1. FYZIKÁLNÍ ZÁKLADY ŠÍŘENÍ TEPLA

Rozměr: px
Začít zobrazení ze stránky:

Download "1. FYZIKÁLNÍ ZÁKLADY ŠÍŘENÍ TEPLA"

Transkript

1 . FYZIKÁLNÍ ZÁKLADY ŠÍŘENÍ TEPLA. Veličiny, symboly, jednotky Teplota, teplotní rozdíl ϑ... teplota Θ... termodynamická teplota = ϑ - ϑ... teplotní rozdíl Θ = Θ - Θ... teplotní rozdíl C... stupeň Celsia K... kelvin C, K C, K Teplota i teplotní rozdíl jsou skalární veličiny. Teplotní pole je pole skalární. Vztahy mezi teplotami : Teplo C = K Q... teplo J... joule Teplo je forma energie. Vztahy mezi jednotkami : jednotka J Wh cal kpm erg J Wh cal kpm erg Tepelná kapacita ( akumulované teplo ) Q = m c ( J ; kg, J kg - K -, K ) m... hmotnost tělesa c... měrná tepelná kapacita (měrné teplo)... teplotní rozdíl Měrná tepelná kapacita c... měrná tepelná kapacita ( J kg - K - )

2 Vztahy mezi jednotkami : jednotka J kg - K - kj kg - K - cal kg - K - kcal kg - K - J kg - K kj kg - K cal kg - K kcal kg - K Tepelný výkon Tepelný výkon je teplo za jednotku času. Je to skalár. P... tepelný výkon W... watt Hustota tepelného toku Hustota tepelného toku je tepelný výkon na jednotkovou plochu. Je to vektor - má směr daný normálou na uvažovaný plošný element da. q... hustota tepelného toku ( W m - ) q = dp / da Příklad : Kolik kcal / hod je 0 W? 0 (W) = 0 (J/s) = / 486 (kcal/hod) = 8.6 (kcal/hod) Příklad : Kolik cal odpovídá hodnota 5 Wh? 5 (Wh) = 5/3600 (W/s) = 5/3600 cal/4.86 = 4300 (cal) Příklad 3 : Jaký bude měrný odpor hliníku v Ω m, je-li v Ω mm /m roven hodnotě 0.03? ( Ω m) Příklad 4 : Jaká bude proudová hustota v A/m, je-li v A/mm rovna hodnotě 5? Příklad 5 : Kolika kpm odpovídá hodnota 3 cal? ( A/m ) (.78 kpm)

3 .. Vztah mezi tepelnou a mechanickou energií Pro praxi je dobré si uvědomit, jak poměrně značná mechanická práce přísluší tepelné energii o velikosti jedné kilokalorie. Dokumentovat to budou následující příklady : Příklad : Kolik cementu by bylo možné naložit na m vysoké nákladní auto pomocí energie potřebné pro ohřev litru vody o 0 C? Účinnost nakládání je η = a) 00 % b) 50 % Potřebná tepelná energie : Q = m c = = J Energie potřebná pro nakládání : W = m g h / η g... tíhové zrychlení h... výška nakládání η... účinnost nakládání Z rovnosti Q = W určíme hmotnost nákladu : a) m = Q η / ( g h ) = / ( ) = kg b) m = / ( ) = kg Z výsledků je patrné, že energie potřebná k uvaření několika šálků čaje by stačila pro naložení několika desítek centů cementu na auto nebo vagón. Příklad : Kolikrát je energeticky náročnější litr teplé vody z vodovodu než litr vody studené? Obě vody se čerpají ze stejného zdroje o teplotě ϑ = 0 C do výše h = 00 m. Voda studená se odebírá v místě spotřeby přímo, voda teplá se ohřívá v místě spotřeby na ϑ = 70 C. Účinnost čerpání čerpadlem s elektromotorem uvažujeme ve vztahu na prvotní energii η č = 0.5 ( η elektrárny = 0.3 ; η motoru s čerpadlem = 0.5 ). Ohřev uvažujeme uhlím s účinností η o = 0.5. Energie potřebná pro studenou vodu ( vztaženo na litr ): W s = m g h / η č = / 0.5 = 6538 J Energie potřebná pro teplou vodu ( vztaženo na litr ): W t = m g h / η č + m c ( ϑ - ϑ ) / η o W t = / (70-0) / 0.5 = = J n = W t / W s = / = 77.8 Voda teplá je téměř 78x energeticky náročnější než voda studená.

4 Příklad 3 : Jaký příkon by musel mít přímotopný elektrický průtokový ohřívač, aby z vodovodního kohoutku o průměru 0 mm vytékala voda teplá ϑ = 60 C rychlostí v = m/s? Voda se ohřívá z teploty ϑ = 0 C. Účinnost ohřevu je 97 %. Kolik zářivek o příkonu 40 W by mohlo tímto příkonem svítit? ( 33.5 kw, 838 zářivek ) Příklad 4 : Kolikrát více energie potřebujeme na ohřátí 0 litrů vody o 0 C, než na zdvižení těchto 0 litrů vody do výše 0m? Účinnost ohřevu i účinnost zdvíhání uvažujte 00 %. ( 47 krát více ) Příklad 5 : O kolik C se ohřeje voda ve vodopádu vysokém 00 metrů, jestliže se celá její energie polohy změní v teplo? Z jaké výšky by musela padat voda 0 C teplá, aby se uvařila? ( 0.47 C, 4 69 m ) Příklad 6 : Do vany si napustíme 00 litrů vody teplé 37 C, která se ohřívala z 0 C. Jak vysoko bychom museli tuto vodu vynést, aby energie polohy vody se rovnala energii potřebné pro její ohřev? Účinnost ohřevu η o se rovná účinnosti zdvíhání η z. ( 57 m ) Příklad 7 : O kolik C ohřeje energie kwh 0 litrů vody při účinnosti ohřevu 90 %? Kolik lidí 80 kg těžkých se energií kwh dopraví výtahem z přízemí do pátého patra (3 m) při účinnosti výtahu 60 %? ( 38.7 C, 0 lidí ).. Oteplovací a ochlazovací děj Závislost teploty na čase ohřevu vyjadřuje oteplovací křivka : t = ( e τ ) max

5 [ C] τ max 63, % max t [ s ] Závislost teploty na čase ochlazování vyjadřuje ochlazovací křivka : t = e τ max [ C] max τ t [ s ] Příklad : Za jak dlouho se ohřeje voda z 0 C na 00 C, ochladí-li se při ochlazování ze 40 C na 30 C za 0 minut? Ochlazovací děj probíhá mezi teplotami 00 C a 0 C, časová konstanta oteplování je rovna časové konstantě ochlazování. Ukončený děj uvažujte za dobu tří časových konstant.

6 Oteplovací křivka : Ochlazovací křivka : [ C] τ [ C] max max t [ s ] t t τ t [ s ] Na ochlazovací křivce známe dva body, které musí vyhovovat její rovnici: = e max t τ bod : bod : t τ = e ( ) max t τ = e ( ) max Podělením rovnice ( ) rovnicí ( ) dostaneme rovnici o jedné neznámé : t t τ t e = max = e τ t e τ max Tuto rovnici zlogaritmujeme a vypočteme z ní neznámou : ln = t t τ kde = ϑ - ϑ 0 = 40-0 = 0 C = ϑ - ϑ 0 = 30-0 = 0 C t - t = 0 min = 600 sec t t τ = = sec ln 3 τ = = sec

7 . Přenos tepla vedením Teplo se šíří třemi způsoby buď samostatnými nebo, čistěji, jejich různými kombinacemi :. vedením ( kondukcí ). prouděním ( konvekcí ) 3. zářením (radiací ) Pro přenos tepla vedením si definujeme součinitel tepelné vodivosti λ jako materiálovou konstantu charakterizující schopnost dané látky předávat teplo vedením ( tato schopnost je přímo úměrná velikosti tohoto součinitele).jednotkou součinitele tepelné vodivosti je W m - K - a jeho hodnoty pro různé materiály jsou uvedeny v tabulce : Pro vedení tepla platí vztah : P = q ds = λ gradθds S který pro homogenní teplotní vztah přejde do tvaru : S P = λ l S Řešení některých konkrétních případů vedení tepla si ukážeme v následujících příkladech. Příklad - Rovinná stěna : Určete tepelný výkon procházející stěnou o tloušťce l = 50 mm a ploše S = m. Teplota na vnějším povrchu stěny je ϑ = 00 C, na vnitřním povrchu ϑ = 90 C. Stěna je : a) ocelová, λ = 40 W. m -. K - b) betonová, λ =, W. m -. K - c) diatomitová, λ = 0, W. m -. K - S P = λ ( W ; W.m -.K -, m, m, K ) l a) P = 40.. ( ) = W 0,05 b) P =,.. ( ) = 0 W 0,05 c) P = 0,.. ( ) = W 0,05

8 Příklad - Složená rovinná stěna : Určete tepelný tok přes stěnu kotle. Stěna je pokryta vrstvou sazí tloušťky l = mm, λ =0,08 W.m -.K - a ze strany vody je kotelní kámen tloušťky l 3 = mm, λ 3 =0,8 W.m -.K -. Stěna kotle má tloušťku l = mm, λ =50 W.m -.K -. Teplota stěny na straně vody je ϑ 4 =06 C, na straně ohřevu ϑ =685 C. Určete hustotu tepelného toku q, teploty na rozhraní vrstev, střední teploty vrstev. Stěna kotle má plochu S=0 m. Hustota tepelného toku : ϑ ϑ q = 4 l l l λ λ λ 3 = ,00 0, , ,00 0,8 = W. m - Teploty na rozhraní : saze - kotel vodní kámen - kotel ϑ = ϑ - q. ϑ 3 = ϑ 4 + q. Střední teploty vrstev : l λ = ,00 = 9, C 0, 08 l 3 λ = ,00 = 84,58 C 0, 8 3 saze stěna kotle kotelní kámen ϑ + ϑ , ϑ S = = = 488,56 C ϑ + ϑ3 9, + 84,58 ϑ SK = = = 88,35 C ϑ3 + ϑ4 84, ϑ KK = = = 45,9 C Tepelný tok : P = q. S = = 3, W Příklad 3 - Složená rovinná stěna, λ závislé na teplotě : Určete ztráty tepla dvouvrstvou stěnou ohřívací pece. Základní šamotová vrstva o tloušťce l S = 30 mm, λ S0 = 0,97 W.m -.K -, ξ S = 0,00058 je izolována pórovitým šamotem o tloušťce l iz = 5 mm, λ izo = 0,3 W.m -.K -, ξ iz = 0,000. Na vnitřní straně zdiva je teplota ϑ = 930 C, na vnější straně izolace je teplota ϑ 3 = 70 C. Platí λ = λ o + ξ ϑ stř, kde ϑ stř je střední teplota vrstvy.

9 ) Odhadneme teplotu na rozhraní vrstev - např. ϑ 0 = 500 C ) Vypočteme střední teplotu vrstev : šamot : ϑ + ϑ ϑ = 75 si = C izolace : ϑ + ϑ ϑ = 85 izi = C 3) Vypočteme tepelnou vodivost při dané střední teplotě vrstvy : šamot : λ si = λ S0 + ξ S ϑ si = 0,97 + 0, =,386 W.m -.K - izolace : λ izi = λ iz0 + ξ iz ϑ izi = 0,3 + 0, = 0,87 W.m -.K - 4) Vypočteme hustotu tepelného toku : l q = i i= λ i = 0,3 0,5 +,386 0,87 = 57,7 W m - 5) Vypočteme teplotu na rozhraní : ϑ I = ϑ - q. l S λ = ,7. 0,3, 386 S = 678 C Jelikož se vypočtená teplota na rozhraní ϑ I = 678 C liší podstatně od teploty odhadnuté ϑ 0 = 500 C, zopakujeme postup, 5, se vstupní teplotou na rozhraní vrstev ϑ I =678 C. Jednotlivé hodnoty zapíšeme do tabulky. Veličina J J S J iz l S l iz q J Krok C C C W.m -.K - W.m -.K - W.m - C I ,386 0,87 57,7 678 II ,437 0,305 60, 673 III ,5 37,5,436 0, , 674 Příklad 4 - Válcová stěna Určete hustotu tepelného toku q ( W m - ) stěnou žáruvzdorné ocelové trubky o rozměrech d = 3 mm, d = 4 mm. Součinitel tepelné vodivosti materiálu, z něhož je trubka vyrobena λ = 4 W.m -.K -. Teplota vnější stěny trubky ϑ = 580 C, teplota vnitřní stěny trubky ϑ = 450 C.

10 Pro složenou válcovou stěnu platí pro přestup tepla vedením vztah : q = n i= π d ln λ d i i+ i ( W.m - ; K, W.m -.K -, m ) Pro jednovrstvou stěnu a hodnoty našeho zadání : ( ) π q = = ln 4 3 W.m -.3 Přenos tepla prouděním Zavedeme si součinitel přestupu tepla α s jednotkou W m - K -, který určuje, jak velký tepelný tok ( výkon ) protéká jednotkovou plochou při teplotním rozdílu C. Přestup tepla tímto způsobem se uplatňuje při přestupu z nějaké pevné plochy do okolního prostředí nebo naopak ( obvykle v kombinaci se sáláním ). Šíření tepla prouděním patří k nejobtížnějším výpočtovým problémům v tepelné technice. Zabývá se jím mnoho odborné literatury. V důležitých případech je nejlépe, určímeli si součinitel přestupu tepla α sami měřením na modelu co nejvíce odpovídajícím našemu případu při použití uvedených vztahů v nichž se α vyskytuje. Při přestupu tepla prouděním platí Newtonův zákon : P = α S ( W ; W m - K -, m, K ) Příklad - Šíření tepla čistým prouděním : Určete tepelné ztráty svislou stěnou o ploše S = m. Teplota stěny ϑ = 60 C, teplota okolí ϑ = 0 C. a) přirozenou konvekcí α = 4 ( ) 0,3, v 0 = 0 m s - b) ofukováním α = 5,8 + 3,95 v 0, v 0 = 5 m s - v 0 je rychlost proudění média u stěny

11 a) P = α S = 4 ( ) 0,3 S = = 4 ( 60-0 ) 0,3 ( 60-0 ) = 33,6 W b) P = α S = (5,8 + 3,95 v 0 ) S = = ( 5,8 + 3,95 5 ) ( 60-0 ) = 77,5 W Příklad : Určete graficky průběh teploty ve stěně místnosti. Vnitřní teplota je ϑ = 0 C, venkovní teplota ϑ 5 = -0 C. Vnitřní zeď je cihlová tloušťky s = 0,36 m, součinitel tepelné vodivosti λ = 0,464 W m - K -, dále je vrstva betonu tloušťky s = 0,3 m, součinitel tepelné vodivosti λ =,0 W m - K -. Součinitel přestupu tepla na vnitřním povrchu je α = 7,4 W m - K -, součinitel přestupu tepla venkovního povrchu je α = 5,8 W m - K -. ) Nakreslíme si v měřítku řez složenou stěnou, kterou prostupuje tepelný tok. ) Na svislé ose si vyznačíme vnitřní a venkovní teplotu. 3) Na úrovni vnitřní teploty si vpravo od stěny zvolíme pól P. 4) Vypočítáme si jednotkové tepelné odpory příslušné danému způsobu šíření tepla a daným parametrům. 5) Na svislou polopřímku v libovolném bodě mezi pólem P a složenou stěnou budeme od úrovně vnitřní teploty směrem k úrovni venkovní teploty postupně v měřítku nanášet jednotkové tepelné odpory : - proudění na vnitřní straně složené stěny - vedení vrstvou cihel - vedení vrstvou betonu - proudění na venkovní straně složené stěny 6) Spojíme pól P s konci takto vynesených tepelných odporů. 7) V místě, kde nám spojnice pólu s koncovým bodem posledního tepelného odporu protne úroveň venkovní teploty, zkonstruujeme polopřímku svislým směrem. 8) Průsečíky spojnic pólu s koncovými body jednotkových tepelných odporů s takto zkonstruovanou polopřímkou nám udávají teploty na rozhraní jednotlivých vrstev : - na vnitřní straně složené stěny - na rozhraní dvou vrstev složené stěny - na vnější straně složené stěny 9) Vyneseme tyto teploty do patřičných míst složené stěny. 0) Spojením těchto teplot dostaneme požadované grafické znázornění průběhu teplot.

12 Výpočet jednotkových tepelných odporů : - proudění u vnitřního povrchu složené stěny R = = = 0,0575 W - K q α 7,4 - vedení tepla cihlovou vrstvou s 0,36 R = = = 0,776 W - K q λ 0,464 - vedení tepla betonovou stěnou s 0,3 R = = = 0,8 W - K q3 λ,0 - proudění u vnějšího povrchu složené stěny R = = = 0,7 W - K q4 α 5,8 Grafická konstrukce : ϑ ϑ α λ λ α Rq P 0 5 Rq ϑ3 ϑ4 Rq ϑ5 s s Rq4

13 .4 Přenos tepla sáláním Každé těleso, jehož teplota je vyšší než 0 K, vyzařuje svým povrchem tepelnou energii. Je to elektromagnetické vlnění, které se řídí zákony geometrické optiky. Zákony, jimiž se řídí šíření tepla sáláním : a) Zákon Stefan-Boltzmannův : P č = σ č Θ 4 ( W m - ; W m - (K/00) -4, K ) Stefan-Boltzmannova konstanta σ č = 5,6697 W m - (K/00) -4 b) Zákon Planckův : M λč = f ( Θ, λ ) = c = 3, W m c =, m K c) Zákon Wienův : λ m = 89 Θ c c λ 5 eλ Θ ( µm ; K ) ( W m -4 ; m, K ) d) Tepelný výkon předávaný si dvěma rovnoběžnými, stejně velkými plochami. Každá s plochou A, z nichž jedna má teplotu Θ a emisivitu ε a druhá teplotu Θ a emisivitu ε : P = A σ Θ 4 č + 00 ε ε Θ 4 00 ( W ) e) Dvě plochy, z nichž A zcela prostorově obklopuje menší A : P = ε + A A A σ č ( ε 4 Θ 00 ) 4 Θ 00 ( W )

14 Příklad : Určete P č, λ m, M λmč absolutně černého tělesa o ploše S = 300 cm a teplotě ϑ = 00 C Tepelný tok ( výkon ) : P č = σ č Θ 4 S = = 8000 W 00 Vlnová délka, na níž je maximum spektrální hustoty intenzity vyzařování : λ m = 89 / Θ = 89 / ( ) =.96 µm 4 Spektrální hustota intenzity vyzařování na vlnové délce.96 µm : M λmč = c c 5 λ m e m Θ λ = e = W m -3 Příklad : Určete tepelný výkon sálající z tělesa o ploše A = cm, teplotě ϑ = 000 C, emisivitě ε = 0.9 na těleso o ploše A = 0 cm, teplotě ϑ = 0 C, emisivitě ε = 0.9. Druhé těleso zcela prostorově obklopuje první. P = + ε A A A σ č ( ε 4 4 Θ Θ ) P = = W

Teplota i teplotní rozdíl jsou skalární veličiny. Teplotní pole je pole skalární. Vztahy mezi teplotami : C = K

Teplota i teplotní rozdíl jsou skalární veličiny. Teplotní pole je pole skalární. Vztahy mezi teplotami : C = K B. VÝPOČTOVÁ ČÁST B.. FYZIKÁLNÍ ZÁKLADY ŠÍŘENÍ TEPLA B... Veličiny, symboly, jednotky Teplota, teplotní rozdíl ϑ... teplota Θ... termodynamická teplota ϑ ϑ - ϑ... teplotní rozdíl Θ Θ - Θ... teplotní rozdíl

Více

102FYZB-Termomechanika

102FYZB-Termomechanika České vysoké učení technické v Praze Fakulta stavební katedra fyziky 102FYZB-Termomechanika Sbírka úloh (koncept) Autor: Doc. RNDr. Vítězslav Vydra, CSc Poslední aktualizace dne 20. prosince 2018 OBSAH

Více

17. Základy přenosu tepla - přenosu tepla vedením, přenos tepla prouděním, nestacionární přenos tepla, prostup tepla, vyměníky tepla

17. Základy přenosu tepla - přenosu tepla vedením, přenos tepla prouděním, nestacionární přenos tepla, prostup tepla, vyměníky tepla 1/14 17. Základy přenosu tepla - přenosu tepla vedením, přenos tepla prouděním, nestacionární přenos tepla, prostup tepla, vyměníky tepla Příklad: 17.1, 17.2, 17.3, 17.4, 17.5, 17.6, 17.7, 17.8, 17.9,

Více

6. Jaký je výkon vařiče, který ohřeje 1 l vody o 40 C během 5 minut? Měrná tepelná kapacita vody je W)

6. Jaký je výkon vařiče, který ohřeje 1 l vody o 40 C během 5 minut? Měrná tepelná kapacita vody je W) TEPLO 1. Na udržení stále teploty v místnosti se za hodinu spotřebuje 4,2 10 6 J tepla. olik vody proteče radiátorem ústředního topení za hodinu, jestliže má voda při vstupu do radiátoru teplotu 80 ºC

Více

N_SFB. Stavebně fyzikální aspekty budov. Přednáška č. 3. Vysoká škola technická a ekonomická V Českých Budějovicích

N_SFB. Stavebně fyzikální aspekty budov. Přednáška č. 3. Vysoká škola technická a ekonomická V Českých Budějovicích Vysoká škola technická a ekonomická V Českých Budějovicích N_ Stavebně fyzikální aspekty budov Přednáška č. 3 Přednášky: Ing. Michal Kraus, Ph.D. Cvičení: Ing. Michal Kraus, Ph.D. Garant: prof. Ing. Ingrid

Více

TERMOMECHANIKA 15. Základy přenosu tepla

TERMOMECHANIKA 15. Základy přenosu tepla FSI VUT v Brně, Energetický ústav Odbor termomechaniky a techniky prostředí Prof. Ing. Milan Pavelek, CSc. TERMOMECHANIKA 15. Základy přenosu tepla OSNOVA 15. KAPITOLY Tři mechanizmy přenosu tepla Tepelný

Více

PROCESY V TECHNICE BUDOV 12

PROCESY V TECHNICE BUDOV 12 UNIVERZITA TOMÁŠE BATI VE ZLÍNĚ FAKULTA APLIKOVANÉ INFORMATIKY PROCESY V TECHNICE BUDOV 12 Dagmar Janáčová, Hana Charvátová, Zlín 2013 Tento studijní materiál vznikl za finanční podpory Evropského sociálního

Více

ZÁKLADY STAVEBNÍ FYZIKY

ZÁKLADY STAVEBNÍ FYZIKY ZÁKLADY STAVEBNÍ FYZIKY Doc.Ing.Václav Kupilík, CSc. První termodynamická věta představuje zákon o zachování energie. Podle tohoto zákona nemůže energie samovolně vznikat nebo zanikat, ale může se pouze

Více

Termomechanika 9. přednáška Doc. Dr. RNDr. Miroslav Holeček

Termomechanika 9. přednáška Doc. Dr. RNDr. Miroslav Holeček Termomechanika 9. přednáška Doc. Dr. RNDr. Miroslav Holeček Upozornění: Tato prezentace slouží výhradně pro výukové účely Fakulty strojní Západočeské univerzity v Plzni. Byla sestavena autorem s využitím

Více

M T I B A ZÁKLADY VEDENÍ TEPLA 2010/03/22

M T I B A ZÁKLADY VEDENÍ TEPLA 2010/03/22 M T I B ZATÍŽENÍ KONSTRUKCÍ KLIMATICKOU TEPLOTOU A ZÁKLADY VEDENÍ TEPLA Ing. Kamil Staněk, k124 2010/03/22 ROVNICE VEDENÍ TEPLA Cíl = získat rozložení teploty T T x, t Řídící rovnice (parciální diferenciální)

Více

Úloha č. 1 pomůcky Šíření tepla v ustáleném stavu základní vztahy

Úloha č. 1 pomůcky Šíření tepla v ustáleném stavu základní vztahy Úloha č. pomůcky Šíření tepla v ustáleném stavu záklaní vztahy Veení Fourriérův zákon veení tepla, D: Hustota tepelného toku je úměrná změně teploty ve směru šíření tepla, konstantou úměrnosti je součinitel

Více

Výpočtové nadstavby pro CAD

Výpočtové nadstavby pro CAD Výpočtové nadstavby pro CAD 4. přednáška eplotní úlohy v MKP Michal Vaverka, Martin Vrbka Přenos tepla Př: Uvažujme pro jednoduchost spalovací motor chlazený vzduchem. Spalováním vzniká teplo, které se

Více

TERMIKA II. Stacionární vedení s dokonalou i nedokonalou izolací; Obecná rovnice vedení tepla; Přestup a prostup tepla;

TERMIKA II. Stacionární vedení s dokonalou i nedokonalou izolací; Obecná rovnice vedení tepla; Přestup a prostup tepla; TERMIKA II Šíření tepla vedením, prouděním a zářením; Stacionární vedení s dokonalou i nedokonalou izolací; Nestacionární vedení tepla; Obecná rovnice vedení tepla; Přestup a prostup tepla; 1 Šíření tepla

Více

Měření prostupu tepla

Měření prostupu tepla KATEDRA EXPERIMENTÁLNÍ FYZIKY PŘÍRODOVĚDECKÁ FAKULTA UNIVERZITY PALACKÉHO V OLOMOUCI FYZIKÁLNÍ PRAKTIKUM Z MOLEKULOVÉ FYZIKY A TERMODYNAMIKY Měření prostupu tepla Úvod Prostup tepla je kombinovaný případ

Více

4. V jednom krychlovém metru (1 m 3 ) plynu je 2, molekul. Ve dvou krychlových milimetrech (2 mm 3 ) plynu je molekul

4. V jednom krychlovém metru (1 m 3 ) plynu je 2, molekul. Ve dvou krychlových milimetrech (2 mm 3 ) plynu je molekul Fyzika 20 Otázky za 2 body. Celsiova teplota t a termodynamická teplota T spolu souvisejí známým vztahem. Vyberte dvojici, která tento vztah vyjadřuje (zaokrouhleno na celá čísla) a) T = 253 K ; t = 20

Více

U218 Ústav procesní a zpracovatelské techniky FS ČVUT v Praze. Seminář z PHTH. 3. ročník. Fakulta strojní ČVUT v Praze

U218 Ústav procesní a zpracovatelské techniky FS ČVUT v Praze. Seminář z PHTH. 3. ročník. Fakulta strojní ČVUT v Praze Seminář z PHTH 3. ročník Fakulta strojní ČVUT v Praze U218 - Ústav procesní a zpracovatelské techniky 1 Přenos tepla 2 Mechanismy přenosu tepla Vedení (kondukce) Fourierův zákon homogenní izotropní prostředí

Více

Šíření tepla. Obecnéprincipy

Šíření tepla. Obecnéprincipy Šíření tepla Obecnéprincipy Šíření tepla Obecně: Šíření tepla je výměna tepelné energie v tělese nebo mezi tělesy, která nastává při rozdílu teplot. Těleso s vyšší teplotou má větší tepelnou energii. Šíření

Více

PRÁCE A ENERGIE. Mgr. Jan Ptáčník - GJVJ - Fyzika - Tercie

PRÁCE A ENERGIE. Mgr. Jan Ptáčník - GJVJ - Fyzika - Tercie PRÁCE A ENERGIE Mgr. Jan Ptáčník - GJVJ - Fyzika - Tercie Práce Pokud síla vyvolává pohyb Fyzikální veličina ( odvozená ) značka: W základní jednotka: Joule ( J ) Vztah pro výpočet práce: W = F s Práce

Více

Téma sady: Všeobecně o vytápění. Název prezentace: základní pojmy 3

Téma sady: Všeobecně o vytápění. Název prezentace: základní pojmy 3 Téma sady: Všeobecně o vytápění. Název prezentace: základní pojmy 3 Autor prezentace: Ing. Eva Václavíková VY_32_INOVACE_1203_základní_pojmy_3_pwp Název školy: Číslo a název projektu: Číslo a název šablony

Více

BH059 Tepelná technika budov přednáška č.1 Ing. Danuše Čuprová, CSc., Ing. Sylva Bantová, Ph.D.

BH059 Tepelná technika budov přednáška č.1 Ing. Danuše Čuprová, CSc., Ing. Sylva Bantová, Ph.D. Vysoké učení technické v Brně Fakulta stavební Ústav pozemního stavitelství BH059 Tepelná technika budov přednáška č.1 Ing. Danuše Čuprová, CSc., Ing. Sylva Bantová, Ph.D. Průběh zkoušky, literatura Tepelně

Více

II. VNITŘNÍ ENERGIE, PRÁCE A TEPLO

II. VNITŘNÍ ENERGIE, PRÁCE A TEPLO II. VNITŘNÍ ENERGIE, PRÁCE A TEPLO 2.1 Vnitřní energie tělesa a) celková energie (termodynamické) soustavy E tvořena kinetickou energií E k jejího makroskopického pohybu jako celku potenciální energií

Více

U218 - Ústav procesní a zpracovatelské techniky FS ČVUT v Praze. ! t 2 :! Stacionární děj, bez vnitřního zdroje, se zanedbatelnou viskózní disipací

U218 - Ústav procesní a zpracovatelské techniky FS ČVUT v Praze. ! t 2 :! Stacionární děj, bez vnitřního zdroje, se zanedbatelnou viskózní disipací VII. cená konvekce Fourier Kirchhoffova rovnice T!! ρ c p + ρ c p u T λ T + µ d t :! (g d + Q" ) (VII 1) Stacionární děj bez vnitřního zdroje se zanedbatelnou viskózní disipací! (VII ) ρ c p u T λ T 1.

Více

1 Zatížení konstrukcí teplotou

1 Zatížení konstrukcí teplotou 1 ZATÍŽENÍ KONSTRUKCÍ TEPLOTOU 1 1 Zatížení konstrukcí teplotou Časově proměnné nepřímé zatížení Klimatické vlivy, zatížení stavebních konstrukcí požárem Účinky zatížení plynou z rozšířeného Hookeova zákona

Více

Teplotní roztažnost Přenos tepla Kinetická teorie plynů

Teplotní roztažnost Přenos tepla Kinetická teorie plynů Teplotní roztažnost Přenos tepla Kinetická teorie plynů Teplotní roztažnost pevných látek l a kapalin Teplotní délková roztažnost Teplotní objemová roztažnost a závislost hustoty na teplotě Objemová roztažnost

Více

Teplota jedna ze základních jednotek soustavy SI, vyjadřována je v Kelvinech (značka K) další používané stupnice: Celsiova, Fahrenheitova

Teplota jedna ze základních jednotek soustavy SI, vyjadřována je v Kelvinech (značka K) další používané stupnice: Celsiova, Fahrenheitova 1 Rozložení, distribuce tepla Teplota je charakteristika tepelného stavu hmoty je to stavová veličina, charakterizující termodynamickou rovnováhu systému. Teplo vyjadřuje kinetickou energii částic. Teplota

Více

VNITŘNÍ ENERGIE. Mgr. Jan Ptáčník - GJVJ - Fyzika - 2. ročník - Termika

VNITŘNÍ ENERGIE. Mgr. Jan Ptáčník - GJVJ - Fyzika - 2. ročník - Termika VNITŘNÍ ENERGIE Mgr. Jan Ptáčník - GJVJ - Fyzika - 2. ročník - Termika Zákon zachování energie Ze zákona zachování mechanické energie platí: Ek + Ep = konst. Ale: Vnitřní energie tělesa Každé těleso má

Více

Termomechanika 11. přednáška Doc. Dr. RNDr. Miroslav Holeček

Termomechanika 11. přednáška Doc. Dr. RNDr. Miroslav Holeček Termomechanika 11. přednáška Doc. Dr. RNDr. Miroslav Holeček Upozornění: Tato prezentace slouží výhradně pro výukové účely Fakulty strojní Západočeské univerzity v Plzni. Byla sestavena autorem s využitím

Více

Stavební tepelná technika 1 - část A Jan Tywoniak ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta stavební. Stavební fyzika (L)

Stavební tepelná technika 1 - část A Jan Tywoniak ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta stavební. Stavební fyzika (L) ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta stavební Stavební fyzika (L) Jan Tywoniak A48 tywoniak@fsv.cvut.cz součásti stavební fyziky Stavební tepelná technika Stavební akustika Denní osvětlení. 6 4

Více

Řešení: Nejdříve musíme určit sílu, kterou působí kladka proti směru pohybu padajícího vědra a napíná tak lano. Moment síly otáčení kladky je:

Řešení: Nejdříve musíme určit sílu, kterou působí kladka proti směru pohybu padajícího vědra a napíná tak lano. Moment síly otáčení kladky je: Přijímací zkouška na navazující magisterské studium - 16 Studijní program Fyzika - všechny obory kromě Učitelství fyziky-matematiky pro střední školy, Varianta A Příklad 1 (5 bodů) Jak dlouho bude padat

Více

Technologie a procesy sušení dřeva

Technologie a procesy sušení dřeva strana 1 Technologie a procesy sušení dřeva 3. Teplotní pole ve dřevě během sušení Vytvořeno s podporou projektu Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF)

Více

Školení CIUR termografie

Školení CIUR termografie Školení CIUR termografie 7. září 2009 Jan Pašek Stavební fakulta ČVUT v Praze Katedra konstrukcí pozemních staveb Část 1. Teorie šíření tepla a zásady nekontaktního měření teplot Terminologie Termografie

Více

TERMOMECHANIKA 1. Základní pojmy

TERMOMECHANIKA 1. Základní pojmy 1 FSI VUT v Brně, Energetický ústav Odbor termomechaniky a techniky prostředí prof. Ing. Milan Pavelek, CSc. TERMOMECHANIKA 1. Základní pojmy OSNOVA 1. KAPITOLY Termodynamická soustava Energie, teplo,

Více

1.8. Mechanické vlnění

1.8. Mechanické vlnění 1.8. Mechanické vlnění 1. Umět vysvětlit princip vlnivého pohybu.. Umět srovnat a zároveň vysvětlit rozdíl mezi periodickým kmitavým pohybem jednoho bodu s periodickým vlnivým pohybem bodové řady. 3. Znát

Více

Stanovení požární odolnosti. Přestup tepla do konstrukce v ČSN EN

Stanovení požární odolnosti. Přestup tepla do konstrukce v ČSN EN Stanovení požární odolnosti NAVRHOVÁNÍ OCELOVÝCH KONSTRUKCÍ NA ÚČINKY POŽÁRU ČSN EN 1993-1-2 Ing. Jiří Jirků Ing. Zdeněk Sokol, Ph.D. Prof. Ing. František Wald, CSc. 1 2 Přestup tepla do konstrukce v ČSN

Více

Ročník: 1. Mgr. Jan Zmátlík Zpracováno dne:

Ročník: 1. Mgr. Jan Zmátlík Zpracováno dne: Označení materiálu: VY_32_INOVACE_ZMAJA_VYTAPENI_08 Název materiálu: Sdílení tepla Anotace: Prezentace uvádí příklady a popisuje způsoby sdílení tepla Tematická oblast: Vytápění 1. ročník Instalatér Očekávaný

Více

Řešené příklady ze stavební fyziky

Řešené příklady ze stavební fyziky ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta stavební Řešené příklady ze stavební fyziky Šíření tepla konstrukcí v ustáleném stavu doc. Dr. Ing. Zbyněk Svoboda Ing. Jiří Novák, Ph.D. Praha 04 Evropský

Více

Matematika I (KX001) Užití derivace v geometrii, ve fyzice 3. října f (x 0 ) (x x 0) Je-li f (x 0 ) = 0, tečna: x = 3, normála: y = 0

Matematika I (KX001) Užití derivace v geometrii, ve fyzice 3. října f (x 0 ) (x x 0) Je-li f (x 0 ) = 0, tečna: x = 3, normála: y = 0 Rovnice tečny a normály Geometrický význam derivace funkce f(x) v bodě x 0 : f (x 0 ) = k t k t je směrnice tečny v bodě [x 0, y 0 = f(x 0 )] Tečna je přímka t : y = k t x + q, tj y = f (x 0 ) x + q; pokud

Více

Příklad 1: V tlakové nádobě o objemu 0,23 m 3 jsou 2 kg vodní páry o tlaku 1,6 MPa. Určete, jestli je pára sytá, mokrá nebo přehřátá, teplotu,

Příklad 1: V tlakové nádobě o objemu 0,23 m 3 jsou 2 kg vodní páry o tlaku 1,6 MPa. Určete, jestli je pára sytá, mokrá nebo přehřátá, teplotu, Příklad 1: V tlakové nádobě o objemu 0,23 m 3 jsou 2 kg vodní páry o tlaku 1,6 MPa. Určete, jestli je pára sytá, mokrá nebo přehřátá, teplotu, případně suchost a měrnou entalpii páry. Příklad 2: Entalpická

Více

KATEDRA MATERIÁLOVÉHO INŽENÝRSTVÍ A CHEMIE. 123TVVM tepelně-fyzikální parametry

KATEDRA MATERIÁLOVÉHO INŽENÝRSTVÍ A CHEMIE. 123TVVM tepelně-fyzikální parametry KATEDRA MATERIÁLOVÉHO INŽENÝRSTVÍ A CHEMIE 123TVVM tepelně-fyzikální parametry Vedení tepla v látkách: vedením (kondukcí) předání kinetické energie neuspořádaných tepelných pohybů. Přenos z míst vyšší

Více

SDÍLENÍ TEPLA A ÚSPORY ZATEPLENÍM I.

SDÍLENÍ TEPLA A ÚSPORY ZATEPLENÍM I. INOVACE ODBORNÉHO VZDĚLÁVÁNÍ NA STŘEDNÍCH ŠKOLÁCH ZAMĚŘENÉ NA VYUŽÍVÁNÍ ENERGETICKÝCH ZDROJŮ PRO 21. STOLETÍ A NA JEJICH DOPAD NA ŽIVOTNÍ PROSTŘEDÍ CZ.1.07/1.1.00/08.0010 SDÍLENÍ TEPLA A ÚSPORY ZATEPLENÍM

Více

Řešené příklady ze stavební fyziky

Řešené příklady ze stavební fyziky ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta stavební Řešené příklady ze stavební fyziky Šíření tepla konstrukcí, tepelná bilance prostoru a vlhkostní bilance vzduchu v ustáleném stavu Ing. Jiří Novák,

Více

Molekulová fyzika a termika:

Molekulová fyzika a termika: Molekulová fyzika a termika: 1. Měření teploty: 2. Délková roztažnost a Objemová roztažnost látek 3. Bimetal 4. Anomálie vody 5. Částicová stavba látek, vlastnosti látek 6. Atomová hmotnostní konstanta

Více

Třecí ztráty při proudění v potrubí

Třecí ztráty při proudění v potrubí Třecí ztráty při proudění v potrubí Vodorovným ocelovým mírně zkorodovaným potrubím o vnitřním průměru 0 mm proudí 6 l s - kapaliny o teplotě C. Určete tlakovou ztrátu vlivem tření je-li délka potrubí

Více

3.1. Newtonovy zákony jsou základní zákony klasické (Newtonovy) mechaniky

3.1. Newtonovy zákony jsou základní zákony klasické (Newtonovy) mechaniky 3. ZÁKLADY DYNAMIKY Dynamika zkoumá příčinné souvislosti pohybu a je tedy zdůvodněním zákonů kinematiky. K pojmům používaným v kinematice zavádí pojem hmoty a síly. Statický výpočet Dynamický výpočet -

Více

KATEDRA MATERIÁLOVÉHO INŽENÝRSTVÍ A CHEMIE. 123MAIN tepelně-fyzikální parametry

KATEDRA MATERIÁLOVÉHO INŽENÝRSTVÍ A CHEMIE. 123MAIN tepelně-fyzikální parametry KATEDRA MATERIÁLOVÉHO INŽENÝRSTVÍ A CHEMIE 123MAIN tepelně-fyzikální parametry Vedení tepla v látkách: vedením (kondukcí) předání kinetické energie neuspořádaných tepelných pohybů. Přenos z míst vyšší

Více

= [-] (1) Přednáška č. 9 Využití sluneční energie pro výrobu tepla 1. Úvod Součinitel znečištění atmosféry Z: Kde: I 0

= [-] (1) Přednáška č. 9 Využití sluneční energie pro výrobu tepla 1. Úvod Součinitel znečištění atmosféry Z: Kde: I 0 Přednáška č. 9 Využití sluneční energie pro výrobu tepla 1. Úvod Součinitel znečištění atmosféry Z: Z ln I ln I ln I ln I 0 n = [-] (1) 0 n, č Kde: I 0 sluneční konstanta 1 360 [W.m -2 ]; I n intenzita

Více

PROCESY V TECHNICE BUDOV 11

PROCESY V TECHNICE BUDOV 11 UNIVERZITA TOMÁŠE BATI VE ZLÍNĚ FAKULTA APLIKOVANÉ INFORMATIKY PROCESY V TECHNICE BUDOV 11 Dagmar Janáčová, Hana Charvátová, Zlín 2013 Tento studijní materiál vznikl za finanční podpory Evropského sociálního

Více

Část 5.2 Lokalizovaný požár

Část 5.2 Lokalizovaný požár Část 5.2 Lokalizovaný požár P. Schaumann, T. Trautmann University of Hannover J. Žižka České vysoké učení technické v Praze 1 ZADÁNÍ Cílem příkladu je určit teplotu ocelového nosníku, který je součástí

Více

3 Mechanická energie 5 3.1 Kinetická energie... 6 3.3 Potenciální energie... 6. 3.4 Zákon zachování mechanické energie... 9

3 Mechanická energie 5 3.1 Kinetická energie... 6 3.3 Potenciální energie... 6. 3.4 Zákon zachování mechanické energie... 9 Obsah 1 Mechanická práce 1 2 Výkon, příkon, účinnost 2 3 Mechanická energie 5 3.1 Kinetická energie......................... 6 3.2 Potenciální energie........................ 6 3.3 Potenciální energie........................

Více

PRÁCE, VÝKON, ENERGIE. Mgr. Jan Ptáčník - GJVJ - Fyzika - 1. ročník - Mechanika

PRÁCE, VÝKON, ENERGIE. Mgr. Jan Ptáčník - GJVJ - Fyzika - 1. ročník - Mechanika PRÁCE, VÝKON, ENERGIE Mgr. Jan Ptáčník - GJVJ - Fyzika - 1. ročník - Mechanika Mechanická práce Závisí na velikosti síly, kterou působíme na těleso, a na dráze, po které těleso posuneme Pokud má síla stejný

Více

Elektrická zařízení III.ročník

Elektrická zařízení III.ročník Elektrická zařízení III.ročník (Ing. Jiří Hájek) Přehled témat a tématických celků, odpřednášených pro žáky SPŠE oboru Zařízení silnoproudé elektrotechniky v rámci předmětu Elektrická zařízení El. světlo

Více

= = ε =. = ( + ) =. = = ε =. = ( + ) =. = =, = = =, = ( ) = + ϱ = + = = (ϱ ϱ ) = = = ϱ = ϱ = ϱ = ϱ = ϱ = + +, + +, + + +, + + =, +, + + = = =, = (ϱ ϱ ) = (,,,,,, (,, ) = ) = =. ( =.) ( =.) ( = ) ΔU ΔQ

Více

Kontrolní otázky k 1. přednášce z TM

Kontrolní otázky k 1. přednášce z TM Kontrolní otázky k 1. přednášce z TM 1. Jak závisí hodnota izobarického součinitele objemové roztažnosti ideálního plynu na teplotě a jak na tlaku? Odvoďte. 2. Jak závisí hodnota izochorického součinitele

Více

Dynamická viskozita oleje (Pa.s) Souřadný systém (proč)?

Dynamická viskozita oleje (Pa.s) Souřadný systém (proč)? Viskozimetr kužel-deska S pomocí rotačního viskozimetru s uspořádáním kužel-deska, viz obrázek, byla měřena dynamická viskozita oleje. Při použití kužele o průměru 40 mm, který se otáčel úhlovou rychlostí

Více

Termomechanika 10. přednáška Doc. Dr. RNDr. Miroslav Holeček

Termomechanika 10. přednáška Doc. Dr. RNDr. Miroslav Holeček Termomechanika 10. přednáška Doc. Dr. RNDr. Miroslav Holeček Upozornění: Tato prezentace slouží výhradně pro výukové účely Fakulty strojní Západočeské univerzity v Plzni. Byla sestavena autorem s využitím

Více

ŠETŘÍLEK. Martin Koutník, Jan Hubáček. Střední průmyslová škola a Vyšší odborná škola Kladno Jana Palacha 1840 272 01 KLADNO

ŠETŘÍLEK. Martin Koutník, Jan Hubáček. Střední průmyslová škola a Vyšší odborná škola Kladno Jana Palacha 1840 272 01 KLADNO Středoškolská technika 2013 Setkání a prezentace prací středoškolských studentů na ČVUT ŠETŘÍLEK Martin Koutník, Jan Hubáček Střední průmyslová škola a Vyšší odborná škola Kladno Jana Palacha 1840 272

Více

plochy oddělí. Dále určete vzdálenost d mezi místem jeho dopadu na

plochy oddělí. Dále určete vzdálenost d mezi místem jeho dopadu na Přijímací zkouška z fyziky 01 - Nav. Mgr. - varianta A Příklad 1 (5 bodů) Koule o poloměru R=10 cm leží na vodorovné rovině. Z jejího nejvyššího bodu vypustíme s nulovou počáteční rychlostí bod o hmotností

Více

133PSBZ Požární spolehlivost betonových a zděných konstrukcí. Přednáška A3. ČVUT v Praze, Fakulta stavební katedra betonových a zděných konstrukcí

133PSBZ Požární spolehlivost betonových a zděných konstrukcí. Přednáška A3. ČVUT v Praze, Fakulta stavební katedra betonových a zděných konstrukcí 133PSBZ Požární spolehlivost betonových a zděných konstrukcí Přednáška A3 ČVUT v Praze, Fakulta stavební katedra betonových a zděných konstrukcí Obsah přednášky Teplotní analýza konstrukce Sdílení tepla

Více

Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/ Vlnění

Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/ Vlnění Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/03.0009 Vlnění Vhodíme-li na klidnou vodní hladinu kámen, hladina se jeho dopadem rozkmitá a z místa rozruchu se začnou

Více

Příklad 3 (25 bodů) Jakou rychlost musí mít difrakčním úhlu 120? -částice, abychom pozorovali difrakční maximum od rovin d hkl = 0,82 Å na

Příklad 3 (25 bodů) Jakou rychlost musí mít difrakčním úhlu 120? -částice, abychom pozorovali difrakční maximum od rovin d hkl = 0,82 Å na Přijímací zkouška z fyziky 01 - Nav. Mgr. - varianta A Příklad 1 (5 bodů) Koule o poloměru R=10 cm leží na vodorovné rovině. Z jejího nejvyššího bodu vypustíme s nulovou počáteční rychlostí bod o hmotností

Více

Bezkontaktní termografie

Bezkontaktní termografie Bezkontaktní termografie Biofyzikální ústav LF MU Elektromagnetické spektrum http://cs.wikipedia.org/wiki/soubor:elmgspektrum.png Bezkontaktní termografie 2 Zdroje infračerveného záření Infračervené záření

Více

e, přičemž R Pro termistor, který máte k dispozici, platí rovnice

e, přičemž R Pro termistor, který máte k dispozici, platí rovnice Nakreslete schéma vyhodnocovacího obvodu pro kapacitní senzor. Základní hodnota kapacity senzoru pf se mění maximálně o pf. omu má odpovídat výstupní napěťový rozsah V až V. Pro základní (klidovou) hodnotu

Více

Tabulka Tepelně-technické vlastností zeminy Objemová tepelná kapacita.c.10-6 J/(m 3.K) Tepelná vodivost

Tabulka Tepelně-technické vlastností zeminy Objemová tepelná kapacita.c.10-6 J/(m 3.K) Tepelná vodivost Výňatek z normy ČSN EN ISO 13370 Tepelně technické vlastnosti zeminy Použijí se hodnoty odpovídající skutečné lokalitě, zprůměrované pro hloubku. Pokud je druh zeminy znám, použijí se hodnoty z tabulky.

Více

TERMOMECHANIKA PRO STUDENTY STROJNÍCH FAKULT prof. Ing. Milan Pavelek, CSc. Brno 2013

TERMOMECHANIKA PRO STUDENTY STROJNÍCH FAKULT prof. Ing. Milan Pavelek, CSc. Brno 2013 Vysoké učení technické v Brně Fakulta strojního inženýrství, Energetický ústav Odbor termomechaniky a techniky prostředí TERMOMECHANIKA PRO STUDENTY STROJNÍCH FAKULT prof. Ing. Milan Pavelek, CSc. Brno

Více

Přehled základních fyzikálních veličin užívaných ve výpočtech v termomechanice. Autor Ing. Jan BRANDA Jazyk Čeština

Přehled základních fyzikálních veličin užívaných ve výpočtech v termomechanice. Autor Ing. Jan BRANDA Jazyk Čeština Identifikátor materiálu: ICT 2 41 Registrační číslo projektu CZ.1.07/1.5.00/34.0796 Název projektu Vzděláváme pro život Název příjemce podpory SOU plynárenské Pardubice název materiálu (DUM) Mechanika

Více

VYBRANÉ STATĚ Z PROCESNÍHO INŢENÝRSTVÍ cvičení 9

VYBRANÉ STATĚ Z PROCESNÍHO INŢENÝRSTVÍ cvičení 9 UNIVERZITA TOMÁŠE BATI VE ZLÍNĚ FAKULTA APLIKOVANÉ INFORMATIKY VYBRANÉ STATĚ Z PROCESNÍHO INŢENÝRSTVÍ cvičení 9 Nestacionární vedení tepla v rovinné stěně Hana Charvátová, Dagmar Janáčová Zlín 2013 Tento

Více

Práce, výkon, energie

Práce, výkon, energie Práce, výkon, energie (test version, not revised) Petr Pošta pposta@karlin.mff.cuni.cz 11. listopadu 2009 Obsah Mechanická práce Výkon, příkon, účinnost Mechanická energie Kinetická energie Potenciální

Více

Univerzita obrany. Měření na výměníku tepla K-216. Laboratorní cvičení z předmětu TERMOMECHANIKA. Protokol obsahuje 13 listů. Vypracoval: Vít Havránek

Univerzita obrany. Měření na výměníku tepla K-216. Laboratorní cvičení z předmětu TERMOMECHANIKA. Protokol obsahuje 13 listů. Vypracoval: Vít Havránek Univerzita obrany K-216 Laboratorní cvičení z předmětu TERMOMECHANIKA Měření na výměníku tepla Protokol obsahuje 13 listů Vypracoval: Vít Havránek Studijní skupina: 21-3LRT-C Datum zpracování: 7.5.2011

Více

Fyzikální veličiny a jednotky, přímá a nepřímá metoda měření

Fyzikální veličiny a jednotky, přímá a nepřímá metoda měření I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY Laboratorní práce č. 2 Fyzikální veličiny a jednotky,

Více

R9.1 Molární hmotnost a molární objem

R9.1 Molární hmotnost a molární objem Fyzika pro střední školy I 73 R9 M O L E K U L O V Á F Y Z I K A A T E R M I K A R9.1 Molární hmotnost a molární objem V čl. 9.5 jsme zavedli látkové množství jako fyzikální veličinu, která charakterizuje

Více

2. Elektrické proudové pole

2. Elektrické proudové pole 2. Elektrické proudové pole Prochází-li, v celém prostoru uvnitř vodiče elektrický proud nazýváme toto prostředí elektrickým proudovým polem. Elektrický proud je dán uspořádaným pohybem elektrických nábojů

Více

Práce, výkon, energie

Práce, výkon, energie Práce, výkon, energie (test version, not revised) Petr Pošta pposta@karlin.mff.cuni.cz 23. října 2009 Obsah Mechanická práce Výkon, příkon, účinnost Mechanická energie Kinetická energie Potenciální energie

Více

Kalorimetrická měření I

Kalorimetrická měření I KATEDRA EXPERIMENTÁLNÍ FYZIKY PŘÍRODOVĚDECKÁ FAKULTA UNIVERZITY PALACKÉHO V OLOMOUCI FYZIKÁLNÍ PRAKTIKUM Z MOLEKULOVÉ FYZIKY A TERMODYNAMIKY Kalorimetrická měření I Úvod Teplo Teplo Q je určeno energií,

Více

Fyzikální praktikum FJFI ČVUT v Praze

Fyzikální praktikum FJFI ČVUT v Praze Fyzikální praktikum FJFI ČVUT v Praze Úloha 5: Měření teploty wolframového vlákna Datum měření: 1. 4. 2016 Doba vypracovávání: 12 hodin Skupina: 1, pátek 7:30 Vypracoval: Tadeáš Kmenta Klasifikace: 1 Zadání

Více

POZNÁMKA: V USA se používá ještě Fahrenheitova teplotní stupnice. Převodní vztahy jsou vzhledem k volbě základních bodů složitější: 9 5

POZNÁMKA: V USA se používá ještě Fahrenheitova teplotní stupnice. Převodní vztahy jsou vzhledem k volbě základních bodů složitější: 9 5 TEPLO, TEPLOTA Tepelný stav látek je charakterizován veličinou termodynamická teplota T Jednotkou je kelvin T K Mezi Celsiovou a Kelvinovou teplotní stupnicí existuje převodní vztah T 73,5C t POZNÁMKA:

Více

Přenos tepla 1: ustálený stav, okrajové podmínky, vliv vlhkosti. Ing. Kamil Staněk, Ph.D. 124XTDI TERMOVIZNÍ DIAGNOSTIKA.

Přenos tepla 1: ustálený stav, okrajové podmínky, vliv vlhkosti. Ing. Kamil Staněk, Ph.D. 124XTDI TERMOVIZNÍ DIAGNOSTIKA. 124XTDI TERMOVIZNÍ DIAGNOSTIKA Přenos tepla 1: ustálený stav, okrajové podmínky, vliv vlhkosti Ing. Kamil Staněk, Ph.D. kamil.stanek@fsv.cvut.cz Praha, 30.10. 2012 1D Přenos tepla obvodovou konstrukcí

Více

133PSBZ Požární spolehlivost betonových a zděných konstrukcí. Přednáška A12. ČVUT v Praze, Fakulta stavební katedra betonových a zděných konstrukcí

133PSBZ Požární spolehlivost betonových a zděných konstrukcí. Přednáška A12. ČVUT v Praze, Fakulta stavební katedra betonových a zděných konstrukcí 133PSBZ Požární spolehlivost betonových a zděných konstrukcí Přednáška A12 ČVUT v Praze, Fakulta stavební katedra betonových a zděných konstrukcí Obsah přednášky Navrhování zděných konstrukcí na účinky

Více

KLIMATIZACE A PRŮMYSLOVÁ VZDUCHOTECHNIKA VYBRANÝ PŘÍKLAD KE CVIČENÍ II.

KLIMATIZACE A PRŮMYSLOVÁ VZDUCHOTECHNIKA VYBRANÝ PŘÍKLAD KE CVIČENÍ II. KLIMATIZACE A PRŮMYSLOVÁ VZDUCHOTECHNIKA VYBRANÝ PŘÍKLAD KE CVIČENÍ II. (DIMENZOVÁNÍ VĚTRACÍHO ZAŘÍZENÍ BAZÉNU) Ing. Jan Schwarzer, Ph.D.. Praha 2011 Evropský sociální fond Praha & EU: Investujeme do vaší

Více

U218 Ústav procesní a zpracovatelské techniky FS ČVUT v Praze. Seminář z PHTH. 3. ročník. Fakulta strojní ČVUT v Praze

U218 Ústav procesní a zpracovatelské techniky FS ČVUT v Praze. Seminář z PHTH. 3. ročník. Fakulta strojní ČVUT v Praze U218 Ústav procesní a zpracovatelské techniky FS ČVU v Praze Seminář z PHH 3. ročník Fakulta strojní ČVU v Praze U218 - Ústav procesní a zpracovatelské techniky 1 Seminář z PHH - eplo U218 Ústav procesní

Více

Identifikátor materiálu: ICT 2 54

Identifikátor materiálu: ICT 2 54 Identifikátor ateriálu: ICT 2 54 Registrační číslo projektu Název projektu Název příjece podpory název ateriálu (DUM) Anotace Autor Jazyk Očekávaný výstup Klíčová slova Druh učebního ateriálu Druh interaktivity

Více

osdílení tepla zářením - radiace

osdílení tepla zářením - radiace osdílení tepla zářením - radiace Stefanova-Bolzmannova konstanta Konstanta záření dokonale černého tělesa 4 T E = E. cr. T = E. co' 00. ( ) cr = 567 0'8, W m'2 K-4 Co = 5,67 W m'2 K'4 E E=-.- E o 4 řenášený

Více

VI. Nestacionární vedení tepla

VI. Nestacionární vedení tepla VI. Nestacionární vedení tepla Nestacionární vedení tepla stagnantním prostředím, tj. tělesy a kapalinou, ve které se neprojevuje přirozená konvekce. F. K. rovnice " ρ c p = q + Q! = λ + Q! ( g) 2 ( g)

Více

PELTIERŮV ČLÁNEK. Materiály pro elektrotechniku. Univerzita Pardubice Fakulta elektrotechniky a informatiky. Laboratorní cvičení č.

PELTIERŮV ČLÁNEK. Materiály pro elektrotechniku. Univerzita Pardubice Fakulta elektrotechniky a informatiky. Laboratorní cvičení č. Univerzita Pardubice Fakulta elektrotechniky a informatiky Materiály pro elektrotechniku Laboratorní cvičení č. 3 PELTIERŮV ČLÁNEK Jméno(a): Jiří Paar, Zdeněk Nepraš Stanoviště: 6 Datum: 1. 5. 008 Úvod

Více

= = =. = ( + ) =. = = =. = ( + ) =. = =, = = = = ( ) = + = + = = ( ) = = = = = = = = + +, + +, + + +, + + =, +, + + = = =, = ( ) = (,,,,,, (,, ) = ) = =. ( =.) ( =.) ( = ) ΔU ΔQ ΔW = + ΔU ΔQ ΔW = + U

Více

Mechanická práce a. Výkon a práce počítaná z výkonu Účinnost stroje, Mechanická energie Zákon zachování mechanické energie

Mechanická práce a. Výkon a práce počítaná z výkonu Účinnost stroje, Mechanická energie Zákon zachování mechanické energie Mechanická práce a energie Mechanická práce Výkon a práce počítaná z výkonu Účinnost stroje, Mechanická energie Zákon zachování mechanické energie Mechanická práce Mechanickou práci koná každé těleso,

Více

Termomechanika 12. přednáška Doc. Dr. RNDr. Miroslav Holeček

Termomechanika 12. přednáška Doc. Dr. RNDr. Miroslav Holeček Termomechanika 2. přednáška Doc. Dr. RNDr. Miroslav Holeček Upozornění: Tato prezentace slouží výhradně pro výukové účely Fakulty strojní Západočeské univerzity v Plzni. Byla sestavena autorem s využitím

Více

TEPELNÉ JEVY. Mgr. Jan Ptáčník - GJVJ - Fyzika - Tercie

TEPELNÉ JEVY. Mgr. Jan Ptáčník - GJVJ - Fyzika - Tercie TEPELNÉ JEVY Mgr. Jan Ptáčník - GJVJ - Fyzika - Tercie Vnitřní energie tělesa Každé těleso se skládá z látek. Látky se skládají z částic. neustálý neuspořádaný pohyb kinetická energie vzájemné působení

Více

MOLEKULOVÁ FYZIKA A TERMODYNAMIKA

MOLEKULOVÁ FYZIKA A TERMODYNAMIKA MOLEKULOVÁ FYZIKA A TERMODYNAMIKA 4. TEPLO, TEPLOTA, TEPELNÁ VÝMĚNA Autor: Ing. Eva Jančová DESS SOŠ a SOU spol. s r. o. TEPLO Teplo je míra změny vnitřní energie, kterou systém vymění při styku s jiným

Více

PELTIERŮV ČLÁNEK. Materiály pro elektrotechniku. Univerzita Pardubice Fakulta elektrotechniky a informatiky. Laboratorní cvičení č.

PELTIERŮV ČLÁNEK. Materiály pro elektrotechniku. Univerzita Pardubice Fakulta elektrotechniky a informatiky. Laboratorní cvičení č. Univerzita Pardubice Fakulta elektrotechniky a informatiky Materiály pro elektrotechniku Laboratorní cvičení č. 3 PELTIERŮV ČLÁNEK Jméno(a): Mikulka Roman, Havlíček Jiří Stanoviště: 6 Datum: 3. 4. 008

Více

Příklad 1: Bilance turbíny. Řešení:

Příklad 1: Bilance turbíny. Řešení: Příklad 1: Bilance turbíny Spočítejte, kolik kg páry za sekundu je potřeba pro dosažení výkonu 100 MW po dobu 1 sek. Vstupní teplota a tlak do turbíny jsou 560 C a 16 MPa, výstupní teplota mokré páry za

Více

TEPELNĚ TECHNICKÉ POSOUZENÍ KONSTRUKCE - Dle českých technických norem

TEPELNĚ TECHNICKÉ POSOUZENÍ KONSTRUKCE - Dle českých technických norem TEPELNĚ TECHNICKÉ POSOUZENÍ KONSTRUKCE - Dle českých technických norem ZÁKLADNÍ ÚDAJE Identifikační údaje o budově Název budovy: Obecní úřad Suchonice Ulice: 29 PSČ: 78357 Město: Stručný popis budovy Seznam

Více

ELEKTRICKÉ ZDROJE TEPLA

ELEKTRICKÉ ZDROJE TEPLA INOVACE ODBORNÉHO VZDĚLÁVÁNÍ NA STŘEDNÍCH ŠKOLÁCH ZAMĚŘENÉ NA VYUŽÍVÁNÍ ENERGETICKÝCH ZDROJŮ PRO 21. STOLETÍ A NA JEJICH DOPAD NA ŽIVOTNÍ PROSTŘEDÍ CZ.1.07/1.1.00/08.0010 ELEKTRICKÉ ZDROJE TEPLA MILAN

Více

MODEL PRŮBĚŽNÉ OHŘÍVACÍ PECE

MODEL PRŮBĚŽNÉ OHŘÍVACÍ PECE ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKULTA ELEKTROTECHNICKÁ KATEDRA KYBERNETIKY MODELOVÁNÍ A SIMULACE MODEL PRŮBĚŽNÉ OHŘÍVACÍ PECE SEMESTRÁLNÍ PRÁCE Vypracoval: 2011 1 I. ZADÁNÍ Sestavte model průběžné

Více

Uţití elektrické energie. Laboratorní cvičení 21

Uţití elektrické energie. Laboratorní cvičení 21 Uţití elektrické energie. Laboratorní cvičení 21 3.1.5 Návrh, realizace a ověření vlastností topného článku Cíl: Cílem laboratorní úlohy je navázat na numerická cvičení, kde byl prezentován postup výpočtu

Více

BAKALÁŘSKÁ PRÁCE ZÁPADOČESKÁ UNIVERZITA V PLZNI FAKULTA ELEKTROTECHNICKÁ. Návrh elektrického vytápění pomocí sálavých panelů

BAKALÁŘSKÁ PRÁCE ZÁPADOČESKÁ UNIVERZITA V PLZNI FAKULTA ELEKTROTECHNICKÁ. Návrh elektrického vytápění pomocí sálavých panelů ZÁPADOČESKÁ UNIVERZITA V PLZNI FAKULTA ELEKTROTECHNICKÁ KATEDRA ELEKTOMECHANIKY A VÝKNOVÉ ELEKTRONIKY BAKALÁŘSKÁ PRÁCE Návrh elektrického vytápění pomocí sálavých panelů Jan Jakeš 2012 Originál (kopie)

Více

Termomechanika cvičení

Termomechanika cvičení KATEDRA ENERGETICKÝCH STROJŮ A ZAŘÍZENÍ Termomechanika cvičení 1. cvičení Ing. Michal Volf / 18.02.2019 Informace o cvičení Ing. Michal Volf Email: volfm@kke.zcu.cz Konzultace: po vzájemné dohodě prezentace

Více

Fyzika, maturitní okruhy (profilová část), školní rok 2014/2015 Gymnázium INTEGRA BRNO

Fyzika, maturitní okruhy (profilová část), školní rok 2014/2015 Gymnázium INTEGRA BRNO 1. Jednotky a veličiny soustava SI odvozené jednotky násobky a díly jednotek skalární a vektorové fyzikální veličiny rozměrová analýza 2. Kinematika hmotného bodu základní pojmy kinematiky hmotného bodu

Více

Zděné konstrukce podle ČSN EN : Jitka Vašková Ladislava Tožičková 1

Zděné konstrukce podle ČSN EN : Jitka Vašková Ladislava Tožičková 1 Zděné konstrukce podle ČSN EN 1996-1-2: 2006 Jitka Vašková Ladislava Tožičková 1 OBSAH: Úvod zděné konstrukce Normy pro navrhování zděných konstrukcí Navrhování zděných konstrukcí na účinky požáru: EN

Více

Příloha C. Výpočtová část

Příloha C. Výpočtová část ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKULTA STAVEBNÍ KATEDRA TECHNICKÝCH ZAŘÍZENÍ BUDOV Příloha C Výpočtová část Vypracovala: Bc. Petra Chloupková Vedoucí diplomové práce: doc. Ing. Michal Kabrhel, Ph.D.

Více

9.1 Okrajové podmínky a spotřeba energie na ohřev teplé vody

9.1 Okrajové podmínky a spotřeba energie na ohřev teplé vody 00+ příklad z techniky prostředí 9. Okrajové podmínky a spotřeba energie na ohřev teplé vody Úloha 9.. V úlohách 9, 0 a určíme spotřebu energie pro provoz zóny zadaného objektu. Zadaná zóna představuje

Více