POROZUMĚNÍ POJMU SÍLA
|
|
- Šimon Havel
- před 9 lety
- Počet zobrazení:
Transkript
1 TEST POROZUMĚNÍ POJMU SÍLA original Force Concept Inventory 1992 D. Hestenes, M. Wells, G. Swackhamer In: Phys. Teach. 30 (3), (1992) Revised 1995: I. Halloun, R. Hake, E. Mosca Department of Physics and Astronomy Arizona State University Tempe, AZ 85287, USA česká verze 2008 J. Burešová, D. Mandíková Odborná revize překladu: L. Dvořák, V. Žák, E. Hejnová, J. Králík Katedra didaktiky fyziky MFF UK Praha V Holešovičkách 2, Praha 8 dana.mandikova@kdf.mff.cuni.cz
2 TEST POROZUMĚNÍ POJMU SÍLA Poznámky pro učitele Force Concept Inventory (FCI) je test s otázkami s výběrem odpovědi, který byl navržený, aby zjišťoval, jak studenti chápou základy newtonovské mechaniky. FCI test může být použit k různým účelům, ale nejdůležitější z nich je hodnocení efektivity výuky. Tento test se řeší pouze s tužkou a papírem, studenti nemají k dispozici učebnice, tabulky, poznámky ani žádné vzorce. Před studenty tento test nenazývejte FCI, vymyslete si vlastní název nebo jej ponechte bez názvu. Započítejte test do hodnocení, aby k němu studenti přistoupili seriózně. Test po skončení testování vyberte a uschovejte, aby k němu studenti neměli přístup. Děkujeme za spolupráci!
3 TEST POROZUMĚNÍ POJMU SÍLA Pokyny nepište nic do zadání testu odpovědi zakroužkujte ve svém záznamovém archu zakroužkujte vždy jen jednu odpověď u každé otázky nepřeskakujte otázky, protože na sebe navazují snažte se nehádat odpovědi vaše odpovědi by měly vyjadřovat to, co si sami myslíte či co intuitivně cítíte počkejte na pokyn zadavatele, potom nalistujte následující stranu a postupně odpovídejte na vyplnění testu máte 30 minut, naplánujte si podle toho čas
4 Poznámka: V souladu s anglickým originálem je v testu používán termín gravitační síla, a to ve stejném významu jako síla tíhová. 1. Máme dvě stejně velké kovové kuličky, jedna váží dvakrát více než druhá. Tyto kuličky pustíme současně ze střechy jednopodlažní budovy. Čas, za který kuličky dopadnou na zem, bude: (A) přibližně poloviční pro těžší kuličku než pro lehčí kuličku. (B) přibližně poloviční pro lehčí kuličku než pro těžší kuličku. (C) přibližně stejný pro obě kuličky. (D) výrazně kratší pro těžší kuličku, ale ne nutně poloviční. (E) výrazně kratší pro lehčí kuličku, ale ne nutně poloviční. 2. Tytéž dvě kovové kuličky jako v první otázce spadnou z okraje vodorovného stolu, po kterém se kutálely stejnou rychlostí. V tomto případě: (A) obě kuličky dopadnou na podlahu přibližně ve stejné vzdálenosti od paty stolu. (B) těžší kulička dopadne na podlahu přibližně v poloviční vzdálenosti od paty stolu než kulička lehčí. (C) lehčí kulička dopadne na podlahu přibližně v poloviční vzdálenosti od paty stolu než kulička těžší. (D) těžší kulička dopadne o hodně blíže k patě stolu než lehčí kulička, ale ne nutně v poloviční vzdálenosti. (E) lehčí kulička dopadne o hodně blíže k patě stolu než těžší kulička, ale ne nutně v poloviční vzdálenosti. 3. Kámen, který pustíme ze střechy jednopodlažní budovy: (A) dosáhne maximální rychlosti krátce po začátku pohybu, a pak padá konstantní rychlostí. (B) zrychluje svůj pád, protože gravitační přitahování výrazně vzrůstá s tím, jak se kámen přibližuje k zemi. (C) zrychluje, protože na něj působí téměř konstantní gravitační síla. (D) padá, protože všechny předměty mají přirozenou tendenci spočívat na zemském povrchu. (E) padá, protože ho směrem dolů tlačí jak gravitační síla, tak síla, kterou na něj působí vzduch. 4. Velký kamion se čelně srazí s malým osobním autem. V průběhu srážky: (A) kamion působí větší silou na auto než auto na kamion. (B) auto působí větší silou na kamion než kamion na auto. (C) žádné z aut nepůsobí na druhé silou, osobní auto je sešrotováno prostě proto, že se dostalo do cesty kamionu. (D) kamion působí silou na auto, ale auto nepůsobí na kamion. (E) kamion působí na auto stejně velkou silou jako auto na kamion. 1
5 Pro zodpovězení dalších dvou otázek (5 a 6) použijte následující text a obrázek: Na obrázku vidíte dokonale hladký žlábek ve tvaru části kruhu se středem v bodě S. Tento žlábek je připevněn na vodorovném dokonale hladkém stole. Na stůl se díváme kolmo shora. Působení vzduchu je zanedbatelné. Do žlábku vstřelíme v bodě P vysokou rychlostí kuličku, v bodě R kulička žlábek opustí Uvažujte tyto různé síly: 1. gravitační síla působící směrem dolů 2. síla, kterou působí žlábek, mířící z bodu Q do bodu S 3. síla ve směru pohybu kuličky 4. síla mířící z bodu S do bodu Q Které z výše uvedených sil působí na kuličku, když se v dokonale hladkém žlábku nachází v bodě Q? (A) pouze 1 (B) 1 a 2 (C) 1 a 3 (D) 1, 2 a 3 (E) 1, 3 a 4 6. Kulička opustí žlábek v bodě R a dále se pohybuje po dokonale hladkém stole. Která z trajektorií vyznačených na obrázku vpravo nejlépe odpovídá pohybu kuličky po opuštění žlábku? 7. Ocelová kulička je přivázaná na provázek a člověk jí kolem sebe točí tak, že se kulička pohybuje ve vodorovné rovině, jak ukazuje obrázek. V bodě P vyznačeném na obrázku se provázek v blízkosti kuličky náhle přetrhne. Celou situaci pozorujeme kolmo shora. Která z trajektorií vyznačených na obrázku nejlépe odpovídá pohybu kuličky po přetržení provázku? 2
6 Pro zodpovězení dalších čtyř otázek (8 až 11) použijte následující text a obrázek: Na obrázku pod textem je znázorněn hokejový puk, který klouže bez tření konstantní rychlostí v 0 po přímce z bodu P do bodu Q po vodorovné podložce. Odpor vzduchu můžeme zanedbat. Na puk se díváme shora. V bodě Q dostane puk krátký rychlý úder ve směru naznačeném velkou šipkou. Kdyby byl puk v bodě Q v klidu, pohyboval by se po tomto úderu rychlostí v k ve směru úderu. 8. Která z trajektorií na obrázku nejlépe odpovídá pohybu puku po úderu? 9. Velikost rychlosti puku hned po úderu: (A) se rovná velikosti rychlosti v 0, kterou se puk pohyboval před úderem. (B) se rovná velikosti rychlosti v k způsobené úderem, která je nezávislá na rychlosti v 0. (C) se rovná součtu velikostí rychlostí v 0 a v k. (D) je menší než velikost kterékoliv z rychlostí v 0 a v k. (E) je větší než velikost kterékoliv z obou rychlostí v 0 a v k, ale je menší než součet velikostí rychlostí v 0 a v k. 10. Když se puk po úderu pohybuje bez tření po trajektorii, kterou jste vybrali v otázce číslo 8, velikost jeho rychlosti: (A) je konstantní. (B) stále roste. (C) stále klesá. (D) chvíli roste, pak klesá. (E) je chvíli konstantní, pak klesá. 11. Jaké síly působí po úderu na puk, když se pohybuje bez tření po trajektorii, kterou jste zvolili v odpovědi na otázku číslo 8? (A) Gravitační síla působící směrem dolů. (B) Gravitační síla působící směrem dolů a vodorovná síla ve směru pohybu. (C) Gravitační síla působící směrem dolů, síla, kterou působí směrem vzhůru podložka, po níž se puk pohybuje, a vodorovná síla ve směru pohybu. (D) Gravitační síla působící směrem dolů a síla, kterou působí směrem vzhůru podložka. (E) Žádné síly na puk nepůsobí. 3
7 12. Z děla na útesu je vypálena koule. Která z trajektorií na obrázku nejlépe odpovídá pohybu koule? 13. Chlapec vyhodí ocelovou kuličku svisle vzhůru. Uvažujte pohyb kuličky od chvíle, kdy opustí ruku chlapce do doby, než dopadne na zem. Odpor vzduchu zanedbejte. Jaké síly (síla) působí na kuličku za těchto podmínek? (A) Gravitační síla působící směrem dolů a stále se zmenšující síla působící směrem nahoru. (B) Stále se zmenšující síla směrem nahoru, která na kuličku působí od okamžiku, kdy opustila ruku chlapce, do doby než dosáhne nejvyššího bodu své dráhy; na cestě dolů působí na kuličku stále rostoucí gravitační síla, protože se přibližuje k zemi. (C) Téměř konstantní gravitační síla směrem dolů a společně s ní působí síla směrem nahoru, která se stále zmenšuje, dokud kulička nedosáhne nejvyššího bodu. Na cestě dolů působí už pouze konstantní gravitační síla směrem dolů. (D) (E) Působí jen téměř konstantní gravitační síla směrem dolů. Žádná z výše popsaných možností. Kulička padá zpátky k zemi díky přirozené tendenci ležet v klidu na zemi. 14. Z nákladového prostoru letadla letícího vodorovně vypadne náhodně bowlingová koule. Která z trajektorií nejlépe odpovídá pohybu koule po vypadnutí z letadla z pohledu pozorovatele stojícího na zemi, který vidí letadlo tak, jak ukazuje obrázek? 4
8 Pro zodpovězení dalších dvou otázek (15 a 16) použijte následující text a obrázek : Velké nákladní auto se porouchalo na silnici mimo město a do města jej tlačí malé osobní auto, jak ukazuje obrázek. 15. Když osobní auto tlačící náklaďák zrychluje, aby dosáhlo požadované rychlosti: (A) je velikost síly, kterou tlačí osobní auto na nákladní, stejná jako velikost síly, kterou tlačí nákladní auto na osobní. (B) je velikost síly, kterou tlačí osobní auto na nákladní, menší než velikost síly, kterou tlačí nákladní auto na osobní. (C) je velikost síly, kterou tlačí osobní auto na nákladní, větší než velikost síly, kterou tlačí nákladní auto na osobní. (D) motor osobního auta pracuje, takže osobní auto tlačí na nákladní. Motor nákladního auta nepracuje, proto nemůže nákladní auto tlačit zpátky na osobní auto. Nákladní auto je tlačené dopředu jednoduše proto, že stojí v cestě osobnímu autu. (E) auta na sebe vzájemně silami nepůsobí. Nákladní auto je tlačené dopředu jednoduše proto, že stojí v cestě osobnímu autu. 16. Poté, co osobní auto dosáhne stálé rychlosti, kterou jeho řidič chce tlačit nákladní automobil: (A) je velikost síly, kterou tlačí osobní auto na nákladní, stejná jako velikost síly, kterou tlačí nákladní auto na osobní. (B) je velikost síly, kterou tlačí osobní auto na nákladní, menší než velikost síly, kterou tlačí nákladní auto na osobní. (C) je velikost síly, kterou tlačí osobní auto na nákladní, větší než velikost síly, kterou tlačí nákladní auto na osobní. (D) motor osobního auta pracuje, takže osobní auto tlačí na nákladní. Motor nákladního auta nepracuje, proto nemůže nákladní auto tlačit zpětně na osobní auto. Nákladní auto je tlačené dopředu jednoduše proto, že stojí v cestě osobnímu autu. (E) Auta na sebe vzájemně silami nepůsobí. Nákladní auto je tlačené dopředu jednoduše proto, že stojí v cestě osobnímu autu. 17. Výtah jede výtahovou šachtou konstantní rychlostí nahoru a je tažen ocelovým lanem, jak ukazuje obrázek. Tření (včetně odporu vzduchu) je zanedbatelné. Co platí pro síly působící na výtah v této situaci? (A) Síla, kterou působí lano směrem vzhůru, je větší než gravitační síla mířící dolů. (B) Síla, kterou působí lano směrem vzhůru, je stejná jako gravitační síla mířící dolů. (C) Síla, kterou působí lano směrem vzhůru, je menší než gravitační síla mířící dolů. (D) Síla, kterou působí lano směrem vzhůru, je větší než součet gravitační síly mířící dolů a síly, kterou působí vzduch směrem dolů. (E) Žádná z uvedených možností. (Výtah se pohybuje nahoru díky zkracování ocelového lana a ne kvůli tomu, že na něj působí lano silou směrem vzhůru.) 5
9 18. Na obrázku je chlapec, který se houpe na laně. Začal se houpat z místa položeného výše než je bod A na obrázku. Uvažujte následující různé síly: 1. gravitační síla působící dolů 2. síla, kterou působí lano, mířící ve směru od bodu A do bodu O 3. síla ve směru chlapcova pohybu 4. síla mířící ve směru od bodu O do bodu A Která (které) z těchto sil působí na chlapce v bodě A? (A) pouze 1 (B) 1 a 2 (C) 1 a 3 (D) 1, 2 a 3 (E) 1, 3 a Očíslované čtverečky na obrázku znázorňují polohy dvou kostek zaznamenané v po sobě následujících 0,20 sekundových intervalech. Kostky se plynule pohybují zleva doprava. Mají kostky někdy v průběhu pohybu stejnou rychlost? (A) Nemají. (B) Ano, v poloze 2. (C) Ano, v poloze 5. (D) Ano, v poloze 2 a 5. (E) Ano, v nějakém čase mezi polohami 3 a Očíslované čtverečky na obrázku znázorňují polohy dvou kostek zaznamenané v po sobě následujících 0,20 sekundových intervalech. Kostky se plynule pohybují zleva doprava. Vztah mezi zrychleními těchto dvou kostek je následující: (A) Zrychlení kostky A je větší než zrychlení kostky B. (B) Zrychlení kostky A se rovná zrychlení kostky B. Obě zrychlení jsou větší než nula. (C) Zrychlení kostky B je větší než zrychlení kostky A. (D) Zrychlení kostky A se rovná zrychlení kostky B. Obě zrychlení jsou nulová. (E) Pro zodpovězení otázky není dostatek informací. 6
10 Pro zodpovězení dalších čtyř otázek (21 až 24) použijte následující text a obrázek. Raketa se ve vesmíru pohybuje z bodu A do bodu B, jak ukazuje obrázek. Na raketu nepůsobí žádné vnější síly. V bodě B se zapne motor rakety, který vyvíjí stálý tah (sílu působící na raketu) kolmo na přímku AB. Motor je zapnut, dokud se raketa nedostane do bodu C. 21. Která z trajektorií na obrázku nejlépe znázorňuje pohyb rakety mezi body B a C? 22. Když se raketa pohybuje z bodu B do bodu C, velikost její rychlosti: (A) je konstantní. (B) plynule roste. (C) plynule klesá. (D) chvíli roste, pak je konstantní. (E) chvíli je konstantní, pak klesá. 23. V bodě C se motor rakety vypne a jeho tah okamžitě klesne na nulu. Po které z trajektorií na obrázku se bude raketa pohybovat za bodem C? 24. Velikost rychlosti rakety za bodem c : (A) je konstantní. (B) plynule roste. (C) plynule klesá. (D) chvíli roste, pak je konstantní. (E) chvíli je konstantní, pak klesá. 7
11 25. Žena tlačí velkou krabici konstantní vodorovnou silou. V důsledku toho se krabice pohybuje konstantní rychlostí v 0 po vodorovné podlaze. Konstantní vodorovná síla, kterou žena na krabici působí,: (A) je stejně velká jako tíha krabice. (B) je větší než tíha krabice. (C) je stejně velká jako celková síla kladoucí odpor pohybu krabice. (D) je větší než celková síla kladoucí odpor pohybu krabice. (E) je větší než tíha krabice a také než celková síla kladoucí odpor pohybu krabice. 26. Pokud žena z předchozí otázky zdvojnásobí konstantní vodorovnou sílu, jíž působí na tutéž krabici na stejné podlaze, pak se krabice bude pohybovat: (A) konstantní rychlostí, která bude dvojnásobná než rychlost v 0 z předchozí otázky. (B) konstantní rychlostí, která bude větší než rychlost v 0 z předchozí otázky, ale nemusí být dvojnásobná. (C) chvíli konstantní rychlostí vyšší než rychlost v 0 z předchozí otázky, pak se bude rychlost pořád zvyšovat. (D) chvíli rostoucí rychlostí, pak už bude rychlost konstantní. (E) plynule rostoucí rychlostí. 27. Pokud žena z otázky 25 přestane najednou na krabici působit silou, tak krabice: (A) se ihned zastaví. (B) se bude chvíli pohybovat konstantní rychlostí, pak zpomalí a postupně zastaví. (C) začne ihned zpomalovat, až se zastaví. (D) se bude dále pohybovat konstantní rychlostí. (E) na chvíli zvětší svoji rychlost, pak začne zpomalovat, až se zastaví. 28. Na obrázku vpravo vidíte studenta A, který váží 95 kg a studenta B, který váží 77 kg. Studenti sedí proti sobě na stejných pojízdných židlích. Student A se opře bosýma nohama o studenta B, jak vidíte na obrázku. Student A se prudce odstrčí, přičemž uvede obě židle do pohybu. Dokud se studenti během odstrkování stále dotýkají: (A) (B) (C) (D) (E) nepůsobí na sebe vzájemně žádnými silami. student A působí silou na studenta B, ale student B na něj žádnou silou nepůsobí. oba na sebe působí silami, ale B působí větší silou. oba na sebe působí silami, ale A působí větší silou. oba na sebe působí stejně velkými silami. 8
12 29. Prázdná kancelářská židle stojí v klidu na podlaze. Uvažujte následující síly: 1. gravitační síla mířící směrem dolů. 2. síla, kterou působí podlaha, mířící směrem nahoru. 3. výsledná síla mířící směrem dolů, kterou působí vzduch. Které z těchto sil působí na židli? (A) pouze 1 (B) 1 a 2 (C) 2 a 3 (D) 1, 2 a 3 (E) žádná ze sil. (Protože se židle nepohybuje, nepůsobí na ni žádné síly.) 30. Přestože fouká silný vítr, podaří se tenistce trefit míček a přehrát jej přes síť na soupeřovu část hřiště. Vezměte v úvahu následující síly: 1. gravitační síla mířící směrem dolů 2. síla úderu do míčku 3. síla, kterou působí vzduch Které ze sil působí na tenisový míček poté, co ztratí kontakt s raketou a než dopadne na zem? (A) pouze 1 (B) 1 a 2 (C) 1 a 3 (D) 2 a 3 (E) 1, 2 a 3 9
Úlohy pro samostatnou práci k Úvodu do fyziky pro kombinované studium
Úlohy pro samostatnou práci k Úvodu do fyziky pro kombinované studium V řešení číslujte úlohy tak, jak jsou číslovány v zadání. U všech úloh uveďte stručné zdůvodnění. Vyřešené úlohy zašlete elektronicky
Soubor úloh k Mechanice (komb. studium)
Soubor úloh k Mechanice (komb. studium) 1. úloha Pozrite si nasledujúce grafy, pričom si všimnite odlišné osi: Ktorý z grafov predstavuje pohyb s konštantnou rýchlosťou? (A) I, II a IV (B) I a III (C)
TEST Porozumění kinematickým grafům
Příloha I Zadávaný test TEST Porozumění kinematickým grafům Pokyny: nepište nic do zadání testu odpovědi zakroužkujte ve svém záznamovém archu zakroužkujte vždy jen jednu odpověď u každé otázky snažte
FYZIKA. Newtonovy zákony. 7. ročník
FYZIKA Newtonovy zákony 7. ročník říjen 2013 Autor: Mgr. Dana Kaprálová Zpracováno v rámci projektu Krok za krokem na ZŠ Želatovská ve 21. století registrační číslo projektu: CZ.1.07/1.4.00/21.3443 Projekt
PRÁCE, VÝKON, ENERGIE. Mgr. Jan Ptáčník - GJVJ - Fyzika - 1. ročník - Mechanika
PRÁCE, VÝKON, ENERGIE Mgr. Jan Ptáčník - GJVJ - Fyzika - 1. ročník - Mechanika Mechanická práce Závisí na velikosti síly, kterou působíme na těleso, a na dráze, po které těleso posuneme Pokud má síla stejný
Příklad 5.3. v 1. u 1 u 2. v 2
Příklad 5.3 Zadání: Elektron o kinetické energii E se srazí s valenčním elektronem argonu a ionizuje jej. Při ionizaci se část energie nalétávajícího elektronu spotřebuje na uvolnění valenčního elektronu
Dynamika pro učební obory
Variace 1 Dynamika pro učební obory Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. 1. Newtonovy pohybové zákony
I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í
DYNAMIKA SÍLA 1. Úvod dynamos (dynamis) = síla; dynamika vysvětluje, proč se objekty pohybují, vysvětluje změny pohybu. Nepopisuje pohyb, jak to dělá... síly mohou měnit pohybový stav těles nebo mohou
7. Na těleso o hmotnosti 10 kg působí v jednom bodě dvě navzájem kolmé síly o velikostech 3 N a 4 N. Určete zrychlení tělesa. i.
Newtonovy pohybové zákony 1. Síla 60 N uděluje tělesu zrychlení 0,8 m s-2. Jak velká síla udělí témuž tělesu zrychlení 2 m s-2? BI5147 150 N 2. Těleso o hmotnosti 200 g, které bylo na začátku v klidu,
Přípravný kurz z fyziky na DFJP UPa
Přípravný kurz z fyziky na DFJP UPa 26. 28.8.2015 RNDr. Jan Zajíc, CSc. ÚAFM FChT UPa Pohyby rovnoměrné 1. Člun pluje v řece po proudu z bodu A do bodu B rychlostí 30 km.h 1. Při zpáteční cestě z bodu
Výukový materiál zpracován v rámci projektu EU peníze školám
Výukový materiál zpracován v rámci projektu EU peníze školám Registrační číslo projektu: CZ.1.07/1.5.00/34.0996 Šablona: III/2 č. materiálu: VY_32_INOVACE_FYZ_33 Jméno autora: Třída/ročník: Mgr. Alena
mechanická práce W Studentovo minimum GNB Mechanická práce a energie skalární veličina a) síla rovnoběžná s vektorem posunutí F s
1 Mechanická práce mechanická práce W jednotka: [W] = J (joule) skalární veličina a) síla rovnoběžná s vektorem posunutí F s s dráha, kterou těleso urazilo 1 J = N m = kg m s -2 m = kg m 2 s -2 vyjádření
1.2.11 Tření a valivý odpor I
1..11 Tření a valivý odpor I Předpoklady: 11 Př. 1: Do krabičky od sirek ležící na vodorovném stole strčíme malou silou. Krabička zůstane stát. Vysvětli. Mezi stolem a krabičkou působí tření, které se
BIOMECHANIKA KINEMATIKA
BIOMECHANIKA KINEMATIKA MECHANIKA Mechanika je nejstarším oborem fyziky (z řeckého méchané stroj). Byla původně vědou, která se zabývala konstrukcí strojů a jejich činností. Mechanika studuje zákonitosti
Opakování PRÁCE, VÝKON, ÚČINNOST, ENERGIE
Opakování PRÁCE, VÝKON, ÚČINNOST, ENERGIE 1 Rozhodni a zdůvodni, zda koná práci člověk, který a) vynese tašku do prvního patra, b) drží činku nad hlavou, c) drží tašku s nákupem na zastávce autobusu, d)
Elektřina a magnetismus úlohy na porozumění
Elektřina a magnetismus úlohy na porozumění 1) Prázdná nenabitá plechovka je umístěna na izolační podložce. V jednu chvíli je do místa A na vnějším povrchu plechovky přivedeno malé množství náboje. Budeme-li
4. Práce, výkon, energie a vrhy
4. Práce, výkon, energie a vrhy 4. Práce Těleso koná práci, jestliže působí silou na jiné těleso a posune jej po určité dráze ve směru síly. Příklad: traktor táhne přívěs, jeřáb zvedá panel Kdy se práce
Dynamika. Dynamis = řecké slovo síla
Dynamika Dynamis = řecké slovo síla Dynamika Dynamika zkoumá příčiny pohybu těles Nejdůležitější pojmem dynamiky je síla Základem dynamiky jsou tři Newtonovy pohybové zákony Síla se projevuje vždy při
BIOMECHANIKA. 6, Dynamika pohybu I. (Definice, Newtonovy zákony, síla, silové pole, silové působení, hybnost, zákon zachování hybnosti)
BIOMECHANIKA 6, Dynamika pohybu I. (Definice, Newtonovy zákony, síla, silové pole, silové působení, hybnost, zákon zachování hybnosti) Studijní program, obor: Tělesná výchovy a sport Vyučující: PhDr. Martin
Základní pojmy Rovnoměrný přímočarý pohyb Rovnoměrně zrychlený přímočarý pohyb Rovnoměrný pohyb po kružnici
Kinematika Základní pojmy Rovnoměrný přímočarý pohyb Rovnoměrně zrychlený přímočarý pohyb Rovnoměrný pohyb po kružnici Základní pojmy Kinematika - popisuje pohyb tělesa, nestuduje jeho příčiny Klid (pohyb)
Příklady: 7., 8. Práce a energie
Příklady: 7., 8. Práce a energie 1. Dělník tlačí bednu o hmotnosti m = 25, 0 kg vzhůru po dokonale hladké nakloněné rovině o úhlu sklonu α = 25. Působí na ni při tom stálou silou F o velikosti F = 209
[GRAVITAČNÍ POLE] Gravitace Gravitace je všeobecná vlastnost těles.
5. GRAVITAČNÍ POLE 5.1. NEWTONŮV GRAVITAČNÍ ZÁKON Gravitace Gravitace je všeobecná vlastnost těles. Newtonův gravitační zákon Znění: Dva hmotné body se navzájem přitahují stejně velkými gravitačními silami
Zadání programu z předmětu Dynamika I pro posluchače kombinovaného studia v Ostravě a Uherském Brodu vyučuje Ing. Zdeněk Poruba, Ph.D.
Zadání programu z předmětu Dynamika I pro posluchače kombinovaného studia v Ostravě a Uherském Brodu vyučuje Ing. Zdeněk Poruba, Ph.D. Ze zadaných třinácti příkladů vypracuje každý posluchač samostatně
GRAVITAČNÍ POLE. Všechna tělesa jsou přitahována k Zemi, příčinou tohoto je jevu je mezi tělesem a Zemí
GRAVITAČNÍ POLE Všechna tělesa jsou přitahována k Zemi, příčinou tohoto je jevu je mezi tělesem a Zemí Přitahují se i vzdálená tělesa, například, z čehož vyplývá, že kolem Země se nachází gravitační pole
Fyzika 1 - rámcové příklady Kinematika a dynamika hmotného bodu, gravitační pole
Fyzika 1 - rámcové příklady Kinematika a dynamika hmotného bodu, gravitační pole 1. Určete skalární a vektorový součin dvou obecných vektorů AA a BB a popište, jak závisí výsledky těchto součinů na úhlu
FYZIKA I cvičení, FMT 2. POHYB LÁTKY
FYZIKA I cvičení, FMT 2.1 Kinematika hmotných částic 2. POHYB LÁTKY 2.1.1 2.1.2 2.1.3 2.1.4 2.1.5 2.1.6 Těleso při volném pádu urazí v poslední sekundě dvě třetiny své dráhy. Určete celkovou dráhu volného
(2) 2 b. (2) Řešení. 4. Platí: m = Ep
(1) 1. Zaveďte slovy fyzikální veličinu účinnost 2. Vyjádřete 1 Joule v základních jednotkách SI. 3. Těleso přemístíme do vzdálenosti 8,1 m, přičemž na ně působíme silou o velikosti 158 N. Jakou práci
Dynamika hmotného bodu
Mechanika příklady pro samostudium Dynamika hmotného bodu Příklad 1: Určete konstantní sílu F, nutnou pro zrychlení automobilu o hmotnosti 1000 kg z klidu na rychlost 20 m/s během 10s. Dáno: m = 1000 kg,
3 Mechanická energie 5 3.1 Kinetická energie... 6 3.3 Potenciální energie... 6. 3.4 Zákon zachování mechanické energie... 9
Obsah 1 Mechanická práce 1 2 Výkon, příkon, účinnost 2 3 Mechanická energie 5 3.1 Kinetická energie......................... 6 3.2 Potenciální energie........................ 6 3.3 Potenciální energie........................
Zavádění inovativních metod a výukových materiálů do přírodovědných předmětů na Gymnáziu v Krnově
Zavádění inovativních metod a výukových materiálů do přírodovědných předmětů na Gymnáziu v Krnově 05_4_Mechanická práce a energie Ing. Jakub Ulmann 4 Mechanická práce a energie 4.1 Mechanická práce 4.2
R2.213 Tíhová síla působící na tělesa je mnohem větší než gravitační síla vzájemného přitahování těles.
2.4 Gravitační pole R2.211 m 1 = m 2 = 10 g = 0,01 kg, r = 10 cm = 0,1 m, = 6,67 10 11 N m 2 kg 2 ; F g =? R2.212 F g = 4 mn = 0,004 N, a) r 1 = 2r; F g1 =?, b) r 2 = r/2; F g2 =?, c) r 3 = r/3; F g3 =?
( ) ( ) 1.2.11 Tření a valivý odpor II. Předpoklady: 1210
Tření a valivý odpor II Předpoklady: Př : Urči zrychlení soustavy závaží na obrázku Urči vyznačenou sílu, kterou působí provázek na závaží Hmotnost kladek i provázku zanedbej Koeficient tření mezi závažími
1) Jakou práci vykonáme při vytahování hřebíku délky 6 cm, působíme-li na něj průměrnou silou 120 N?
MECHANICKÁ PRÁCE 1) Jakou práci vykonáme při vytahování hřebíku délky 6 cm, působíme-li na něj průměrnou silou 120 N? l = s = 6 cm = 6 10 2 m F = 120 N W =? (J) W = F. s W = 6 10 2 120 = 7,2 W = 7,2 J
OTÁČENÍ a TOČENÍ Točte kbelíkem Pomůcky:
Předměty se vždy pohybují přímočaře, pokud je něco nepřinutí změnit směr. Uvedení předmětů do velkých otáček může přinést překvapivé výsledky. O některých těchto jevech se přesvědčíme sami provedením pokusů.
Práce, výkon, energie
Práce, výkon, energie (test version, not revised) Petr Pošta pposta@karlin.mff.cuni.cz 23. října 2009 Obsah Mechanická práce Výkon, příkon, účinnost Mechanická energie Kinetická energie Potenciální energie
Ze vztahu pro mechanickou práci vyjádřete fyzikální rozměr odvozené jednotky J (joule).
Projekt Efektivní Učení Reformou oblastí gymnaziálního vzdělávání je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky. MECHANIKA PRÁCE A ENEGRIE Teorie Uveďte tři konkrétní
Pokyny k řešení didaktického testu - Dynamika
Dynamika hmotného bodu 20 Pokyny k řešení didaktického testu - Dynamika 1. Test obsahuje 20 otázek, které jsou rozděleny do několika skupin. Skupiny jsou označeny římskými číslicemi. Úvodní informace se
Mechanická práce a. Výkon a práce počítaná z výkonu Účinnost stroje, Mechanická energie Zákon zachování mechanické energie
Mechanická práce a energie Mechanická práce Výkon a práce počítaná z výkonu Účinnost stroje, Mechanická energie Zákon zachování mechanické energie Mechanická práce Mechanickou práci koná každé těleso,
DYNAMIKA HMOTNÉHO BODU. Mgr. Jan Ptáčník - GJVJ - Fyzika - 1. ročník - Mechanika
DYNAMIKA HMOTNÉHO BODU Mgr. Jan Ptáčník - GJVJ - Fyzika - 1. ročník - Mechanika Dynamika Obor mechaniky, který se zabývá příčinami změn pohybového stavu těles, případně jejich deformací dynamis = síla
Digitální učební materiál
Číslo projektu Název projektu Číslo a název šablony klíčové aktivity Digitální učební materiál CZ.1.07/1.5.00/34.0802 Zkvalitnění výuky prostřednictvím ICT III/2 Inovace a zkvalitnění výuky prostřednictvím
MECHANIKA TUHÉHO TĚLESA
MECHANIKA TUHÉHO TĚLESA. Základní teze tuhé těleso ideální těleso, které nemůže být deformováno působením žádné (libovolně velké) vnější síly druhy pohybu tuhého tělesa a) translace (posuvný pohyb) všechny
Práce, výkon, energie
Práce, výkon, energie (test version, not revised) Petr Pošta pposta@karlin.mff.cuni.cz 11. listopadu 2009 Obsah Mechanická práce Výkon, příkon, účinnost Mechanická energie Kinetická energie Potenciální
KINEMATIKA HMOTNÉHO BODU. Mgr. Jan Ptáčník - GJVJ - Fyzika - Mechanika - 1. ročník
KINEMATIKA HMOTNÉHO BODU Mgr. Jan Ptáčník - GJVJ - Fyzika - Mechanika - 1. ročník Kinematika hmotného bodu Kinematika = obor fyziky zabývající se pohybem bez ohledu na jeho příčiny Hmotný bod - zastupuje
BIOMECHANIKA. 9, Energetický aspekt pohybu člověka. (Práce, energie pohybu člověka, práce pohybu člověka, zákon zachování mechanické energie, výkon)
BIOMECHANIKA 9, Energetický aspekt pohybu člověka. (Práce, energie pohybu člověka, práce pohybu člověka, zákon zachování mechanické energie, výkon) Studijní program, obor: Tělesná výchovy a sport Vyučující:
Testovací příklady MEC2
Testovací příklady MEC2 1. Určete, jak velká práce se vykoná při stlačení pružiny nárazníku železničního vagónu o w = 5 mm, když na její stlačení o w =15 mm 1 je zapotřebí síla F = 3 kn. 2. Jaké musí být
Dynamika. Hybnost: p=m v. F= d p. Newtonův zákon síly: , pro m=konst platí F=m dv dt =ma. F t dt. Impulz síly: I = t1. Zákon akce a reakce: F 1 = F 2
Dynamika Hybnost: p=m v. Newtonův zákon síly: F= d p, pro m=konst platí F=m dv dt =ma. Impulz síly: I = t1 t 2 F t dt. Zákon akce a reakce: F 1 = F 2 Newtonovy pohybové rovnice: d 2 r t 2 = F m. Výsledná
FYZIKA DIDAKTICKÝ TEST
NOVÁ MATURITNÍ ZKOUŠKA Ilustrační test 2008 FY2VCZMZ08DT FYZIKA DIDAKTICKÝ TEST Testový sešit obsahuje 20 úloh. Na řešení úloh máte 90 minut. Odpovědi pište do záznamového archu. Poznámky si můžete dělat
1.2.7 3. Newtonův pohybový zákon I
1..7 3. Newtonův pohybový zákon I Předpoklady: 101 Pedagogická poznámka: V klasickém pojetí se dá 3. Newtonův zákon probrat během 15 minut. Proti jeho znění se studenti bouřit nebudou. Teprve na příkladech
Připravil: Roman Pavlačka, Markéta Sekaninová Dynamika, Newtonovy zákony
Připravil: Roman Pavlačka, Markéta Sekaninová Dynamika, Newtonovy zákony OPVK CZ.1.07/2.2.00/28.0220, "Inovace studijních programů zahradnických oborů s důrazem na jazykové a odborné dovednosti a konkurenceschopnost
Experiment P-6 TŘECÍ SÍLA
Experiment P-6 TŘECÍ SÍLA CÍL EXPERIMENTU Studium vztahu mezi třecí a normálovou silou a koeicientem tření. Sledování změn třecí síly při použití různých povrchů í tělesa. Výpočet součinitelů tření (klidové,
2.1 Pokyny k uzavřeným úlohám. 2.2 Pokyny k otevřeným úlohám. Testový sešit neotvírejte, počkejte na pokyn!
FYZIKA DIDAKTICKÝ TEST FYM0D12C0T01 Maximální bodové hodnocení: 45 bodů Hranice úspěšnosti: 33 % 1 Základní informace k zadání zkoušky Didaktický test obsahuje 20 úloh. Časový limit pro řešení didaktického
Fyzika_6_zápis_8.notebook June 08, 2015
SÍLA 1. Tělesa na sebe vzájemně působí (při dotyku nebo na dálku). Působení je vždy VZÁJEMNÉ. Působení na dálku je zprostředkováno silovým polem (gravitační, magnetické, elektrické...) Toto vzájemné působení
BIOMECHANIKA. 7, Disipativní síly I. (Statické veličiny, smyková třecí síla, nakloněná rovina, odporová síla)
BIOMECHANIKA 7, Disipativní síly I. (Statické veličiny, smyková třecí síla, nakloněná rovina, odporová síla) Studijní program, obor: Tělesná výchovy a sport Vyučující: PhDr. Martin Škopek, Ph.D. SÍLY BRZDÍCÍ
FYZIKA 1. ROČNÍK. Tématický plán. Hodiny: Září 7 Říjen 8 Listopad 8 Prosinec 6 Leden 8 Únor 6 Březen 8 Duben 8 Květen 8 Červen 6.
Tématický plán Hodiny: Září 7 Říjen 8 Litopad 8 Proinec 6 Leden 8 Únor 6 Březen 8 Duben 8 Květen 8 Červen 6 Σ = 73 h Hodiny Termín Úvod Kinematika 8 + 1 ½ říjen Dynamika 8 + 1 konec litopadu Energie 5
ELEKTŘINA A MAGNETIZMUS kontrolní otázky a odpovědi
ELEKTŘINA A MAGNETIZMUS kontrolní otázky a odpovědi Peter Dourmashkin MIT 2006, překlad: Vladimír Scholtz (2007) Obsah KONTROLNÍ OTÁZKY A ODPOVĚDI 2 OTÁZKA 41: ZÁVIT V HOMOGENNÍM POLI 2 OTÁZKA 42: ZÁVIT
1.4.2 Zrychlující vztažné soustavy
1.4.2 Zrychlující vztažné soustavy Předpoklady: 1401 Na zkoumání zrychlujících vztažných soustav využijeme speciální výzkumný vagón metra SIKIOR VK01-ARME (Sikior VK01 Acceleration Research by Mechanical
pracovní list studenta
Výstup RVP: Klíčová slova: pracovní list studenta Funkce kvadratická funkce Mirek Kubera žák načrtne grafy požadovaných funkcí, formuluje a zdůvodňuje vlastnosti studovaných funkcí, modeluje závislosti
It is time for fun with Physics; play, learn, live
1. Ve kterém místě má houpačka největší kinetickou energii? 2. Ve kterém místě má houpačka nejmenší kinetickou energii? 3. Ve kterém místě má houpačka největší rychlost? 4. Ve kterém místě má houpačka
Věra Keselicová. březen 2013
VY_52_INOVACE_VK46 Jméno autora výukového materiálu Datum (období), ve kterém byl VM vytvořen Ročník, pro který je VM určen Vzdělávací oblast, obor, okruh, téma Anotace Věra Keselicová březen 2013 6. ročník
1.2.3 1. Newtonův zákon I
1.2.3 1. Newtonův zákon I Předpoklady: 1202 Pomůcky: váleček (100 g závaží), ovladač na plátno a obdélník na pevné těleso (jako nájezd), 2 sady na měření koeficientu tření. Dnešní hodina je nejdůležitější
Zavádění inovativních metod a výukových materiálů do přírodovědných předmětů na Gymnáziu v Krnově
Zavádění inovativních metod a výukových materiálů do přírodovědných předmětů na Gymnáziu v Krnově 05_2_Kinematika hmotného bodu Ing. Jakub Ulmann 2 Kinematika hmotného bodu Nejstarším odvětvím fyziky,
1.5.3 Archimédův zákon I
1.5.3 Archimédův zákon I Předpoklady: 010502 Pomůcky: voda, akvárium, míček (nebo kus polystyrenu), souprava na demonstraci Archimédova zákona, Vernier siloměr, čerstvé vejce, sklenička, sůl Př. 1: Sepiš
1.7.7 Rovnovážná poloha, páka v praxi
.7.7 Rovnovážná poloha, páka v praxi Předpoklady: 00706 Př. : Najdi všechny způsoby, jak umístit kuželku na stůl tak, aby byla v rovnovážné poloze. Čím se jednotlivé způsoby liší? Máme tři možnosti: normální
Newtonovy pohybové zákony
Newtonovy pohybové zákony Zákon setrvačnosti = 1. Newtonův pohybový zákon (1. Npz) Zákon setrvačnosti: Těleso setrvává v klidu nebo rovnoměrném přímočarém pohybu, jestliže na něj nepůsobí jiná tělesa (nebo
a) Jak na sebe vzájemně mohou působit tělesa? b) Vysvětli, jak je možné, aby síla působila na dálku. c) Co může způsobit síla? d) Vysvětli pojmy a
SÍLA opakování 1 a) Jak na sebe vzájemně mohou působit tělesa? b) Vysvětli, jak je možné, aby síla působila na dálku. c) Co může způsobit síla? d) Vysvětli pojmy a uveď příklady: Působení síly statické
1 VÝTAHY Výtah je strojní zařízeni, které slouží k svislé (někdy i šikmé) dopravě osob nebo nákladu mezi dvěma nebo několika místy.
1 VÝTAHY Výtah je strojní zařízeni, které slouží k svislé (někdy i šikmé) dopravě osob nebo nákladu mezi dvěma nebo několika místy. Výtahy pracuji přerušovaně nebo plynule. Nastupování osob do výtahů nebo
Fyzikální vzdělávání. 1. ročník. Učební obor: Kuchař číšník Kadeřník. Implementace ICT do výuky č. CZ.1.07/1.1.02/ GG OP VK
Fyzikální vzdělávání 1. ročník Učební obor: Kuchař číšník Kadeřník 1 1 Mechanika 1.1 Pohyby přímočaré, pohyb rovnoměrný po kružnici 1.2 Newtonovy pohybové zákony, síly v přírodě, gravitace 1.3 Mechanická
Počty testových úloh
Počty testových úloh Tematický celek rok 2009 rok 2011 CELKEM Skalární a vektorové veličiny 4 lehké 4 těžké (celkem 8) 4 lehké 2 těžké (celkem 6) 8 lehkých 6 těžkých (celkem 14) Kinematika částice 6 lehkých
Obsah 11_Síla _Znázornění síly _Gravitační síla _Gravitační síla - příklady _Skládání sil _PL:
Obsah 11_Síla... 2 12_Znázornění síly... 5 13_Gravitační síla... 5 14_Gravitační síla - příklady... 6 15_Skládání sil... 7 16_PL: SKLÁDÁNÍ SIL... 8 17_Skládání různoběžných sil působících v jednom bodě...
F - Jednoduché stroje
F - Jednoduché stroje Určeno jako učební text pro studenty dálkového studia a jako shrnující text pro studenty denního studia. VARIACE 1 Tento dokument byl kompletně vytvořen, sestaven a vytištěn v programu
III. Dynamika hmotného bodu
III. Dynamika hmotného bodu Příklad 1. Vlak o hmotnosti 800 t se na dráze 500 m rozjel z nulové rychlosti na rychlost 20 m. s 1. Lokomotiva působila silou 350 kn. Určete součinitel smykového tření. [0,004]
Vyřešením pohybových rovnic s těmito počátečními podmínkami dostáváme trajektorii. x = v 0 t cos α (1) y = h + v 0 t sin α 1 2 gt2 (2)
Test a. Lučištník vystřelil z hradby vysoké 40 m šíp o hmotnosti 50 g rychlostí 60 m s pod úhlem 5 vzhůru vzhledem k vodorovnému směru. (a V jaké vzdálenosti od hradeb se šíp zabodl do země? (b Jaký úhel
Určete velikost zrychlení, kterým se budou tělesa pohybovat. Vliv kladky zanedbejte.
Určete velikost zrychlení, kterým se budou tělesa pohybovat. Vliv kladky zanedbejte. Pozn.: Na konci je uvedena stručná verze výpočtu, aby se vešla na jednu stránku. Začneme silovým rozborem. Na první
1. KŠPA Kladno, s. r. o., Holandská 2531, Kladno, FYZIKA. Kapitola 4.: Dynamika. Mgr. Lenka Hejduková Ph.D.
1. KŠPA Kladno, s. r. o., Holandská 2531, 272 01 Kladno, www.1kspa.cz FYZIKA Kapitola 4.: Dynamika Mgr. Lenka Hejduková Ph.D. Kinematika obor, který zkoumá pohyb bez ohledu na jeho příčiny Dynamika obor,
pracovní list studenta
Výstup RVP: Klíčová slova: Vlastnosti sil, třecí síla Mirek Kubera žák měří vybrané veličiny vhodnými metodami, zpracuje a vyhodnotí výsledky měření síla, velikost síly, siloměr, tření smykové, tření klidové,
2.1 2.2. Testový sešit neotvírejte, počkejte na pokyn!
FYZIKA DIDAKTICKÝ TEST FYM0D11C0T01 Maximální bodové hodnocení: 45 bodů Hranice úspěšnosti: 33 % 1 Základní informace k zadání zkoušky Didaktický test obsahuje 20 úloh. Časový limit pro řešení didaktického
Příklady z teoretické mechaniky pro domácí počítání
Příklady z teoretické mechaniky pro domácí počítání Doporučujeme spočítat příklady za nejméně 30 bodů. http://www.physics.muni.cz/~tomtyc/mech-prik.ps http://www.physics.muni.cz/~tomtyc/mech-prik.pdf 1.
7. Gravitační pole a pohyb těles v něm
7. Gravitační pole a pohyb těles v něm Gravitační pole - existuje v okolí každého hmotného tělesa - představuje formu hmoty - zprostředkovává vzájemné silové působení mezi tělesy Newtonův gravitační zákon:
Projekt ŠABLONY NA GVM registrační číslo projektu: CZ.1.07/1.5.00/ III-2 Inovace a zkvalitnění výuky prostřednictvím ICT
Projekt ŠABLONY NA GVM registrační číslo projektu: CZ.1.07/1.5.00/34.0948 III-2 Inovace a zkvalitnění výuky prostřednictvím ICT 1. Mechanika 1. 6. Energie 1 Autor: Jazyk: Aleš Trojánek čeština Datum vyhotovení:
Dynamika. Síla a její účinky na těleso Newtonovy pohybové zákony Tíhová síla, tíha tělesa a síly brzdící pohyb Dostředivá a odstředivá síla
Dynamika Síla a její účinky na těleso Newtonovy pohybové zákony Tíhová síla, tíha tělesa a síly brzdící pohyb Dostředivá a odstředivá síla Dynamika studuje příčiny pohybu těles (proč a za jakých podmínek
BIOMECHANIKA. 3,Geometrie lidského těla, těžiště, stabilita, moment síly
BIOMECHANIKA 3,Geometrie lidského těla, těžiště, stabilita, moment síly Studijní program, obor: Tělesná výchovy a sport Vyučující: PhDr. Martin Škopek, Ph.D. TĚŽIŠTĚ TĚLESA Tuhé těleso je složeno z velkého
Mechanika - síla. Zápisy do sešitu
Mechanika - síla Zápisy do sešitu Síla a její znázornění 1/3 Síla popisuje vzájemné působení těles (i prostřednictvím silových polí). Účinky síly: 1.Mění rychlost a směr pohybu 2.Deformační účinky Síla
Pohyby tuhého tělesa Moment síly vzhledem k ose otáčení Skládání a rozkládání sil Dvojice sil, Těžiště, Rovnovážné polohy tělesa
Mechanika tuhého tělesa Pohyby tuhého tělesa Moment síly vzhledem k ose otáčení Skládání a rozkládání sil Dvojice sil, Těžiště, Rovnovážné polohy tělesa Mechanika tuhého tělesa těleso nebudeme nahrazovat
PRÁCE A ENERGIE. Mgr. Jan Ptáčník - GJVJ - Fyzika - Tercie
PRÁCE A ENERGIE Mgr. Jan Ptáčník - GJVJ - Fyzika - Tercie Práce Pokud síla vyvolává pohyb Fyzikální veličina ( odvozená ) značka: W základní jednotka: Joule ( J ) Vztah pro výpočet práce: W = F s Práce
1 VÝTAHY Výtah je strojní zařízeni, které slouží k svislé (někdy i šikmé) dopravě osob nebo nákladu mezi dvěma nebo několika místy.
1 VÝTAHY Výtah je strojní zařízeni, které slouží k svislé (někdy i šikmé) dopravě osob nebo nákladu mezi dvěma nebo několika místy. Výtahy pracuji přerušovaně nebo plynule. Nastupování osob do výtahů nebo
3.1. Newtonovy zákony jsou základní zákony klasické (Newtonovy) mechaniky
3. ZÁKLADY DYNAMIKY Dynamika zkoumá příčinné souvislosti pohybu a je tedy zdůvodněním zákonů kinematiky. K pojmům používaným v kinematice zavádí pojem hmoty a síly. Statický výpočet Dynamický výpočet -
VIDEOSBÍRKA ENERGIE A HYBNOST
VIDEOSBÍRKA ENERGIE A HYBNOST 1. V poloze x=2 mělo těleso o hmotnosti 1kg rychlost 3 m/s. Graf znázorňuje velikost působící síly, která urychluje přímočarý pohyb tělesa. Těleso nemění svou výšku a při
Název DUM: Polohová energie v příkladech
Základní škola národního umělce Petra Bezruče, Frýdek-Místek, tř. T. G. Masaryka 454 Zpracováno v rámci OP VK - EU peníze školám Jednička ve vzdělávání CZ.1.07/1.4.00/21.2759 Název DUM: Polohová energie
KINEMATIKA 13. VOLNÝ PÁD. Mgr. Jana Oslancová VY_32_INOVACE_F1r0213
KINEMATIKA 13. VOLNÝ PÁD Mgr. Jana Oslancová VY_32_INOVACE_F1r0213 Volný pád První systematické pozorování a měření volného pádu těles prováděl Galileo Galilei (1564-1642) Úvodní pokus: Poslouchej, zda
Laboratorní práce č. 3: Měření součinitele smykového tření
Přírodní vědy moderně a interaktivně FYZIKA 3. ročník šestiletého a 1. ročník čtyřletého studia Laboratorní práce č. 3: Měření součinitele smykového tření G Gymnázium Hranice Přírodní vědy moderně a interaktivně
Pohyby HB v některých význačných silových polích
Pohyby HB v některých význačných silových polích Pohyby HB Gravitační pole Gravitační pole v blízkém okolí Země tíhové pole Pohyb v gravitačním silovém poli Keplerova úloha (podrobné řešení na semináři)
Druhy a charakteristika základních pasivních odporů Určeno pro první ročník strojírenství 23-41-M/01 Vytvořeno listopad 2012
Střední průmyslová škola a Vyšší odborná škola technická Brno, Sokolská 1 Šablona: Inovace a zkvalitnění výuky prostřednictvím ICT Název: Téma: Autor: Mechanika, statika Pasivní odpory Ing.Jaroslav Svoboda
Fyzika 2 - rámcové příklady Magnetické pole - síla na vodič, moment na smyčku
Fyzika 2 - rámcové příklady Magnetické pole - síla na vodič, moment na smyčku 1. Určete skalární a vektorový součin dvou obecných vektorů a a popište, jak závisí výsledky těchto součinů na úhlu mezi vektory.
1.2.10 Tření a valivý odpor I
1.2.10 Tření a valivý odpor I Předpoklady: 1209 Př. 1: Do krabičky od sirek ležící na vodorovném stole strčíme malou silou. Krabička zůstane stát. Vysvětli. Mezi stolem a krabičkou působí tření, které
Zákon zachování energie - příklady
DUM Základy přírodních věd DUM III/2-T3-13 Téma: ZZE - příklady Střední škola Rok: 2012 2013 Varianta: A Zpracoval: Mgr. Pavel Hrubý VÝKLAD Zákon zachování energie - příklady 1.) Jakou má polohovou energii
OTAČIVÉ ÚČINKY SÍLY (Jednoduché stroje - Páka)
OTAČIVÉ ÚČINKY SÍLY (Jednoduché stroje - Páka) A) Výklad: Posuvné účinky: Ze studia posuvných účinků síly jsme zjistili: změny rychlosti nebo směru posuvného pohybu tělesa závisejí na tom, jak velká síla
2.2.1 Pohyb. Předpoklady: Pomůcky: papírky s obrázky
2.2.1 Pohyb Předpoklady: Pomůcky: papírky s obrázky Poznámka: Obrázky jsou převzaty z učebnice Fyzika kolem nás se souhlasem vedoucího autorského kolektivu Doc. Milana Rojka. Pokud by někdo považoval jejich
STATIKA Fakulta strojní, prezenční forma, středisko Šumperk
STATIKA 2013 Fakulta strojní, prezenční forma, středisko Šumperk Př. 1. Určete výslednici silové soustavy se společným působištěm (její velikost a směr). Př. 2. Určete výslednici silové soustavy se společným
Obsah 11_Síla _Znázornění síly _Gravitační síla _Gravitační síla - příklady _Skládání sil _PL: SKLÁDÁNÍ SIL -
Obsah 11_Síla... 2 12_Znázornění síly... 5 13_Gravitační síla... 5 14_Gravitační síla - příklady... 6 15_Skládání sil... 7 16_PL: SKLÁDÁNÍ SIL - řešení... 8 17_Skládání různoběžných sil působících v jednom
2. Mechanika - kinematika
. Mechanika - kinematika. Co je pohyb a klid Klid nebo pohyb těles zjišťujeme pouze vzhledem k jiným tělesům, proto mluvíme o relativním klidu nebo relativním pohybu. Jak poznáme, že je těleso v pohybu