A0M33EOA - Evoluční optimalizační algoritmy. Organizace a nabídka témat pro semestrální práce
|
|
- Oldřich Dušek
- před 5 lety
- Počet zobrazení:
Transkript
1 A0M33EOA - Evoluční optimalizační algoritmy Organizace a nabídka témat pro semestrální práce
2 Organizace
3 Základní informace Stránka předmětu Nahrávání úloh
4 Harmonogram cvičení
5 Hodnocení
6 Semestrální práce
7 Zadání a podmínky vypracování SP Zadání I. Implementace lokálního prohledávacího algoritmu II. Implementace jednoduchého evolučního algoritmu III. Implementace specializovaného EA nebo memetického algoritmu Důležité body návrhu optimalizačních algoritmů Reprezentace řešení Variační operátory u lokálního prohledávání Operátory křížení a mutace u EA Ohodnocovací funkce Zpracování Fungující program(y) - implementace I.,II. a III. algoritmu Závěrečná zpráva Prezentace Úlohy (archiv se zdrojovými kódy, PDF se závěrečnou zprávou) se odevzdávají do systému Brute do 18:00h dne cvičení ve 4., 8., resp. 11. týdnu. Pozdní odevzdání bude penalizováno 2 bodovou srážkou za každý započatý týden.
8 Zpracování SP Fungující program(y) Fungující kód pro všechny řešené úlohy. GUI není vyžadováno (ale může být oceněno bonusovými body). Závěrečná zpráva musí obsahovat tabulky a grafy se statistickým zhodnocením provedených experimentů na zadaných testovacích datech; musí obsahovat grafy s průběhem mediánu nejlepší fitness v závislosti na počtu ohodnocení; musí obsahovat grafy s průběhem mediánu nejlepší hodnoty jednotné ohodnocovací funkce v závislosti na počtu ohodnocení. Skupinová (individuální) prezentace Společná část - skupina studentů, řešící stejnou úlohu, vypracuje společně úvodní slajdy představující úlohu a závěrečné slajdy s prezentací výsledků a vzájemným porovnáním přístupů jednotlivých studentů. Individuální část slajdy stručně a srozumitelně popisující zvolenou reprezentaci, operátory a ohodnocovací funkci.
9 Nabídka témat pro semestrální práce
10 1. Japanese puzzle - nonogram Popis problému: Nonogram se skládá se ze tří částí: mřížka obdélníkového tvaru MxN, do které se má vyplnit obrázek z plných a prázdných políček, dvě legendy (levá a horní). Každému řádku obrázku odpovídá řádek levé legendy, sloupci obrázku odpovídá sloupec hornílegendy. V řádcích/sloupcích legend jsou uvedeny seznamy celých čísel. Každé číslo odpovídá souvislému bloku plných políček dané délky. Pořadí čísel v legendě určuje pořadí bloků v obrázku. Mezi dvěma sousedními bloky v obrázku musí být alespoň jedno prázdné políčko. Na začátku a na konci každého řádku a sloupce se může, ale nemusí, vyskytovat libovolný počet prázdných políček. Cílem je vyplnit mřížku plnými políčky tak, aby výsledný obrázek přesně odpovídal všem řádkům a sloupcům legendy.
11 1. Japanese puzzle - nonogram Reprezentace: Binární vektor nebo binární matice {0, 1} M+N Sloupcové nebořádkové bloky. Jednotná ohodnocovací funkce: Považujme řádkové a sloupcové komponenty legendy za řetězce celých čísel. Stejně tak reprezentace aktuálního stavu řádku a sloupce považujme za řetězce celých čísel. Potom míru shody mezi legendou a daným stavem na řádku/sloupci spočítáme jako podobnost dvou řetězců podle Needleman-Wunchova algoritmu. Výsledná hodnota shody legendy a konkrétního řádku/sloupce matice je součtem rozdílů hodnot přes všechny dvojice čísel na souhlasných pozicích a penalizací za vložené mezery. Celková kvalita řešení se počítá jako součet příspěvků spočítaných přes všechny řádky a sloupce matice.
12 2. Kruhy ve čtverci Popis problému: Je dána čtvercová plocha o straně délky 1. Cílem je umístit na tuto plochu N stejně velkých kruhů s maximálním poloměrem r tak, aby se žádné dva nepřekrývaly a žádný nevyčníval vně této plochy. Vstup: Hodnota parametru N. Výstup: Poloměr r a souřadnice středů kruhů. Reprezentace: Seznam souřadnic středů kruhů, tedy seznam dvojic [x i, y i ] pro i=1...n; poloměr r se z toho dopočítá. Jednotná ohodnocovací funkce: Kvalita řešení se počítá jako největší možný poloměr kruhů pro danou konfiguraci středů. Tato funkce je maximalizována.
13 3. Ztrátová komprese obrázku Popis úlohy: Uvažujme obrázek v bitmapovém formátu může být černobílý i barevný. Cílem je pro zvolenou reprezentaci, tj. překrývající se polonebo neprůhledné polygony, elipsy, nebo kružnice, nalézt komprimovanou formu obrazu, která má minimální odchylku od původního obrazu. Vstup: Počet a typ základních primitiv. Výstup: Transformovaný obraz. Jednotná ohodnocovací funkce: Kvalita komprese se počítá jako celková odchylka přes všechny pixely a složky jasu (RGB). Možné typy reprezentace Poloprůhledné n-úhelníky, kruhy nebo elipsy, které se překrývají intenzita jasu se sčítá. Neprůhledné kruhy nebo elipsy, které se překrývají. Hladká funkce intenzity pro každou složku RGB. Funkce I R (x,y), I G (x,y), I B (x,y). Oblasti oddělené pomocí Voronoiova diagramu. Sean Luke Essentials of Metaheuristics.
14 4. Warehouse Location Popis problému: Distribuční firma obsluhuje skupinu geograficky rozptýlených zákazníků z nichž každý požaduje jisté množství odebíraného zboží. Firma má k dispozici několik možných lokací pro sklady svého zboží, každý sklad má svoji kapacitu. Cílem je přiřadit zákazníky ke skladům tak, aby bylo dosaženo maximálně efektivního obsloužení všech zákazníků. Vstup: N skladů, každý sklad w má svoji kapacitu cap w a zřizovací cenu s w, M zákazníků, každý zákazník c požaduje jiné množství zboží d c, Pro každou dvojici <c,w> je definována cena, t cw, za doručení zboží ze skladu w k zákazníkovi c. Výstup: Přiřazení zákazníků ke skladům tak, aby byla minimalizována jednotná ohodnocovací funkce æ ö f ( x) = åç( ) å aw > 0 sw + tcw wîn è cîa w ø za podmínek d c cap a c Î = pro všechny wîn a cîm å cîa w kde a w je množina zákazníků přiřazených ke skladu w. w å wîn ( ) 1 a w
15 4. Warehouse Location Reprezentace: pole o velikosti M, kde i-tá hodnota reprezentuje číslo skladu přiřazené i-tému zákazníkovi, matice A[MxN], kde A cw Î{0, 1} A cw = 1, když je zákazník c přiřazen ke skladu w = 0, jinak.
16 5. Hledání nejkratší společné supersekvence Popis problému: Je dána množina řetezců znaků dané abecedy. Cílem je nalézt takovou posloupnostznaků dané abecedy (supersekvenci), že všechny původní řetezce jsou v ní zcela obsažené. Řetězec r je obsažen v supersekvenci S právě tehdy když všechny znaky řetězce r jsou přítomny v supersekvenci S a to v pořadí, v jakém se vyskytují v r. Vstup: Abeceda A, ze které jsou tvořeny řetězce. N řetězců (ne nutně stejné délky). Výstup: Supersekvence S splňující výše uvedenou vlastnost. Reprezentace: Lineární řetězec znaků dané abecedy. Př.: s 1 : ca ag cca cc ta cat c a s 2 : c gag ccat ccgtaaa g tt g s 3 : aga acc tgc taaatgc t a ga Supersequence S: cagagaccatgccgtaaatgcattacga
17 5. Hledání nejkratší společné supersekvence Jednotná ohodnocovací funkce: Kvalita supersekvence S je počítáná podle ohodnocovací funkce f(s) = C(S) + L(S), kde C(S) je celkový počet znaků, které S pokrývá a L(S) je příspěvek za délku supersekvence počítanýjako L(S) = (SumL - Length(S)) / SumL. SumL je součet všech znaků ve vstupních řetězcích. Tato funkce je maximalizována.
18 6. Sestavování žebříčku ATP Popis problému: Máme bilancivýsledků vzájemných zápasů tenistů naokruhu ATP. Data jsou uložena v matici B, kde hodnotu na pozici [i, j] může vyjadřovat absolutní nebo relativní bilanci mezi hráči i a j: I. b ij = n; hráč i v sezoně n-krát zvítězil nad hráčem j II. b ij = 1; hráč i má pozitivní bilanci s hráčem j b ij = 0; hráč i má negativní bilanci s hráčem j Reprezentace: Lineární sekvence (permutace) hráčů. Jednotná ohodnocovací funkce. Kvalita daného žebříčku hráčů (permutace hráčů, p) se počítá pomocí následující funkce f ( p ) = N - 1 å å i= 1 j= i+ 1 Tato funkce je maximalizována. N B p ( i) p ( j)
19 7. Rozděl a panuj! Popis problému: Jste správci rozlohou velké oblasti s množstvím měst s hustou sítí silnic. Každodenní správcovské povinnosti už vás ale nebaví a chtěli byste práci delegovat na několik svých zástupců. Je proto třeba rozdělit celé panství na několik stejně velkých regionů, každý z nich bude řídit jeden zástupce. Cílem je najít rozdělení původní oblasti na maximálně autonomní regiony tj. s minimálním propojením mezi regiony. Vstup: Graf G(V, E), kde V je množina měst {v 1,,v M } a E je množina silnic spojující města. Výstup: Rozdělení množiny V na vzájemně disjunktní podmnožiny V 1,..., V n, n! kde = V a V V 1pro všechny i ¹ j. i= 1 V i - j Reprezentace: Pole velikosti M, kde i-tá pozice obsahuje číslo regionu, do kterého i-té město patří. Jednotná ohodnocovací funkce: Počet cest mezi městy z jiného regionu. Tato funkce je minimalizována. i f ( x) = å lîv, kîv i j e lk, i¹ j
20 8. TSP s více cestujícími Popis problému: Na vstupu je úplný neorientovaný graf o N uzlech. Cílem je nalézt takovou množinu cest pro M cestujících, které všechny vychází z počátečního uzlu (depotu) a zase v něm končí. Všechny uzly (kromě depotu) jsou navštíveny právě jednou a délka nejdelší cesty je minimální. Žádná z cest nesmí mít nulovou délku Reprezentace: [permutace měst][break-pointy] příklad: [ ][3,7] Jednotná ohodnocovací funkce: Kvalita řešení je určena jako délka nejdelší cesty z M cest.
21 9. Zobecněný TSP Popis problému: Na vstupu je úplný neorientovaný graf o N uzlech, rozdělených do M tříd. Cílem je nalézt uzavřenou cestu, která obsahuje právě jeden uzel z každé třídy a jejíž délka je nejkratší. Reprezentace: permutace M měst Jednotná ohodnocovací funkce: Kvalita řešení je určena jako délka cesty. Poznámka: Každá skupina je v řešení zastoupena právě jedním uzlem; do každého uzlu vedou právě dvě hrany.
22 10. Problém optimální explorace prostředí Popis problému: Je dána mapa prostředí, na které je M objektů zájmu, tzv. segmenty. Každý segment můžeme považovat za souvislou křivku. Dále máme úplný neorientovaný graf o N uzlech, rozdělených do M tříd. Každá třída reprezentuje uzly, které patří jednomu segmentu. Každý uzel vidí jednu nebo více souvislých částí svého segmentu. Jeden uzel je výchozí, tzv. depot. Cílem je nalézt cestu, která prochází podmnožinou uzlů tak, že všechny segmenty jsou úplně pokryty a délka cesty je minimální. Segment je pokryt právě tehdy, když je jakýkoliv jeho bod vidět alespoň z jednoho uzlu na cestě. Pozor: Hledáme neuzavřenou cestu. Reprezentace: posloupnost K uzlů, kde K M. Jednotná ohodnocovací funkce: Kvalita řešení je určena jako délka cesty. depot
23 11. Vaše vlastní zadání Nutno prokonzultovat, zadání by mělo být podobné předchozím úlohám Pokud se rozhodnete pro vlastní téma, zkuste najít někoho dalšího, kdo by si ho vzal s vámi (kvůli 5 bodům za prezentaci) Inspirace v předmětech jako Multiagentní systémy, Kombinatorická optimalizace
24 Co na příští cvičení? Vybrat a nahlásit téma semestrální práce (deadline je druhý den následujícího cvičení) prostřednictvím u nebo na cvičení Téma lze do deadline kdykoliv změnit Přehled přihlášení k tématům: Fzo90acKiURN5tpuUjYf1dv9Cm-M2TU8/edit?usp=sharing Jedno téma můžou řešit maximálně 3 studenti! Vyhrává čas nahlášení
Základy informatiky. Teorie grafů. Zpracoval: Pavel Děrgel Úprava: Daniela Szturcová
Základy informatiky Teorie grafů Zpracoval: Pavel Děrgel Úprava: Daniela Szturcová Obsah přednášky Barvení mapy Teorie grafů Definice Uzly a hrany Typy grafů Cesty, cykly, souvislost grafů Barvení mapy
Cílem seminární práce je aplikace teoretických znalostí z přednášky na konkrétní úlohy. Podstatu algoritmu totiž
Zadání příkladů pro semestrální práci 9 Cílem seminární práce je aplikace teoretických znalostí z přednášky na konkrétní úlohy. Podstatu algoritmu totiž člověk nejlépe pochopí až pokud jej sám implementuje,
Úvod do teorie grafů
Úvod do teorie grafů Neorientovaný graf G = (V,E,I) V množina uzlů (vrcholů) - vertices E množina hran - edges I incidence incidence je zobrazení, buď: funkce: I: E V x V relace: I E V V incidence přiřadí
Operační výzkum. Síťová analýza. Metoda CPM.
Operační výzkum Síťová analýza. Metoda CPM. Operační program Vzdělávání pro konkurenceschopnost Název projektu: Inovace magisterského studijního programu Fakulty ekonomiky a managementu Registrační číslo
3. Grafy a matice. Definice 3.2. Čtvercová matice A se nazývá rozložitelná, lze-li ji napsat ve tvaru A =
3 Grafy a matice Definice 32 Čtvercová matice A se nazývá rozložitelná, lze-li ji napsat ve tvaru A = A 11 A 12 0 A 22 kde A 11 a A 22 jsou čtvercové matice řádu alespoň 1 a 0 je nulová matice, anebo lze-li
Drsná matematika III 10. demonstrovaná cvičení Kostry grafů
Drsná matematika III 10. demonstrovaná cvičení Kostry grafů Martin Panák Masarykova univerzita Fakulta informatiky 21.11. 2006 1 Domácí úlohy z minulého týdne Příklad 1 Příklad 2 Příklad 3 2 Borůvkův algoritmus
Dynamické programování
Dynamické programování prof. Ing. Pavel Tvrdík CSc. Katedra počítačových systémů Fakulta informačních technologií České vysoké učení technické v Praze c Pavel Tvrdík, 2010 Efektivní algoritmy (BI-EFA)
Metody síťové analýzy
Metody síťové analýzy Řeší problematiku složitých systémů, zejména pak vazby mezi jejich jednotlivými prvky. Vychází z teorie grafů. Základní metody síťové analýzy: CPM (Critical Path Method) deterministický
Algoritmizace prostorových úloh
INOVACE BAKALÁŘSKÝCH A MAGISTERSKÝCH STUDIJNÍCH OBORŮ NA HORNICKO-GEOLOGICKÉ FAKULTĚ VYSOKÉ ŠKOLY BÁŇSKÉ - TECHNICKÉ UNIVERZITY OSTRAVA Algoritmizace prostorových úloh Grafové úlohy Daniela Szturcová Tento
10. Soustavy lineárních rovnic, determinanty, Cramerovo pravidlo
0. Soustavy lineárních rovnic, determinanty, Cramerovo pravidlo (PEF PaA) Petr Gurka aktualizováno 9. prosince 202 Obsah Základní pojmy. Motivace.................................2 Aritmetický vektorový
4EK311 Operační výzkum. 5. Teorie grafů
4EK311 Operační výzkum 5. Teorie grafů 5. Teorie grafů definice grafu Graf G = uspořádaná dvojice (V, E), kde V označuje množinu n uzlů u 1, u 2,, u n (u i, i = 1, 2,, n) a E označuje množinu hran h ij,
TEORIE GRAFŮ TEORIE GRAFŮ 1
TEORIE GRAFŮ 1 TEORIE GRAFŮ Přednášející: RNDr. Jiří Taufer, CSc. Fakulta dopravní ČVUT v Praze, letní semestr 1998/99 Zpracoval: Radim Perkner, tamtéž, v květnu 1999 ZÁKLADNÍ POJMY Říkáme, že je dán prostý
CLARKEOVA-WRIGHTOVA METODA ŘEŠENÍ ÚLOHY VRP
CLARKEOVA-WRIGHTOVA METODA ŘEŠENÍ ÚLOHY VRP 1. Definice úlohy Úloha VRP (Vehicle Routing Problem problém okružních jízd) je definována na obecné dopravní síti S = (V,H), kde V je množina uzlů sítě a H
Základní pojmy teorie grafů [Graph theory]
Část I Základní pojmy teorie grafů [Graph theory] V matematice grafem obvykle rozumíme grafické znázornění funkční závislosti. Pro tento předmět je však podstatnější pohled jiný. V teorii grafů rozumíme
Základy informatiky. 07 Teorie grafů. Kačmařík/Szturcová/Děrgel/Rapant
Základy informatiky 07 Teorie grafů Kačmařík/Szturcová/Děrgel/Rapant Obsah přednášky barvení mapy teorie grafů definice uzly a hrany typy grafů cesty, cykly, souvislost grafů Barvení mapy Kolik barev je
Vzdálenost uzlů v neorientovaném grafu
Vzdálenosti a grafy Vzdálenost uzlů v neorientovaném grafu Je dán neorientovaný neohodnocený graf G = (V,E,I) vzdálenost uzlů u a v v neorientovaném souvislém grafu G je délka nejkratší cesty spojující
ALGORITMY A DATOVÉ STRUKTURY
Název tématického celku: Cíl: ALGORITMY A DATOVÉ STRUKTURY Metodický list č. 1 Časová složitost algoritmů Základním cílem tohoto tematického celku je vysvětlení potřebných pojmů a definic nutných k popisu
VLASTNOSTI GRAFŮ. Doc. RNDr. Josef Kolář, CSc. Katedra teoretické informatiky, FIT České vysoké učení technické v Praze. BI-GRA, LS 2010/2011, Lekce 5
VLASTNOSTI GRAFŮ Doc. RNDr. Josef Kolář, CSc. Katedra teoretické informatiky, FIT České vysoké učení technické v Praze BI-GRA, LS 2010/2011, Lekce 5 Evropský sociální fond Praha & EU: Investujeme do vaší
Algoritmy výpočetní geometrie
Algoritmy výpočetní geometrie prof. Ing. Pavel Tvrdík CSc. Katedra počítačových systémů Fakulta informačních technologií České vysoké učení technické v Praze c Pavel Tvrdík, 2010 Efektivní algoritmy (BI-EFA)
CVIČNÝ TEST 41. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 7 III. Klíč 15 IV. Záznamový list 17
CVIČNÝ TEST 41 Mgr. Tomáš Kotler OBSAH I. Cvičný test 2 II. Autorské řešení 7 III. Klíč 15 IV. Záznamový list 17 I. CVIČNÝ TEST VÝCHOZÍ TEXT A OBRÁZEK K ÚLOZE 1 Je dán magický čtverec, pro nějž platí,
Komplexní čísla, Kombinatorika, pravděpodobnost a statistika, Posloupnosti a řady
Předmět: Náplň: Třída: Počet hodin: Pomůcky: Matematika Komplexní čísla, Kombinatorika, pravděpodobnost a statistika, Posloupnosti a řady 4. ročník a oktáva 3 hodiny týdně PC a dataprojektor, učebnice
Zadání a řešení testu z matematiky a zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia od podzimu 2015
Zadání a řešení testu z matematiky a zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia od podzimu 05 Zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia
Obsah prezentace. Základní pojmy v teorii o grafech Úlohy a prohledávání grafů Hledání nejkratších cest
Obsah prezentace Základní pojmy v teorii o grafech Úlohy a prohledávání grafů Hledání nejkratších cest 1 Základní pojmy Vrchol grafu: {množina V} Je to styčná vazba v grafu, nazývá se též uzlem, prvkem
DUM 03 téma: Tvary - objekty
DUM 03 téma: Tvary - objekty ze sady: 1 tematický okruh sady: Vektorová grafika ze šablony: 09 Počítačová grafika určeno pro: 2. ročník vzdělávací obor: vzdělávací oblast: číslo projektu: anotace: metodika:
a počtem sloupců druhé matice. Spočítejme součin A.B. Označme matici A.B = M, pro její prvky platí:
Řešené příklady z lineární algebry - část 1 Typové příklady s řešením Příklady jsou určeny především k zopakování látky před zkouškou, jsou proto řešeny se znalostmi učiva celého semestru. Tento fakt se
5 Orientované grafy, Toky v sítích
Petr Hliněný, FI MU Brno, 205 / 9 FI: IB000: Toky v sítích 5 Orientované grafy, Toky v sítích Nyní se budeme zabývat typem sít ových úloh, ve kterých není podstatná délka hran a spojení, nýbž jejich propustnost
Grafy. RNDr. Petra Surynková, Ph.D. Univerzita Karlova v Praze Matematicko-fyzikální fakulta.
6 RNDr., Ph.D. Katedra didaktiky matematiky Univerzita Karlova v Praze Matematicko-fyzikální fakulta petra.surynkova@mff.cuni.cz http://surynkova.info množina vrcholů a množina hran hrana vždy spojuje
Faculty of Nuclear Sciences and Physical Engineering Czech Technical University in Prague
1 / 23 Faculty of Nuclear Sciences and Physical Engineering Czech Technical University in Prague 2 / 23 biologové často potřebují najít často se opakující sekvence DNA tyto sekvence bývají relativně krátké,
TGH02 - teorie grafů, základní pojmy
TGH02 - teorie grafů, základní pojmy Jan Březina Technical University of Liberec 28. února 2017 Metainformace materiály: jan.brezina.matfyz.cz/vyuka/tgh (./materialy/crls8.pdf - Introduction to algorithms)
Cvičení z Lineární algebry 1
Cvičení z Lineární algebry Michael Krbek podzim 2003 2392003 Hodina Jsou dána komplexní čísla z = +2 i a w = 2 i Vyjádřete c algebraickém tvaru (z + w) 3,, (zw), z w 2 Řešte v komplexním oboru rovnice
BPC2E_C09 Model komunikačního systému v Matlabu
BPCE_C9 Model komunikačního systému v Matlabu Cílem cvičení je vyzkoušet si sestavit skripty v Matlabu pro model jednoduchého komunikačního systému pro přenos obrázků. Úloha A. Sestavte model komunikačního
Algoritmizace Dynamické programování. Jiří Vyskočil, Marko Genyg-Berezovskyj 2010
Dynamické programování Jiří Vyskočil, Marko Genyg-Berezovskyj 2010 Rozděl a panuj (divide-and-conquer) Rozděl (Divide): Rozděl problém na několik podproblémů tak, aby tyto podproblémy odpovídaly původnímu
Cvičení MI-PRC I. Šimeček
Cvičení MI-PRC I. Šimeček xsimecek@fit.cvut.cz Katedra počítačových systémů FIT České vysoké učení technické v Praze Ivan Šimeček, 2011 MI-PRC, LS2010/11, Cv.1-6 Příprava studijního programu Informatika
II. Úlohy na vložené cykly a podprogramy
II. Úlohy na vložené cykly a podprogramy Společné zadání pro příklady 1. - 10. začíná jednou ze dvou možností popisu vstupních dat. Je dána posloupnost (neboli řada) N reálných (resp. celočíselných) hodnot.
Metody lineární optimalizace Simplexová metoda. Distribuční úlohy
Metody lineární optimalizace Simplexová metoda Dvoufázová M-úloha Duální úloha jednofázová Post-optimalizační analýza Celočíselné řešení Metoda větví a mezí Distribuční úlohy 1 OÚLP = obecná úloha lineárního
ORIENTOVANÉ GRAFY, REPREZENTACE GRAFŮ
ORIENTOVANÉ GRAFY, REPREZENTACE GRAFŮ Doc. RNDr. Josef Kolář, CSc. Katedra teoretické informatiky, FIT České vysoké učení technické v Praze BI-GRA, LS 2/2, Lekce Evropský sociální fond Praha & EU: Investujeme
63. ročník Matematické olympiády 2013/2014
63. ročník Matematické olympiády 2013/2014 Úlohy ústředního kola kategorie P 2. soutěžní den Na řešení úloh máte 4,5 hodiny čistého času. Při soutěži je zakázáno používat jakékoliv pomůcky kromě psacích
Voronoiův diagram. RNDr. Petra Surynková, Ph.D. Univerzita Karlova v Praze Matematicko-fyzikální fakulta
12 RNDr., Ph.D. Katedra didaktiky matematiky Univerzita Karlova v Praze Matematicko-fyzikální fakulta petra.surynkova@mff.cuni.cz http://surynkova.info Definice V( P) nad množinou bodů P { p v rovině 1,
3. Optimalizace pomocí nástroje Řešitel
3. Optimalizace pomocí nástroje Řešitel Rovnováha mechanické soustavy Uvažujme dvě různé nehmotné lineární pružiny P 1 a P 2 připevněné na pevné horizontální tyči splývající s osou x podle obrázku: (0,0)
Dynamické programování
ALG 11 Dynamické programování Úloha batohu neomezená Úloha batohu /1 Úloha batohu / Knapsack problem Máme N předmětů, každý s váhou Vi a cenou Ci (i = 1, 2,..., N) a batoh s kapacitou váhy K. Máme naložit
Grafy. doc. Mgr. Jiří Dvorský, Ph.D. Katedra informatiky Fakulta elektrotechniky a informatiky VŠB TU Ostrava. Prezentace ke dni 13.
Grafy doc. Mgr. Jiří Dvorský, Ph.D. Katedra informatiky Fakulta elektrotechniky a informatiky VŠB TU Ostrava Prezentace ke dni 13. března 2017 Jiří Dvorský (VŠB TUO) Grafy 104 / 309 Osnova přednášky Grafy
Cykly a pole 103. 104. 105. 106. 107. 108. 109. 110. 111. 112. 113. 114. 115. 116.
Cykly a pole Tato část sbírky je tvořena dalšími úlohami na práci s cykly. Na rozdíl od předchozího oddílu se zde již v řešeních úloh objevuje více cyklů, ať už prováděných po sobě nebo vnořených do sebe.
IB112 Základy matematiky
IB112 Základy matematiky Řešení soustavy lineárních rovnic, matice, vektory Jan Strejček IB112 Základy matematiky: Řešení soustavy lineárních rovnic, matice, vektory 2/53 Obsah Soustava lineárních rovnic
Zdůvodněte, proč funkce n lg(n) roste alespoň stejně rychle nebo rychleji než než funkce lg(n!). Symbolem lg značíme logaritmus o základu 2.
1 3 4 5 6 7 8 9 10 11 1 13 14 15 16 17 18 19 0 1 3 4 5 6 7 8 9 30 31 3 Zdůvodněte, proč funkce f(n) = n log(n) 1 n 1/ roste rychleji než funkce g(n) = n. Zdůvodněte, proč funkce f(n) = n 3/ log(n) roste
CVIČNÝ TEST 35. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17
CVIČNÝ TEST 35 Mgr. Tomáš Kotler OBSAH I. Cvičný test II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17 I. CVIČNÝ TEST 1 Vypočtěte [( 3 3 ) ( 1 4 5 3 0,5 ) ] : 1 6 1. 1 bod VÝCHOZÍ TEXT K ÚLOZE
Zobrazte si svazy a uspořádané množiny! Jan Outrata
LatVis Zobrazte si svazy a uspořádané množiny! Jan Outrata Motivace potřeba visualizovat matematické (algebraické) struktury rychle, přehledně a automaticky počítačovými prostředky ruční kreslení je zdlouhavé
TGH02 - teorie grafů, základní pojmy
TGH02 - teorie grafů, základní pojmy Jan Březina Technical University of Liberec 5. března 2013 Počátek teorie grafů Leonard Euler (1707 1783) 1735 pobyt v Královci (Prusko), dnes Kaliningrad (Rusko) Úloha:
9. přednáška z předmětu GIS1 Digitální model reliéfu a odvozené povrchy. Vyučující: Ing. Jan Pacina, Ph.D.
9. přednáška z předmětu GIS1 Digitální model reliéfu a odvozené povrchy Vyučující: Ing. Jan Pacina, Ph.D. e-mail: jan.pacina@ujep.cz Lehký úvod Digitální modely terénu jsou dnes v geoinformačních systémech
5. Lokální, vázané a globální extrémy
5 Lokální, vázané a globální extrémy Studijní text Lokální extrémy 5 Lokální, vázané a globální extrémy Definice 51 Řekneme, že f : R n R má v bodě a Df: 1 lokální maximum, když Ka, δ Df tak, že x Ka,
Detekce kartografického zobrazení z množiny
Detekce kartografického zobrazení z množiny bodů Tomáš Bayer Katedra aplikované geoinformatiky Albertov 6, Praha 2 bayertom@natur.cuni.cz Abstrakt. Detekce kartografického zobrazení z množiny bodů o známých
Optimalizace. Obsah přednášky. DÚ LP - Okružní problém. Lineární optimalizace. DÚ LP - Okružní problém. DÚ LP - Okružní problém
Obsah přednášky Mgr. Květuše Sýkorová Optimalizace Lineární programování Distribuční úlohy Okružní problém KI Př UJEP Ústí nad Labem Nederivační metody Metody 1D optimalizace Derivační metody Optimalizace
2. RBF neuronové sítě
2. RBF neuronové sítě Kapitola pojednává o neuronových sítích typu RBF. V kapitole je popsána základní struktura tohoto typu neuronové sítě. Poté následuje definice a charakteristika jednotlivých radiálně
Grafové algoritmy. Programovací techniky
Grafové algoritmy Programovací techniky Grafy Úvod - Terminologie Graf je datová struktura, skládá se z množiny vrcholů V a množiny hran mezi vrcholy E Počet vrcholů a hran musí být konečný a nesmí být
Zadání a řešení testu z matematiky a zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia od podzimu 2014
Zadání a řešení testu z matematiky a zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia od podzimu 204 Zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia
Obsah. Funkce grafu Zdrojová data pro graf Typ grafu Formátování prvků grafu Doporučení pro tvorbu grafů Zdroje
Grafy v MS Excel Obsah Funkce grafu Zdrojová data pro graf Typ grafu Formátování prvků grafu Doporučení pro tvorbu grafů Zdroje Funkce grafu Je nejčastěji vizualizací při zpracování dat z různých statistik
Grafové algoritmy. Programovací techniky
Grafové algoritmy Programovací techniky Grafy Úvod - Terminologie Graf je datová struktura, skládá se z množiny vrcholů V a množiny hran mezi vrcholy E Počet vrcholů a hran musí být konečný a nesmí být
Výhody a nevýhody jednotlivých reprezentací jsou shrnuty na konci kapitoly.
Kapitola Reprezentace grafu V kapitole?? jsme se dozvěděli, co to jsou grafy a k čemu jsou dobré. rzo budeme chtít napsat nějaký program, který s grafy pracuje. le jak si takový graf uložit do počítače?
Úvod do lineární algebry
Úvod do lineární algebry 1 Aritmetické vektory Definice 11 Mějme n N a utvořme kartézský součin R n R R R Každou uspořádanou n tici x 1 x 2 x, x n budeme nazývat n rozměrným aritmetickým vektorem Prvky
Zadání a řešení testu z matematiky a zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia od podzimu 2016
Zadání a řešení testu z matematiky a zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia od podzimu 2016 Zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia
Zadání soutěžních úloh
Zadání soutěžních úloh Kategorie žáci Soutěž v programování 24. ročník Krajské kolo 2009/2010 15. až 17. dubna 2010 Úlohy můžete řešit v libovolném pořadí a samozřejmě je nemusíte vyřešit všechny. Za každou
Systematická tvorba jízdního řádu 2. cvičení
Projektování dopravní obslužnosti Systematická tvorba jízdního řádu 2. cvičení Ing. Zdeněk Michl Ústav logistiky a managementu dopravy ČVUT v Praze Fakulta dopravní Rekapitulace zadání Je dána následující
GIS Geografické informační systémy
GIS Geografické informační systémy Obsah přednášky Prostorové vektorové modely Špagetový model Topologický model Převody geometrií Vektorový model Reprezentuje reálný svět po jednotlivých složkách popisu
HEURISTICKÉ ALGORITMY PRO ŘEŠENÍ ÚLOH OBCHODNÍHO CESTUJÍCÍHO
HEURISTICKÉ ALGORITMY PRO ŘEŠENÍ ÚLOH OBCHODNÍHO CESTUJÍCÍHO Heuristické algoritmy jsou speciálními algoritmy, které byly vyvinuty pro obtížné úlohy, jejichž řešení je obtížné získat v rozumném čase. Mezi
Kombinatorika, pravděpodobnost a statistika, Posloupnosti a řady
Předmět: Náplň: Třída: Počet hodin: Pomůcky: Matematika Kombinatorika, pravděpodobnost a statistika, Posloupnosti a řady 4. ročník 3 hodiny týdně PC a dataprojektor Kombinatorika Řeší jednoduché úlohy
TGH02 - teorie grafů, základní pojmy
TGH02 - teorie grafů, základní pojmy Jan Březina Technical University of Liberec 31. března 2015 Počátek teorie grafů Leonard Euler (1707 1783) 1735 pobyt v Královci (Prusko), dnes Kaliningrad (Rusko)
Přiřazovací problém. Přednáška č. 7
Přiřazovací problém Přednáška č. 7 Přiřazovací problém je jednou podtřídou logistických úloh. Typickým problémem může být nejkratší převoz materiálu od dodavatelů ke spotřebitelům. spotřebitelé a i dodavatelé
Zadání a řešení testu z matematiky a zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia od jara 2016
Zadání a řešení testu z matematiky a zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia od jara 206 Zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia
Genetické algoritmy. Informační a komunikační technologie ve zdravotnictví
Genetické algoritmy Informační a komunikační technologie ve zdravotnictví Přehled přednášky Úvod Historie Základní pojmy Principy genetických algoritmů Možnosti použití Související metody AI Příklad problém
Matematická morfologie
/ 35 Matematická morfologie Karel Horák Rozvrh přednášky:. Úvod. 2. Dilatace. 3. Eroze. 4. Uzavření. 5. Otevření. 6. Skelet. 7. Tref či miň. 8. Ztenčování. 9. Zesilování..Golayova abeceda. 2 / 35 Matematická
Kolik existuje různých stromů na pevně dané n-prvkové množině vrcholů?
Kapitola 9 Matice a počet koster Graf (orientovaný i neorientovaný) lze popsat maticí, a to hned několika různými způsoby. Tématem této kapitoly jsou incidenční matice orientovaných grafů a souvislosti
07 Základní pojmy teorie grafů
07 Základní pojmy teorie grafů (definice grafu, vlastnosti grafu, charakteristiky uzlů, ohodnocené grafy) Definice grafu množina objektů, mezi kterými existují určité vazby spojující tyto objekty. Uspořádaná
3. Třídy P a NP. Model výpočtu: Turingův stroj Rozhodovací problémy: třídy P a NP Optimalizační problémy: třídy PO a NPO MI-PAA
Jan Schmidt 2011 Katedra číslicového návrhu Fakulta informačních technologií České vysoké učení technické v Praze Zimní semestr 2011/12 MI-PAA EVROPSKÝ SOCIÁLNÍ FOND PRAHA & EU: INVESTUJENE DO VAŠÍ BUDOUCNOSTI
0.1 Úvod do lineární algebry
Matematika KMI/PMATE 1 01 Úvod do lineární algebry 011 Lineární rovnice o 2 neznámých Definice 011 Lineární rovnice o dvou neznámých x, y je rovnice, která může být vyjádřena ve tvaru ax + by = c, kde
Vyhodnocení 2D rychlostního pole metodou PIV programem Matlab (zpracoval Jan Kolínský, dle programu ing. Jana Novotného)
Vyhodnocení 2D rychlostního pole metodou PIV programem Matlab (zpracoval Jan Kolínský, dle programu ing. Jana Novotného) 1 Obecný popis metody Particle Image Velocimetry, nebo-li zkráceně PIV, je měřící
6. ROČNÍK ŠKOLNÍ SOUTĚŽE V PROGRAMOVÁNÍ 2013
6. ROČNÍK ŠKOLNÍ SOUTĚŽE V PROGRAMOVÁNÍ 2013 Pořadí úloh si určujete sami, u každé úlohy je uvedeno její bodové hodnocení. Můžete řešit různé úlohy v různých programovacích jazycích. Každou hotovou úlohu
Příklady z Kombinatoriky a grafů I - LS 2015/2016
Příklady z Kombinatoriky a grafů I - LS 2015/2016 zadáno 1.-4. 3. 2016, odevzdat do 8.-11. 3. 2016 1. Zjistěte, které z následujících funkcí definovaných pro n N jsou v relaci Θ(), a vzniklé třídy co nejlépe
fakulty MENDELU v Brně (LDF) s ohledem na disciplíny společného základu http://akademie.ldf.mendelu.cz/cz (reg. č. CZ.1.07/2.2.00/28.
Základy lineárního programování Vyšší matematika, Inženýrská matematika LDF MENDELU Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem
CVIČNÝ TEST 15. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17
CVIČNÝ TEST 15 Mgr. Tomáš Kotler OBSAH I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17 I. CVIČNÝ TEST VÝCHOZÍ TEXT K ÚLOZE 1 Je dána čtvercová mřížka, v níž každý čtverec má délku
CVIČNÝ TEST 36. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17
CVIČNÝ TEST 36 Mgr. Tomáš Kotler OBSAH I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17 I. CVIČNÝ TEST 1 Určete iracionální číslo, které je vyjádřeno číselným výrazem (6 2 π 4
OPTIMALIZAČNÍ ÚLOHY. Modelový příklad problém obchodního cestujícího:
OPTIMALIZAČNÍ ÚLOHY Problém optimalizace v různých oblastech: - minimalizace času, materiálu, - maximalizace výkonu, zisku, - optimalizace umístění komponent, propojení,... Modelový příklad problém obchodního
13 Barvy a úpravy rastrového
13 Barvy a úpravy rastrového Studijní cíl Tento blok je věnován základním metodám pro úpravu rastrového obrazu, jako je např. otočení, horizontální a vertikální překlopení. Dále budo vysvětleny různé metody
SEZNAM VZDĚLÁVACÍCH MATERIÁLŮ - ANOTACE
SEZNAM VZDĚLÁVACÍCH MATERIÁLŮ - ANOTACE Číslo projektu Číslo a název šablony klíčové aktivity Tematická oblast Autor CZ.1.07/1.5.00/34.0797 III/2 INOVACE A ZKVALITNĚNÍ VÝUKY PROSTŘEDNICTVÍM ICT 2M3 Slovní
LDF MENDELU. Simona Fišnarová (MENDELU) Základy lineárního programování VMAT, IMT 1 / 25
Základy lineárního programování Vyšší matematika, Inženýrská matematika LDF MENDELU Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem
MULTIKRITERIÁLNÍ ROZHODOVÁNÍ KOMPLEXNÍ HODNOCENÍ ALTERNATIV
PŘEDNÁŠKA 6 MULTIKRITERIÁLNÍ ROZHODOVÁNÍ KOMPLEXNÍ HODNOCENÍ ALTERNATIV Multikriteriální rozhodování Možnosti řešení podle toho, jaká je množina alternativ pokud množina alternativ X je zadaná implicitně
Fergusnova kubika, která je definována pomocí bodu P1, vektoru P1P2, bodu P3 a vektoru P3P4
Která barva nepatří do základních barev prostoru RGB? a. Černá b. Zelená c. Modrá d. Červená Úloha 2 Jakým minimálním počtem bodů je jednoznačně určena interpolační křivka 5. řádu? a. 6 b. 3 c. 5 d. 7
Základy algoritmizace. Pattern matching
Základy algoritmizace Pattern matching 1 Pattern matching Úloha nalézt v nějakém textu výskyty zadaných textových vzorků patří v počítačové praxi k nejfrekventovanějším. Algoritmy, které ji řeší se používají
VKLÁDÁNÍ OBJEKTŮ - obrázek
VKLÁDÁNÍ OBJEKTŮ - obrázek Autor: Mgr. Dana Kaprálová Datum (období) tvorby: srpen 2013 Ročník: šestý Vzdělávací oblast: Informatika a výpočetní technika 1 Anotace: Žák se orientuje v prostředí aplikace
Matice přechodu. Pozorování 2. Základní úkol: Určete matici přechodu od báze M k bázi N. Každou bázi napíšeme do sloupců matice, např.
Matice přechodu Základní úkol: Určete matici přechodu od báze M k bázi N. Každou bázi napíšeme do sloupců matice, např. u příkladu 7 (v ) dostaneme: Nyní bychom mohli postupovat jako u matice homomorfismu
Algoritmy pro shlukování prostorových dat
Algoritmy pro shlukování prostorových dat Marta Žambochová Katedra matematiky a informatiky Fakulta sociálně ekonomická Univerzita J. E. Purkyně v Ústí nad Labem ROBUST 21. 26. leden 2018 Rybník - Hostouň
Teorie grafů. zadání úloh. letní semestr 2008/2009. Poslední aktualizace: 19. května 2009. First Prev Next Last Go Back Full Screen Close Quit
Teorie grafů zadání úloh letní semestr 2008/2009 Poslední aktualizace: 19. května 2009 Obsah Úloha číslo 1 5 Úloha číslo 2 6 Úloha číslo 3 7 Úloha číslo 4 8 Úloha číslo 5 9 Úloha číslo 6 10 Úloha číslo
Operační výzkum. Vícekriteriální hodnocení variant. Grafická metoda. Metoda váženého součtu.
Operační výzkum Vícekriteriální hodnocení variant. Grafická metoda. Metoda váženého součtu. Operační program Vzdělávání pro konkurenceschopnost Název projektu: Inovace magisterského studijního programu
Lineární algebra Operace s vektory a maticemi
Lineární algebra Operace s vektory a maticemi Robert Mařík 26. září 2008 Obsah Operace s řádkovými vektory..................... 3 Operace se sloupcovými vektory................... 12 Matice..................................
Metody analýzy dat II
Metody analýzy dat II Detekce komunit MADII 2018/19 1 Zachary s club, Collaboration network in Santa Fe Institute, Lusseau s network of Bottlenose Dolphins 2 Web Pages, Overlaping communities of word associations
Vektorové podprostory, lineární nezávislost, báze, dimenze a souřadnice
Vektorové podprostory, lineární nezávislost, báze, dimenze a souřadnice Vektorové podprostory K množina reálných nebo komplexních čísel, U vektorový prostor nad K. Lineární kombinace vektorů u 1, u 2,...,u
Text úlohy. Která barva nepatří do základních barev prostoru RGB? Vyberte jednu z nabízených možností: a. Černá b. Červená c. Modrá d.
Úloha 1 Která barva nepatří do základních barev prostoru RGB? a. Černá b. Červená c. Modrá d. Zelená Úloha 2 V rovině je dán NEKONVEXNÍ n-úhelník a bod A. Pokud paprsek (polopřímka) vedený z tohoto bodu
Korespondenční Seminář z Programování
Korespondenční Seminář z Programování SOUTĚŽ KASIOPEA 27. ročník Zadání úloh Březen 2015 V tomto textu naleznete zadání úloh online soutěže Kasiopea 2015, která probíhá o víkendu 22. 23. března. Veškeré
Dynamické programování UIN009 Efektivní algoritmy 1
Dynamické programování. 10.3.2005 UIN009 Efektivní algoritmy 1 Srovnání metody rozděl a panuj a dynamického programování Rozděl a panuj: top-down Dynamické programování: bottom-up Rozděl a panuj: překrývání
GIS Geografické informační systémy
GIS Geografické informační systémy Obsah přednášky Prostorové vektorové modely Špagetový model Topologický model Vektorový model Reprezentuje reálný svět po jednotlivých složkách popisu geoprvků. Geometrická
Popisná statistika. Komentované řešení pomocí MS Excel
Popisná statistika Komentované řešení pomocí MS Excel Vstupní data Máme k dispozici data o počtech bodů z 1. a 2. zápočtového testu z Matematiky I v zimním semestru 2015/2016 a to za všech 762 studentů,
7. Rozdělení pravděpodobnosti ve statistice
7. Rozdělení pravděpodobnosti ve statistice Statistika nuda je, má však cenné údaje, neklesejte na mysli, ona nám to vyčíslí Jednou z úloh statistiky je odhad (výpočet) hodnot statistického znaku x i,