1. Stanovení modulu pružnosti v tahu přímou metodou
|
|
- Andrea Kopecká
- před 9 lety
- Počet zobrazení:
Transkript
1 . Stanovení moduu pružnost v tahu přímou metodou.. Zadání úohy. Určte modu pružnost v tahu přímou metodou pro dva vzorky různých materáů a výsedky porovnejte s tabukovým hodnotam.. Z naměřených hodnot určete chybu měření... Teoretcký rozbor Napínáme- drát nebo tyč déky a průřezu S do meze úměrnost materáu sou F ve směru jeho osy, pak pro jeho prodoužení patí: = k F S Konstantu k nahradíme její převrácenou hodnotou: E = k Konstanta E se nazývá modu pružnost v tahu (Youngův modu pružnost). Je to konstanta, která vyjadřuje pružnost materáu př namáhání v tahu. Čísená hodnota moduu pružnost v tahu je rovna vekost napětí, které by danou déku prodoužo na dvojnásobek původní déky. Normáové napětí je defnováno jako sía vekost F působící komo na jednotku pochy úpravam dostaneme σ = F S, = σ E = ε, kde ε je reatvní prodoužení. Předchozí rovnce vyjadřuje tzv. Hookův zákon. Reatvní prodoužení je přímo úměrné normáovému napětí, pokud namáhání nepřekročí mez úměrnost. Pro stanovení moduu pružnost v tahu materáu E z něhož je zhotoven drát, použjeme rovnc: E = σ ε = F S Vzhedem k tomu, že se jedná o vem maé dékové změny, provedeme zjštění vekost prodoužení materáu př namáhání v tahu zrcátkovou metodou. Měření zrcátkovou metodou provádíme tak, že měřený drát o déce a průměru d je napínán závažím o hmotnost m, zavěšeným na konc páky P o déce q. Vzdáenost uchycení drátu od osy otáčení O je p. Drát je napínán momentem M = F g. Na ose otáčení páky P je umístěno zrcátko Z, ve kterém se odráží stupnce S. Odraženou stupnc v zrcátku pozorujeme daekohedem D. Zvětšení závaží na konc páky P o hodnotu G způsobí prodoužení drátu o a v důsedku toho se rovnné zrcátko Z otočí o úhe. Otočí- se rovnné zrcado o úhe, otočí se odražený paprsek o úhe dvojnásobný (na zákadě zákonů optky). Pootočení zrcada Z se projeví v daekohedu tím, že místo díku n 0, který by př nezatíženém drátě ve středu ntkového kříže daekohedu, posune se do středu ntkového kříže díek n. Za předpokadu, že prodoužení je značně menší, než déka drátu a vzdáenost zrcátka od stupnce a, můžeme pro určení úhu použít rovnc: tg ϕ = ϕ = n n = ϕ = a a, kde n = n n 0 je díková změna. Prodouží- se drát o, pootočí se páka P o úhe ϕ a de obrázku patí pro úhe ϕ rovnce:
2 tg ϕ = ϕ = p Úhe, který určují předchozí dvě rovnce je stejný a pro reatvní prodoužení ε dostaneme: ε = = p n a Dosadíme- do rovnce za reatvní prodoužení p n/a, a poožíme- F = qg/p a S = πd /4 dostaneme pro modu pružnost v tahu E rovnc: E = 8aq G πd p n Praktcky je vem obtížné stanovt déku nezatíženého drátu, a proto voíme ke zpracování postupnou vyrovnávací metodu. Do rovnce předeěé dosadíme za G, G (součet všech zatížení) a za n dosadíme součet všech díkových změn a dostaneme rovnc: E = 8aq G πd p n n p Zrcátko q d ϕ Daekohed ϕ a G Obrázek : Schéma měřícího zařízení.3. Postup měření. Změříme déku drátu kovovým měřítkem př zákadním zatížení.. Posuvkou změříme déku páky q a vzdáenost upevnění drátu q na páce P od osy otáčení O. 3. Změříme průměr drátu mkrometrem na různých místech, abychom s ověř konstantní průměr.
3 4. Pode materáu a průměru drátu zvoíme vekost závaží pro sabší drát sadu půkových a pro snější drát sadu kových závaží. 5. Čteme nuovou poohu n 0 a daší výchyky pro různá zatížení, postupující po jednotvých závažích m, do nejvyššího zatížení a zase zpět do úpného odehčení drátu (až na původní závaží, kterému přísušejí nuové poohy n 0 a n 0 a které do součtu n nepočítáme)..3.. Použté měřící přístroje Daekohed Meopta Pásové měřítko (chyba mm) Posuvné měřítko (chyba 0,0 mm) Mkrometr (0,00 mm).4. Naměřené hodnoty.4.. Bronz Průměr drátu d [mm] 0,89 0,88 0,88 0,89 0,89 0,95 0,9 0,9 d /n d [mm] 0,89 0,89 0,90 0,89 0,89 0,89 0,90 0,897 Měření různých zatížení Déka nezatíženého drátu: = 000 mm Vzdáenost uchycení drátu od osy otáčení: p = 49,64 mm Déka páky: q = 07, 0 mm Vzdáenost zrcátka od stupnce: a = 000 mm Počet G n n n = n +n n n 0 E závaží [N] [ ] [ ] [ ] [ ] [Pa] 0 0, ,5 0,0 9, ,5 7,0 7, , ,5 3,0 8, , ,5 45,0 8, , ,0 58,5 9, , ,0 70,5 9, G 47,33 (n n 0 ) 3,0 Výpočet moduu pružnost E = 8aq G πd p = n 8,000,000 0,07 π (0, ) 0, ,3 0,3. = 9, Pa 3
4 Odhad chyby měření ϑ(ē) = n ( E ) 3 n(n ) = 3 30, =, Pa.4.. Oce Průměr drátu = d [mm] 0,7 0,705 0,70 0,70 0,70 0,705 0,705 0,7 d /n d [mm] 0,7 0,75 0,70 0,7 0,70 0,705 0,70 0,705 Měření různých zatížení Déka nezatíženého drátu: = 004 mm Vzdáenost uchycení drátu od osy otáčení: p = 49,4 mm Déka páky: q = 99, 0 mm Vzdáenost zrcátka od stupnce: a = 03 mm Počet G n n n = n +n n n 0 E závaží [N] [ ] [ ] [ ] [ ] [Pa] 0 0, ,0 0,0 4, ,0 4,0 7, , ,0 4,0 8, , ,5 3,5 9, , ,5 39,5, , ,0 46,0,7 0 G 73,6 (n n 0 ) 56,0 Výpočet moduu pružnost E = 8aq G πd p = n 8,03,004 0,990 π (0, ) 0, ,6 0,56 =. = 9, Pa Odhad chyby měření ϑ(ē) = n ( E ) 3 n(n ) = 3 30, = 3, Pa 4
5 .5. Závěr Stanovené moduy roztažnost: Bronz E = (90,8 ±,7) 0 9 Pa. Tato hodnota se bíží tabukové hodnotě př normání pokojové tepotě, která je stanovena v rozsahu Pa. Naměřený modu E se ší v rozmezí 6,4 %. Oce E = (99,7 ± 3,9) 0 9 Pa. Tato hodnotna se od tabukové, která ční Pa, značně odšuje a to o více než 50 %..6. Kontroní otázky Jak zní Hookův zákon? Deformace je úměrná napětí materáu. Co reprezentuje deformační křvka a pro kterou část této křvky patí Hookův zákon? Deformační křvka je grafcké znázornění závsost napětí σ na tenzoru maých deformací ε. Hookův zákon patí jen na neární část křvky, tj. od počátku po mez úměrnost. Jak zní zobecněný Hookův zákon pro zotropní kontnuum? Zobecněný Hookův zákon v zotrovním kontnuu (pružném těese) zní σ j = λδ j θ + µε j, kde δ j je tzv. Kroneckerův symbo (jednotkový tenzor) a je defnován tak, že je roven jedné, jsou- oba ndexy stejné = j, a nue, jsou- různé j. Koefcenty λ, µ se nazývají Laméovy koefcenty, přčemž λ vyjadřuje změnu objemu a koefcent µ, též označovaný jako G, je modu smyku. Co jsou síy pošné a objemové? Síy vyvoávající deformac těesa mohou být pošné nebo objemové. Objemové síy působí současně na všechny eementy objemu těesa, pronkají ceým těesem (např. sía tíhová, odstředvá). Pošné síy působí na povrch těesa. Působí- sía ve směru normáy k poše, vyvoává tah nebo tak, působí- tečně, vyvoává smyk. Co představuje Possonova konstanta? Possonova konstanta má tvar k = ε ε a vyjadřuje proměr zúžení a prodoužení tyče. 5
Mechanické vlastnosti materiálů.
Mechancké vastnost materáů. Obsah přednášky : tahová zkouška, zákadní mechancké vastnost materáu, prodoužení př tahu nebo taku, potencání energe, řešení statcky neurčtých úoh Doba studa : as hodna Cí přednášky
1. Měření hodnoty Youngova modulu pružnosti ocelového drátu v tahu a kovové tyče v ohybu
Měření modulu pružnosti Úkol : 1. Měření hodnoty Youngova modulu pružnosti ocelového drátu v tahu a kovové tyče v ohybu Pomůcky : - Měřící zařízení s indikátorovými hodinkami - Mikrometr - Svinovací metr
Linearní teplotní gradient
Poznámky k semináři z předmětu Pružnost pevnost na K68 D ČVUT v Praze (pracovní verze). Tento materiá má pouze pracovní charakter a ude v průěhu semestru postupně dopňován. utor: Jan Vyčich E mai: vycich@fd.cvut.cz
Řešení úloh 1. kola 60. ročníku fyzikální olympiády. Kategorie B Autoři úloh: J. Thomas (1, 2, 3, 4, 5, 7), M. Jarešová (6)
Řešení úoh 1. koa 60. ročníku fyzikání oympiády. Kategorie B Autoři úoh: J. Thomas (1, 2, 3, 4, 5, 7), M. Jarešová (6) h 1.a) Protože vzdáenost bodů K a O je cos α, je doba etu kuičky z bodu K do bodu
Normálové napětí a přetvoření prutu namáhaného tahem (prostým tlakem) - staticky určité úlohy
Pružnost a pasticita, 2.ročník bakaářského studia ormáové napětí a přetvoření prutu namáhaného tahem (prostým takem) - staticky určité úohy Zákadní vztahy a předpokady řešení apětí a přetvoření osově namáhaného
Elastické deformace těles
Eastické eformace těes 15 Na oceový rát ék L 15 m a průměru 1 mm zavěsíme závaží o hmotnosti m 110 kg přičemž Youngův mou pružnosti ocei v tahu E 16 GPa a mez pružnosti ocei σ P 0 Pa Určete reativní prooužení
1.5. DYNAMIKA OTÁČIVÉHO A SLOŽENÉHO POHYBU TĚLESA
.5. OTÁČIVÉHO A SLOŽENÉHO POHYBU TĚLESA.5. ZÁKLADNÍ ROVNICE DYNAMIKY PRO ROTAČNÍ POHYB Fz F Z výsednce zrychujících s F m.a n m a t a n r z F Zrychující moment M F. r F. r z z z m.a t r6,5cm ρ r ω,ε r
Téma 4 Normálové napětí a přetvoření prutu namáhaného tahem (prostým tlakem)
Pružnost a pasticita, 2.ročník bakaářského studia Téma 4 ormáové napětí a přetvoření prutu namáhaného tahem (prostým takem) Zákadní vztahy a předpokady řešení apětí a přetvoření osově namáhaného prutu
Název: Studium kmitání matematického kyvadla
Název: Studium kmitání matematického kyvada Autor: Doc. RNDr. Mian Rojko, CSc. Název škoy: Gymnázium Jana Nerudy, škoa h. města Prahy Předmět, mezipředmětové vztahy: fyzika, biooie Ročník: 3. (1. ročník
Přednáška 12 Obecná deformační metoda, nelineární úlohy u prutových soustav
Statika stavebních konstrukcí II., 3.ročník bakaářského studia Přednáška Obecná deformační metoda, neineární úohy u prutových soustav Fyzikáně neineární úoha Geometricky neineární úoha Konstrukčně neineární
Střední průmyslová škola strojírenská a Jazyková škola s právem státní jazykové zkoušky, Kolín IV, Heverova 191
Název školy Název projektu Registrační číslo projektu Autor Název šablony Střední průmyslová škola strojírenská a Jazyková škola s právem státní jazykové zkoušky, Kolín IV, Heverova 191 Modernizace výuky
Statika 2. Vetknuté nosníky. Miroslav Vokáč 2. listopadu ČVUT v Praze, Fakulta architektury. Statika 2. M.
3. přednáška Průhybová čára Mirosav Vokáč mirosav.vokac@kok.cvut.cz ČVUT v Praze, Fakuta architektury 2. istopadu 2016 Průhybová čára ohýbaného nosníku Znaménková konvence veičin M z x +q +w +ϕ + q...
7 Lineární elasticita
7 Lineární elasticita Elasticita je schopnost materiálu pružně se deformovat. Deformace ideálně elastických látek je okamžitá (časově nezávislá) a dokonale vratná. Působí-li na infinitezimální objemový
1. Teorie. jednom konci pevně upevněn a na druhém konci veden přes kladku se zrcátkem
MěřENÍ MODULU PRUžNOSTI V TAHU TEREZA ZÁBOJNÍKOVÁ 1. Teorie 1.1. Měření modulu pružnosti z protažení drátu. Pokud na drát působí síla ve směru jeho délky, drát se prodlouží. Je li tato jeho deformace pružná
STRUKTURA A VLASTNOSTI KAPALIN
I N V E S T I C E D O O Z V O J E V Z D Ě L Á V Á N Í STUKTUA A VLASTNOSTI KAPALIN. Povrchové napětí a) yzikání jev Povrch kapain se chová jako napjatá pružná membrána (důkaz vodoměrka, maé kapičky koue)
Únosnost kompozitních konstrukcí
ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakuta strojní Ústav etadové technky Únosnost kompoztních konstrukcí Optmazační výpočet kompoztních táhe proměnného průřezu Techncká zpráva Pořadové číso: SOF/CLKV/13/8
( r ) 2. Měření mechanické hysterezní smyčky a modulu pružnosti ve smyku
ěření mechanické hysterezní smyčky a modulu pružnosti ve smyku 1 ěření mechanické hysterezní smyčky a modulu pružnosti ve smyku Úkol č.1: Získejte mechanickou hysterezní křivku pro dráty různé tloušťky
Téma 1 Deformace staticky určitých prutových konstrukcí
Stavební mechanka, 2.ročník bakaářského studa AST Téma 1 Deformace statck určtých prutových konstrukcí Katedra stavební mechank Fakuta stavební, VŠB - Techncká unverzta Ostrava Stavební statka - přednášející
1 ROZMĚRY STĚN. 1.1 Délka vnější stěny. 1.2 Výška vnější stěny
1 ROZMĚRY STĚN Důežitými kritérii pro zhotovení cihených stěn o větších rozměrech (déce a výšce) je rozděení stěn na diatační ceky z hediska zatížení tepotou a statického posouzení stěny na zatížení větrem.
STRUKTURA A VLASTNOSTI PEVNÝCH LÁTEK
STRUKTURA A VLASTNOSTI PEVNÝCH LÁTEK 1. Druhy pevných látek AMORFNÍ nepravidelné uspořádání molekul KRYSTALICKÉ pravidelné uspořádání molekul krystalická mřížka polykrystaly více jader (krystalových zrn),
Úloha č. 5. Měření zvětšení lupy a mikroskopu
Fzikání praktikum IV. Měření zvětšení up a mikroskopu - verze 01 Úoha č. 5 Měření zvětšení up a mikroskopu 1) Pomůck: Stojan upa měřítka mikroskop průhedné měřítko do mikroskopu stojan s měřítkem osvětovací
Kmitavý pohyb trochu jinak
Kmitavý pohyb trochu jinak JIŘÍ ESAŘ, PER BAROŠ Katedra fyziky, Pedaoická fakuta, JU České Budějovice Kmitavý pohyb patří mezi zákadní fyzikání děje. Většinou se tato část fyziky redukuje na matematický
FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE. Úloha 2: Měření modulu pružnosti v tahu a ve smyku. Abstrakt
FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE Úoha : Měření moduu pružnosti v tahu a ve smyku Datum měření: 9. 10. 009 Jméno: Jiří Sabý Pracovní skupina: 1 Ročník a kroužek:. ročník, 1. kroužek, pátek 13:30 Spoupracovaa:
Univerzita Tomáše Bati ve Zlíně, Fakulta technologická Ústav fyziky a materiálového inženýrství
Univerzita Tomáše Bati ve Zíně, Fakuta technoogická Ústav fyziky a materiáového inženýrství Jméno a příjmení Josef Novák Ročník / Skupina x Předmět Laboratorní cvičení z předmětu Datum měření xx. xx. xxxx
Předmět: Ročník: Vytvořil: Datum: ŠČERBOVÁ M. PAVELKA V. NAMÁHÁNÍ NA OHYB A) NOSNÍKY NA DVOU PODPORÁCH ZATÍŽENÉ SOUSTAVOU ROVNOBĚŽNÝCH SIL
Předmět: Ročník: Vytvoři: Datum: MECHANIKA DRUHÝ ŠČERBOVÁ M. PAVELKA V. 9. ČERVNA 2013 Název zpracovaného ceku: NAMÁHÁNÍ NA OHYB A) NOSNÍKY NA DVOU PODPORÁCH ZATÍŽENÉ SOUSTAVOU ROVNOBĚŽNÝCH SIL ÚLOHA 1
Reakce. K618 FD ČVUT v Praze (pracovní verze). Tento materiál má pouze pracovní charakter a bude v průbehu semestru
Poznámky ke cvičení z předmětu Pružnost pevnost na K618 D ČVU v Praze (pracovní verze). ento materiá má pouze pracovní charakter a bude v průbehu semestru postupně dopňován. Autor: Jan Vyčich E mai: vycich@fd.cvut.cz
FYZIKA I. Kyvadlový pohyb. Prof. RNDr. Vilém Mádr, CSc. Prof. Ing. Libor Hlaváč, Ph.D. Doc. Ing. Irena Hlaváčová, Ph.D. Mgr. Art.
VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA FAKULTA STRONÍ FYZIKA I Kyvadový pohyb Prof. RNDr. Viém Mádr, CSc. Prof. Ing. Libor Haváč, Ph.D. Doc. Ing. Irena Haváčová, Ph.D. Mgr. Art. Dagmar Mádrová
11 Základy analytické statiky
Zákady anaytcké statky Ve všech dřívěších kaptoách sme rovnce statcké rovnováhy heda ze vztahů mez sovým účnky t. heda sme případy pro které by vektorový součet s a ech momentů roven nue t. heda sme řešení
Přednáška 10, modely podloží
Statika stavebních konstrukcí II.,.ročník kaářského studia Přednáška, modey podoží Úvod Winkerův mode podoží Pasternakův mode podoží Nosník na pružném Winkerově podoží, řešení OD atedra stavební mechaniky
Laboratorní cvičení L4 : Stanovení modulu pružnosti
Laboratorní cvčení L4 Laboratorní cvčení L4 : Stanovení modulu pružnost 1. Příprava Modul pružnost statcký a dynamcký (kap. 3.4.2., str. 72, str.36, 4) Měření statckého modulu pružnost (kap. 5.11.1, str.97-915,
Cvičení 7 (Matematická teorie pružnosti)
VŠB Technická univerzita Ostrava Fakulta strojní Katedra pružnosti a pevnosti (339) Pružnost a pevnost v energetice (Návo do cvičení) Cvičení 7 (Matematická teorie pružnosti) Autor: Jaroslav Rojíček Verze:
trubku o délce l. Prut (nebo trubka) bude namáhán kroutícím momentem M K [Nm]. Obrázek 1: Prut namáhaný kroutícím momentem.
Namáhání krutem Uvažujme přímý prut neměnného kruhového průřezu (Obr.2), popřípadě trubku o délce l. Prut (nebo trubka) bude namáhán kroutícím momentem M K [Nm]. Obrázek : Prut namáhaný kroutícím momentem.
2.4.6 Hookův zákon. Předpoklady: 2405. Podíváme se ještě jednou na začátek deformační křivky. 0,0015 0,003 Pro hodnoty normálového napětí menší než σ
.4.6 Hookův zákon Předpoklady: 405 Podíváme se ještě jednou na začátek deformační křivky. 500 P 50 0,0015 0,00 Pro hodnoty normálového napětí menší než σ U je normálové napětí přímo úměrné relativnímu
KONSTITUČNÍ VZTAHY. 1. Tahová zkouška
1. Tahová zkouška Tahová zkouška se provádí dle ČSN EN ISO 6892-1 (aktualizována v roce 2010) Je nejčastější mechanickou zkouškou kovových materiálů. Zkoušky se realizují na trhacích strojích, kde se zkušební
Inovace předmětů studijních programů strojního inženýrství v oblasti teplotního namáhání
Grantový projekt FRVŠ MŠMT č.97/7/f/a Inovace předmětů studijních programů strojního inženýrství v obasti tepotního namáhání Některé apikace a ukázky konkrétních řešení tepeného namáhání těes. Autorky:
2.1 Stáčivost v závislosti na koncentraci opticky aktivní látky
1 Pracovní úkoy 1. Změřte závisost stočení poarizační roviny na koncentraci vodního roztoku gukozy v rozmezí 0 500 g/. Pro jednu zvoenou koncentraci proveďte 5 měření úhu stočení poarizační roviny. Jednu
Senzory síly a kroutícího momentu
Senzory síy a kroutícího momentu Zadání 1. Seznamte se s fyzikáními principy a funkčností tenzometrů, inkrementáního optoeektronického senzoru otočení a senzoru FSR. 2. Změřte závisost odporu FSR senzoru
Řešení úloh 1. kola 54. ročníku fyzikální olympiády. Kategorie C. s=v 0 t 1 2 at2. (1)
Řešení úoh 1. koa 54. ročníku fyzikání oympiády. Kategorie C Autořiúoh:J.Jírů(1),J.Thomas(,3,5),M.Jarešová(4,7),P.Šedivý(6). 1.a) Během brzdění roste dráha s časem pode vzorce s=v 0 t 1 at. (1) Zevzorcepyne
Mechanika - síla. Zápisy do sešitu
Mechanika - síla Zápisy do sešitu Síla a její znázornění 1/3 Síla popisuje vzájemné působení těles (i prostřednictvím silových polí). Účinky síly: 1.Mění rychlost a směr pohybu 2.Deformační účinky Síla
Řešení úloh 1. kola 59. ročníku fyzikální olympiády. Kategorie D Autor úloh: J. Jírů
Řešení úo. koa 59. ročníku fyzikání oympiáy. Kategorie D Autor úoh: J. Jírů Obr. 1 1.a) Označme v veikost rychosti pavce vzheem k voě a v 0 veikost rychosti toku řeky. Pak patí Číseně vychází α = 38. b)
Ing. Jan BRANDA PRUŽNOST A PEVNOST
Ing. Jan BRANDA PRUŽNOST A PEVNOST Výukový text pro učební obor Technik plynových zařízení Vzdělávací oblast RVP Plynová zařízení a Tepelná technika (mechanika) Pardubice 013 Použitá literatura: Technická
Obecný Hookeův zákon a rovinná napjatost
Obecný Hookeův zákon a rovinná napjatost Základní rovnice popisující napěťově-deformační chování materiálu při jednoosém namáhání jsou Hookeův zákon a Poissonův zákon. σ = E ε odtud lze vyjádřit také poměrnou
Měření modulů pružnosti G a E z periody kmitů pružiny
Měření modulů pružnosti G a E z periody kmitů pružiny Online: http://www.sclpx.eu/lab2r.php?exp=2 V tomto experimentu vycházíme z pojetí klasického pokusu s pružinovým oscilátorem. Z periody kmitů se obvykle
STANOVENÍ TÍHOVÉHO ZRYCHLENÍ REVERZNÍM KYVADLEM A STUDIUM GRAVITAČNÍHO POLE
DANIEL TUREČEK 2005 / 2006 1. 412 5. 14.3.2006 28.3.2006 5. STANOVENÍ TÍHOVÉHO ZRYCHLENÍ REVERZNÍM KYVADLEM A STUDIUM GRAVITAČNÍHO POLE 1. Úkol měření 1. Určete velikost tíhového zrychlení pro Prahu reverzním
Z toho se η využije na zajištění funkcí automobilu a na překonání odporu vzduchu. l 100 km. 2 body b) Hledáme minimum funkce θ = 1.
Řešení úoh. koa 59. ročníku fyzikání oympiády. Kategorie A Autor úoh: J. Thomas.a) Na dráze vt bude zapotřebí objem paiva V θ θv t. Při jeho spáení se získá tepo Q mh ρv H ρθvh t. Z toho se η využije na
4.1 Shrnutí základních poznatků
4.1 Shrnutí zákadních poznatků V případech příčných deformací přímých prutů- nosníků se zabýváme deformací jejich střednice, tj. spojnice těžiště příčných průřezů. Tuto deformovanou křivku nazýváme průhybová
PRAKTIKUM II. Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK. úlohač.19 Název: Měření s torzním magnetometrem
Odděení fyzikáních praktik při Kabinetu výuky obecné fyziky MFF UK PRAKTIKUM II. úohač.19 Název: Měření s torzním magnetometrem Pracova: Lukáš Ledvina stud.skup.14 dne:16.10.2009 Odevzdadne: Možný počet
OVMT Mechanické zkoušky
Mechanické zkoušky Mechanickými zkouškami zjišťujeme chování materiálu za působení vnějších sil, tzn., že zkoumáme jeho mechanické vlastnosti. Některé mechanické vlastnosti materiálu vyjadřují jeho odpor
1. Změřte modul pružnosti v tahu E oceli z protažení drátu. 2. Změřte modul pružnosti v tahu E oceli a duralu nebo mosazi z průhybu trámku.
1 Pracovní úkoly 1. Změřte modul pružnosti v tahu E oceli z protažení drátu. 2. Změřte modul pružnosti v tahu E oceli a duralu nebo mosazi z průhybu trámku. 3. Výsledky měření graficky znázorněte, modul
STRUKTURA A VLASTNOSTI PEVNÝCH LÁTEK
STRUKTURA A VLASTNOSTI PEVNÝCH LÁTEK Ing.Jiřina Strnadová Předmět:Fyzika Praha a EU Investujeme do vaší budoucnosti 1 Obsah Teoretický úvod... 3 Rozdělení pevných látek... 3 Mechanické vlastnosti pevných
6. Viskoelasticita materiálů
6. Viskoelasticita materiálů Viskoelasticita materiálů souvisí se schopností materiálů tlumit mechanické vibrace. Uvažujme harmonické dynamické namáhání (tzn. střídavě v tahu a tlaku) materiálu v oblasti
Osově namáhaný prut základní veličiny
Pružnost a pevnost BD0 Osově namáhaný prut základní velčny ormálová síla půsoící v průřezu osově namáhaného prutu se získá ntegrací normálového napětí po ploše průřezu. da A Vzhledem k rovnoměrnému rozložení
III/2-1 Inovace a zkvalitnění výuky prostřednictvím ICT
Název školy Název projektu Registrační číslo projektu Autor Název šablony Střední průmyslová škola strojírenská a Jazyková škola s právem státní jazykové zkoušky, Kolín IV, Heverova 191 Modernizace výuky
NOVÁ METODA NÁVRHU PRŮMYSLOVÝCH PODLAH Z VLÁKNOBETONU
NOVÁ METODA NÁVRHU PRŮMYSLOVÝCH PODLAH Z VLÁKNOBETONU Jan Loško, Lukáš Vrábík, Jaromír Jaroš Úvod Nejrozšířenějším příkadem využití váknobetonu v současné době jsou zřejmě podahové a zákadové desky. Při
Stav napjatosti materiálu.
tav napjatosti materiáu. Zákad mechanik, 9. přednáška Obsah přednášk : jednoosý a dvojosý stav napjatosti, stav napjatosti ohýbaného nosníku, deformace ohýbaného nosníku, řešení statick neurčitých úoh
Mechanika kontinua. Mechanika elastických těles Mechanika kapalin
Mechanika kontinua Mechanika elastických těles Mechanika kapalin Mechanika kontinua Mechanika elastických těles Mechanika kapalin a plynů Kinematika tekutin Hydrostatika Hydrodynamika Kontinuum Pro vyšetřování
Betonové konstrukce (S) Přednáška 3
Betonové konstrukce (S) Přednáška 3 Obsah Účinky předpětí na betonové prvky a konstrukce Silové působení kabelu na beton Ekvivalentní zatížení Staticky neurčité účinky předpětí Konkordantní kabel, Lineární
Reologické modely technických materiálů při prostém tahu a tlaku
. lekce Reologické modely technických materiálů při prostém tahu a tlaku Obsah. Základní pojmy Vnitřní síly napětí. Základní reologické modely technických materiálů 3.3 Elementární reologické modely creepu
4 Viskoelasticita polymerů II - creep
4 Viskoelasticita polymerů II - creep Teorie Ke zkoumání mechanických vlastností viskoelastických polymerních látek používáme dvě nestacionární metody: relaxační test (podrobně popsaný v úloze Viskoelasticita
Téma 4 Výpočet přímého nosníku
Stavební statika, 1.ročník bakaářského studia Téma 4 Výpočet přímého nosníku Výpočet nosníku v osové úoze Výpočet nosníku v příčné úoze ve svisé a vodorovné havní rovině Výpočet nosníku v krutové úoze
F7 MOMENT SETRVAČNOSTI
F7 MOMENT ETRVAČNOTI Evropský sociání fond Praha & EU: Investujeme do vaší budoucnosti F7 MOMENT ETRVAČNOTI V této části si spočteme některé jednoduché příkady na rotační pohyby a seznámíme se s někoika
Měření momentu setrvačnosti
Měření momentu setrvačnosti Úkol : 1. Zjistěte pro dané těleso moment setrvačnosti, prochází-li osa těžištěm. 2. Zjistěte moment setrvačnosti daného tělesa k dané ose metodou torzních kmitů. Pomůcky :
Řešení úloh 1. kola 49. ročníku fyzikální olympiády. Kategorie D. Dosazením do rovnice(1) a úpravou dostaneme délku vlaku
Řešení úoh koa 49 ročníku fyzikání oympiády Kategorie D Autořiúoh:JJírů(,3,4,5,6,),TDenkstein(), a) Všechny uvažované časy jsou měřené od začátku rovnoměrně zrychené pohybu vaku a spňují rovnice = at,
Praktikum I úloha IX. Měření modulu pružnosti v tahu
Praktikum I úloha IX. Měření modulu pružnosti v tahu Štěpán Roučka úkol 1. Změřte modul pružnosti v tahu E oceli z protažení drátu. 2. Změřte modul pružnosti v tahu E oceli a duralu nebo mosazi z průhybu
Univerzita Tomáše Bati ve Zlíně
Univerzita omáše Bati ve Zíně LABORAORNÍ CVIČENÍ Z FYZIKY II Název úohy: Měření tíhového zrychení reverzním a matematickým kyvadem Jméno: Petr Luzar Skupina: I II/1 Datum měření: 3.října 007 Obor: Informační
Namáhání na tah, tlak
Namáhání na tah, tlak Pro namáhání na tah i tlak platí stejné vztahy a rovnice. Velikost normálového napětí v tahu, resp. tlaku vypočítáme ze vztahu: resp. kde je napětí v tahu, je napětí v tlaku (dále
MAGNETICKÉ POLE. 1. Stacionární magnetické pole I I I I I N S N N
MAGETCKÉ POLE 1. Stacionární magnetické poe V E S T C E D O R O Z V O J E V Z D Ě L Á V Á Í je část prostoru, kde se veičiny popisující magnetické poe nemění s časem. Vzniká v bízkosti stacionárních vodičů
Závěrečná práce studentského projektu
Gymnázium Jana Nerudy Závěrečná práce studentského projektu Studium deformace vláken Evropský sociální fond Praha a EU Investujeme do vaší budoucnosti 214 Petr Krýda Petr Jaroš Petr Kolouch Matěj Seykora
Vzpěr, mezní stav stability, pevnostní podmínky pro tlak, nepružný a pružný vzpěr Ing. Jaroslav Svoboda
Střední průmyslová škola a Vyšší odborná škola technická Brno, Sokolská 1 Šablona: Inovace a zkvalitnění výuky prostřednictvím ICT Název: Téma: Autor: Číslo: Anotace: Mechanika, pružnost pevnost Vzpěr,
ZKOUŠENÍ TEXTILIÍ PŘEDNÁŠKA 10 KONSTRUKČNÍ PARAMETRY PLOŠNÝCH TEXTILIÍ
ZKOUŠENÍ TEXTILIÍ PŘEDNÁŠKA 10 KONSTRUKČNÍ PARAMETRY PLOŠNÝCH TEXTILIÍ KONSTRUKČNÍ PARAMETRY PLOŠNÝCH TEXTILIÍ U tkanin: Vazba Dostava Pošná hmotnost Objemová měrná hmotnost Pórovitost Toušťka Setkání
PRAKTIKUM I. Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK. Název: Měření modulu pružnosti v tahu. stud. skup.
Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK PRAKTIKUM I. Úloha č. IX Název: Měření modulu pružnosti v tahu Pracoval: Lukáš Vejmelka stud. skup. FMUZV (73) dne 13.3.2013 Odevzdal
Vlastnosti a zkoušení materiálů. Přednáška č.9 Plasticita a creep
Vlastnosti a zkoušení materiálů Přednáška č.9 Plasticita a creep Vliv teploty na chování materiálu 1. Teplotní roztažnost L = L α T ( x) dl 2. Závislost modulu pružnosti na teplotě: Modul pružnosti při
Statika soustavy těles v rovině
Statka soustavy těles v rovně Zpracoval: Ing. Mroslav yrtus, Ph.. U mechancké soustavy s deálním knematckým dvojcem znázorněné na obrázku určete: počet stupňů volnost početně všechny reakce a moment M
LOGO. Struktura a vlastnosti pevných látek
Struktura a vlastnosti pevných látek Rozdělení pevných látek (PL): monokrystalické krystalické Pevné látky polykrystalické amorfní Pevné látky Krystalické látky jsou charakterizovány pravidelným uspořádáním
Mezi krystalické látky nepatří: a) asfalt b) křemík c) pryskyřice d) polvinylchlorid
Mezi krystalické látky nepatří: a) asfalt b) křemík c) pryskyřice d) polvinylchlorid Mezi krystalické látky patří: a) grafit b) diamant c) jantar d) modrá skalice Mezi krystalické látky patří: a) rubín
Couloumbuv zákon stejne jako vetsina zakonu elektrostatiky jsou velmi podobna zakonum gravitacniho pole.
1) Eektrostaticke poe, Cooumbuv zákon, Permitivita kazde dve teesa nabite eektrickym nabojem Q na sebe pusobi vzajemnou siou. Ta je vysise pomoci Couombovyho zákona: F = 1 4 Q Q 1 2 r r 2 0 kde první cast
Obsah 11_Síla _Znázornění síly _Gravitační síla _Gravitační síla - příklady _Skládání sil _PL: SKLÁDÁNÍ SIL -
Obsah 11_Síla... 2 12_Znázornění síly... 5 13_Gravitační síla... 5 14_Gravitační síla - příklady... 6 15_Skládání sil... 7 16_PL: SKLÁDÁNÍ SIL - řešení... 8 17_Skládání různoběžných sil působících v jednom
Fyzikální praktikum FJFI ČVUT v Praze
Fyzikální praktikum FJFI ČVUT v Praze Úloha 3: Měření modulu pružnosti v tahu a modulu pružnosti ve smyku Datum měření: 6. 11. 015 Skupina: 8, čtvrtek 7:30 Vypracoval: Tadeáš Kmenta Klasifikace: 1 Zadání
12. Struktura a vlastnosti pevných látek
12. Struktura a vlastnosti pevných látek Osnova: 1. Látky krystalické a amorfní 2. Krystalová mřížka, příklady krystalových mřížek 3. Poruchy krystalových mřížek 4. Druhy vazeb mezi atomy 5. Deformace
I Stabil. Lepený kombinovaný nosník se stojnou z desky z orientovaných plochých třísek - OSB. Navrhování nosníků na účinky zatížení podle ČSN 73 1701
I Stabi Lepený kombinovaný nosník se stojnou z desky z orientovaných pochých třísek - OSB Navrhování nosníků na účinky zatížení pode ČSN 73 1701 Část A Část B Část C Část D Výchozí předpokady, statické
8. lekce. Ráz Obsah: 8.1 Dynamický součinitel Podélný ráz závaží na tyč Tenzometrický snímač rázových dějů 5.
8 ece Ráz Obsa: 8 Dynamicý součinite 8 Podéný ráz závaží na tyč 8 Tenzometricý snímač rázovýc dějů 5 rana z 5 8 Dynamicý součinite Rázový jev vzniá při náé změně rycoi dotýajícíc se těes, souav nebo jinýc
Téma: Měření Youngova modulu pružnosti. Křivka deformace.
PROTOKOL O LABORATORNÍ PRÁCI Z YZIKY Téma úlohy: Měření Youngova modulu pružnosti. Křivka deformace. Pracoval: Třída: Datum: Spolupracovali: Teplota: Tlak: Vlhkost vzduchu: Hodnocení: Téma: Měření Youngova
III/2-1 Inovace a zkvalitnění výuky prostřednictvím ICT
Název školy Název projektu Registrační číslo projektu Autor Název šablony třední průmyslová škola strojírenská a Jazyková škola s právem státní jazykové zkoušky, Kolín IV, Heverova 191 Modernizace výuky
3.2 Základy pevnosti materiálu. Ing. Pavel Bělov
3.2 Základy pevnosti materiálu Ing. Pavel Bělov 23.5.2018 Normálové napětí představuje vazbu, která brání částicím tělesa k sobě přiblížit nebo se od sebe oddálit je kolmé na rovinu řezu v případě že je
Dynamika. Dynamis = řecké slovo síla
Dynamika Dynamis = řecké slovo síla Dynamika Dynamika zkoumá příčiny pohybu těles Nejdůležitější pojmem dynamiky je síla Základem dynamiky jsou tři Newtonovy pohybové zákony Síla se projevuje vždy při
K618 FD ČVUT v Praze (pracovní verze). Tento materiál má pouze pracovní charakter a bude v průběhu semestru
Poznámky k semináři z předmětu Pružnost pevnost na K68 D ČVUT v Praze (pracovní verze). Tento materiál má pouze pracovní carakter a bude v průběu semestru postupně doplňován. Autor: Jan Vyčicl E mail:
Materiálové vlastnosti: Poissonův součinitel ν = 0,3. Nominální mez kluzu (ocel S350GD + Z275): Rozměry průřezu:
Řešený příklad: Výpočet momentové únosnosti ohýbaného tenkostěnného C-profilu dle ČSN EN 1993-1-3. Ohybová únosnost je stanovena na základě efektivního průřezového modulu. Materiálové vlastnosti: Modul
Obsah MECHANIKA PRUŽNÉHO TĚLESA. Tabulka III. Studijní text pro řešitele FO a ostatní zájemce o fyziku. Bohumil Vybíral.
Tabuka III Mechanické vastnosti některých křehkých konstrukčních materiáů Pevnost v tahu Pevnost v taku Pevnost v ohybu Materiá σ pt/mpa σ pd /MPa σ po/mpa Šedá itina 4 4 1 10 500 80 Šedá itina 4 4 4 40
MECHANIKA PRUŽNÉHO TĚLESA. Studijní text pro řešitele FO a ostatní zájemce o fyziku. Bohumil Vybíral. Předmluva 3
MECHANIKA PRUŽNÉHO TĚLESA Studijní tet pro řešitee O a ostatní zájemce o fyziku Bohumi Vybíra Obsah Předmuva 3 1 ZÁKLADNÍ POZNATKY O PRUŽNOSTI TĚLES 4 1.1 Pevnépružnétěeso........................ 4 1.2
Pružnost a plasticita II
Pružnost a plastcta II 3 ročník bakalářského studa doc Ing Martn Kresa PhD Katedra stavební mechank Řešení pravoúhlých nosných stěn metodou sítí Statcké schéma nosné stěn q G υ (μ) h l d 3 wwwfastvsbcz
Prvky betonových konstrukcí BL01 11 přednáška
Prvky betonových konstrukcí BL01 11 přednáška Mezní stavy použitelnosti (MSP) Použitelnost a trvanlivost Obecně Kombinace zatížení pro MSP Stádia působení ŽB prvků Mezní stav omezení napětí Mezní stav
Téma 2 Deformace staticky určitých prutových konstrukcí
Statika stavebních konstrukcí I.,.ročník bakaářského studia Téma Deformace staticky určitých prutových konstrukcí Katedra stavební mechaniky Fakuta stavební, VŠB - Technická univerzita Ostrava Osnova přednášky
Vybrané okruhy znalostí z předmětů stavební mechanika, pružnost a pevnost důležité i pro studium předmětů KP3C a KP5A - navrhování nosných konstrukcí
Vybrané okruhy znalostí z předmětů stavební mechanika, pružnost a pevnost důležité i pro studium předmětů KP3C a KP5A - navrhování nosných konstrukcí Skládání a rozklad sil Skládání a rozklad sil v rovině
Co by mohl (budoucí) lékař vědět o materiálech tkáňových výztuží či náhrad. 20. března 2012
Prohloubení odborné spolupráce a propojení ústavů lékařské biofyziky na lékařských fakultách v České republice CZ.1.07/2.4.00/17.0058 Co by mohl (budoucí) lékař vědět o materiálech tkáňových výztuží či
Voigtův model kompozitu
Voigtův model kompozitu Osnova přednášky Směšovací pravidlo použitelnost Princip Voigtova modelu Důsledky Voigtova modelu Specifika vláknových kompozitů Směšovací pravidlo Nejjednoduší vztah pro vlastnost
ZÁPADOČESKÁ UNIVERZITA V PLZNI
ZÁPADOČESKÁ UNIVERZITA V PLZNI FAKULTA STROJNÍ Semestrální práce z předmětu MM Stanovení deformace soustav ocelových prutů Václav Plánčka 6..006 OBSAH ZADÁNÍ... 3 TEORETICKÁ ČÁST... 4 PRAKTICKÁ ČÁST...
ZKOUŠKA PEVNOSTI V TAHU
Předmět: Ročník: Vytvořil: Datum: KONTROLA A MĚŘENÍ ČTVRTÝ Aleš GARSTKA 27.5.2012 Název zpracovaného celku: Zkouška pevnosti materiálu v tahu ZKOUŠKA PEVNOSTI V TAHU Zadání: Proveďte na zkušebním trhacím
Cvičení Na těleso působí napětí v rovině xy a jeho napěťový stav je popsán tenzorem napětí (
Cvičení 11 1. Na těleso působí napětí v rovině xy a jeho napěťový stav je popsán tenzorem napětí ( σxx τ xy τ xy σ yy ) (a) Najděte vyjádření tenzoru napětí v soustavě souřadnic pootočené v rovině xy o
6. Měření Youngova modulu pružnosti v tahu a ve smyku
6. Měření Youngova modulu pružnosti v tahu a ve smyu Úol : Určete Youngův modul pružnosti drátu metodou přímou (z protažení drátu). Prostudujte doporučenou literaturu: BROŽ, J. Zálady fyziálních měření..
Pružnost a pevnost (132PRPE) Písemná část závěrečné zkoušky vzorové otázky a příklady. Část 1 - Test
Pružnost a pevnost (132PRPE) Písemná část závěrečné zkoušky vzorové otázky a příklady Povolené pomůcky: psací a rýsovací potřeby, kalkulačka (nutná), tabulka průřezových charakteristik, oficiální přehled