Závěrečná práce studentského projektu

Save this PDF as:
Rozměr: px
Začít zobrazení ze stránky:

Download "Závěrečná práce studentského projektu"

Transkript

1 Gymnázium Jana Nerudy Závěrečná práce studentského projektu Studium deformace vláken Evropský sociální fond Praha a EU Investujeme do vaší budoucnosti 214 Petr Krýda Petr Jaroš Petr Kolouch Matěj Seykora Tadeáš Trnka

2 Obsah Obsah 1 Anotace 1 1. Pružná deformace vlákna 2 2. Plastická deformace vlákna 6 3. Vliv rychlosti na průběh deformace 7 4. Závislost napětí vzorku na relativním prodloužení 8 5. Napěťová relaxace 8 6. Srovnání vlastnosti mědi a cínové pájky 9 7. Diskuse 1 8. Závěr 1 9. Poděkování 1. Zdroje Anotace: Experimentální měření deformačních křivek textilních, plastových a kovových vláken. Vyhodnocení elastických a plastických vlastností a pevnosti v tahu. 1

3 1. Pružná deformace vlákna Jistě všichni víme, jak se střílí z praku gumička se musí natáhnout a pak pustit. Jenomže aby šla natáhnout, tak musí být upevněna. To je jeden z mnoha závěrů, ke kterým se dá studiem deformace vláken dojít. Na obrázku 1 je kresba aparatury, kterou jsme k tomuto používali. siloměr vzorek motorek Obr. 1 Toto zařízení je připojeno ke školnímu systému ISES, kde z měření sil s určitou frekvencí počítač udělá graf. Ale siloměr je z výroby kalibrován jen pro jednu polohu působiště, kterou my potřebujeme změnit tak, že přesuneme siloměr, abychom zvětšili jeho rozsah. K tomu jsme potřebovali kalibrační křivku, která vyjadřuje závislost síla-údaj siloměru. Zatížení [g] Údaj siloměru [dílek] -1,944-1,889-1,761-1,633-1,55-1,383-1,237-1,127-1,6 Zatížení [g] Údaj siloměru [dílek] -,859 -,731,725,878 1,3 1,176 1,323 1,475 1,621 Abychom mohli popsat skok na pružném vzorku, tak musíme znát průběh začáteční fáze deformační křivky pružného vlákna, ale tu již proměříme v celém rozsahu. Počáteční délka vzorku byla 17 cm, průměr 1mm a rychlost natahování byla,157 m*s -1, teplota vzorku byla 25⁰C. Závislost prodloužení vzorku-tahová síla bude pochopitelně ovlivněna materiálem, délkou vzorku, plošným průřezem atd. Tyto všechny údaje musíme přepočítat tak, abychom mohli vzorky rozumně porovnávat vyjadřování pomocí poměru protažení - původní délka vzorku (=relativní protažení ε) a poměru napínaní: působící síla plošný obsah průřezu (=tahové napětí σ). Přepočítání prodloužení na relativní prodloužení je vskutku jednoduché: ε = S druhým poměrem už je to horší, jelikož jak se působící síla zvětšuje, tak se vlákno sužuje. Nicméně objem zůstává zachován, což by teda znamenalo, že platí L*S=L *S. Konečný vzorec je σ = 2

4 deformační napětí (PA) síla (N) V praxi se u méně elastických materiálů než pryž se tahové napětí počítá, jako kdyby se průřez neměnil. Tomu se říká smluvní napětí, ovšem tyto hodnoty jsou menší než skutečné hodnoty. Průběh deformace je zpočátku napínání lineární tomu se říká Hookův zákon: Konstantu E o hodnotě 2,5*1 6 N*m -2 nazýváme modul pružnosti v tahu zkoumané pryže. Pryžové vlákno se pružně deformuje téměř až do přetržení. 2,5 2 registrační křivka 1,5 1,5 1 2 čas 3 (s) ,E+6 6,E+6 4,E+6 2,E+6,E+,,5 1, 1,5 2, 2,5 3, Řady1 3

5 síla (N) deformační napětí (PA) síla (N) 4, 3,5 3, 2,5 2, 1,5 1,,5, -,5 registrační křivka SÍLA čas (s) 8,E+6 6,E+6 4,E+6 2,E+6 SKUTEČNÉ NAPĚTÍ,E+, 1, 2, 3, 4, 5, 6, -2,E+6 Pro srovnání tu máme ještě výsledky zkoumání deformace silonového vlákna vlasce: registrační křivka 1,6 1,4 1,2 1,,8,6,4,2, čas (s) 4

6 deformační napětí síla (1N) smluvní napětí (PA) deformační napětí (PA) deformační křivka 1E+9 5,2,4,6,8,1,12,14,16 1,5E+8 1,E+8 5,E+7,E+,,2,4,6,8,1,12,14,16 A ještě vlas:,6 registrační křivka,5,4,3,2 SÍLA,1,, 5, 1, 15, 2, čas 1,2E+2 1,E+2 8,E+1 6,E+1 4,E+1 2,E+1,E+,,5,1,15,2,25,3,35,4,45 5

7 síla (1N ) 2. Plastická deformace vlákna Zde se budeme zabývat deformací kovových vzorků, tj. Tenkých měděných drátků. K experimentům použijeme stejné zařízení, jež jsme používali při natahování pryžových a silových vláken a jehož obrázek a schéma je na předchozích stranách práce. Drátky zvolíme tenké, kvůli tomu aby nedocházelo k nepřesnostem měření např. z nějakého ohybu zařízení. Na následujícím grafu je registrační křivka pro měď. 14 registrační křivka pro CUS čas (s) Ve výše uvedeném grafu je zobrazena registrační křivka, kde je měřena síla, která působí na vzorek v závislosti na čase. Zde bychom se chtěli zabývat skutečným a smluvním napětím. Smluvní napětí je napětí, které bylo spočítáno pomocí výsledků měření a kde byl započítán průřez změřený v okamžiku, kdy na drátek nepůsobila žádná síla. Oproti tomu skutečné napětí je napětí, při kterém byl započítán průřez drátku v okamžiku, kdy na něj nepůsobila žádná síla. 6

8 deformační napětí (PA) deformační napětí (PA) K našemu měření ale také lze přistupovat kriticky: počáteční část křivky je velmi krátká (nejsou na ní vidět malé změny) a je silně ovlivňována podmínkami pokusu, tj. je pružná deformace silo-měrného čidla a tažného zařízení a zároveň pružné upevnění vzorku, což silně ovlivňuje přesnost měření. Dále také při měření předpokládáme, že se vzorek homogenně deformuje po celé délce, což ve skutečnosti nemusí být pravda. Na deformační křivce můžeme pozorovat, že při pokračování plastické deformace se zvyšuje napětí. Drátek se tak stává více a více odolnější vůči následující plastické deformaci. Tento jev je označován jako zpevnění, a proto je někdy deformační křivka nazývána křivkou zpevnění. Pro kvantifikaci charakteristiku tohoto zpevnění se zde hodí sklon zpevnění. Zde popisované zpevňování alespoň do určité míry udržuje homogenitu deformace v celé délce vzorku. Různě zpevněné části vyvolávají různá přenesení deformace pro dosažení homogenity. Níže uvedený graf popisuje deformační napětí. 6E+9 5E+9 4E+9 3E+9 2E+9 1E+9,2,4,6,8,1,12,14 Vliv rychlosti na průběh deformace Je také možné očekávat, že rychlost natahování drátku a teplota bude mít vliv na průběh křivky zpevnění. Zkoušky s různou rychlostí deformace jsme prováděli pomocí tažných os, u nichž byly průměry odstupňovány geometrickou řadou. Průběhy jsou prakticky shodné. 6E+9 5E+9 Chart Title 4E+9 3E+9 2E+9 1E+9,2,4,6,8,1,12,14 7

9 Závislost napětí vzorku na relativním prodloužení Vrátíme se zpět ke křivce zpevnění. Z počátečních elastických částí deformačních křivek je zřejmé, že u polykrystalických měděných drátků existuje krátká oblast pružné tzv. Hookovské deformace lineárně probíhající. Na základě měření tedy můžeme průběh křivky zpevnění popsat Hookovým zákonem Sloupec C Řady3 Napěťová relaxace Dalším zajímavým námětem pro experiment je pozorování při přerušování deformace, tj. vzorek byl zpočátku deformován a po dosažení určité deformace (napětí) jsme deformaci zastavili a dále sledovali jen průběh napětí s časem. 1,6 1,4 1,2 1,8,6,4,2 -,

10 ,2,4,6,8,1 Srovnání vlastnosti mědi a cínové pájky Na konec provedeme krom deformačních zkoušek i nějaké analogické zkoušky s cínovou pájkou. Tento materiál jsme zvolili zejména proto, že jeho plastická deformace je na napětí nenáročná my můžeme použít stejné pomůcky i přes to, že jeho průřez je několikrát větší. Princip měření je zde stejný jako u mědi. Průměr drátku: 1 mm Průměr osy: 12 mm Délka drátu: 1,25 m Jednotka síly B:,1 N Vzorkovací frekvence: 2 Hz 9

11 smaluvní napětí (PA) 2,5E+7 2,E+7 1,5E+7 Řady1 1,E+7 5,E+6,E+,E+2,E-24,E-26,E-28,E-21,E-1 Průměr drátku: 1 mm Průměr osy: 3,15 mm Délka drátku: 1,25 m Jednotka síly B:,1 N Vzorkovací frekvence: 2 Hz Perioda otáček T = 1 s Diskuse Přesnost měření může být narušena špatným uchycením zkoumaného vzorku na siloměr, dále pak skutečností, že navzdory našemu předpokladu, že se vzorek homogenně deformuje po celé délce to tak nemusí být. Závěr Zkoumané vzorky sestupně seřazené podle pevnosti: CuS1 Vlas CuS2 Cu Niť2 Vlasec Niť3 Niť1 Pryž1 Pryž2 5*1 9 2,5*1 8 2,4*1 8 2,3*1 8 1,4*1 8 1,2*1 8 6,1*1 7 4*1 7 7*1 6 7*1 6 Poděkování Chtěli bychom poděkovat Doc.Rojkovi za čas, který nám věnoval při konzultacích a poskytnuté prostředky. We would like to thank to Doc.Rojko for his time and for funds provided by him. 1

12 Zdroje Habilitační práce Doc.Rojka (Metoda reprezentativního příkladu ve vyučování fyziky, Praha, 1994) Internet (různě, 214) 11

Fyzikální experimenty podporované počítačem

Fyzikální experimenty podporované počítačem Fyzikální experimenty podporované počítačem František Lustig, Milan Rojko, ČR Abstrakt Příspěvek popisuje jednoduché školní fyzikální deformační experimenty ve spojení s počítačem při použití školního

Více

2.4.6 Hookův zákon. Předpoklady: 2405. Podíváme se ještě jednou na začátek deformační křivky. 0,0015 0,003 Pro hodnoty normálového napětí menší než σ

2.4.6 Hookův zákon. Předpoklady: 2405. Podíváme se ještě jednou na začátek deformační křivky. 0,0015 0,003 Pro hodnoty normálového napětí menší než σ .4.6 Hookův zákon Předpoklady: 405 Podíváme se ještě jednou na začátek deformační křivky. 500 P 50 0,0015 0,00 Pro hodnoty normálového napětí menší než σ U je normálové napětí přímo úměrné relativnímu

Více

KONSTITUČNÍ VZTAHY. 1. Tahová zkouška

KONSTITUČNÍ VZTAHY. 1. Tahová zkouška 1. Tahová zkouška Tahová zkouška se provádí dle ČSN EN ISO 6892-1 (aktualizována v roce 2010) Je nejčastější mechanickou zkouškou kovových materiálů. Zkoušky se realizují na trhacích strojích, kde se zkušební

Více

pracovní list studenta Struktura a vlastnosti pevných látek Deformační křivka pevných látek, Hookův zákon

pracovní list studenta Struktura a vlastnosti pevných látek Deformační křivka pevných látek, Hookův zákon Výstup RVP: Klíčová slova: pracovní list studenta Struktura a vlastnosti pevných látek, Mirek Kubera žák měří vybrané veličiny vhodnými metodami, zpracuje a vyhodnotí výsledky měření, analyzuje průběh

Více

Vlastnosti a zkoušení materiálů. Přednáška č.4 Úvod do pružnosti a pevnosti

Vlastnosti a zkoušení materiálů. Přednáška č.4 Úvod do pružnosti a pevnosti Vlastnosti a zkoušení materiálů Přednáška č.4 Úvod do pružnosti a pevnosti Teoretická a skutečná pevnost kovů Trvalá deformace polykrystalů začíná při vyšším napětí než u monokrystalů, tj. hodnota meze

Více

Seriál VII.III Deformace, elasticita

Seriál VII.III Deformace, elasticita Výfučtení: Deformace, elasticita Při řešení fyzikálních úloh s tělesy, které se vlivem vnějších sil pohybují nebo sráží, obvykle používáme představu tzv. dokonale tuhého tělesa. Takové těleso se při působení

Více

STRUKTURA A VLASTNOSTI PEVNÝCH LÁTEK

STRUKTURA A VLASTNOSTI PEVNÝCH LÁTEK STRUKTURA A VLASTNOSTI PEVNÝCH LÁTEK Ing.Jiřina Strnadová Předmět:Fyzika Praha a EU Investujeme do vaší budoucnosti 1 Obsah Teoretický úvod... 3 Rozdělení pevných látek... 3 Mechanické vlastnosti pevných

Více

Viskoelasticita. určeno pro praktikum fyziky Jihočeské univerzity, verze

Viskoelasticita. určeno pro praktikum fyziky Jihočeské univerzity, verze Viskoelasticita určeno pro praktikum fyziky Jihočeské univerzity, zeman@dzeta.cz verze 0.0.2 10.1.2010 Abstrakt V úloze se provede postupné přetržení tří vzorků lidského vlasu a tří vzorků měděného vlákna

Více

1. Teorie. jednom konci pevně upevněn a na druhém konci veden přes kladku se zrcátkem

1. Teorie. jednom konci pevně upevněn a na druhém konci veden přes kladku se zrcátkem MěřENÍ MODULU PRUžNOSTI V TAHU TEREZA ZÁBOJNÍKOVÁ 1. Teorie 1.1. Měření modulu pružnosti z protažení drátu. Pokud na drát působí síla ve směru jeho délky, drát se prodlouží. Je li tato jeho deformace pružná

Více

1. Měření hodnoty Youngova modulu pružnosti ocelového drátu v tahu a kovové tyče v ohybu

1. Měření hodnoty Youngova modulu pružnosti ocelového drátu v tahu a kovové tyče v ohybu Měření modulu pružnosti Úkol : 1. Měření hodnoty Youngova modulu pružnosti ocelového drátu v tahu a kovové tyče v ohybu Pomůcky : - Měřící zařízení s indikátorovými hodinkami - Mikrometr - Svinovací metr

Více

STRUKTURA A VLASTNOSTI PEVNÝCH LÁTEK

STRUKTURA A VLASTNOSTI PEVNÝCH LÁTEK STRUKTURA A VLASTNOSTI PEVNÝCH LÁTEK 1. Druhy pevných látek AMORFNÍ nepravidelné uspořádání molekul KRYSTALICKÉ pravidelné uspořádání molekul krystalická mřížka polykrystaly více jader (krystalových zrn),

Více

LOGO. Struktura a vlastnosti pevných látek

LOGO. Struktura a vlastnosti pevných látek Struktura a vlastnosti pevných látek Rozdělení pevných látek (PL): monokrystalické krystalické Pevné látky polykrystalické amorfní Pevné látky Krystalické látky jsou charakterizovány pravidelným uspořádáním

Více

Nauka o materiálu. Přednáška č.4 Úvod do pružnosti a pevnosti

Nauka o materiálu. Přednáška č.4 Úvod do pružnosti a pevnosti Nauka o materiálu Přednáška č.4 Úvod do pružnosti a pevnosti Teoretická a skutečná pevnost kovů Trvalá deformace polykrystalů začíná při vyšším napětí než u monokrystalů, tj. hodnota meze kluzu R e, odpovídající

Více

Střední průmyslová škola strojírenská a Jazyková škola s právem státní jazykové zkoušky, Kolín IV, Heverova 191

Střední průmyslová škola strojírenská a Jazyková škola s právem státní jazykové zkoušky, Kolín IV, Heverova 191 Název školy Název projektu Registrační číslo projektu Autor Název šablony Střední průmyslová škola strojírenská a Jazyková škola s právem státní jazykové zkoušky, Kolín IV, Heverova 191 Modernizace výuky

Více

PRAKTIKUM I. Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK. úloha č. 11 Název: Dynamická zkouška deformace látek v tlaku

PRAKTIKUM I. Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK. úloha č. 11 Název: Dynamická zkouška deformace látek v tlaku Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK PRAKTIKUM I. úloha č. 11 Název: Dynamická zkouška deformace látek v tlaku Pracoval: Jakub Michálek stud. skup. 15 dne:. dubna 009 Odevzdal

Více

Mechanika kontinua. Mechanika elastických těles Mechanika kapalin

Mechanika kontinua. Mechanika elastických těles Mechanika kapalin Mechanika kontinua Mechanika elastických těles Mechanika kapalin Mechanika kontinua Mechanika elastických těles Mechanika kapalin a plynů Kinematika tekutin Hydrostatika Hydrodynamika Kontinuum Pro vyšetřování

Více

Vlastnosti a zkoušení materiálů. Přednáška č.3 Pevnost krystalických materiálů

Vlastnosti a zkoušení materiálů. Přednáška č.3 Pevnost krystalických materiálů Vlastnosti a zkoušení materiálů Přednáška č.3 Pevnost krystalických materiálů Zpevnění monokrystalu a polykrystalického kovu Monokrystal Atomy jsou pravidelně uspořádány, tvoří trojrozměrné útvary, které

Více

Katedra textilních materiálů ENÍ TEXTILIÍ PŘEDNÁŠKA 7 MECHANICKÉ VLASTNOSTI

Katedra textilních materiálů ENÍ TEXTILIÍ PŘEDNÁŠKA 7 MECHANICKÉ VLASTNOSTI PŘEDNÁŠKA 7 Definice: Mechanické vlastnosti materiálů - odezva na mechanické působení od vnějších sil: 1. na tah 2. na tlak 3. na ohyb 4. na krut 5. střih F F F MK F x F F F MK 1. 2. 3. 4. 5. Druhy namáhání

Více

Pružnost, pevnost, tvrdost, houževnatost. Jaký je v tom rozdíl?

Pružnost, pevnost, tvrdost, houževnatost. Jaký je v tom rozdíl? Pružnost, pevnost, tvrdost, houževnatost. Jaký je v tom rozdíl? Zkušební stroj pro zkoušky mechanických vlastností materiálů na Ústavu fyziky materiálů AV ČR, v. v. i. Pružnost (elasticita) Z fyzikálního

Více

Experimentální realizace Buquoyovy úlohy

Experimentální realizace Buquoyovy úlohy Experimentální realizace Buquoyovy úlohy ČENĚK KODEJŠKA, JAN ŘÍHA Přírodovědecká fakulta Univerzity Palackého, Olomouc Abstrakt Tato práce se zabývá experimentální realizací Buquoyovy úlohy. Jedná se o

Více

( r ) 2. Měření mechanické hysterezní smyčky a modulu pružnosti ve smyku

( r ) 2. Měření mechanické hysterezní smyčky a modulu pružnosti ve smyku ěření mechanické hysterezní smyčky a modulu pružnosti ve smyku 1 ěření mechanické hysterezní smyčky a modulu pružnosti ve smyku Úkol č.1: Získejte mechanickou hysterezní křivku pro dráty různé tloušťky

Více

Zapojení odporových tenzometrů

Zapojení odporových tenzometrů Zapojení odporových tenzometrů Zadání 1) Seznamte se s konstrukcí a použitím lineárních fóliových tenzometrů. 2) Proveďte měření na fóliových tenzometrech zapojených do můstku. 3) Zjistěte rovnici regresní

Více

7 Lineární elasticita

7 Lineární elasticita 7 Lineární elasticita Elasticita je schopnost materiálu pružně se deformovat. Deformace ideálně elastických látek je okamžitá (časově nezávislá) a dokonale vratná. Působí-li na infinitezimální objemový

Více

Měření modulů pružnosti G a E z periody kmitů pružiny

Měření modulů pružnosti G a E z periody kmitů pružiny Měření modulů pružnosti G a E z periody kmitů pružiny Online: http://www.sclpx.eu/lab2r.php?exp=2 V tomto experimentu vycházíme z pojetí klasického pokusu s pružinovým oscilátorem. Z periody kmitů se obvykle

Více

Téma: Měření Youngova modulu pružnosti. Křivka deformace.

Téma: Měření Youngova modulu pružnosti. Křivka deformace. PROTOKOL O LABORATORNÍ PRÁCI Z YZIKY Téma úlohy: Měření Youngova modulu pružnosti. Křivka deformace. Pracoval: Třída: Datum: Spolupracovali: Teplota: Tlak: Vlhkost vzduchu: Hodnocení: Téma: Měření Youngova

Více

Požadavky na technické materiály

Požadavky na technické materiály Základní pojmy Katedra materiálu, Strojní fakulta Technická univerzita v Liberci Základy materiálového inženýrství pro 1. r. Fakulty architektury Doc. Ing. Karel Daďourek, 2010 Rozdělení materiálů Požadavky

Více

6. Měření Youngova modulu pružnosti v tahu a ve smyku

6. Měření Youngova modulu pružnosti v tahu a ve smyku 6. Měření Youngova modulu pružnosti v tahu a ve smyu Úol : Určete Youngův modul pružnosti drátu metodou přímou (z protažení drátu). Prostudujte doporučenou literaturu: BROŽ, J. Zálady fyziálních měření..

Více

Odpor vzduchu. Jakub Benda a Milan Rojko, Gymnázium Jana Nerudy, Praha

Odpor vzduchu. Jakub Benda a Milan Rojko, Gymnázium Jana Nerudy, Praha Odpor vzduchu Jakub Benda a Milan Rojko, Gymnázium Jana Nerudy, Praha V kroužku experimentální fyziky jsme ověřovali vztah: F = ½ SCρv (1) V tomto vztahu je F odporová aerodynamická síla působící na těleso

Více

Nelineární problémy a MKP

Nelineární problémy a MKP Nelineární problémy a MKP Základní druhy nelinearit v mechanice tuhých těles: 1. materiálová (plasticita, viskoelasticita, viskoplasticita,...) 2. geometrická (velké posuvy a natočení, stabilita konstrukcí)

Více

VY_32_INOVACE_AUT-2.N-15-TENZOMETRICKE SNIMAČE. Střední odborná škola a Střední odborné učiliště, Dubno

VY_32_INOVACE_AUT-2.N-15-TENZOMETRICKE SNIMAČE. Střední odborná škola a Střední odborné učiliště, Dubno Číslo projektu Číslo materiálu Název školy Autor Tematická oblast Ročník CZ.1.07/1.5.00/34.0581 VY_32_INOVACE_AUT-2.N-15-TENZOMETRICKE SNIMAČE Střední odborná škola a Střední odborné učiliště, Dubno Ing.

Více

Téma 2 Napětí a přetvoření

Téma 2 Napětí a přetvoření Pružnost a plasticita, 2.ročník bakalářského studia Téma 2 Napětí a přetvoření Deformace a posun v tělese Fzikální vztah mezi napětími a deformacemi, Hookeův zákon, fzikální konstant a pracovní diagram

Více

Příklad oboustranně vetknutý nosník

Příklad oboustranně vetknutý nosník Příklad oboustranně vetknutý nosník výpočet podle viskoelasticity: 4 L fˆ L w, t J t, t 384I 0 průhyb uprostřed co se změní v případě, fˆ že se zatížení M mění x t v čase? x Lx L H t t0 1 fl ˆ M fˆ 0,

Více

Porušení hornin. J. Pruška MH 7. přednáška 1

Porušení hornin. J. Pruška MH 7. přednáška 1 Porušení hornin Předpoklady pro popis mechanických vlastností hornin napjatost masivu je včase a prostoru proměnná nespojitosti jsou určeny pevnostními charakteristikami prostředí horniny ovlivňuje rychlost

Více

Test A 100 [%] 1. Čím je charakteristická plastická deformace? - Je to deformace nevratná.

Test A 100 [%] 1. Čím je charakteristická plastická deformace? - Je to deformace nevratná. Test A 1. Čím je charakteristická plastická deformace? - Je to deformace nevratná. 2. Co je to µ? - Poissonův poměr µ poměr poměrného příčného zkrácení k poměrnému podélnému prodloužení v oblasti pružných

Více

Hodnocení vlastností folií z polyethylenu (PE)

Hodnocení vlastností folií z polyethylenu (PE) Laboratorní cvičení z předmětu "Kontrolní a zkušební metody" Hodnocení vlastností folií z polyethylenu (PE) Zadání: Na základě výsledků tahové zkoušky podle norem ČSN EN ISO 527-1 a ČSN EN ISO 527-3 analyzujte

Více

Střední průmyslová škola strojírenská a Jazyková škola s právem státní jazykové zkoušky, Kolín IV, Heverova 191

Střední průmyslová škola strojírenská a Jazyková škola s právem státní jazykové zkoušky, Kolín IV, Heverova 191 Název školy Název projektu Registrační číslo projektu Autor Název šablony Střední průmyslová škola strojírenská a Jazyková škola s právem státní jazykové zkoušky, Kolín IV, Heverova 191 Modernizace výuky

Více

MAGNETICKÉ POLE PERMANENTNÍHO MAGNETU

MAGNETICKÉ POLE PERMANENTNÍHO MAGNETU MAGNETICKÉ POLE PERMANENTNÍHO MAGNETU Pomůcky: čidlo polohy Go!Motion, čidlo magnetického pole MG-BTA, magnet, provázek (gumička, izolepa), vhodný stativ na magnet, LabQuest, program LoggerPro Postup:

Více

PRAKTIKUM... Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK. Odevzdal dne: Seznam použité literatury 0 1. Celkem max.

PRAKTIKUM... Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK. Odevzdal dne: Seznam použité literatury 0 1. Celkem max. Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK PRAKTIKUM... Úloha č. Název: Pracoval: stud. skup. dne Odevzdal dne: Možný počet bodů Udělený počet bodů Práce při měření 0 5 Teoretická

Více

PRUŽNOST A PLASTICITA I

PRUŽNOST A PLASTICITA I Otázky k procvičování PRUŽNOST A PLASTICITA I 1. Kdy je materiál homogenní? 2. Kdy je materiál izotropní? 3. Za jakých podmínek můžeme použít princip superpozice účinků? 4. Vysvětlete princip superpozice

Více

A mez úměrnosti B mez pružnosti C mez kluzu (plasticity) P vznik krčku na zkušebním vzorku, smluvní mez pevnosti σ p D přetržení zkušebního vzorku

A mez úměrnosti B mez pružnosti C mez kluzu (plasticity) P vznik krčku na zkušebním vzorku, smluvní mez pevnosti σ p D přetržení zkušebního vzorku 1. Úlohy a cíle teorie plasticity chopnost tuhých těles deformovat se působením vnějších sil a po odnětí těchto sil nabývat původního tvaru a rozměrů se nazývá pružnost. 1.1 Plasticita, pracovní diagram

Více

Modelování a aproximace v biomechanice

Modelování a aproximace v biomechanice Modelování a aproximace v biomechanice Během většiny lidské aktivity působí v jednom okamžiku víc než jedna skupina svalů. Je-li úkolem analyzovat síly působící v kloubech a svalech během určité lidské

Více

12. Struktura a vlastnosti pevných látek

12. Struktura a vlastnosti pevných látek 12. Struktura a vlastnosti pevných látek Osnova: 1. Látky krystalické a amorfní 2. Krystalová mřížka, příklady krystalových mřížek 3. Poruchy krystalových mřížek 4. Druhy vazeb mezi atomy 5. Deformace

Více

Vlna z kyvadel. Teorie. Soustředění mladých fyziků a matematiků, MFF UK Kořenov autoři: Pavel Dušek a Michael Němý konzultant: Věra Koudelková

Vlna z kyvadel. Teorie. Soustředění mladých fyziků a matematiků, MFF UK Kořenov autoři: Pavel Dušek a Michael Němý konzultant: Věra Koudelková Soustředění mladých fyziků a matematiků, MFF UK Kořenov 2012 Vlna z kyvadel autoři: Pavel Dušek a Michael Němý konzultant: Věra Koudelková 1) Zadání: Inspirujte se videem1 a pokuste se sestavit soustavu

Více

PRAKTIKUM I. Oddělení fyzikálních praktik při Kabinetu výuky obecně fyziky MFF UK. úlohač.11 Název: Dynamická zkouška deformace látek v tlaku

PRAKTIKUM I. Oddělení fyzikálních praktik při Kabinetu výuky obecně fyziky MFF UK. úlohač.11 Název: Dynamická zkouška deformace látek v tlaku Oddělení fyzikálních praktik při Kabinetu výuky obecně fyziky MFF UK PRAKTIKUM I. úlohač.11 Název: Dynamická zkouška deformace látek v tlaku Pracoval: Lukáš Ledvina stud.skup.17 10.3.2009 Odevzdal dne:

Více

Vlastnosti a zkoušení materiálů. Přednáška č.9 Plasticita a creep

Vlastnosti a zkoušení materiálů. Přednáška č.9 Plasticita a creep Vlastnosti a zkoušení materiálů Přednáška č.9 Plasticita a creep Vliv teploty na chování materiálu 1. Teplotní roztažnost L = L α T ( x) dl 2. Závislost modulu pružnosti na teplotě: Modul pružnosti při

Více

Nauka o materiálu. Přednáška č.3 Pevnost krystalických materiálů

Nauka o materiálu. Přednáška č.3 Pevnost krystalických materiálů Nauka o materiálu Přednáška č.3 Pevnost krystalických materiálů Zpevnění monokrystalu a polykrystalického kovu Monokrystal Atomy jsou pravidelně uspořádány, tvoří trojrozměrné útvary, které lze získat

Více

Projevy dotvarování na konstrukcích (na úrovni průřezových modelů)

Projevy dotvarování na konstrukcích (na úrovni průřezových modelů) PŘEDNÁŠKY Projevy dotvarování na konstrukcích (na úrovni průřezových modelů) Volné dotvarování Vázané dotvarování Dotvarování a geometrická nelinearita Volné dotvarování Vývoj deformací není omezován staticky

Více

6. Viskoelasticita materiálů

6. Viskoelasticita materiálů 6. Viskoelasticita materiálů Viskoelasticita materiálů souvisí se schopností materiálů tlumit mechanické vibrace. Uvažujme harmonické dynamické namáhání (tzn. střídavě v tahu a tlaku) materiálu v oblasti

Více

Název: Studium kmitů na pružině

Název: Studium kmitů na pružině Název: Studium kmitů na pružině Autor: Mgr. Lucia Klimková Název školy: Gymnázium Jana Nerudy, škola hl. města Prahy Předmět (mezipředmětové vztahy) : Fyzika (Matematika) Tematický celek: Mechanické kmitání

Více

Inovace a zkvalitnění výuky prostřednictvím ICT Kontrola a měření strojních součástí a jejich polotovarů Pevnostní zkouška statická na tah

Inovace a zkvalitnění výuky prostřednictvím ICT Kontrola a měření strojních součástí a jejich polotovarů Pevnostní zkouška statická na tah Střední průmyslová škola a Vyšší odborná škola technická Brno, Sokolská 1 Šablona: Název: Téma: Inovace a zkvalitnění výuky prostřednictvím ICT Kontrola a měření strojních součástí a jejich polotovarů

Více

Výpočet přetvoření a dimenzování pilotové skupiny

Výpočet přetvoření a dimenzování pilotové skupiny Inženýrský manuál č. 18 Aktualizace: 08/2018 Výpočet přetvoření a dimenzování pilotové skupiny Program: Soubor: Skupina pilot Demo_manual_18.gsp Cílem tohoto inženýrského manuálu je vysvětlit použití programu

Více

Urči tlak, kterým působí na sníh: a) horolezec o hmotnosti 75 kg, který i s výstrojí o váží 90 kg, pokud si obul boty

Urči tlak, kterým působí na sníh: a) horolezec o hmotnosti 75 kg, který i s výstrojí o váží 90 kg, pokud si obul boty 3.1.5 Pevnost v tahu Předpoklady: 030104 Pomůcky: namnožené papírky s grafem Pedagogická poznámka: Počítání s velmi malými čísly dělá žákům velké problémy. Je proto otázkou zda by nebylo lepší se vrátit

Více

KMITÁNÍ PRUŽINY. Pomůcky: Postup: Jaroslav Reichl, LabQuest, sonda siloměr, těleso kmitající na pružině

KMITÁNÍ PRUŽINY. Pomůcky: Postup: Jaroslav Reichl, LabQuest, sonda siloměr, těleso kmitající na pružině KMITÁNÍ PRUŽINY Pomůcky: LabQuest, sonda siloměr, těleso kmitající na pružině Postup: Těleso zavěsíme na pružinu a tu zavěsíme na pevně upevněný siloměr (viz obr. ). Sondu připojíme k LabQuestu a nastavíme

Více

Téma 1 Úvod do předmětu Pružnost a plasticita, napětí a přetvoření

Téma 1 Úvod do předmětu Pružnost a plasticita, napětí a přetvoření Pružnost a plasticita, 2.ročník kombinovaného studia Téma 1 Úvod do předmětu Pružnost a plasticita, napětí a přetvoření Základní pojmy, výchozí předpoklady Vztahy mezi vnitřními silami a napětími v průřezu

Více

Závislost odporu kovového vodiče na teplotě

Závislost odporu kovového vodiče na teplotě 4.2.1 Závislost odporu kovového vodiče na teplotě Předpoklady: 428, délková a objemová roztažnost napětí [V] 1,72 3,43 5,18 6,86 8,57 1,28 proud [A],,47,69,86,11,115,127,14,12,1 Proud [A],8,6,4,2 2 4 6

Více

Pružnost a pevnost. 6. přednáška 7. a 14. listopadu 2017

Pružnost a pevnost. 6. přednáška 7. a 14. listopadu 2017 Pružnost a pevnost 6. přednáška 7. a 14. listopadu 17 Popis nepružnéo cování materiálu 1) epružné cování experimentální výsledky ) epružné cování jednoducé modely 3) Pružnoplastický oyb analýza průřezu

Více

1. Úvod do pružnosti a pevnosti

1. Úvod do pružnosti a pevnosti 1. Úvod do pružnosti a pevnosti Mechanika je nejstarší vědní obor a její nedílnou součástí je nauka o pružnosti a pevnosti. Pružností nazýváme schopnost pevných těles získat po odstranění vnějších účinků

Více

Kontraktantní/dilatantní

Kontraktantní/dilatantní Kontraktantní/dilatantní plasticita - úhel dilatance směr přírůstku plastické deformace Na základě experimentálního měření dospěl St. Venant k závěru, že směry hlavních napětí jsou totožné se směry přírůstku

Více

PRAKTIKUM III. Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK. Pracoval: Jan Polášek stud. skup. 11 dne 23.4.2009.

PRAKTIKUM III. Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK. Pracoval: Jan Polášek stud. skup. 11 dne 23.4.2009. Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK PRAKTIKUM III Úloha č. XXVI Název: Vláknová optika Pracoval: Jan Polášek stud. skup. 11 dne 23.4.2009 Odevzdal dne: Možný počet bodů

Více

NÁVRH A REALIZACE ÚLOH DO FYZIKÁLNÍHO PRAKTIKA Z

NÁVRH A REALIZACE ÚLOH DO FYZIKÁLNÍHO PRAKTIKA Z NÁVRH A REALIZACE ÚLOH DO FYZIKÁLNÍHO PRAKTIKA Z MECHANIKY A TERMIKY Ústav fyziky a biofyziky Školitelka: Studentka: Ing. Helena Poláková, PhD. Bc. Lenka Kadlecová AKTUÁLNOST ZPRACOVÁNÍ TÉMATU Původně

Více

4 Viskoelasticita polymerů II - creep

4 Viskoelasticita polymerů II - creep 4 Viskoelasticita polymerů II - creep Teorie Ke zkoumání mechanických vlastností viskoelastických polymerních látek používáme dvě nestacionární metody: relaxační test (podrobně popsaný v úloze Viskoelasticita

Více

Přetváření a porušování materiálů

Přetváření a porušování materiálů Přetváření a porušování materiálů Přetváření a porušování materiálů 1. Viskoelasticita 2. Plasticita 3. Lomová mechanika 4. Mechanika poškození Přetváření a porušování materiálů 2. Plasticita 2.1 Konstitutivní

Více

Voigtův model kompozitu

Voigtův model kompozitu Voigtův model kompozitu Osnova přednášky Směšovací pravidlo použitelnost Princip Voigtova modelu Důsledky Voigtova modelu Specifika vláknových kompozitů Směšovací pravidlo Nejjednoduší vztah pro vlastnost

Více

Fyzikální praktikum 1

Fyzikální praktikum 1 Fyzikální praktikum 1 FJFI ČVUT v Praze Úloha: #2 Měření modulu pružnosti v tahu a ve smyku Jméno: Ondřej Finke Datum měření: 15.12.2014 Kruh: FE Skupina: 4 Klasifikace: 1. Pracovní úkoly (a) DÚ: V domácí

Více

NESTABILITY VYBRANÝCH SYSTÉMŮ. Úvod. Vzpěr prutu. Petr Frantík 1

NESTABILITY VYBRANÝCH SYSTÉMŮ. Úvod. Vzpěr prutu. Petr Frantík 1 NESTABILITY VYBRANÝCH SYSTÉMŮ Petr Frantík 1 Úvod Úloha pokritického vzpěru přímého prutu je řešena dynamickou metodou. Prut se statickým zatížením je modelován jako nelineární disipativní dynamický systém.

Více

3.5 Ověření frekvenční závislosti kapacitance a induktance

3.5 Ověření frekvenční závislosti kapacitance a induktance 3.5 Ověření frekvenční závislosti kapacitance a induktance Online: http://www.sclpx.eu/lab3r.php?exp=10 I tento experiment patří mezi další původní experimenty autora práce. Stejně jako v předešlém experimentu

Více

III/2-1 Inovace a zkvalitnění výuky prostřednictvím ICT

III/2-1 Inovace a zkvalitnění výuky prostřednictvím ICT Název školy Název projektu Registrační číslo projektu Autor Střední průmyslová škola strojírenská a azyková škola s právem státní jazykové zkoušky, Kolín IV, Heverova 191 Modernizace výuky CZ.1.07/1.5.00/34.1003

Více

2 MECHANICKÉ VLASTNOSTI SKLA

2 MECHANICKÉ VLASTNOSTI SKLA 2 MECHANICKÉ VLASTNOSTI SKLA Pevnost skla reprezentující jeho mechanické vlastnosti nejčastěji bývá hlavním parametrem jeho využití. Nevýhodou skel je jejich poměrně nízká pevnost v tahu a rázu (pevnost

Více

Vzpěr, mezní stav stability, pevnostní podmínky pro tlak, nepružný a pružný vzpěr Ing. Jaroslav Svoboda

Vzpěr, mezní stav stability, pevnostní podmínky pro tlak, nepružný a pružný vzpěr Ing. Jaroslav Svoboda Střední průmyslová škola a Vyšší odborná škola technická Brno, Sokolská 1 Šablona: Inovace a zkvalitnění výuky prostřednictvím ICT Název: Téma: Autor: Číslo: Anotace: Mechanika, pružnost pevnost Vzpěr,

Více

Systém vykonávající tlumené kmity lze popsat obyčejnou lineární diferenciální rovnice 2. řadu s nulovou pravou stranou:

Systém vykonávající tlumené kmity lze popsat obyčejnou lineární diferenciální rovnice 2. řadu s nulovou pravou stranou: Pracovní úkol: 1. Sestavte obvod podle obr. 1 a změřte pro obvod v periodickém stavu závislost doby kmitu T na velikosti zařazené kapacity. (C = 0,5-10 µf, R = 0 Ω). Výsledky měření zpracujte graficky

Více

Ing. Jan BRANDA PRUŽNOST A PEVNOST

Ing. Jan BRANDA PRUŽNOST A PEVNOST Ing. Jan BRANDA PRUŽNOST A PEVNOST Výukový text pro učební obor Technik plynových zařízení Vzdělávací oblast RVP Plynová zařízení a Tepelná technika (mechanika) Pardubice 013 Použitá literatura: Technická

Více

Poruchy krystalové struktury

Poruchy krystalové struktury Tomáš Doktor K618 - Materiály 1 15. října 2013 Tomáš Doktor (18MRI1) Poruchy krystalové struktury 15. října 2013 1 / 30 Poruchy krystalové struktury nelze vytvořit ideální strukturu krystalu bez poruch

Více

DEFORMACE PEVNÉHO TĚLESA DEFORMACE PRUŽNÁ (ELASTICKÁ) DEFORMACE TVÁRNÁ (PLASTICKÁ)

DEFORMACE PEVNÉHO TĚLESA DEFORMACE PRUŽNÁ (ELASTICKÁ) DEFORMACE TVÁRNÁ (PLASTICKÁ) Škola: Autor: DUM: Vzdělávací obor: Tematický okruh: Téma: Masarykovo gymnázium Vsetín Mgr. Dagmar Horká MGV_F_SS_1S3_D14_Z_MOLFYZ_Deformace pevného tělesa, normálové napětí, hookův zákon_pl Člověk a příroda

Více

ZÁKLADNÍ PŘÍPADY NAMÁHÁNÍ

ZÁKLADNÍ PŘÍPADY NAMÁHÁNÍ 7. cvičení ZÁKLADNÍ PŘÍPADY NAMÁHÁNÍ V této kapitole se probírají výpočty únosnosti průřezů (neboli posouzení prvků na prostou pevnost). K porušení materiálu v tlačených částech průřezu dochází: mezní

Více

Cvičení 7 (Matematická teorie pružnosti)

Cvičení 7 (Matematická teorie pružnosti) VŠB Technická univerzita Ostrava Fakulta strojní Katedra pružnosti a pevnosti (339) Pružnost a pevnost v energetice (Návo do cvičení) Cvičení 7 (Matematická teorie pružnosti) Autor: Jaroslav Rojíček Verze:

Více

STRUKTURA PEVNÝCH LÁTEK STRUKTURA PEVNÝCH LÁTEK

STRUKTURA PEVNÝCH LÁTEK STRUKTURA PEVNÝCH LÁTEK Předmět: Ročník: Vytvořil: Datum: FYZIKA PRVNÍ MGR. JÜTTNEROVÁ 21. 4. 2013 Název zpracovaného celku: STRUKTURA PEVNÝCH LÁTEK STRUKTURA PEVNÝCH LÁTEK Pevné látky dělíme na látky: a) krystalické b) amorfní

Více

1. Stanovení modulu pružnosti v tahu přímou metodou

1. Stanovení modulu pružnosti v tahu přímou metodou . Stanovení moduu pružnost v tahu přímou metodou.. Zadání úohy. Určte modu pružnost v tahu přímou metodou pro dva vzorky různých materáů a výsedky porovnejte s tabukovým hodnotam.. Z naměřených hodnot

Více

Pružnost a pevnost. 2. přednáška, 10. října 2016

Pružnost a pevnost. 2. přednáška, 10. října 2016 Pružnost a pevnost 2. přednáška, 10. října 2016 Prut namáhaný jednoduchým ohybem: rovnoměrně ohýbaný prut nerovnoměrně ohýbaný prut příklad výpočet napětí a ohybu vliv teplotních měn příklad nerovnoměrné

Více

Název: Měření síly a její vývoj při běžných činnostech

Název: Měření síly a její vývoj při běžných činnostech Název: Měření síly a její vývoj při běžných činnostech Autor: Mgr. Lucia Klimková Název školy: Gymnázium Jana Nerudy, škola hl. města Prahy Předmět (mezipředmětové vztahy) : Fyzika (Biologie) Tematický

Více

Praktikum I úloha IX. Měření modulu pružnosti v tahu

Praktikum I úloha IX. Měření modulu pružnosti v tahu Praktikum I úloha IX. Měření modulu pružnosti v tahu Štěpán Roučka úkol 1. Změřte modul pružnosti v tahu E oceli z protažení drátu. 2. Změřte modul pružnosti v tahu E oceli a duralu nebo mosazi z průhybu

Více

Vybrané okruhy znalostí z předmětů stavební mechanika, pružnost a pevnost důležité i pro studium předmětů KP3C a KP5A - navrhování nosných konstrukcí

Vybrané okruhy znalostí z předmětů stavební mechanika, pružnost a pevnost důležité i pro studium předmětů KP3C a KP5A - navrhování nosných konstrukcí Vybrané okruhy znalostí z předmětů stavební mechanika, pružnost a pevnost důležité i pro studium předmětů KP3C a KP5A - navrhování nosných konstrukcí Skládání a rozklad sil Skládání a rozklad sil v rovině

Více

Experimentální výzkum vlivu zesílení konstrukce valené klenby lepenou uhlíkovou výztuží

Experimentální výzkum vlivu zesílení konstrukce valené klenby lepenou uhlíkovou výztuží EXPERIMENTÁLNÍ VÝZKUM KLENEB Experimentální výzkum vlivu zesílení konstrukce valené klenby lepenou uhlíkovou výztuží 1 Úvod Při rekonstrukcích památkově chráněných a historických budov se často setkáváme

Více

Obecný Hookeův zákon a rovinná napjatost

Obecný Hookeův zákon a rovinná napjatost Obecný Hookeův zákon a rovinná napjatost Základní rovnice popisující napěťově-deformační chování materiálu při jednoosém namáhání jsou Hookeův zákon a Poissonův zákon. σ = E ε odtud lze vyjádřit také poměrnou

Více

Přetvořené ose nosníku říkáme ohybová čára. Je to rovinná křivka.

Přetvořené ose nosníku říkáme ohybová čára. Je to rovinná křivka. OHYBOVÁ ČÁRA ZA PROSTÉHO OHYBU - rovinné průřez zůstávají po deformaci rovinnými, avšak natáčejí se. - při prostém ohbu hlavní centrální osa setrvačnosti všech průřezů leží v rovině vnějších sil, která

Více

SCLPX 07 2R Ověření vztahu pro periodu kyvadla

SCLPX 07 2R Ověření vztahu pro periodu kyvadla Klasické provedení a didaktické aspekty pokusu U kyvadla, jakožto dalšího typu mechanického oscilátoru, platí obdobně vše, co bylo řečeno v předchozích experimentech SCLPX-7 a SCLPX-8. V současném pojetí

Více

NAUKA O MATERIÁLU I. Zkoušky mechanické. Přednáška č. 04: Zkoušení materiálových vlastností I

NAUKA O MATERIÁLU I. Zkoušky mechanické. Přednáška č. 04: Zkoušení materiálových vlastností I NAUKA O MATERIÁLU I Přednáška č. 04: Zkoušení materiálových vlastností I Zkoušky mechanické Autor přednášky: Ing. Daniela ODEHNALOVÁ Pracoviště: TUL FS, Katedra materiálu ZKOUŠENÍ mechanických vlastností

Více

DVA ZÁKLADNÍ PROBLÉMY PLASTICITY KOVŮ

DVA ZÁKLADNÍ PROBLÉMY PLASTICITY KOVŮ Úvod PLASTICITA DVA ZÁKLADNÍ PROBLÉMY PLASTICITY KOVŮ I. Návrh konstrukce z "mezního stavu Zahrnuje relativně malá plastická přetvoření často stejného řádu jako jsou souběžná elastická přetvoření. Analýza

Více

Namáhání ostění kolektoru

Namáhání ostění kolektoru Inženýrský manuál č. 23 Aktualizace 06/2016 Namáhání ostění kolektoru Program: MKP Soubor: Demo_manual_23.gmk Cílem tohoto manuálu je vypočítat namáhání ostění raženého kolektoru pomocí metody konečných

Více

2. Molekulová stavba pevných látek

2. Molekulová stavba pevných látek 2. Molekulová stavba pevných látek 2.1 Vznik tuhého tělesa krystalizace Při přeměně kapaliny v tuhou látku vzniknou nejprve krystalizační jádra, v nichž nastává tuhnutí kapaliny. Ochlazování kapaliny se

Více

Novinky v ocelových a dřevěných konstrukcích se zaměřením na styčníky. vrámci prezentace výstupů Evropského projektu INFASO + STYČNÍKY KULATIN

Novinky v ocelových a dřevěných konstrukcích se zaměřením na styčníky. vrámci prezentace výstupů Evropského projektu INFASO + STYČNÍKY KULATIN Novinky v ocelových a dřevěných konstrukcích se zaměřením na styčníky vrámci prezentace výstupů Evropského projektu INFASO + STYČNÍKY KULATIN Karel Mikeš České vysoké učení technické v Praze Fakulta stavební

Více

Posouzení stability svahu

Posouzení stability svahu Inženýrský manuál č. 25 Aktualizace 07/2016 Posouzení stability svahu Program: MKP Soubor: Demo_manual_25.gmk Cílem tohoto manuálu je vypočítat stupeň stability svahu pomocí metody konečných prvků. Zadání

Více

DESTRUKTIVNÍ ZKOUŠKY SVARŮ I.

DESTRUKTIVNÍ ZKOUŠKY SVARŮ I. DESTRUKTIVNÍ ZKOUŠKY SVARŮ I. Mgr. Ladislav Blahuta Střední škola, Havířov-Šumbark, Sýkorova 1/613, příspěvková organizace Tento výukový materiál byl zpracován v rámci akce EU peníze středním školám -

Více

Úloha I.E... tři šedé vlasy dědy Aleše

Úloha I.E... tři šedé vlasy dědy Aleše Úloha I.E... tři šedé vlasy dědy Aleše 8 bodů; průměr 4,28; řešilo 50 studentů Pokuste se určit některé napěťové charakteristiky v tahu u lidského vlasu. Z vašeho pokusu sestavte co nejpodrobnější graf

Více

Teorie tkaní. Modely vazného bodu. M. Bílek

Teorie tkaní. Modely vazného bodu. M. Bílek Teorie tkaní Modely vazného bodu M. Bílek 2016 Základní strukturální jednotkou tkaniny je vazný bod, tj. oblast v okolí jednoho zakřížení osnovní a útkové nitě. Proces tkaní tedy spočívá v tvorbě vazných

Více

MANUÁL PRO VÝPOČET ZBYTKOVÉHO

MANUÁL PRO VÝPOČET ZBYTKOVÉHO MANUÁL PRO VÝPOČET ZBYTKOVÉHO PRODLOUŽENÍ VE ŠROUBECH 0 25.05.2016 Doporučení pro výpočet potřebného prodloužení šroubu, aby bylo dosaženo požadovaného předpětí ve šroubech předepínaných hydraulickým napínákem

Více

Mezi krystalické látky nepatří: a) asfalt b) křemík c) pryskyřice d) polvinylchlorid

Mezi krystalické látky nepatří: a) asfalt b) křemík c) pryskyřice d) polvinylchlorid Mezi krystalické látky nepatří: a) asfalt b) křemík c) pryskyřice d) polvinylchlorid Mezi krystalické látky patří: a) grafit b) diamant c) jantar d) modrá skalice Mezi krystalické látky patří: a) rubín

Více

Téma 1 Úvod do předmětu Pružnost a plasticita, napětí a přetvoření

Téma 1 Úvod do předmětu Pružnost a plasticita, napětí a přetvoření Pružnost a plasticita, 2.ročník kombinovaného studia Téma 1 Úvod do předmětu Pružnost a plasticita, napětí a přetvoření Základní pojmy, výchozí předpoklady Vztahy mezi vnitřními silami a napětími v průřezu

Více

3.2 Základy pevnosti materiálu. Ing. Pavel Bělov

3.2 Základy pevnosti materiálu. Ing. Pavel Bělov 3.2 Základy pevnosti materiálu Ing. Pavel Bělov 23.5.2018 Normálové napětí představuje vazbu, která brání částicím tělesa k sobě přiblížit nebo se od sebe oddálit je kolmé na rovinu řezu v případě že je

Více

pracovní list studenta Kmitání Studium kmitavého pohybu a určení setrvačné hmotnosti tělesa

pracovní list studenta Kmitání Studium kmitavého pohybu a určení setrvačné hmotnosti tělesa pracovní list studenta Kmitání Studium kmitavého pohybu a určení setrvačné hmotnosti tělesa Výstup RVP: Klíčová slova: Eva Bochníčková žák měří vybrané veličiny vhodnými metodami, zpracuje získaná data

Více

7. Základní formulace lineární PP

7. Základní formulace lineární PP p07 1 7. Základní formulace lineární PP Podle tvaru závislosti mezi vnějšími silami a deformačně napěťovými parametry tělesa dělíme pružnost a pevnost na lineární a nelineární. Lineární pružnost vyšetřuje

Více