Řízení projektů. Konstrukce síťového grafu pro řízení projektů Metoda CPM Metoda PERT
|
|
- Vojtěch Müller
- před 7 lety
- Počet zobrazení:
Transkript
1 Řízení projektů Konstrukce síťového grafu pro řízení projektů Metoda CPM Metoda PERT 1
2 Úvod základní pojmy Projekt souhrn činností, které musí být všechny realizovány, aby byl projekt dokončen Činnost reálná aktivita, která je popsána různými charakteristikami Doba trvání činnosti Náklady na její provedení Potřebné zdroje pro realizaci činnosti (personální, materiálové, technické, apod.) Vztah k ostatním činnostem (návaznosti při provádění) 2
3 Časová analýza Při konkrétní analýze nějakého projektu je třeba: Rozčlenit projekt na jednotlivé činnosti. Odhadnout dobu trvání, případně náklady na realizaci jednotlivých činností. Definovat časovou návaznost provádění jednotlivých činností, tzn. určit, které činnosti musí být dokončeny před zahájením provádění ostatních činností. Na základě informací z předcházejících kroků sestavit síťový graf (hrany grafu = činnosti, jejich ohodnocení = doba trvání činností, uzly grafu = zahájení/dokončení činností, které z uzlu vycházejí/v uzlu končí) 3
4 Časová analýza - příklad Činnost Popis činnosti Doba trvání [týdny] Předchozí činnosti A výběr a nákup objektu 6 žádná B zpracování projektu 4 A C obsazení pozice manažera 3 A D výběr personálu 3 B, C E rekonstrukce a vybavení objektu 8 B F školení personálu 2 D G výběr sortimentu zboží 2 B, C H uzavření smluv s dodavateli 5 G I nákup zboží 3 E, F, H J reklama 2 H 4
5 Činnost Popis činnosti Doba trvání Předchozí [týdny] činnosti A výběr a nákup objektu 6 žádná B zpracování projektu 4 A C obsazení pozice manažera 3 A D výběr personálu 3 B, C E rekonstrukce a vybavení objektu 8 B F školení personálu 2 D G výběr sortimentu zboží 2 B, C H uzavření smluv s dodavateli 5 G I nákup zboží 3 E, F, H J reklama 2 H 5
6 Metoda CPM Critical Path Method Metoda CPM - pro každou činnost odvozuje 4 časové charakteristiky: 1. Nejdříve možný začátek provádění činnosti je časová charakteristika, která vychází z toho, že činnost nemůže začít dříve než skončí všechny činnosti, které ji předcházejí. Všechny činnosti, vycházející z uzlu u i, mají stejný nejdříve možný začátek - t 0 i. 2. Nejdříve možný konec provádění činnosti je dán jako součet nejdříve možného začátku a doby trvání činnosti. Pro činnost, která je reprezentována hranou h, je tedy nejdříve možný konec dán vztahem t 0 i + y, kde y je doba trvání této činnosti. 3. Nejpozději přípustný konec provádění činnosti je charakteristika, která udává okamžik, kdy musí nejpozději činnost skončit, aby nedošlo ke skluzu v provádění navazujících činností. Všechny činnosti, které končí v uzlu u j, mají stejný nejpozději přípustný konec - t 1 j. 4. Nejpozději přípustný začátek provádění činnosti bude potom rozdíl nejpozději přípustného konce a doby trvání této činnosti. Pro činnost, vyjádřenou hranou h, bude tedy nejpozději přípustný začátek určen vztahem t 1 j y. 6
7 Metoda CPM I. fáze I. fáze - výpočet nejdříve možných začátků a konců provádění činností. Nejdříve možný začátek provádění činností, které začínají v uzlu u j je roven maximu z nejdříve možných konců činností, které do uzlu u j vstupují. Vyjádřeno pomocí vzorce: Postup: t 0 j max( t i 0 i 1. Nejdříve možný začátek provádění činností vycházejících ze vstupního uzlu sítě u 1 je nastaven na nulu (počátek časové osy) - t 0 1 = V jednotlivých iteracích se postupně vypočte podle výše uvedeného vztahu nejdříve možný začátek činností, které vycházejí z uzlů u 2, u 3,..., u n, kde n je index výstupního uzlu sítě. 3. Označíme si symbolem T nejdříve možný začátek provádění činností pro výstupní uzel sítě, tzn. T = t 0 n. Hodnota T představuje nejkratší možnou dobu, ve které lze celý projekt realizovat. Současně se však jedná o ohodnocení nejdelší cesty v síti mezi vstupním a výstupním uzlem. y ) 7
8 Metoda CPM II. fáze II. fáze - nejpozději přípustné začátky a konce provádění činností. Nejpozději přípustný konec provádění činností, které končí v uzlu u i je roven minimu z nejpozději přípustných začátků činností, které z uzlu u i vystupují. Vyjádřeno pomocí vzorce: t 1 i min ( t j 1 j y ) 1. Za nejpozději přípustný konec provádění činností, které končí ve výstupním uzlu sítě u n je dosazena hodnota T pl T (t 1 n = T pl ). 2. V jednotlivých iteracích je postupně vypočten podle výše uvedeného pravidla nejpozději přípustný konec činností, které končí v uzlech u n-1, u n-2,..., u Lze provést částečnou kontrolu správnosti výpočtu - hodnota t 1 1 vypočtená v poslední iteraci předcházejícího kroku musí vyjít rovna T pl -T. 8
9 Metoda CPM III. fáze III. fáze výpočet celkových časových rezerv Celková časová rezerva je rozdíl mezi nejpozději přípustným koncem, nejdříve možným začátkem a dobou trvání činnosti. Vyjádřeno pomocí vzorce: CR t 1 j t 0 i y Kritické činnosti jsou činnosti s minimální (nulovou) hodnotou celkové časové rezervy CR = T pl T IV. fáze rozvrhování činností viz příklad dále 9
10 Metoda CPM výpočet (I. f.) 10
11 Metoda CPM výpočet (II., III. f) 11
12 Metoda CPM IV. fáze Činnos t A B E I C D F G H J Čas Posloupn Čas ost A B E I 2 C G D F J 3 H 12
13 Metoda PERT Program Evaluation and Review Technique Metoda CPM je deterministická (předpokládá, že předem známe doby trvání činností) Metoda PERT je stochastická (pravděpodobnostní) - doby trvání činností jsou náhodné veličiny. Pro každou činnost se definují 3 časové charakteristiky: a - nejkratší předpokládanou dobu trvání činnosti - tato charakteristika se označuje jako optimistický odhad, b - nejdelší uvažovanou dobu trvání činnosti - tato charakteristika se označuje jako pesimistický odhad, m - nejpravděpodobnější dobu realizace činnosti - tato charakteristika se označuje jako modální (normální) odhad. 13
14 Metoda PERT Program Evaluation and Review Technique Střední hodnota: a 4m b 6, Směrodatná odchylka a rozptyl: 6 b a ( b a 2 36 ) 2 14
15 Metoda PERT Program Evaluation and Review Technique 1. Vypočte se kritická cesta stejným způsobem jako u metody CPM s tím, že se pracuje místo deterministických hodnot y se středními hodnotami μ. 2. Délka kritické cesty M je součtem středních dob kritických činností. 3. Rozptyl délky kritické cesty KC 2 je součtem rozptylů kritických činností. Směrodatná odchylka KC je odmocnina tohoto rozptylu. Za jistých předpokladů má délka kritické cesty (dobra trvání projektu) normální rozdělení se střední hodnotou M a směrodatnou odchylkou KC, tj. N(M, KC). 15
16 Metoda PERT Program Evaluation and Review Technique Jestliže má délka kritické cesty rozdělení N(M, KC), potom lze ešit následující dvě úlohy: 1. Jaká je pst., že projekt bude ukončený v čase T S? Jedná se o hodnotu distribuční funkce rozdělení N(M, KC) v bodě T S. Vzhledem k tomu, že v tabulkách lze najít pouze hodnoty distribuční funkce standardizovaného normálního rozdělení N(0,1), jedná se po transformaci na toto rozdělení o hodnotu jeho distribuční funkce v bodě z T S M KC 16
17 Metoda PERT Program Evaluation and Review Technique 2. V jakém čase T S bude projekt ukončen se stanovenou pravděpodobností p? V tomto případě stačí z tabulek rozdělení N(0,1) určit, jaká hodnota z p odpovídá zadané pravděpodobnosti p a potom hledaný časový údaj vypočítat jako T S = M + z p KC. 17
18 Metoda PERT příklad činnost odhad doby trvání střední směrod. rozptyl (hrana) optimist. modální pesimist. doba odch. h a m b 2 h /6 5/6 25/36 h /6 2/6 4/36 h /6 3/6 9/36 h h /6 6/6 36/36 h /6 2/6 4/36 h /6 1/6 1/36 h /6 0 0 h /6 5/6 25/36 h h /6 0 0 h /6 2/6 4/36 18
19 Metoda PERT příklad Střední doba trvání celého projektu je Rozptyl doby trvání celého projektu je M = 35/6 + 24/6 + 50/6 + 18/6 = týdne. KC 2 = (5/6) 2 + (2/6) 2 + (6/6) 2 + (2/6) 2 = 69/36 = Směrodatná odchylka je KC =
20 Metoda PERT příklad 1. S jakou pravděpodobností bude projekt dokončený nejpozději do 22. týdne? z = ( )/ = Z tabulek je potom příslušná pravděpodobnost V jakém čase bude projekt dokončený s pravděpodobností 0.95? T 0.95 = (1.3844) =
4EK212 Kvantitativní management. 7.Řízení projektů
4EK212 Kvantitativní management 7.Řízení projektů 6.5 Řízení projektů Typická aplikace teorie grafů Projekt = soubor činností Příklady: Vývoj a uvedení nového výrobku Výstavba či rekonstrukce objektu Plán
4EK311 Operační výzkum. 6. Řízení projektů
4EK311 Operační výzkum 6. Řízení projektů 6. Řízení projektů Typická aplikace teorie grafů Projekt = soubor činností Příklady: Vývoj a uvedení nového výrobku Výstavba či rekonstrukce objektu Plán výrobního
24.11.2009 Václav Jirchář, ZTGB
24.11.2009 Václav Jirchář, ZTGB Síťová analýza 50.let V souvislosti s potřebou urychlit vývoj a výrobu raket POLARIS v USA při závodech ve zbrojení za studené války se SSSR V roce 1958 se díky aplikaci
Časové rezervy. Celková rezerva činnosti
Časové rezervy Celková rezerva činnosti CR Volná rezerva činnosti VR Nezávislá rezerva činnosti - NR Celková rezerva činnosti Maximální počet časových jednotek, které jsou k dispozici pro provedení činnosti,
Projektový management
Projektový management 2009 Ludmila Fridrichová Použité zdroje 1. Svozilová, A.: Projektový management. Praha: Grada Publishing, a.s., 2006. ISBN-80-247-1501-5 2. Němec, V.: Projektový management. Praha:
SÍŤOVÁ ANALÝZA. Kristýna Slabá, kslaba@students.zcu.cz. 1. července 2010
SÍŤOVÁ ANALÝZA Kristýna Slabá, kslaba@students.zcu.cz 1. července 2010 Obsah 1 Úvod do síťové analýzy Hlavní metody síťové analýzy a jejich charakteristika Metoda CPM Metoda PERT Nákladová analýza Metoda
Západočeská univerzita v Plzni Fakulta aplikovaných věd. SÍŤOVÁ ANALÝZA Semestrální práce z předmětu KMA/MAB
Západočeská univerzita v Plzni Fakulta aplikovaných věd SÍŤOVÁ ANALÝZA Semestrální práce z předmětu KMA/MAB Vypracovala: Kristýna Slabá kslaba@students.zcu.cz Obor: Matematické inženýrství Školní rok:
Teorie síťových modelů a síťové plánování
KSI PEF ČZU Teorie síťových modelů a síťové plánování Část přednášky doc. Jaroslava Švasty z předmětu systémové analýzy a modelování. Zápis obsahuje základní vymezení projektu, časového plánování a popis
Modely teorie grafů, min.kostra, max.tok, CPM, MPM, PERT
PEF ČZU Modely teorie grafů, min.kostra, max.tok, CPM, MPM, PERT Okruhy SZB č. 5 Zdroje: Demel, J., Operační výzkum Jablonský J., Operační výzkum Šubrt, T., Langrová, P., Projektové řízení I. a různá internetová
CW52 Modelování výrobních procesů PPT #01 Metody plánování a řízení stavebních procesů Ing. Václav Venkrbec
CW52 Modelování výrobních procesů PPT #01 Metody plánování a řízení stavebních procesů Ing. Václav Venkrbec Základní metody plánování 1, Metoda postupná Základní metody plánování 1, Metoda postupná Nízké
Operační výzkum. Síťová analýza. Metoda CPM.
Operační výzkum Síťová analýza. Metoda CPM. Operační program Vzdělávání pro konkurenceschopnost Název projektu: Inovace magisterského studijního programu Fakulty ekonomiky a managementu Registrační číslo
Projektový management
Projektový management Osnova - Metody a techniky plánování projektu - Časové plány a jejich úrovně - Ganttův diagram a síťový graf - Strukturní plán, dokumentace staveb Ing. Jana Nováková Ústav stavební
Metody síťové analýzy
Metody síťové analýzy Řeší problematiku složitých systémů, zejména pak vazby mezi jejich jednotlivými prvky. Vychází z teorie grafů. Základní metody síťové analýzy: CPM (Critical Path Method) deterministický
Délka (dny) 150 - - 2 terénní úpravy (prvotní) 15-20 - příprava staveniště (výstavba přístřešku pro materiál)
Skupinová práce. Zadání skupinové práce Síťová analýza metoda CPM Dáno: Výstavba skladu zásob obilí představuje následující činnosti: Tabulka Název činnosti Délka (dny) Optimální projekt. Optimální dělníků
Metody analýzy kritické cesty
UNIVERZITA PALACKÉHO V OLOMOUCI PŘÍRODOVĚDECKÁ FAKULTA KATEDRA MATEMATICKÉ ANALÝZY A APLIKACÍ MATEMATIKY SEMINÁRNÍ PRÁCE Metody analýzy kritické cesty Vypracoval: Tomáš Talášek AME, I. ročník Obsah 1 Základní
M A N A G E M E N T P O D N I K U 2 Tržní postavení produktu, management a síťová analýza. LS, akad.rok 2014/2015 Management podniku - VŽ 1
M A N A G E M E N T P O D N I K U 2 Tržní postavení produktu, management a síťová analýza LS, akad.rok 2014/2015 Management podniku - VŽ 1 Tržní postavení produktu LS, akad.rok 2014/2015 Management podniku
NÁSTROJE A TECHNIKY PROJEKTOVÉHO MANAGEMENTU. Projektová dekompozice
NÁSTROJE A TECHNIKY PROJEKTOVÉHO MANAGEMENTU Projektová dekompozice Úvod do vybraných nástrojů projektového managementu METODY A TECHNIKY PROJEKTOVÉHO MANAGEMENTU Tvoří jádro projektového managementu.
Management projektu III. Fakulta sportovních studií přednáška do předmětu Projektový management ve sportu
Management projektu III. Fakulta sportovních studií 2016 5. přednáška do předmětu Projektový management ve sportu doc. Ing. Petr Pirožek,Ph.D. Ekonomicko-správní fakulta Lipova 41a 602 00 Brno Email: pirozek@econ.muni.cz
Časové plánování v projektu
Projektové řízení (BI-PRR) Časové plánování v projektu Katedra softwarového inženýrství Fakulta informačních technologií České vysoké učení technické v Praze Ing. Martin Půlpitel, 2011 Projektové řízení
5.2.6 Tabulkové řešení metod CPM a PERT
5.2.6 Tabulkové řešení metod CPM a PERT Tabulkové řešení umožňuje algoritmizovat postupy jednotlivých metod, algoritmy realizovat programově s použitím běžného tabulkového procesoru nebo databázového prostředí.
APLIKACE METODY MONTE CARLO K SIMULACI KRITICKÉ CESTY (APPLICATION OF THE MONTE CARLO METHOD FOR THE SIMULATION OF A CRITICAL PATH)
21. medzinárodná vedecká konferencia Riešenie krízových situácií v špecifickom prostredí Fakulta bezpečnostného inžinierstva UNIZA, Žilina, 25. - 26. máj 216 APLIKACE METODY MONTE CARLO K SIMULACI KRITICKÉ
Řízení projektů. Ing. Michal Dorda, Ph.D.
Řízení projektů Ing. Michal Dorda, Ph.D. Ing. Michal Dorda, Ph.D. 1 Použitá literatura Tato prezentace byla vytvořena především s využitím následujících zdrojů: ŠIROKÝ, J. Aplikace počítačů v provozu vozidel.
P R O J E K T O V É Ř Í Z E N Í A M A R K E T I N G 1. Akad. rok 2015/2016, LS Projektové řízení a marketing - VŽ 1
P R O J E K T O V É Ř Í Z E N Í A M A R K E T I N G 1 Akad. rok 2015/2016, LS Projektové řízení a marketing - VŽ 1 Vznik a historie projektového řízení Akad. rok 2015/2016, LS Projektové řízení a marketing
Možnosti využití metody kritické cesty
Mendelova univerzita v Brně Provozně ekonomická fakulta Možnosti využití metody kritické cesty Diplomová práce Vedoucí práce: Doc. Ing. Josef Holoubek, CSc. Bc. Jana Doležalová Brno 2012 Ráda bych na tomto
Katedra softwarového inženýrství Fakulta informačních technologií České vysoké učení technické v Praze Ing. Martin Půlpitel, 2011
Projektové řízení(bi-prr) Síťová analýza Katedra softwarového inženýrství Fakulta informačních technologií České vysoké učení technické v Praze Ing. Martin Půlpitel, 2011 Projektové řízení ZS 2011/12,
NÁSTROJE A TECHNIKY PROJEKTOVÉHO MANAGEMENTU
NÁSTROJE A TECHNIKY PROJEKTOVÉHO MANAGEMENTU Projektová dekompozice Přednáška Teorie PM č. 2 Úvod do vybraných nástrojů projektového managementu Úvodní etapa projektu je nejdůležitější fáze projektu. Pokud
Plánovací a odhadovací nástroje. J. Sochor, J. Ráček 1
Plánovací a odhadovací nástroje J. Sochor, J. Ráček 1 Work Breakdown Structure - WBS Typy: Proces, produkt, hybridní. Formáty: Osnova nebo grafický organizační diagram. Vysokoúrovňové WBS neukazuje závislosti
Plánování projektu z hlediska času, zdrojů a nákladů
Plánování projektu z hlediska času, zdrojů a nákladů Ing. Jaroslava Tománková, Ph.D. tomankov@fsv.cvut.cz rozhodnutí o inv. (územní řízení) smlouva o dílo (stav. povolení) předání a převzetí st. (uvedení
Seminární práce. Téma: Síťové diagramy, Ganttovy diagramy
MASARYKOVA UNIVERZITA V BRNĚ EKONOMICKO-SPRÁVNÍ FAKULTA Seminární práce Téma: Síťové diagramy, Ganttovy diagramy Vypracovali: Šilhánek Jiří Homolka Tomáš BRNO 2005 OBSAH: 1. Hamronogramy... 1 2. Cyklogramy...
Induktivní statistika. z-skóry pravděpodobnost
Induktivní statistika z-skóry pravděpodobnost normální rozdělení Z-skóry umožňují najít a popsat pozici každé hodnoty v rámci rozdělení hodnot a také srovnávání hodnot pocházejících z měření na rozdílných
FAKULTA EKONOMICKÁ. Using Algorithms of Graphs Theory for Project Management in Company ŠKODA POWER
ZÁPADOČESKÁ UNIVERZITA V PLZNI FAKULTA EKONOMICKÁ Diplomová práce Použití algoritmů teorie grafů pro řízení projektů ve firmě ŠKODA POWER Using Algorithms of Graphs Theory for Project Management in Company
A3RIP Řízení projektů. 6. seminář
A3RIP Řízení projektů 6. seminář 24. 10. 2012 Obsah 1. od iniciace k plánovaní 2. plánování projektu fáze projektu činnosti (WBS) čas (Ganttův diagram, síťové diagramy) zdroje náklady rizika 3. bonusový
Inferenční statistika - úvod. z-skóry normální rozdělení pravděpodobnost rozdělení výběrových průměrů
Inferenční statistika - úvod z-skóry normální rozdělení pravděpodobnost rozdělení výběrových průměrů Pravděpodobnost postupy induktivní statistiky vycházejí z teorie pravděpodobnosti pravděpodobnost, že
4EK311 Operační výzkum. 5. Teorie grafů
4EK311 Operační výzkum 5. Teorie grafů 5. Teorie grafů definice grafu Graf G = uspořádaná dvojice (V, E), kde V označuje množinu n uzlů u 1, u 2,, u n (u i, i = 1, 2,, n) a E označuje množinu hran h ij,
Obecné metody systémové analýzy
Obecné metody systémové analýzy Graf jako pojem matematické teorie grafů (nikoliv např. grafické znázornění průběhu funkce): určitý útvar (rovinný, prostorový), znázorňující vztahy (vazby, relace) mezi
5 Metody a nástroje řízení projektů
Aplikace počítačů v provozu vozidel 55 5 Metody a nástroje řízení projektů 5.1 Vývoj nástrojů řízení Projektové řízení se zaměřovalo zejména na unikátní díla a inovace. Nástroje projektového řízení se
Někdy lze výsledek pokusu popsat jediným číslem, které označíme X (nebo jiným velkým písmenem). Hodíme dvěma kostkami jaký padl součet?
Náhodné veličiny Náhodné veličiny Někdy lze výsledek pokusu popsat jediným číslem, které označíme X (nebo jiným velkým písmenem). Příklad Vytáhneme tři karty z balíčku zajímá nás, kolik je mezi nimi es.
STATISTICA Téma 6. Testy na základě jednoho a dvou výběrů
STATISTICA Téma 6. Testy na základě jednoho a dvou výběrů 1) Test na velikost rozptylu Test na velikost rozptylu STATISTICA nemá. 2) Test na velikost střední hodnoty V menu Statistika zvolíme nabídku Základní
7. Rozdělení pravděpodobnosti ve statistice
7. Rozdělení pravděpodobnosti ve statistice Statistika nuda je, má však cenné údaje, neklesejte na mysli, ona nám to vyčíslí Jednou z úloh statistiky je odhad (výpočet) hodnot statistického znaku x i,
Datum narození. Obor: Informační management. ZÁZNAM ZKUŠEBNÍ KOMISE Počet bodů. Varianta: 2421 TEST STUDIJNÍCH PŘEDPOKLADŮ 4 strany 1.
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA PODNIKATELSKÁ Přijímací řízení 015 Navazující magisterský studijní program: Systémové inženýrství a informatika Obor: Informační management VYPLNÍ UCHAZEČ: Kódové
10. cvičení z PST. 5. prosince T = (n 1) S2 X. (n 1) s2 x σ 2 q χ 2 (n 1) (1 α 2 ). q χ 2 (n 1) 2. 2 x. (n 1) s. x = 1 6. x i = 457.
0 cvičení z PST 5 prosince 208 0 (intervalový odhad pro rozptyl) Soubor (70, 84, 89, 70, 74, 70) je náhodným výběrem z normálního rozdělení N(µ, σ 2 ) Určete oboustranný symetrický 95% interval spolehlivosti
MATEMATICKO STATISTICKÉ PARAMETRY ANALYTICKÝCH VÝSLEDKŮ
MATEMATICKO STATISTICKÉ PARAMETRY ANALYTICKÝCH VÝSLEDKŮ Má-li analytický výsledek objektivně vypovídat o chemickém složení vzorku, musí splňovat určitá kriteria: Mezinárodní metrologický slovník (VIM 3),
Diskrétní náhodná veličina. November 12, 2008
Diskrétní náhodná veličina November 12, 2008 (Náhodná veličina (náhodná proměnná)) Náhodná veličina (nebo též náhodná proměnná) je veličina X, jejíž hodnota je jednoznačně určena výsledkem náhodného pokusu.
I. D i s k r é t n í r o z d ě l e n í
6. T y p y r o z d ě l e n í Poznámka: V odst. 5.5-5.10 jsme uvedli příklady náhodných veličin a jejich distribučních funkcí. Poznali jsme, že se od sebe liší svým typem. V příkladech 5.5, 5.6 a 5.8 jsme
P13: Statistické postupy vyhodnocování únavových zkoušek, aplikace normálního, Weibullova rozdělení, apod.
P13: Statistické postupy vyhodnocování únavových zkoušek, aplikace normálního, Weibullova rozdělení, apod. Matematický přístup k výsledkům únavových zkoušek Náhodnost výsledků únavových zkoušek. Únavové
Diskrétní náhodná veličina
Lekce Diskrétní náhodná veličina Výsledek náhodného pokusu může být vyjádřen slovně to vede k zavedení pojmu náhodného jevu Výsledek náhodného pokusu můžeme někdy vyjádřit i číselně, což vede k pojmu náhodné
Komplexní čísla, Kombinatorika, pravděpodobnost a statistika, Posloupnosti a řady
Předmět: Náplň: Třída: Počet hodin: Pomůcky: Matematika Komplexní čísla, Kombinatorika, pravděpodobnost a statistika, Posloupnosti a řady 4. ročník a oktáva 3 hodiny týdně PC a dataprojektor, učebnice
p(x) = P (X = x), x R,
6. T y p y r o z d ě l e n í Poznámka: V odst. 5.5-5.10 jsme uvedli příklady náhodných veličin a jejich distribučních funkcí. Poznali jsme, že se od sebe liší svým typem. V příkladech 5.5, 5.6 a 5.8 jsme
Jednovýběrový Wilcoxonův test a jeho asymptotická varianta (neparametrická obdoba jednovýběrového t-testu)
Jednovýběrový Wilcoxonův test a jeho asymptotická varianta (neparametrická obdoba jednovýběrového t-testu) Frank Wilcoxon (1892 1965): Americký statistik a chemik Nechť X 1,..., X n je náhodný výběr ze
Kvantitativní metody v rozhodování. Marta Doubková
Kvantitativní metody v rozhodování Marta Doubková Seminární práce 28 OBSAH 1 LINEÁRNÍ PROGRAMOVÁNÍ KAPACITNÍ ÚLOHA... 3 2 DISTRIBUČNÍ ÚLOHA... 7 3 ANALÝZA KRITICKÉ CESTY METODA CPM... 13 4 MODEL HROMADNÉ
Aplikovaná informatika
Aplikovaná informatika Základy tvorby projektových plánů metodou CPM - projektové řízení. ZEMÁNEK, Z. PLUSKAL, D. SMETANA, B. Operační program Vzdělávání pro konkurenceschopnost Název projektu: Inovace
Dobývání znalostí. Doc. RNDr. Iveta Mrázová, CSc. Katedra teoretické informatiky Matematicko-fyzikální fakulta Univerzity Karlovy v Praze
Dobývání znalostí Doc. RNDr. Iveta Mrázová, CSc. Katedra teoretické informatiky Matematicko-fyzikální fakulta Univerzity Karlovy v Praze Dobývání znalostí Pravděpodobnost a učení Doc. RNDr. Iveta Mrázová,
Projektové řízení (Projektový cyklus)
Projektové řízení (Projektový cyklus) Vzdělávací program v rámci projektu Rekonstrukce učitelů - posílení profesní a kompetenční připravenosti učitelů (CZ.1.07/1.3.10/02.0052) 1 Projektový cyklus Metodické
4EK311 Operační výzkum. 7. Modely řízení zásob
4EK311 Operační výzkum 7. Modely řízení zásob 7. Charakter poptávky Poptávka Deterministická Stochastická Deterministické modely zásob Stochastické modely zásob Mgr. Sekničková Jana, Ph.D. 2 7.4 Stochastický
VYUŽITÍ PRAVDĚPODOBNOSTNÍ METODY MONTE CARLO V SOUDNÍM INŽENÝRSTVÍ
VYUŽITÍ PRAVDĚPODOBNOSTNÍ METODY MONTE CARLO V SOUDNÍM INŽENÝRSTVÍ Michal Kořenář 1 Abstrakt Rozvoj výpočetní techniky v poslední době umožnil také rozvoj výpočetních metod, které nejsou založeny na bázi
1 Tyto materiály byly vytvořeny za pomoci grantu FRVŠ číslo 1145/2004.
Prostá regresní a korelační analýza 1 1 Tyto materiály byly vytvořeny za pomoci grantu FRVŠ číslo 1145/2004. Problematika závislosti V podstatě lze rozlišovat mezi závislostí nepodstatnou, čili náhodnou
Jiří Neubauer. Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel
Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Výsledky některých náhodných pokusů jsou přímo vyjádřeny číselně (např. při hodu kostkou padne 6). Náhodnou veličinou
KGG/STG Statistika pro geografy
KGG/STG Statistika pro geografy 5. Odhady parametrů základního souboru Mgr. David Fiedor 16. března 2015 Vztahy mezi výběrovým a základním souborem Osnova 1 Úvod, pojmy Vztahy mezi výběrovým a základním
D8 Plánování projektu
Projektový manažer 250+ Kariéra projektového manažera začíná u nás! D Útvarové a procesní řízení D8 Plánování projektu Toto téma obsahuje informace o správném postupu plánování projektu tak, aby byl respektován
Algoritmus pro hledání nejkratší cesty orientovaným grafem
1.1 Úvod Algoritmus pro hledání nejkratší cesty orientovaným grafem Naprogramoval jsem v Matlabu funkci, která dokáže určit nejkratší cestu v orientovaném grafu mezi libovolnými dvěma vrcholy. Nastudoval
Základy teorie pravděpodobnosti
Základy teorie pravděpodobnosti Náhodná veličina Roman Biskup (zapálený) statistik ve výslužbě, aktuálně analytik v praxi ;-) roman.biskup(at)email.cz 12. února 2012 Statistika by Birom Základy teorie
VYUŽITÍ METOD PROJEKTOVÉHO ŘÍZENÍ The use of project management methods Bakalářská práce
Masarykova univerzita Ekonomicko-správní fakulta Studijní obor: Podniková ekonomika a management VYUŽITÍ METOD PROJEKTOVÉHO ŘÍZENÍ The use of project management methods Bakalářská práce Vedoucí bakalářské
Střední průmyslová škola strojnická Olomouc, tř. 17. listopadu 49. Výukový materiál zpracovaný v rámci projektu Výuka moderně
Střední průmyslová škola strojnická Olomouc, tř. 17. listopadu 49 Výukový materiál zpracovaný v rámci projektu Výuka moderně Registrační číslo projektu: CZ.1.07/1.5.00/34.0205 Šablona: III/2Management
9. T r a n s f o r m a c e n á h o d n é v e l i č i n y
9. T r a n s f o r m a c e n á h o d n é v e l i č i n y Při popisu procesů zpracováváme vstupní údaj, hodnotu x tak, že výstupní hodnota y závisí nějakým způsobem na vstupní, je její funkcí y = f(x).
Protokol č. 1. Tloušťková struktura. Zadání:
Protokol č. 1 Tloušťková struktura Zadání: Pro zadané výčetní tloušťky (v cm) vypočítejte statistické charakteristiky a slovně interpretujte základní statistické vlastnosti tohoto souboru tloušťek. Dále
676 + 4 + 100 + 196 + 0 + 484 + 196 + 324 + 64 + 324 = = 2368
Příklad 1 Je třeba prověřit, zda lze na 5% hladině významnosti pokládat za prokázanou hypotézu, že střední doba výroby výlisku je 30 sekund. Přitom 10 náhodně vybraných výlisků bylo vyráběno celkem 540
Otázky k měření centrální tendence. 1. Je dáno rozložení, ve kterém průměr = medián. Co musí být pravdivé o tvaru tohoto rozložení?
Otázky k měření centrální tendence 1. Je dáno rozložení, ve kterém průměr = medián. Co musí být pravdivé o tvaru tohoto rozložení? 2. Určete průměr, medián a modus u prvních čtyř rozložení (sad dat): a.
Řešení. Označme po řadě F (z) Odtud plyne, že
Úloha Nechť ~ R(, ) a Y = Jinak řečeno, Y je odmocnina čísla vybraného zcela náhodně z intervalu (, ) Popište rozdělení veličiny Y a určete jeho modus, medián, střední hodnotu a rozptyl Řešení Označme
PRAVDĚPODOBNOST A STATISTIKA
PRAVDĚPODOBNOST A STATISTIKA Náhodný výběr Nechť X je náhodná proměnná, která má distribuční funkci F(x, ϑ). Předpokládejme, že známe tvar distribuční funkce (víme jaké má rozdělení) a neznáme parametr
Jarqueův a Beryho test normality (Jarque-Bera Test, JB test)
Jarqueův a Beryho test normality (Jarque-Bera Test, JB test) Autoři: Carlos M. Jarque and Anil K. Bera Předpoklady: - Výběrová data mohou obsahovat chybějící pozorování (chybějící hodnoty) vhodné zejména
Příklady k T 2 (platí pro seminární skupiny 1,4,10,11)!!!
Příklady k T 2 (platí pro seminární skupiny 1,4,10,11)!!! Příklad 1.: Obchodník prodává pouze jeden druh zboží a ten také výhradně nakupuje. Činí tak v malém rozsahu, a proto koupil 500 výrobků po 10 Kč
Chyby měření 210DPSM
Chyby měření 210DPSM Jan Zatloukal Stručný přehled Zdroje a druhy chyb Systematické chyby měření Náhodné chyby měření Spojité a diskrétní náhodné veličiny Normální rozdělení a jeho vlastnosti Odhad parametrů
E(X) = np D(X) = np(1 p) 1 2p np(1 p) (n + 1)p 1 ˆx (n + 1)p. A 3 (X) =
Základní rozdělení pravděpodobnosti Diskrétní rozdělení pravděpodobnosti. Pojem Náhodná veličina s Binomickým rozdělením Bi(n, p), kde n je přirozené číslo, p je reálné číslo, < p < má pravděpodobnostní
Charakteristika datového souboru
Zápočtová práce z předmětu Statistika Vypracoval: 10. 11. 2014 Charakteristika datového souboru Zadání: Při kontrole dodržování hygienických norem v kuchyni se prováděl odběr vzduchu a pomocí filtru Pallflex
Obsah přednášky Jaká asi bude chyba modelu na nových datech?
Obsah přednášky Jaká asi bude chyba modelu na nových datech? Chyba modelu Bootstrap Cross Validation Vapnik-Chervonenkisova dimenze 2 Chyba skutečná a trénovací Máme 30 záznamů, rozhodli jsme se na jejich
FAKULTA INFORMATIKY A MANAGEMENTU UNIVERZITA HRADEC KRÁLOVÉ MOV 1 SEMESTRÁLNÍ PRÁCE
FAKULTA INFORMATIKY A MANAGEMENTU UNIVERZITA HRADEC KRÁLOVÉ MOV 1 SEMESTRÁLNÍ PRÁCE Vypracoval: Lenka Novotná Studijní obor: K-Informační management Emailová adresa: lenka.novotna.1@uhk.cz Datum vypracování:
STATISTICKÉ ODHADY Odhady populačních charakteristik
STATISTICKÉ ODHADY Odhady populačních charakteristik Jak stanovit charakteristiky rozložení sledované veličiny v základní populaci? Populaci většinou nemáme celou k dispozici, musíme se spokojit jen s
ROZPOČET INVESTIČNÍHO PROJEKTU
Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem ČR OBLASTI VZ ZDĚLÁVÁNÍ NÍ ŘÍZENÍ PROJEKTŮ V KUR RZ: : FINANČ FINANČNÍ ŘÍZENÍ PROJEKTŮ V OBLASTI VZDĚLÁVÁNÍ ROZPOČET INVESTIČNÍHO
Pravděpodobnost a matematická statistika
Pravděpodobnost a matematická statistika Příklady k přijímacím zkouškám na doktorské studium 1 Popisná statistika Určete aritmetický průměr dat, zadaných tabulkou hodnot x i a četností n i x i 1 2 3 n
8 Střední hodnota a rozptyl
Břetislav Fajmon, UMAT FEKT, VUT Brno Této přednášce odpovídá kapitola 10 ze skript [1]. Také je k dispozici sbírka úloh [2], kde si můžete procvičit příklady z kapitol 2, 3 a 4. K samostatnému procvičení
TGH05 - aplikace DFS, průchod do šířky
TGH05 - aplikace DFS, průchod do šířky Jan Březina Technical University of Liberec 31. března 2015 Grafová formulace CPM (critical path method) Orientovaný acyklický graf (DAG) je orientovaný graf neobsahující
Aproximace binomického rozdělení normálním
Aproximace binomického rozdělení normálním Aproximace binomického rozdělení normálním Příklad Sybilla a Kassandra tvrdí, že mají telepatické schopnosti, a chtějí to dokázat následujícím pokusem: V jedné
1. Přednáška. Ing. Miroslav Šulai, MBA
N_OFI_2 1. Přednáška Počet pravděpodobnosti Statistický aparát používaný ve financích Ing. Miroslav Šulai, MBA 1 Počet pravděpodobnosti -náhodné veličiny 2 Počet pravděpodobnosti -náhodné veličiny 3 Jevy
Určete zákon rozložení náhodné veličiny, která značí součet ok při hodu a) jednou kostkou, b) dvěma kostkami, c) třemi kostkami.
3.1. 3.2. Třikrát vystřelíme na cíl. Pravděpodobnost zásahu při každém výstřelu je p = 0,7. Určete: a) pravděpodobnostní funkci počtu zásahů při třech nezávislých výsledcích, b) distribuční funkci a její
Definice spojité náhodné veličiny zjednodušená verze
Definice spojité náhodné veličiny zjednodušená verze Náhodná veličina X se nazývá spojitá, jestliže existuje nezáporná funkce f : R R taková, že pro každé a, b R { }, a < b, platí P(a < X < b) = b a f
Neuronové časové řady (ANN-TS)
Neuronové časové řady (ANN-TS) Menu: QCExpert Prediktivní metody Neuronové časové řady Tento modul (Artificial Neural Network Time Series ANN-TS) využívá modelovacího potenciálu neuronové sítě k predikci
Normální (Gaussovo) rozdělení
Normální (Gaussovo) rozdělení Normální (Gaussovo) rozdělení popisuje vlastnosti náhodné spojité veličiny, která vzniká složením různých náhodných vlivů, které jsou navzájem nezávislé, kterých je velký
X = x, y = h(x) Y = y. hodnotám x a jedné hodnotě y. Dostaneme tabulku hodnot pravděpodobnostní
..08 8cv7.tex 7. cvičení - transformace náhodné veličiny Definice pojmů a základní vzorce Je-li X náhodná veličina a h : R R je měřitelná funkce, pak náhodnou veličinu Y, která je definovaná vztahem X
Regulační diagramy (RD)
Regulační diagramy (RD) Control Charts Patří k základním nástrojům vnitřní QC laboratoře či výrobního procesu (grafická pomůcka). Pomocí RD lze dlouhodobě sledovat stabilitu (chemického) měřícího systému.
Simulace. Simulace dat. Parametry
Simulace Simulace dat Menu: QCExpert Simulace Simulace dat Tento modul je určen pro generování pseudonáhodných dat s danými statistickými vlastnostmi. Nabízí čtyři typy rozdělení: normální, logaritmicko-normální,
Limitní věty teorie pravděpodobnosti. Jiří Neubauer. Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel
Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Jestliže opakujeme nezávisle nějaký pokus, můžeme z pozorovaných hodnot sestavit rozdělení relativních četností
Výrobní produkce divizí Ice Cream Po lo ha plane t Rozložený výse ový 3D graf Bublinový graf Histogram t s tn e ídy
Výrobní produkce divizí Ice Cream Polo ha planet Rozložený výsečový 3D graf Bublinový graf Ice Cream 1 15% Ice Cream 2 12% Ice Cream 3 18% Ice Cream 4 20% Statistika 40 30 20 Ice Cream 6 19% Ice Cream
Praktická statistika. Petr Ponížil Eva Kutálková
Praktická statistika Petr Ponížil Eva Kutálková Zápis výsledků měření Předpokládejme, že známe hodnotu napětí U = 238,9 V i její chybu 3,3 V. Hodnotu veličiny zapíšeme na tolik míst, aby až poslední bylo
Pojistná matematika 2 KMA/POM2E
Pojistná matematika 2 KMA/POM2E RNDr. Ondřej Pavlačka, Ph.D. pracovna 5.052 tel. 585 63 4027 e-mail: ondrej.pavlacka@upol.cz web: http://aix-slx.upol.cz/~pavlacka (informace + podkladové materiály) Konzultační
STANOVENÍ SPOLEHLIVOSTI GEOTECHNICKÝCH KONSTRUKCÍ. J. Pruška, T. Parák
STANOVENÍ SPOLEHLIVOSTI GEOTECHNICKÝCH KONSTRUKCÍ J. Pruška, T. Parák OBSAH: 1. Co je to spolehlivost, pravděpodobnost poruchy, riziko. 2. Deterministický a pravděpodobnostní přístup k řešení problémů.
Operativní plán (detailní)
Plánování z hlediska času, zdrojů a nákladů Ing. Jaroslava Tománková, Ph.D. tomankov@fsv.cvut.cz Úrovně plánování dlouhodobý plán - strategický plán činnosti - hrubě agregované období - delší než 1 rok
Náhodná proměnná. Náhodná proměnná může mít rozdělení diskrétní (x 1. , x 2. ; x 2. spojité (<x 1
Náhodná proměnná Náhodná proměnná může mít rozdělení diskrétní (x 1, x 2,,x n ) spojité () Poznámky: 1. Fyzikální veličiny jsou zpravidla spojité, ale změřené hodnoty jsou diskrétní. 2. Pokud
Zápočtová práce STATISTIKA I
Zápočtová práce STATISTIKA I Obsah: - úvodní stránka - charakteristika dat (původ dat, důvod zpracování,...) - výpis naměřených hodnot (v tabulce) - zpracování dat (buď bodové nebo intervalové, podle charakteru
SPOLEHLIVOST KONSTRUKCÍ & TEORIE SPOLEHLIVOSTI část 5: Aproximační techniky
SPOLEHLIVOST KONSTRUKCÍ & TEORIE SPOLEHLIVOSTI část 5: Aproximační techniky Drahomír Novák Jan Eliáš 2012 Spolehlivost konstrukcí, Drahomír Novák & Jan Eliáš 1 část 5 Aproximační techniky 2012 Spolehlivost