h ij,

Více

10. Složitost a výkon

10. Složitost a výkon Jiří Vokřínek, 2016 B6B36ZAL - Přednáška 10 1 Základy algoritmizace 10. Složitost a výkon doc. Ing. Jiří Vokřínek, Ph.D. Katedra počítačů Fakulta elektrotechnická České vysoké učení technické v Praze Jiří

Více

Optimalizace obecný úvod. [proč optimalizovat?] Formalizace problému. [existují podobné problémy?]

Optimalizace obecný úvod. [proč optimalizovat?] Formalizace problému. [existují podobné problémy?] Optimalizace obecný úvod 1 Optimalizace obecný úvod Motivace optimalizačních úloh [proč optimalizovat?] Formalizace problému [jak obecně popsat optimalizační úlohu?] Klasifikace optimalizačních problémů

Více

Příklady ke cvičením. Modelování produkčních a logistických systémů

Příklady ke cvičením. Modelování produkčních a logistických systémů Modelování produkčních a logistických systémů Katedra logistiky, kvality a automobilové techniky Garant, přednášející, cvičící: Jan Fábry 10.12.2018 Příklady ke cvičením Opakování lineárního programování

Více

Třídy složitosti P a NP, NP-úplnost

Třídy složitosti P a NP, NP-úplnost Třídy složitosti P a NP, NP-úplnost Cíle přednášky: 1. Definovat, za jakých okolností můžeme problém považovat za efektivně algoritmicky řešitelný. 2. Charakterizovat určitou skupinu úloh, pro které není

Více

Stromy, haldy, prioritní fronty

Stromy, haldy, prioritní fronty Stromy, haldy, prioritní fronty prof. Ing. Pavel Tvrdík CSc. Katedra počítačů FEL České vysoké učení technické DSA, ZS 2008/9, Přednáška 6 http://service.felk.cvut.cz/courses/x36dsa/ prof. Pavel Tvrdík

Více

Hranová konzistence. Arc consistency AC. Nejprve se zabýváme binárními CSP. podmínka odpovídá hraně v grafu podmínek

Hranová konzistence. Arc consistency AC. Nejprve se zabýváme binárními CSP. podmínka odpovídá hraně v grafu podmínek Hranová konzistence Arc consistency AC Nejprve se zabýváme binárními CSP podmínka odpovídá hraně v grafu podmínek Hrana (V i, V j ) je hranově konzistentní, právě když pro každou hodnotu x z aktuální domény

Více

Obsah přednášky. Analýza algoritmu Algoritmická složitost Návrhy algoritmů Urychlování algoritmů 1/41

Obsah přednášky. Analýza algoritmu Algoritmická složitost Návrhy algoritmů Urychlování algoritmů 1/41 Obsah přednášky Analýza algoritmu Algoritmická složitost Návrhy algoritmů Urychlování algoritmů 1/41 Analýza algoritmu Proč vůbec dělat analýzu? pro většinu problémů existuje několik různých přístupů aby

Více

13. Lineární programování

13. Lineární programování Jan Schmidt 2011 Katedra číslicového návrhu Fakulta informačních technologií České vysoké učení technické v Praze Zimní semestr 2011/12 MI-PAA EVROPSKÝ SOCIÁLNÍ FOND PRAHA & EU: INVESTUJENE DO VAŠÍ BUDOUCNOSTI

Více

Optimalizace & soft omezení: algoritmy

Optimalizace & soft omezení: algoritmy Optimalizace & soft omezení: algoritmy Soft propagace Klasická propagace: eliminace nekonzistentních hodnot z domén proměnných Soft propagace: propagace preferencí (cen) nad k-ticemi hodnot proměnných

Více

Metody síťové analýzy

Metody síťové analýzy Metody síťové analýzy Řeší problematiku složitých systémů, zejména pak vazby mezi jejich jednotlivými prvky. Vychází z teorie grafů. Základní metody síťové analýzy: CPM (Critical Path Method) deterministický

Více

1 Úvod do celočíselné lineární optimalizace

1 Úvod do celočíselné lineární optimalizace Úvod do celočíselné lineární optimalizace Martin Branda, verze 7.. 7. Motivace Reálné (smíšeně-)celočíselné úlohy Optimalizace portfolia celočíselné počty akcií, modelování fixních transakčních nákladů,

Více

Obsah prezentace. Základní pojmy v teorii o grafech Úlohy a prohledávání grafů Hledání nejkratších cest

Obsah prezentace. Základní pojmy v teorii o grafech Úlohy a prohledávání grafů Hledání nejkratších cest Obsah prezentace Základní pojmy v teorii o grafech Úlohy a prohledávání grafů Hledání nejkratších cest 1 Základní pojmy Vrchol grafu: {množina V} Je to styčná vazba v grafu, nazývá se též uzlem, prvkem

Více

Metody lineární optimalizace Simplexová metoda. Distribuční úlohy

Metody lineární optimalizace Simplexová metoda. Distribuční úlohy Metody lineární optimalizace Simplexová metoda Dvoufázová M-úloha Duální úloha jednofázová Post-optimalizační analýza Celočíselné řešení Metoda větví a mezí Distribuční úlohy 1 OÚLP = obecná úloha lineárního

Více

Plánování projektu. 3. dubna Úvod. 2 Reprezentace projektu. 3 Neomezené zdroje. 4 Variabilní doba trvání. 5 Přidání pracovní síly

Plánování projektu. 3. dubna Úvod. 2 Reprezentace projektu. 3 Neomezené zdroje. 4 Variabilní doba trvání. 5 Přidání pracovní síly Plánování proektu 3. dubna 2018 1 Úvod 2 Reprezentace proektu 3 Neomezené zdroe 4 Variabilní doba trvání 5 Přidání pracovní síly Problémy plánování proektu Zprostředkování, instalace a testování rozsáhlého

Více

Výpočetní složitost algoritmů

Výpočetní složitost algoritmů Výpočetní složitost algoritmů Slajdy pro výuku na KS Ondřej Čepek Sylabus 1. Definice časové a prostorové složitosti algoritmů. Příklady na konkrétních algoritmech. Prostředky pro popis výpočetní složitosti

Více

Kapitola 1: Reálné funkce 1/13

Kapitola 1: Reálné funkce 1/13 Kapitola 1: Reálné funkce 1/13 Číselné množiny N, N 0, Z, Q, I, R, C Definice: Kartézský součin M N množin M a N je množina všech uspořádaných dvojic, ve kterých je první složka prvkem množiny M a druhá

Více

Static Load Balancing Applied to Time Dependent Mechanical Problems

Static Load Balancing Applied to Time Dependent Mechanical Problems Static Load Balancing Applied to Time Dependent Mechanical Problems O. Medek 1, J. Kruis 2, Z. Bittnar 2, P. Tvrdík 1 1 Katedra počítačů České vysoké učení technické, Praha 2 Katedra stavební mechaniky

Více

NPRG030 Programování I, 2018/19 1 / :03:07

NPRG030 Programování I, 2018/19 1 / :03:07 NPRG030 Programování I, 2018/19 1 / 20 3. 12. 2018 09:03:07 Vnitřní třídění Zadání: Uspořádejte pole délky N podle hodnot prvků Měřítko efektivity: * počet porovnání * počet přesunů NPRG030 Programování

Více

Kombinatorická minimalizace

Kombinatorická minimalizace Kombinatorická minimalizace Cílem je nalézt globální minimum ve velké diskrétní množině, kde může být mnoho lokálních minim. Úloha obchodního cestujícího Cílem je najít nejkratší cestu, která spojuje všechny

Více

Informační systémy a plánování výroby 1.čast

Informační systémy a plánování výroby 1.čast Tento materiál vznikl jako součást projektu, který je spolufinancován Evropským sociálním fondem a státním rozpočtem ČR. Informační systémy a plánování výroby 1.čast Technická univerzita v Liberci INVESTICE

Více

2C06028-00-Tisk-ePROJEKTY

2C06028-00-Tisk-ePROJEKTY Stránka. 27 z 50 3.2. ASOVÝ POSTUP PRACÍ - rok 2009 3.2.0. P EHLED DÍL ÍCH CÍL PLÁNOVANÉ 2009 íslo podrobn Datum pln ní matematicky formulovat postup výpo t V001 výpo etní postup ve form matematických

Více

Časová a prostorová složitost algoritmů

Časová a prostorová složitost algoritmů .. Časová a prostorová složitost algoritmů Programovací techniky doc. Ing. Jiří Rybička, Dr. ústav informatiky PEF MENDELU v Brně rybicka@mendelu.cz Hodnocení algoritmů Programovací techniky Časová a prostorová

Více

Dynamické programování

Dynamické programování ALG 0 Dynamické programování zkratka: DP Zdroje, přehledy, ukázky viz https://cw.fel.cvut.cz/wiki/courses/a4balg/literatura_odkazy 0 Dynamické programování Charakteristika Neřeší jeden konkrétní typ úlohy,

Více

Celočíselné lineární programování(ilp)

Celočíselné lineární programování(ilp) Celočíselné lineární programování(ilp) Zdeněk Hanzálek, Přemysl Šůcha {hanzalek}@fel.cvut.cz ČVUT FEL Katedra řídicí techniky 2. března 2010 Z. Hanzálek (ČVUT FEL) Celočíselné lineární programování(ilp)

Více

Konečný automat. Studium chování dynam. Systémů s diskrétním parametrem číslic. Počítae, nervové sys, jazyky...

Konečný automat. Studium chování dynam. Systémů s diskrétním parametrem číslic. Počítae, nervové sys, jazyky... Konečný automat. Syntéza kombinačních a sekvenčních logických obvodů. Sekvenční obvody asynchronní, synchronní a pulzní. Logické řízení technologických procesů, zápis algoritmů a formulace cílů řízení.

Více

e-mail: RadkaZahradnikova@seznam.cz 1. července 2010

e-mail: RadkaZahradnikova@seznam.cz 1. července 2010 Optimální výrobní program Radka Zahradníková e-mail: RadkaZahradnikova@seznam.cz 1. července 2010 Obsah 1 Lineární programování 2 Simplexová metoda 3 Grafická metoda 4 Optimální výrobní program Řešení

Více

Plánování a řízení výroby

Plánování a řízení výroby Tento materiál vznikl jako součást projektu EduCom, který je spolufinancován Evropským sociálním fondem a státním rozpočtem ČR. Plánování a řízení výroby Technická univerzita v Liberci Technické univerzity

Více

Použití dalších heuristik

Použití dalších heuristik Použití dalších heuristik zkracování cesty při FIND-SET UNION podle hodností Datové struktury... p[x] - předchůdce uzlu x MAKE-SET(x) p[x] := x hod[x] := 0 hod[x] - hodnost (aprox. výšky) UNION(x,y) LINK(FIND-SET(x),

Více

4. NP-úplné (NPC) a NP-těžké (NPH) problémy

4. NP-úplné (NPC) a NP-těžké (NPH) problémy Jan Schmidt 2011 Katedra číslicového návrhu Fakulta informačních technologií České vysoké učení technické v Praze Zimní semestr 2011/12 MI-PAA 4. NP-úplné (NPC) a NP-těžké (NPH) problémy Karpova redukce

Více

Optimalizační algoritmy inspirované chováním mravenců

Optimalizační algoritmy inspirované chováním mravenců Optimalizační algoritmy inspirované chováním mravenců Biologická analogie ACO metaheuristic Ant system a jeho modifikace Specifikace problémů Aplikace Motivace NP-hard problémy časová náročnost nalezení

Více

Pedání smny. Popis systémového protokolování. Autor: Ing. Jaroslav Halva V Plzni 24.01.2012. Strana 1/6

Pedání smny. Popis systémového protokolování. Autor: Ing. Jaroslav Halva V Plzni 24.01.2012. Strana 1/6 Autor: Ing. Jaroslav Halva V Plzni 24.01.2012 Strana 1/6 Obsah 1 OBSAH... 2 2 NKOLIK SLOV NA ÚVOD... 3 3 MODEL... 3 4 DEFINICE... 3 5 DENNÍ VÝKAZ... 4 6 ZÁVR... 6 Strana 2/6 1 Nkolik slov na úvod Zamení

Více

Teorie síťových modelů a síťové plánování

Teorie síťových modelů a síťové plánování KSI PEF ČZU Teorie síťových modelů a síťové plánování Část přednášky doc. Jaroslava Švasty z předmětu systémové analýzy a modelování. Zápis obsahuje základní vymezení projektu, časového plánování a popis

Více

Optimalizace. Obsah přednášky. DÚ LP - Okružní problém. Lineární optimalizace. DÚ LP - Okružní problém. DÚ LP - Okružní problém

Optimalizace. Obsah přednášky. DÚ LP - Okružní problém. Lineární optimalizace. DÚ LP - Okružní problém. DÚ LP - Okružní problém Obsah přednášky Mgr. Květuše Sýkorová Optimalizace Lineární programování Distribuční úlohy Okružní problém KI Př UJEP Ústí nad Labem Nederivační metody Metody 1D optimalizace Derivační metody Optimalizace

Více

Drsná matematika III 10. demonstrovaná cvičení Kostry grafů

Drsná matematika III 10. demonstrovaná cvičení Kostry grafů Drsná matematika III 10. demonstrovaná cvičení Kostry grafů Martin Panák Masarykova univerzita Fakulta informatiky 21.11. 2006 1 Domácí úlohy z minulého týdne Příklad 1 Příklad 2 Příklad 3 2 Borůvkův algoritmus

Více

Algoritmizace. 1. Úvod. Algoritmus

Algoritmizace. 1. Úvod. Algoritmus 1. Úvod Algoritmizace V dnešní době již počítače pronikly snad do všech oblastí lidské činnosti, využívají se k řešení nejrůznějších úkolů. Postup, který je v počítači prováděn nějakým programem se nazývá

Více

4EK213 Lineární modely. 12. Dopravní problém výchozí řešení

4EK213 Lineární modely. 12. Dopravní problém výchozí řešení 4EK213 Lineární modely 12. Dopravní problém výchozí řešení 12. Distribuční úlohy LP Úlohy výrobního plánování (alokace zdrojů) Úlohy finančního plánování (optimalizace portfolia) Úlohy reklamního plánování

Více

Digitální učební materiál

Digitální učební materiál Digitální učební materiál Číslo projektu: CZ.1.07/1.5.00/34.0548 Název školy: Gymnázium, Trutnov, Jiráskovo náměstí 325 Název materiálu: VY_32_INOVACE_147_IVT Autor: Ing. Pavel Bezděk Tematický okruh:

Více

Přidělování CPU Mgr. Josef Horálek

Přidělování CPU Mgr. Josef Horálek Přidělování CPU Mgr. Josef Horálek Přidělování CPU = Přidělování CPU je základ multiprogramového OS = pomocí přidělování CPU různým procesům OS zvyšuje výkon výpočetního systému; = Základní myšlenka multiprogramování

Více

ORACLE DISCRETE MANUFACTURING ORACLE DISKRÉTNÍ VÝROBA

ORACLE DISCRETE MANUFACTURING ORACLE DISKRÉTNÍ VÝROBA ORACLE DISCRETE MANUFACTURING ORACLE DISKRÉTNÍ VÝROBA KLÍOVÉ FUNKCE ORACLE DISCRETE MANUFACTURING Definice výrobních píkaz Definice výrobních rozvrh ízení zakázkové výroby ízení sériové výroby ízení hromadné

Více

Kapitola 1: Reálné funkce 1/13

Kapitola 1: Reálné funkce 1/13 Kapitola 1: Reálné funkce 1/13 Číselné množiny 2/13 N = {1, 2, 3, 4,... }... přirozená čísla N 0 = N {0} = {0, 1, 2, 3, 4,... } Z = {..., 2, 1, 0, 1, 2, 3, 4,... }... celá čísla Q = { p q p, q Z}... racionální

Více

FIT ČVUT MI-LOM Lineární optimalizace a metody. Dualita. Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti

FIT ČVUT MI-LOM Lineární optimalizace a metody. Dualita. Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti FIT ČVUT MI-LOM Lineární optimalizace a metody Dualita Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti Michal Černý, 2011 FIT ČVUT, MI-LOM, M. Černý, 2011: Dualita 2/5 Dualita Evropský

Více

Matice sousednosti NG

Matice sousednosti NG Matice sousednosti NG V = [ v ij ] celočíselná čtvercová matice řádu U v ij = ρ -1 ( [u i, u j ] )... tedy počet hran mezi u i a u j?jaké vlastnosti má matice sousednosti?? Smyčky, rovnoběžné hrany? V

Více

Algoritmizace prostorových úloh

Algoritmizace prostorových úloh INOVACE BAKALÁŘSKÝCH A MAGISTERSKÝCH STUDIJNÍCH OBORŮ NA HORNICKO-GEOLOGICKÉ FAKULTĚ VYSOKÉ ŠKOLY BÁŇSKÉ - TECHNICKÉ UNIVERZITY OSTRAVA Algoritmizace prostorových úloh Grafové úlohy Daniela Szturcová Tento

Více

Binární Vyhledávací Stromy, u kterých je. složitost operací v nejhorším. rovná O(log n)

Binární Vyhledávací Stromy, u kterých je. složitost operací v nejhorším. rovná O(log n) Stromy Binární Vyhledávací Stromy, u kterých je č asová složitost operací v nejhorším případě rovná O(log n) Vlastnosti Red-Black Stromů Vlastnosti Red-Black stromů Každý uzel stromu je obarven červenou

Více

NPRG030 Programování I, 2018/19 1 / :25:37

NPRG030 Programování I, 2018/19 1 / :25:37 NPRG030 Programování I, 2018/19 1 / 26 24. 9. 2018 10:25:37 Čísla v algoritmech a programech 10 26 Poloměr vesmíru 2651 studujících studentů MFF UK 3.142857... Ludolfovo číslo 10 16 stáří vesmíru v sekundách!!!

Více

Test prvočíselnosti. Úkol: otestovat dané číslo N, zda je prvočíslem

Test prvočíselnosti. Úkol: otestovat dané číslo N, zda je prvočíslem Test prvočíselnosti Úkol: otestovat dané číslo N, zda je prvočíslem 1. zkusit všechny dělitele od 2 do N-1 časová složitost O(N) cca N testů 2. stačí zkoušet všechny dělitele od 2 do N/2 (větší dělitel

Více

Základní datové struktury III: Stromy, haldy

Základní datové struktury III: Stromy, haldy Základní datové struktury III: Stromy, haldy prof. Ing. Pavel Tvrdík CSc. Katedra počítačových systémů Fakulta informačních technologií České vysoké učení technické v Praze c Pavel Tvrdík, 2010 Efektivní

Více

TGH05 - Problém za milion dolarů.

TGH05 - Problém za milion dolarů. TGH05 - Problém za milion dolarů. Jan Březina Technical University of Liberec 20. března 2012 Časová složitost algoritmu Závislost doby běhu programu T na velikosti vstupních dat n. O(n) notace, standardní

Více

Praha, 2. listopadu 2016

Praha, 2. listopadu 2016 Příklady aplikací bayesovských sítí Jiří Vomlel Ústav teorie informace a automatizace (ÚTIA) Akademie věd České republiky http://www.utia.cz/vomlel Praha, 2. listopadu 2016 Obsah přednášky Aplikace 1:

Více

Rzné algoritmy mají rznou složitost

Rzné algoritmy mají rznou složitost X36DSA 25 / 3 DSA Rzné algoritmy mají rznou složitost X36DSA 25 2 / 3 DSA The complexity of different algorithms varies X36DSA 25 3 / 3 Abeceda Jazyk Abeceda konená (neprázdná) množina symbol A mohutnost

Více

ORIENTOVANÉ GRAFY, REPREZENTACE GRAFŮ

ORIENTOVANÉ GRAFY, REPREZENTACE GRAFŮ ORIENTOVANÉ GRAFY, REPREZENTACE GRAFŮ Doc. RNDr. Josef Kolář, CSc. Katedra teoretické informatiky, FIT České vysoké učení technické v Praze BI-GRA, LS 2/2, Lekce Evropský sociální fond Praha & EU: Investujeme

Více

Zbytky zákaznického materiálu

Zbytky zákaznického materiálu Autoi: V Plzni 31.08.2010 Obsah ZBYTKOVÝ MATERIÁL... 3 1.1 Materiálová žádanka na peskladnní zbytk... 3 1.2 Skenování zbytk... 7 1.3 Vývozy zbytk ze skladu/makulatura... 7 2 1 Zbytkový materiál V souvislosti

Více

Návrh Designu: Radek Mařík

Návrh Designu: Radek Mařík 1. 7. Najděte nejdelší rostoucí podposloupnost dané posloupnosti. Použijte metodu dynamického programování, napište tabulku průběžných délek částečných výsledků a tabulku předchůdců. a) 5 8 11 13 9 4 1

Více

íslo ryze periodické íslice /skupina íslic ), která se opakuje nazýváme perioda. V našem p ípad je perioda íslice 6.

íslo ryze periodické íslice /skupina íslic ), která se opakuje nazýváme perioda. V našem p ípad je perioda íslice 6. 2. Racionální ísla 7. roník -2. Racionální ísla 2.1. Vymezení pojmu Každé íslo, které lze vyjáditjako podíl dvou celýchísel, je íslo racionální. Pi podílu dvou celýchísel a a bmohou nastattyto situace

Více

4. Lineární diferenciální rovnice rovnice 1. ádu

4. Lineární diferenciální rovnice rovnice 1. ádu 4. Lineární diferenciální rovnice rovnice. ádu y + p( ) y = (4.) L[ y] = y + p( ) y p q jsou spojité na I = (ab) a < b. Z obecné teorie vyplývá že množina všech ešení rovnice (4.) na intervalu I (tzv.

Více

Přednášky. Modelování produkčních a logistických systémů

Přednášky. Modelování produkčních a logistických systémů Modelování produkčních a logistických systémů Katedra logistiky, kvality a automobilové techniky Garant, přednášející, cvičící: Jan Fábry 10.12.2018 Přednášky Základní model produkčního systému Koncepce

Více

Informační systémy a plánování výroby

Informační systémy a plánování výroby Tento materiál vznikl jako součást projektu, který je spolufinancován Evropským sociálním fondem a státním rozpočtem ČR. Informační systémy a plánování výroby Technická univerzita v Liberci Technické univerzity

Více

7. Heuristické metody

7. Heuristické metody Jan Schmidt 2011 Katedra číslicového návrhu Fakulta informačních technologií České vysoké učení technické v Praze Zimní semestr 2011/12 MI-PAA EVROPSKÝ SOCIÁLNÍ FOND PRAHA & EU: INVESTUJENE DO VAŠÍ BUDOUCNOSTI

Více

V mnoha pípadech, kdy známe rozdlení náhodné veliiny X, potebujeme urit rozdlení náhodné veliiny Y, která je funkcí X, tzn. Y = h(x).

V mnoha pípadech, kdy známe rozdlení náhodné veliiny X, potebujeme urit rozdlení náhodné veliiny Y, která je funkcí X, tzn. Y = h(x). 3. FUNKCE NÁHODNÉ VELIINY as ke studu: 40 mnut Cíl: Po prostudování této kaptol budete umt transformovat náhodnou velnu na náhodnou velnu Y, je l mez tmto náhodným velnam vzájemn jednoznaný vztah VÝKLAD

Více

Algoritmus pro hledání nejkratší cesty orientovaným grafem

Algoritmus pro hledání nejkratší cesty orientovaným grafem 1.1 Úvod Algoritmus pro hledání nejkratší cesty orientovaným grafem Naprogramoval jsem v Matlabu funkci, která dokáže určit nejkratší cestu v orientovaném grafu mezi libovolnými dvěma vrcholy. Nastudoval

Více

Informační systémy a plánování výroby 2.čast

Informační systémy a plánování výroby 2.čast Tento materiál vznikl jako součást projektu EduCom, který je spolufinancován Evropským sociálním fondem a státním rozpočtem ČR. Informační systémy a plánování výroby 2.čast Technická univerzita v Liberci

Více

Lineární algebra : Násobení matic a inverzní matice

Lineární algebra : Násobení matic a inverzní matice Lineární algebra : Násobení matic a inverzní matice (8. přednáška) František Štampach, Karel Klouda LS 2013/2014 vytvořeno: 17. března 2014, 12:42 1 2 0.1 Násobení matic Definice 1. Buďte m, n, p N, A

Více

Katedra kybernetiky laboratoř Inteligentní Datové Analýzy (IDA) Katedra počítačů, Computational Intelligence Group

Katedra kybernetiky laboratoř Inteligentní Datové Analýzy (IDA) Katedra počítačů, Computational Intelligence Group Vytěžování dat Miroslav Čepek, Filip Železný Katedra kybernetiky laboratoř Inteligentní Datové Analýzy (IDA) Katedra počítačů, Computational Intelligence Group Evropský sociální fond Praha & EU: Investujeme

Více

Prioritní fronta, halda

Prioritní fronta, halda Prioritní fronta, halda Priority queue, heap Jan Kybic http://cmp.felk.cvut.cz/~kybic kybic@fel.cvut.cz 2016 2018 1 / 26 Prioritní fronta Halda Heap sort 2 / 26 Prioritní fronta (priority queue) Podporuje

Více

TGH12 - Problém za milion dolarů

TGH12 - Problém za milion dolarů TGH12 - Problém za milion dolarů Jan Březina Technical University of Liberec 7. května 2013 Složitost problému Co je to problém? Složitost problému Co je to problém? K daným vstupním datům (velkému binárnímu

Více

ALGORITMY A DATOVÉ STRUKTURY

ALGORITMY A DATOVÉ STRUKTURY Název tématického celku: Cíl: ALGORITMY A DATOVÉ STRUKTURY Metodický list č. 1 Časová složitost algoritmů Základním cílem tohoto tematického celku je vysvětlení potřebných pojmů a definic nutných k popisu

Více

Optimalizační algoritmy inspirované chováním mravenců

Optimalizační algoritmy inspirované chováním mravenců Optimalizační algoritmy inspirované chováním mravenců Motivace a biologická analogie ACO metaheuristic Ant system a jeho modifikace Specifikace problémů vhodných pro ACO Aplikace Motivace NP-hard problémy

Více

Lineární algebra : Násobení matic a inverzní matice

Lineární algebra : Násobení matic a inverzní matice Lineární algebra : Násobení matic a inverzní matice (8. přednáška) František Štampach, Karel Klouda frantisek.stampach@fit.cvut.cz, karel.klouda@fit.cvut.cz Katedra aplikované matematiky Fakulta informačních

Více

Obecná úloha lineárního programování. Úloha LP a konvexní množiny Grafická metoda. Jiří Neubauer. Katedra ekonometrie FEM UO Brno

Obecná úloha lineárního programování. Úloha LP a konvexní množiny Grafická metoda. Jiří Neubauer. Katedra ekonometrie FEM UO Brno Přednáška č. 3 Katedra ekonometrie FEM UO Brno Optimalizace portfolia Investor se s pomocí makléře rozhoduje mezi následujícími investicemi: akcie A, akcie B, státní pokladniční poukázky, dluhopis A, dluhopis

Více

HEURISTICKÉ ALGORITMY PRO ŘEŠENÍ ÚLOH OBCHODNÍHO CESTUJÍCÍHO

HEURISTICKÉ ALGORITMY PRO ŘEŠENÍ ÚLOH OBCHODNÍHO CESTUJÍCÍHO HEURISTICKÉ ALGORITMY PRO ŘEŠENÍ ÚLOH OBCHODNÍHO CESTUJÍCÍHO Heuristické algoritmy jsou speciálními algoritmy, které byly vyvinuty pro obtížné úlohy, jejichž řešení je obtížné získat v rozumném čase. Mezi

Více

Konzistentnost. Pro a proti replikaci. Vztah ke škálovatelnosti (1)

Konzistentnost. Pro a proti replikaci. Vztah ke škálovatelnosti (1) Konzistentnost Pednášky z distribuovaných systém Pro a proti replikaci 1. Zvýšení spolehlivosti. 2. Zvýšení výkonnosti. 3. Nutnost zachování škálovatelnosti systému co do potu komponent i geografické rozlehlosti.

Více

Simulované žíhání jako nástroj k hledání optimálního řešení

Simulované žíhání jako nástroj k hledání optimálního řešení Simulované žíhání jako nástroj k hledání optimálního řešení Michael Pokorný Střední škola aplikované kbernetik s.r.o., Hradecká 5, Hradec Králové pokorn.michael@ssakhk.cz Abstrakt Simulované žíhání je

Více

NPRG030 Programování I 3/2 Z --- NPRG031 Programování II --- 2/2 Z, Zk

NPRG030 Programování I 3/2 Z --- NPRG031 Programování II --- 2/2 Z, Zk NPRG030 Programování I 3/2 Z --- NPRG031 Programování II --- 2/2 Z, Zk Pavel Töpfer Katedra softwaru a výuky informatiky MFF UK MFF Malostranské nám., 4. patro, pracovna 404 pavel.topfer@mff.cuni.cz http://ksvi.mff.cuni.cz/~topfer

Více

SÍŤOVÁ ANALÝZA. Kristýna Slabá, kslaba@students.zcu.cz. 1. července 2010

SÍŤOVÁ ANALÝZA. Kristýna Slabá, kslaba@students.zcu.cz. 1. července 2010 SÍŤOVÁ ANALÝZA Kristýna Slabá, kslaba@students.zcu.cz 1. července 2010 Obsah 1 Úvod do síťové analýzy Hlavní metody síťové analýzy a jejich charakteristika Metoda CPM Metoda PERT Nákladová analýza Metoda

Více

Atom a molekula - maturitní otázka z chemie

Atom a molekula - maturitní otázka z chemie Atom a molekula - maturitní otázka z chemie by jx.mail@centrum.cz - Pond?lí, Únor 09, 2015 http://biologie-chemie.cz/atom-a-molekula-maturitni-otazka-z-chemie/ Otázka: Atom a molekula P?edm?t: Chemie P?idal(a):

Více

ORACLE ÍZENÍ VÝROBY ORACLE WORK IN PROCESS KLÍOVÉ FUNKCE ORACLE WORK IN PROCESS

ORACLE ÍZENÍ VÝROBY ORACLE WORK IN PROCESS KLÍOVÉ FUNKCE ORACLE WORK IN PROCESS ORACLE WORK IN PROCESS ORACLE ÍZENÍ VÝROBY KLÍOVÉ FUNKCE ORACLE WORK IN PROCESS Definice standardních výrobních píkaz Definice výrobních rozvrh pro libovolný zvolený interval Definice výrobních píkaz koncové

Více

Digitální učební materiál

Digitální učební materiál Digitální učební materiál Číslo projektu: CZ.1.07/1.5.00/34.0548 Název školy: Gymnázium, Trutnov, Jiráskovo náměstí 325 Název materiálu: VY_32_INOVACE_145_IVT Autor: Ing. Pavel Bezděk Tematický okruh:

Více

Přijímací zkouška - matematika

Přijímací zkouška - matematika Přijímací zkouška - matematika Jméno a příjmení pište do okénka Číslo přihlášky Číslo zadání 1 Grafy 1 Pro který z následujících problémů není znám žádný algoritmus s polynomiální časovou složitostí? Problém,

Více

Časová složitost / Time complexity

Časová složitost / Time complexity Časová složitost / Time complexity Jan Kybic http://cmp.felk.cvut.cz/~kybic kybic@fel.cvut.cz 2016 2018 1 / 24 Složitost algoritmů Algorithm complexity Časová a paměťová složitost Trvání výpočtu v závislosti

Více

4EK311 Operační výzkum. 1. Úvod do operačního výzkumu

4EK311 Operační výzkum. 1. Úvod do operačního výzkumu 4EK311 Operační výzkum 1. Úvod do operačního výzkumu Mgr. Jana SEKNIČKOVÁ, Ph.D. Nová budova, místnost 433 Konzultační hodiny InSIS E-mail: jana.seknickova@vse.cz Web: jana.seknicka.eu/vyuka Garant kurzu:

Více

Řízení projektů. Konstrukce síťového grafu pro řízení projektů Metoda CPM Metoda PERT

Řízení projektů. Konstrukce síťového grafu pro řízení projektů Metoda CPM Metoda PERT Řízení projektů Konstrukce síťového grafu pro řízení projektů Metoda CPM Metoda PERT 1 Úvod základní pojmy Projekt souhrn činností, které musí být všechny realizovány, aby byl projekt dokončen Činnost

Více

Třída PTIME a třída NPTIME. NP-úplnost.

Třída PTIME a třída NPTIME. NP-úplnost. VAS - Přednáška 9 Úvod ke kursu. Složitost algoritmu. Model RAM. Odhady složitosti. Metoda rozděl a panuj. Greedy algoritmy. Metoda dynamického programování. Problémy, třídy složitosti problémů, horní

Více

66. ročník Matematické olympiády 2016/2017

66. ročník Matematické olympiády 2016/2017 66. ročník Matematické olympiády 2016/2017 Úlohy ústředního kola kategorie P 1. soutěžní den Na řešení úloh máte 4,5 hodiny čistého času. Řešení každé úlohy pište na samostatný list papíru. Při soutěži

Více

Numerická stabilita algoritmů

Numerická stabilita algoritmů Numerická stabilita algoritmů Petr Tichý 9. října 2013 1 Numerická stabilita algoritmů Pravidla v konečné aritmetice Pro počítání v konečné aritmetice počítače platí určitá pravidla, která jsou důležitá

Více

OPTIMALIZACE A MULTIKRITERIÁLNÍ HODNOCENÍ FUNKČNÍ ZPŮSOBILOSTI POZEMNÍCH STAVEB D24FZS

OPTIMALIZACE A MULTIKRITERIÁLNÍ HODNOCENÍ FUNKČNÍ ZPŮSOBILOSTI POZEMNÍCH STAVEB D24FZS OPTIMALIZACE A MULTIKRITERIÁLNÍ HODNOCENÍ FUNKČNÍ ZPŮSOBILOSTI POZEMNÍCH STAVEB Optimalizace a multikriteriální hodnocení funkční způsobilosti pozemních staveb Anotace: Optimalizace objektů pozemních staveb

Více