Diplomová práce. Mendelova univerzita v Brně Lesnická a dřevařská fakulta. Ústav lesnické a dřevařské ekonomiky a politiky

Rozměr: px
Začít zobrazení ze stránky:

Download "Diplomová práce. Mendelova univerzita v Brně Lesnická a dřevařská fakulta. Ústav lesnické a dřevařské ekonomiky a politiky"

Transkript

1 Mendelova univerzita v Brně Lesnická a dřevařská fakulta Ústav lesnické a dřevařské ekonomiky a politiky Diplomová práce Ekonomické aspekty alternativních možností vytápění dřevostavby 2010/2011 Bc. Martin Havelka

2 Prohlášení: Prohlašuji, že jsem diplomovou práci na téma: Ekonomické aspekty alternativních možností vytápění dřevostavby zpracoval sám a uvedl jsem všechny použité prameny. Souhlasím, aby moje diplomová práce byla zveřejněna v souladu s 47b Zákona č. 111/1998 Sb., o vysokých školách a uložena v knihovně Mendelovy univerzity v Brně, zpřístupněna ke studijním účelům ve shodě s vyhláškou rektora MENDELU o archivaci elektronické podoby závěrečných prací. Autor kvalifikační práce se dále zavazuje, že před sepsáním licenční smlouvy o využití autorských práv díla s jinou osobou (subjektem) si vyžádá písemné stanovisko univerzity o tom, že předmětná licenční smlouva není v rozporu s oprávněnými zájmy univerzity a zavazuje se uhradit případný příspěvek na úhradu nákladů spojených se vznikem díla dle řádné kalkulace. V Brně, dne:... podpis studenta: Bc. Martin Havelka..

3 Poděkování: Děkuji Ing. Josefu Lenochovi Ph.D., Ing. Miroslavu Divokovi, Mgr. Ladislavu Sekerkovi, Ing. Karlu Horáčkovi za jejich odbornou pomoc, poskytované rady a informace při zpracování této Diplomové práce.

4 Abstrakt Jméno a příjmení: Bc. Martin Havelka Název diplomové práce: Ekonomické aspekty alternativních možností vytápění dřevostavby Diplomová práce se zabývá ekonomickými aspekty alternativních možností vytápění dřevostavby. Práce popisuje různá vytápění rodinného domu dřevostavby a zjišťuje nejefektivnější a finančně nejúspornější variantu. V práci jsem se snažil analyzovat několik variant vytápění dřevostavby tak, aby bylo vytápění efektivní co se týká stále dostupného teplonosného media, i ekonomicky nejvýhodnější pro konečného spotřebitele. Klíčová slova: analýza, palivo, TV-teplá voda, TUV-teplá užitková voda, tepelná energie Abstract Name and surname: Bc. Martin Havelka Theme of Thesis work: Economic aspects of alternative heating options wooden houses. This thesis deals with economic aspects of alternative heating options of houses with wooden construction. The paper describes various types of heating a wooden houses and identifies cost effective and most economical options. In my work I tried to analyze several variants of heating wood buildings to find out an effective heating system in terms of availibility and economically advantageous for the end consumer. Key words: analysis, fuel, TV-hot water, TUV-hot water, thermal energy

5 OBSAH : 1 Úvod str. 1 2 Cíl a zaměření práce str. 3 3 Literární přehled str. 6 4 Materiál str Parametry dřevostavby str Popis vybraných variant domu str Druh vytápění str.10 5 Metodika str Postup str Metoda výpočtu spotřeby tepelné energie na vytápění dřevostavby str Porovnání prostupu tepla, tepelných odporů a změn ploch str.18 6 Řešení práce str Dřevostavba hit - Varianta A str Dřevostavba hit - Varianta B str Výpočet spotřeby tepelné energie dřevostavby Var. A a Var. B str Výroba tepelné energie CZT str Výroba tepelné energie Vlastní str.28 7 Výsledky str Náklady na životnost technologie a aktuálních srovnání cen tepelné energie str.29 8 Realizační výstup str.37 9 Diskuse str Závěr str Použitá literatura str Seznam grafů, obrázků a tabulek str Přílohy str.46

6 1 Úvod V této diplomové práci se budu zabývat problematikou, jak nejekonomičtěji vytápět dřevostavby. V nízkoenergetickém domě lze topit mnoha způsoby. Vhodný zdroj tepla volíme obvykle na základě tepelné ztráty budovy stanovené výpočtem. Výběr způsobu vytápění ovlivňují zejména místní podmínky a osobní preference investora, zatímco v minulosti to byla především dostupnost energetických médií. Bereme-li v úvahu ekologické důvody, je vhodné dát přednost obnovitelným zdrojům energie. Je také možná koncepce záměrného poddimenzování zdroje a pro období nejnižších teplot (těchto dnů není v roce mnoho) volit doplňkový zdroj. Otopné období v nízkoenergetických domech se zkracuje na dva až čtyři měsíce, z toho v některých dnech se vůbec netopí. K tomu stačí například správně navržená (rozměrem a parametry) okna na jižní straně domu, akumulační schopnost podlah nebo stěn, která se o topení postarají, navíc bezplatně. Předpokladem je samozřejmě výborná tepelná izolace a vysoká vzduchotěsnost domu. U malých objektů je často tepelná ztráta již tak malá, že najít vhodný zdroj tepla může být problém. Předimenzovaný, nebo málo využitý kotel bude v ekonomickém vyhodnocení asi velmi málo rentabilní. Především spalovací zařízení při provozu na nižší výkon dosahují menší účinnosti a navíc obvykle produkují více emisí (pevná paliva). Zdroje tepla Při volbě způsobu vytápění rozhoduje dostupnost zdrojů tepla, předpokládaná velikost a tepelná ztráta objektu, přijatelná výše investice a doba její návratnosti a osobní preference spolu s požadavky na komfort. Můžeme použít jeden zdroj tepla (riziko závislosti), nebo kombinovat dva a více způsobů vytápění. Zdrojem tepla může být: elektřina tepelná čerpadla plyn (propan butan, skládkový plyn, kalový plyn) biomasa - dendromasa (dřevo, dřevní štěpka, pelety) a fytomasa (sláma, traviny) fosilní paliva (pevná, plynná i kapalná) solární energie jiné (např. teplo získané rekuperací) 1

7 Systémy vytápění Pro nízkoenergetický dům se jako nejvhodnější jeví nízkoteplotní systémy vytápění, tedy takové, u nichž je teplota nosného média nízká, obvykle do 65 C. Nízkoteplotní systémy jsou nejčastěji teplovodní (radiátory, podlahové či stěnové vytápění) a teplovzdušné otevřené, nebo teplovzdušné uzavřené systémy, u nichž je nositelem tepla vzduch. Regulace tepelné soustavy Důležitým požadavkem návrhu systému vytápění je možnost jeho pružné regulace. U domů s malou tepelnou ztrátou již nabývá na významu vliv tepelných zisků od osob a jejich činnosti (vaření, elektrospotřebiče) a vliv pasivního využití sluneční energie. Nebude-li možné systém pružně regulovat, tj. bude-li existovat významná tepelná setrvačnost vytápění, může dojít k přehřátí interiéru. Toto bude samozřejmě tím větší, čím menší schopnost akumulace tepla mají vnitřní povrchy. Z tohoto důvodu se jeví mírně problematické například podlahové vytápění, tolik oblíbené v běžném způsobu výstavby. Podle typu konstrukce může tato soustava být nízkoteplotní s tepelnou setrvačnost 2-8 hodin. S rostoucí teplotou v místnosti sice klesá výkon podlahového systému (tzv. samoregulační efekt), ale náhlé zisky od slunce nebo většího množství osob mohou být natolik významné, že teplota přestoupí únosnou mez. Vhodnou náhradou při zachování veškerých výhod podlahového vytápění může být například vytápění stěnové. Podobný problém může nastat také s jinými zdroji, jako jsou například kachlová kamna. Akumulace tepla v konstrukcích V případě, kdy koncepce domu uvažuje s využitím pasivních solárních zisků je vhodné, aby konstrukce domu umožňovala akumulaci tepla. Teplo akumulují například dostatečně masivní obvodové stěny (bez vnitřní izolace) a stropy, dále podlahy s vhodnými nášlapnými vrstvami, ale také betonové schodiště. U dřevostaveb se často z tohoto důvodu zhotovují masivní zděné příčky, případně vnitřní nosná stěna. Při přebytku tepla je toto akumulováno a nárůst teploty interiéru není tak markantní. S časovým odstupem, například po západu slunce, je pak energie postupně uvolňována zpět a tím využita. Je samozřejmé, že musíme zabránit přehřátí interiérů od sluncev obdobích, kdy by to mohlo být na obtíž. Díky odlišnosti dráhy slunce na obloze v průběhu roku to není velký problém. 2

8 2 Cíl a zaměření práce Hlavním cílem práce je zpracovat ekonomické posouzení variant vytápění dle použitého paliva u vybrané dřevostavby. Máme několik možností jak danou dřevostavbu vytápět. Samozřejmě ne všechny možnosti vytápění, které budu popisovat a o kterých budu psát, lze aplikovat na každou dřevostavbu nebo jakýkoliv dům. V této práci chci porovnat několik možností z jakých technologií a zdrojů lze získat teplonosné medium jako je topná voda k vytápění a teplá užitková voda. Následně porovnám tyto zdroje, která tato média vyrábí. Podle typu dřevostavby byly spočteny tepelné ztráty stěn, na základě kterých jsem vypočetl potřebný tepelný příkon objektu. Jako médium bude používána voda, bude uplatněn systém teplovodního vytápění (dále TV). Pro potřeby uživatelů je nutné vyrobit teplou užitkovou vodu (dále TUV). Náklady na TUV je nutné zahrnout do výroby tepelné energie určené pro vytápění domu. TUV se používá k hygienickým potřebám, TV se používá jako medium do topného systému k vytápění. Veškeré spotřeby TUV a TV jsou vypočteny tak, aby byla dostačující pro čtyřčlennou rodinu. Dle získaných údajů o spotřebě tepelné energie jsem navrhl několik variant dodávek TUV a TV dle použitého paliva. Z těchto údajů vypracuji analýzu, která varianta vytápění je ekonomičtější. Musí se brát v úvahu i to, jestli v dané lokalitě má odběratel na výběr z dodavatelů tepelné energie. Pokud by byl možný výběr dodavatele tepelné energie alespoň od tří nebo čtyř distributorů (což v praxi je téměř nereálné), tak zjistím, který dodavatel s jakým palivem je nejvýhodnější. Dále porovnám pořizovací náklady technologie na samotnou výrobu tepelné energie. Dle životnosti navrhovaných technologií zjistím, která technologie má nejdelší životnost pro vytápění dřevostavby. První technologií v tomto případě je uvažován samostatný kotel na spalování peletek, který je zabudován v dané dřevostavbě v technické místnosti. Druhá technologie je tepelné čerpadlo (TČ) vzduch/vzduch, u kterého bývá elektrokotel jako záložní zdroj. Třetí technologie je plynový kondenzační kotel se zásobníkem na TUV. Čtvrtou a poslední technologií jsou uvažovány deskové výměníky (DPS domovní předávací stanice), které se používají hlavně u centrálního zásobování TV a TUV. 3

9 K těmto deskovým výměníkům zpracuji porovnání, které centrální zásobování teplem (dále jen CZT) z následujících třech paliv je cenově nejvýhodnější. Palivo číslo jedna je obilná sláma, palivo s číslem dvě je dřevní štěpka a třetí palivo je zemní plyn, který se spaluje v kogenerační jednotce. Ta vyrábí elektrickou energii a jako odpad je tepelná energie, která se dále distribuuje konečným zákazníkům. Globální cíl je Úspora energie. V posledních letech se neustále zvyšují ceny za energii a s tím je spojen i výběr vhodného vytápění. Není to ale pouze výsledkem neustále vzrůstajících cen energií. Začínáme si také uvědomovat, jak má výroba energií neblahý dopad na životní prostředí. Energie, její zdroje, spotřeba a nezbytné úspory - to jsou otázky, kterými se naše populace v posledních desetiletích stále intenzivněji zabývá. Není podstatné, zda se jedná svým způsobem o lokální problémy, nebo zda jde o problémy celosvětového charakteru, které jsou s energetickou problematikou bezprostředně spjaty příkladem může být například globální oteplování. Je zcela jasné, že klasické zdroje energie nejsou nevyčerpatelné a jejich využívání je stále technicky komplikovanější. Použití obnovitelných zdrojů energie zatím není tak rozvinuté, aby v zásadní míře ovlivňovalo celosvětovou energetiku. Stavby a jejich provoz se na globální a energetické spotřebě podílejí téměř její jednou polovinou, proto je snaha o energetické zefektivnění výstavby a provozu budov na jednom z předních míst při řešení otázek energetických úspor. Potenciál úspor je v této oblasti nesmírně výrazný a i při percentuelně nepříliš vysokých úsporách lze získat obrovská absolutní množství ušetřené energie. Je třeba si uvědomit, že snahou o docílení energetické efektivnosti staveb, ale i obecnou snahou po energetických úsporách jako takových, neřešíme jen otázku úspory energetických zdrojů a s tím spojenou problematiku ekonomickou, ale na úspory energie se váže široká řada problémů především z oblasti environmentální. Naprostá většina v součastné době využívaných technologií pro výrobu energie stále ještě souvisí s emisemi škodlivin, ať již se jedná o CO 2, NO x, prachové částice nebo o nadměrnou produkci vodní páry. Nejběžnější důsledky výskytu těchto škodlivin jsou již dávno známy, ať již se jedná o, v nedávné době tolik aktuální, kyselé deště způsobující rozsáhlou devastaci lesních porostů i celé krajiny, obecné znečišťování ovzduší se známou řadou škodlivých důsledků nebo již zmiňované poněkud 4

10 diskutabilní globální oteplování. Zatím co všechny zde zmiňované vlivy lze určitým způsobem kvantifikovat a vyčíslit obecnou hodnotu škod jimi způsobenou, jejich nepříznivý dopad na zdravotní stav lidské populace kvantifikovat nelze a všechny pokusy o vyčíslení takto vzniklých škod lze označit spíš za velmi orientační odhady než seriózní odborně získané údaje. V globální energetické snaze o zajištění nezbytné míry energetických úspor je proto třeba vidět cílený proces se širokými energetickými, environmentálními, sociálními, zdravotními a dalšími důsledky. Situace, kdy by se v dlouhodobém horizontu podařilo v dostatečné míře vyřešit globální energetickou bilanci včetně jejího zajištění především environmentálně přijatelnými energetickými zdroji, by mohla mít pro lidskou populaci velmi negativní důsledky. 5

11 3 Literární přehled Vytápění dřevostaveb Zejména v posledních letech se neustále zvyšují ceny za energii a s tím je spojen i výběr vhodného vytápění. V neposlední době je i aktuální slovní spojení úspora energie. Není to pouze výsledkem neustále vzrůstajících cen energií. Začínáme si také uvědomovat, jak má výroba energií neblahý dopad na životní prostředí jako nebezpečí požárů, změna krajiny, negativní vliv vysokého napětí na lidské zdraví způsobené elektromagnetickým zářením. U nízkoenergetických staveb je účelem snížit spotřebu energie při výrobě stavebních materiálů, jakožto i při samé likvidaci těchto materiálů. Směřování bytové i jiné výstavby k nízkoenergetickým budovám není českým specifikem, je to celosvětový trend. Je to přirozené. S rostoucí cenou energie, s blížícím se vyčerpáním světových zdrojů tradičních paliv, s rostoucím důrazem na snižování emisí a s prosazováním politiky trvale udržitelného rozvoje nutně roste tlak na snižování energetické náročnosti budov, zejména na nejvýznamnější součást celkové energetické bilance budovy, kterou je spotřeba energie na vytápění. Tento trend se odráží v zásadních dokumentech mezinárodních i evropských organizací. Základní legislativní podmínky Rostoucí důraz na tuto oblast potvrdil zákon č. 406/2000 Sb., o hospodaření energií, který zdůraznil a sankcemi podpořil povinnost tepelně technického a energetického hodnocení budov (která již dříve platila z vyhlášek MMR č. 137/1998 Sb., a č. 132/1998 Sb., avšak bezzubě, bez sankcí). Zároveň uvedený zákon č. 406/2000 Sb. a jeho prováděcí vyhlášky vytvořily novou situaci pro stavební úřady, kterým umožňují pro hodnocení projektové dokumentace (PD) budov z hlediska jejich energetické náročnosti účinně využívat spolupráci se Státní energetickou inspekcí (SEI). Nastolená struktura naznačuje možnost obdobného zprostředkovaného systému kontroly plnění tepelně technických a energetických požadavků v PD prostřednictvím specializované organizace státní správy (SEI), jaký se uplatňuje při kontrole plnění požadavků požární ochrany budov a plnění hygienických požadavků. Zpřísňováním požadavků na energetickou náročnost stavebního řešení budovy je zřejmé z vyhlášky MPO č. 291/2001 Sb., která platí od ledna roku

12 Od počátku prosince 2002 platí nově revidovaná ČSN :2002 Tepelná ochrana budov - Část 2: Požadavky, ve které je uvedený trend postupného zpřísňování požadavků, a odráží se i v požadavcích na jednotlivé konstrukce. Kromě zpřísnění požadavků norma významně směřuje k navrhování budov s nízkou a velmi nízkou potřebou energie nově koncipovanou přílohou A. Zaměření na snadnou kontrolovatelnost požadovaných údajů podporuje příloha B normy. V příloze C je nově zařazen energetický štítek budovy, který využívá vyjádření měrné potřeby tepla prostřednictvím stupně energetické náročnosti SEN - obdobný "labelling" budov je v současné době oficiálně zaváděn v Dánsku, v jednodušší formě se využívá v Rakousku. V rámci EU byla v listopadu 2002 přijata Směrnice evropského parlamentu k energetické náročnosti budov, ve které se mimo jiné zdůrazňuje potřeba zpřísňování požadavků na stavebně energetické vlastnosti budov a jejich částí a na rozšiřování záběru hodnocení. Zejména je deklarována nutnost změn vedoucích k výraznější ochraně klimatu před emisemi C02, snižování rizikového dovozu paliv a energií, zvyšování motivace k úsporám zdůrazněním jejich příznivého multiplikačního efektu a v neposlední řadě naplňování zásad udržitelné výstavby (provozní energie uvolňovaná v místě zdroje a energie svázaná s existencí budovy). Je zřejmé, že všechny tyto trendy se nutně projeví v novelách našich vyhlášek, popř. zákonů. zdroj. - Vytápění dřevostaveb Náklady na vytápění rodinných domků a ostatních staveb z moderních konstrukcí na bázi dřeva s dostatečnou tloušťkou tepelné izolace jsou podle zkušeností uživatelů až o několik tisíc korun měsíčně nižší než u domků z klasických silikátových materiálů. Někteří mladší stavebníci tomuto faktu ještě vždy nevěnují velkou pozornost, i když to všeobecně začíná být v centru zájmu a na ekonomické vytápění se kladou stále vyšší nároky. Úspory nákladů na provoz staveb na bázi dřeva přijdou velmi vhod novopečenému majiteli rodinného domu. Co ušetřil na stavbě domu díky vyspělé technologii, to může použít na lepší vybavení interiéru nebo má možnost rychleji splácet hypotéku. 7

13 Dá se říci, že každý z nás v podstatě zaplatí za 30 let jeden rodinný dům. Buď formou nájemného majiteli bytu, nebo formou hypotéky sám sobě. Je zbytečné, aby po zaplacení hypotéky platil za drahou energii promrhanou na topení v levné stavbě. Nižší tepelně akumulační schopnosti lehkých dřevěných konstrukcí lze při použití pružného otopného systému využít ve prospěch těchto staveb. Okamžité tepelné ztráty jsou velmi nízké a nízká je i potřeba energie pro temperování stavby. V dřevostavbách se velmi výrazně zkracuje doba na dosažení tepelné pohody bydlení. Zatopeno je takříkajíc hned, pustíme topení a nemusíme dlouho čekat, až se zahřejeme. Pro úsporu energie na vytápění lze využít skleníkového efektu při slunných zimních dnech. To je velmi příjemné - i když je venku za oknem hluboko pod nulou (ale alespoň trochu svítí slunce), máme doma příjemnou slunnou pohodu, i když skoro netopíme. V neposlední řadě se tak vytvářejí podmínky pro využití netradičních zdrojů energie, zejména pak využitím odváděného tepla při nutné výměně vnitřního vzduchu využitím rekuperace. U staveb s malou okamžitou potřebou na vytápění se pozitivně projeví i zapojení solárních kolektorů pro ohřev teplé užitkové vody. zdroj

14 4 Materiál 4.1 Parametry dřevostavby Základní informace o dřevostavbě firmy BezvaStav, o které se v této práci pojednává, viz obr.1.. Konstrukce domů vychází z osvědčených způsobů stavění a tvoří ji hranolová sendvičová konstrukce viz obr. 8, 9, 10, 11.. Jako vnější plášť jsou použity sádrovláknité desky (fermacell), odvětrávací rošt a na něm palubky opatřené trojím nátěrem dle přání zákazníka nebo dnes více používaná kontaktní termofasáda. Z vnitřní strany je konstrukce vyplněna minerální vlnou, která dodává domu charakteristické tepelně-izolační vlastnosti. Vnitřní prostor je vybaven parozábranou a sádrokartonem. Stručně se dá říct, že provedení je luxusnější varianta našich staveb. Základní výhody tohoto provedení spočívají v použití modernějších materiálů s lepšími fyzikálními vlastnostmi. Několik výhod stavby: polystyrenové bednicí bloky základové konstrukce větší tloušťka fasádního polystyrenu parotěsná folie, která má zároveň reflexní a tepelné účinky (nahradí 3-5 cm tepelné izolace) minerální izolace, která má při stejné tloušťce větší tepelný odpor, tím i lepší tepelné vlastnosti kročejová minerální izolace místo podlahového polystyrenu sedmi-komorová plastová okna s izolačním trojsklem luxusnější vodovodní baterie dýhované vnitřní dveře luxusnější střešní okna pálená střešní krytina Tondach (engoba) luxusnější podlahové krytiny Hit je velikostí menší dům viz obr. 1.: vhodný do dvoupodlažní okolní zástavby a pro rovinatý popř. mírně svahovitý pozemek noční klidová část domu je osazena do podkroví z boční strany je navrženo suché stání pro vozidlo dům je možno podsklepit dům je možno projektovat v zrcadlovém obraze 9

15 Obr. 1- rodinný dům Hit 4.2 Popis vybraných variant domů Varianta A Tuto dřevostavbu označíme jako konstrukci 20+5 což vyznačuje, že uvnitř obvodových stěn je 20 cm izolace, kterou tvoří minerální vata. Dále je na vnější straně fasádní izolace, kterou tvoří fasádní polystyren tloušťky 5 cm. Další materiály jsou standardně používány na opláštění. Varianta B Tuto dřevostavbu označíme jako konstrukci 14+5 což vyznačuje, že uvnitř obvodových stěn je 14 cm izolace, kterou tvoří minerální vata. Dále je na vnější straně fasádní izolace, kterou tvoří fasádní polystyren tloušťky 5 cm. Další materiály jsou standardně používány na opláštění. 4.3 Druhy vytápění Centrální zdroj tepla (CZT) palivo biomasa dřevní štěpka Výhoda vytápění z centrálního zdroje spočívá především v tom, že majitelé rodinného domu nemusí investovat do finančně nákladného zařízení na výrobu TV a TUV (kotel). K vytápění poslouží malá výměníková stanice, která je instalována v každém domě. Do této stanice je přivedeno teplonosné médium (voda) z CZT, které je v tomto případě ohříváno v biomasovém kotli, kde je použito palivo dřevní štěpka. V této době je to cenově zajímavější druh paliva něž-li plyn. Aby vytápění tímto palivem bylo cenově výhodnější, je nutné, aby bylo v blízkém dosahu a nemuselo se 10

16 dovážet k centrálnímu zdroji stovky kilometrů vzdáleného. V tomto případě stačí taktéž otočit knoflíkem a za pár minut si můžeme vychutnat vytopený dům. Při výstavbě tohoto energetického centra se dbá taktéž na životní prostředí, tudíž je šetrné k ovzduší Centrální zdroj tepla (CZT) palivo biomasa obilná sláma Výhoda vytápění z centrálního zdroje opět spočívá především v nízkých pořizovacích nákladech na potřebné zařízení na výrobu TV a TUV (kotel), neboť i v tomto případě k vytápění poslouží malá výměníková stanice, která je instalována v každém domě. Do této stanice je přivedeno teplonosné médium (voda) z CZT, které je v tomto případě ohříváno v biomasovém kotli, kde je použito palivo obilná sláma. V této době je to cenově zajímavější druh paliva něž-li plyn. Aby vytápění tímto palivem bylo cenově výhodnější, je nutné, aby bylo v blízkém dosahu a nemuselo se dovážet k centrálnímu zdroji stovky kilometrů vzdáleného. V tomto případě stačí taktéž otočit knoflíkem a za pár minut si můžeme vychutnat vytopený dům. Při výstavbě tohoto energetického centra se dbá taktéž na životní prostředí a je šetrné k ovzduší Centrální zdroj tepla (CZT) palivo zemní plyn kogenerační jednotka Výhoda vytápění z centrálního zdroje spočívá především v tom, že i v tomto případě majitelé rodinného domu nemusí pořizovat finančně nákladné zařízení na výrobu TV a TUV (kotel). K vytápění poslouží malá výměníková stanice, která je instalována v každém domě. Do této stanice je přivedeno teplonosné médium (voda) z CZT, které je v tomto případě ohříváno zemním plynem. Při ohřevu teplonosného media zemním plynem se jedná o soustrojí (technologii), které se nazývá kogenerační jednotka. Tato technologie pracuje na bázi spalování zemního plynu ve spalovacím motoru, ze kterého se přes generátor vyrobí elektrická energie. Při chlazení spalovacího motoru vzniká odpadové teplo, které se následně používá jako teplonosné medium. Jelikož se vyrobená elektrická energie prodává do sítě rozvodných závodů, cena odpadového tepla je v nižší hodnotě, než u předešlých možností vytápění. Aby vytápění tímto palivem bylo cenově výhodnější, je nutné, aby bylo možné v místě vyvést elektrickou energii do sítě. Při výstavbě tohoto energetického centra se dbá taktéž na životní prostředí, tudíž je šetrné k ovzduší. 11

17 4.3.4 Vlastní vytápění kotlem na zemní plyn Výhoda vytápění plynem ve vlastním plynovém kondenzačním kotli spočívá především ve vysokém uživatelském komfortu. Velká část majitelů rodinných domů využívá v současnosti k vytápění plyn. Toto médium vděčí za masové rozšíření především státem mohutně podporované plynofikaci i malých obcí v druhé polovině devadesátých let minulého století. Stačí otočit knoflíkem a za pár minut si můžeme vychutnat vytopený dům. Navíc je plyn šetrnější k ovzduší než například tuhá paliva Vlastní vytápění kotlem na peletky Vytápění peletkami v kotli na spalování peletek, spočívá již v této době taktéž k vysokému uživatelskému komfortu. Část majitelů rodinných domů, která využívá v současnosti k vytápění peletky, mohli zažádat o dotaci na kotel stát v akci Zelená úsporám. U tohoto kotle na spalování peletek, patří ke komfortnímu vytápění, má pouze několik negativ, které k tomuto vytápění patří. Tato negativa jsou taková, že dům musí mít zásobník na peletky, které se musí např. jednou za čtrnáct dní doplnit. Komfort vytápění je stejný jak u ostatních variant vytápění Vlastní vytápění tepelným čerpadlem Vytápění tepelným čerpadlem spočívá taktéž ve vysokém uživatelském komfortu. Část majitelů rodinných domů, kteří využívají v současnosti k vytápění tepelné čerpadlo, mohli při realizaci domu zažádat o dotaci na tepelné čerpadlo stát v akci Zelená úsporám. Nevýhoda tepelného čerpadla je jeho účinnost a to do -10 C. Při nižších teplotách musí být špičkovací kotel, který je většinou na elektrickou energii. Vytápění touto alternativou je většinou zapříčiněno tím, že místo není plynofikováno. I při této variantě vytápění stačí taktéž otočit knoflíkem a za pár minut si můžeme vychutnat pohodu vytopeného domu, přičemž toto vytápění je ohleduplné k životnímu prostředí. 12

18 5 Metodika 5.1 Prvním krokem této práce je navržení dvou konstrukcí z různých materiálů. Materiály jsou různé v tloušťkách jednotlivých konstrukcích, ale nikoli v jejich vlastnostech. Tyto konstrukce budou mít vliv na veškeré rozměry navržených domů. Na základě informací z vybraného projektu rodinného domu HIT, aplikuji navržení konstrukce na tento dům a provedu výpočet všech rozměrů u navržených konstrukcí domů, které jsou důležité pro následující postup. Všechny tyto rozměry následně využiji při dalších výpočtech. Stavební výplně vyberu dle parametrů výrobce domů. Nástrojem, kterým vypočtu energetickou náročnost domu je ČSN, kde se vychází z tepelných ztrát dřevostavby. Tepelné ztráty se vypočítají podle propustnosti obvodových zdí, podlah, stropu či střechy a v neposlední řadě výplní stavebních otvorů jako jsou okna a dveře. Díky tomuto nástroji vypočtu energetickou spotřebu domu. Následně vypočítám ekonomické náklady na tepelnou energii využívanou v domě. Veškeré výpočty konfrontuji s dodavateli energií a vlastní výrobou tepelné energie. Celkovou spotřeba energie dřevostavby, následně vložím do tabulky, jak výrobců tepla CZT, tak do navrhnutého vlastního vytápění. Na základě všech výpočtů nakonec provedu komplexní posouzení výhod a nevýhod variant vytápění a úvahu nad tím, jaký vliv by mohl mít vypočtené ekonomické faktory na rozhodování zákazníků. 5.2 Metoda výpočtu spotřeby tepelné energie na vytápění dřevostavby VÝPOČET TEPELNÝCH ZTRÁT (dle ČSN ) PŘESNÝ VÝPOČET Celková tepelná ztráta Q c = Q p + Q v Q z [W] kde : Q c je celková tepelná ztráta budovy [W] Q p Q v Q z tepelná ztráta prostupem tepla [W] tepelná ztráta větráním [W] trvalý tepelný zisk [W] 13

19 5.2.2 Tepelná ztráta prostupem tepla Q p = Q o. (1 + p 1 + p 2 + p 3 ) [W] kde p 1 p 2 p 3 Qo je základní tepelná ztráta prostupem tepla [W] přirážka na vyrovnání vlivu chladných konstrukcí přirážka na urychlení zátopu přirážka na světovou stranu Základní tepelná ztráta prostupem tepla Q o = k 1. S 1. (t i t e1 ) + k 2. S 2. (t i t e2 ) + + k n. S n. (t i t en ) = kde S 1, S 2...S n, S j je ochlazovaná část stavební konstrukce [m 2 ] k 1, k 2...k n, k j součinitel prostupu tepla [W. m -2.K -1 ] t i výpočtová vnitřní teplota [ C] t e1, t e2...t en, t ej výpočtová teplota v prostředí na vnější straně konstrukce [ C] (výpočtová teplota v sousedních místnostech nebo výpočtová venkovní teplota) Pokud je t i < t e má tepelný tok zápornou hodnotu, jedná se o tepelný zisk. Přirážka na vyrovnání vlivu chladných konstrukcí p 1 závisí na průměrném součiniteli prostupu tepla všech konstrukcí k c, který se stanoví ze vztahu kde S je plocha všech konstrukcí ohraničujících vytápěnou místnost [m 2 ] Přirážka na vyrovnání vlivu chladných konstrukcí p 1 se potom stanoví ze vztahu p 1 = 0,15. k c 14

20 Přirážka na urychlení zátopu p 2 se v bytové výstavbě, nemocnicích apod. uvažuje jen v případech, kde ani při nejnižších venkovních teplotách nelze zajistit nepřerušovaný provoz vytápění - 0,10 při denní době vytápění delší nebo rovné 16 hodin - 0,20 při vytápění méně než 16 hodin U budov se samostatnou kotelnou na tuhá paliva o jmenovitém výkonu menším než 150 kw se počítá s provozem přerušovaným. O výši přirážky na světovou stranu p 3 rozhoduje poloha nejvíce ochlazované stavební konstrukce místnosti. Při více ochlazovaných konstrukcích, poloha jejich společného rohu. U místností se třemi nebo více se počítá s přirážkou největší (tzn. sever). Tab. 1 - přirážky na světovou stranu Tepelná ztráta větráním kde Q v = V v. (t i t e ) [W] V v je objemový tok větracího vzduchu [m 3.s -1 ], dosadí se větší z hodnot V vh a V vp c v objemová tepelná kapacita vzduchu při teplotě 0 C [J.m -3.K -1 ], tj. přibližně při střední teplotě t m = 0,5. (t i + t e ), c v = 1300 J.m -3.K -1 Objemový tok větracího vzduchu V v musí vycházet z hygienických nebo technologických požadavků, které jsou dány potřebnou intenzitou výměny vzduchu n h [h -1 ]. Pokud není dáno jinak, lze použít hodnoty: n h = 0,50 h -1 pro obytné místnosti obytných budov 0,35 pro občanské budovy a ostatní místnosti obytných budov 0,25 pro ostatní budovy 15

21 Potřebný průtok V vh se stanoví ze vztahu kde V m je vnitřní objem prostoru (místnosti) [m 3 ] Při přirozeném větrání infiltrací se objemový tok stanoví ze vztahu V vp = Σ (i LV. L). B M [m 3.s -1 ] kde i LV je součinitel spárové průvzdušnosti oken a venkovních dveří [m 3.s -1 /m.pa 0,67 ] L délka spár otvíravých křídel oken a venkovních dveří [m] B charakteristické číslo budovy [Pa 0,67 ] M charakteristické číslo místnosti [-] Intenzita výměny vzduchu infiltrací n je potom Do hodnoty n = 1 až 1,5 se předpokládá krytí tepelné ztráty otopným tělesem. Při n > 1,5 se doporučuje použít klimatizační jednotku. Součinitel spárové průvzdušnosti oken a venkovních dveří i LV je uveden v normě , nebo ho udává výrobce. Celková délka spar L se stanoví ze skladebných rozměrů otvorů umístěných na návětrné straně. U místností s jednou venkovní konstrukcí se za návětrnou stranu považuje ta, kde jsou venkovní otvory. U rohových místností s okny ve dvou konstrukcích se počítá dohromady s otvory obou konstrukcí. U protilehlých konstrukcí se za návětrnou považuje ta, kde je hodnota (i LV. L) větší, za závětrnou protilehlá. 16

22 Charakteristické číslo místnosti je v tomto případě M = 1, stejně jako u místnosti bez vnitřních konstrukcí. Charakteristické číslo budovy B závisí na rychlosti větru volené podle polohy budovy vzhledem ke krajině a na druhu budovy. Charakteristické číslo místnosti M závisí na poměru mezi průvzdušností oken a vnitřních dveří, na počtu a těsnosti vnitřních dveří (s prahem nebo bez). Tepelné zisky Zisky od osob Lidé neustále produkují teplo, tzv. metabolické. Výkon závisí například na činnosti. Dospělý člověk produkuje ve spánku cca 50 W, při sezení a nenamáhavé činnosti 80 až 100 W, při špičkovém fyzickém výkonu až 1000 W. Zisky od spotřebičů Většina energie, kterou domácí spotřebiče odeberou ze sítě, se přemění na teplo, toto teplo vesměs přispívá k vytápění domu. Výjimkou je zejména pračka, kde teplo odchází s vodou do kanalizace. Dále pak sporáky a trouby, kdy je v době provozu potřeba intenzivněji větrat (kvůli páře, odérům a případně zplodinám ze spalování zemního plynu), takže velká část tepla odchází nevyužita. Pasivní solární zisky Množství slunečního záření, které dopadne na okno závisí na orientaci okna a jeho zastínění. Při výpočtu je dále třeba zohlednit plochu rámu okna (na výkresech se uvádí rozměry okenního otvoru, plocha zasklení je o 15 až 40% menší). Velkou roli hraje i zastínění záclonami, žaluziemi a podobně. 17

23 5.3 Porovnání prostupu tepla, tepelných odporů a změn ploch Tab. 2 - srovnání tepelných odporů jednotlivých konstrukcí dřevostavby tepelný odpor R T Obvodové stěny a štíty Vnitřní nosné stěny Nosné příčky Střecha nosný strop podlaha 1.NP strop 1.NP strop 2.NP R T (m 2 K/W) ,45 3,33 2,04 4,99 2,71 4,97 5,06 R T (m 2 K/W) ,70 3,33 2,04 4,99 2,71 4,97 5,06 Je viditelné, že obvodové stěny a střecha jsou lépe izolovány kvůli prostupnosti tepla. Tab. 3 - srovnání součinitelů prostupu tepla jednotlivých konstrukcí dřevostavby součinitel prostupu tepla U Obvodové stěny a štíty Vnitřní nosné stěny Nosné příčky Střecha nosný strop podlaha 1.NP strop 1.NP strop 2.NP U (W/m 2 K) U (W/m2 K) ,22 0,30 0,49 0,20 0,37 0,20 0,20 0,17 0,30 0,49 0,20 0,37 0,20 0,20 Je viditelné, že obvodové stěny jsou lépe izolovány kvůli prostupnosti tepla. Tyto součinitele prostupu tepla jsem získal z podkladů, které nabízí výrobce dřevostavby. Z tabulky 2 a 3, ve které je vyjádřen tepelný odpor a součinitel prostupu tepla lze vyčíst, která konstrukce dřevostavby má lepší tepelné vlastnosti. 18

24 6 Řešení práce 6.1 DŘEVOSTAVBA HIT - Varianta A Celková tepelná ztráta Q c = Q p + Q v - Q z [W] Tepelná ztráta prostupem tepla Q p = Q o. (1 + p 1 + p 2 + p 3 ) [W] Základní tepelná ztráta prostupem tepla Q o = k 1. S 1. (t i t e1 ) + k 2. S 2. (t i t e2 ) + + k n. S n. (t i t en ) = 0,19. 22,4. (20+12) + 0, (20+12) + 0,19. 22,4. (20+12) + 0, (20+12) = 928 [W] Přirážka na vyrovnání vlivu chladných konstrukcí p 1 k c = Q 928 o = S ( t i t ) 22,4 ( ) + 54 ( ) + 22,4 ( ) + 54 ( ) e = 0,645 p 1 = 0,15. kc = 0,15. 0,64 = 0,096 Q p = 928. (1 + 0, ,2 + 0,1) = 1295,4 [W] Tepelná ztráta prostoru (místnosti) větráním Q v = V v. (t i t e ) [W] V V vh vp nh V 3600 = m = ( i LV = 0, = 0,0057 L) B M = 0, = 0,0008 Q v = ,0057. (20+12) = 237,1 [W] 19

25 Celková tepelná ztráta tedy: Q c = 1295, ,1 0 = 1532 W = 1,532 kw 6.2 DŘEVOSTAVBA HIT - Varianta B Celková tepelná ztráta Q c = Q p + Q v - Q z [W] Tepelná ztráta prostupem tepla Q p = Q o. (1 + p 1 + p 2 + p 3 ) [W] Základní tepelná ztráta prostupem tepla Q o = k 1. S 1. (t i t e1 ) + k 2. S 2. (t i t e2 ) + + k n. S n. (t i t en ) = 0,25. 22,4. (20+12) + 0, (20+12) + 0,25. 22,4. (20+12) + 0, (20+12) = 1222,4 [W] Přirážka na vyrovnání vlivu chladných konstrukcí p 1 k c = Q 1222,4 o = S ( t i t ) 22,4 ( ) + 54 ( ) + 22,4 ( ) + 54 ( ) e = 0,85 p 1 = 0,15. kc = 0,15. 0,85 = 0,1275 Q p = 1222,4. (1 + 0,85 + 0,2 + 0,1) = 2628,1[W] Tepelná ztráta prostoru (místnosti) větráním Qv = Vv. (ti te) [W] V V vh vp nh V 3600 = m = ( i LV = 0, = 0,0057 L) B M = 0, = 0,

26 Qv = ,0057. (20+12) = 237,1 [W] Celková tepelná ztráta tedy: Qc = 2628, ,1 0 = 2865 W = 2,865 kw Celková tepelná ztráta: Dřevostavba Hit - varianta A Dřevostavba Hit - varianta B 1532 W = 1,532 kw 2865 W = 2,865 kw Tyto označené výsledky jsem následně zadal do tabulky na stránkách která vypočítala spotřeby energií dřevostavby v obou variantách. Tyto výsledky mi následně pomohly vypočítat spotřeby domů. 6.3 Výpočet spotřeby tepelné energie dřevostavby Var. A a Var. B Klimatické podmínky Dřevostavba se nachází v oblasti Brna nejnižší venkovní teplota v zimě - 15 C střední teplota za topné období + 4,1 C počet dní v topném období 222 dní/rok střední teplota v objektu + 20 C Vytápěné prostory Projekt řeší vytápění místností rodinného domu. 21

27 6.3.1 Topný systém - Var. A Topný systém (TV) v objektu má následující technické parametry: topná soustava teplovodní tepelný příkon vytápění W jmenovitá teplota topné vody výstup/vstup 50/40 C jmenovitý konstrukční tlak PN6 roční potřeba tepla pro vytápění 3,4 MWh/r = 12,3 GJ/r Tepelný příkon byl určen výpočtem tepelných ztrát objektu na základě tepelně technických vlastností stavebných konstrukcí pláště. Potřeba teplé užitkové vody Teplá užitková voda (TUV) je navrhovaná pro následující technické parametry: teplota přívodu 45 C počet spotřebitelů 4 denní spotřeba TUV 260 l/d roční spotřeba TUV 95 m 3 roční potřeba tepla pro přípravu TUV 8,2 MWh/r = 29,4 GJ/r jmenovitý konstrukční tlak PN10 typ ohřevu TUV akumulační Celková potřeba tepla a energií celková spotřeba 11,6 MWh/r = 41,6 GJ/r Topný systém - Var. B Topný systém (TV) v objektu má následující technické parametry: topná soustava teplovodní tepelný příkon vytápění W jmenovitá teplota topné vody výstup/vstup 50/40 C jmenovitý konstrukční tlak PN6 roční potřeba tepla pro vytápění 6,4 MWh/r = 22,9 GJ/r Tepelný příkon byl určen výpočtem tepelných ztrát objektu na základě tepelnětechnických vlastností stavebných konstrukcí pláště. 22

28 Potřeba teplé užitkové vody Teplá užitková voda (TUV) je navrhovaná pro následující technické parametry: teplota přívodu 45 C počet spotřebitelů 4 denní spotřeba TUV 260 l/d roční spotřeba TUV 95 m 3 roční potřeba tepla pro přípravu TUV 8,2 MWh/r = 29,4 GJ/r jmenovitý konstrukční tlak PN10 typ ohřevu TUV akumulační Celková potřeba tepla a energií celková spotřeba 14,5 MWh/r = 52,3 GJ/r Opis navrhovaného řešení Vytápění v objektu je navrhované ústřední teplovodní. Hlavní zdroj tepla může být 1. plynový kotel do výkonu 16 kw 2. externí zdroj tepla Vytápěcí systém je navrhovaný kombinací podlahového vytápění a vytápění vytápěcími tělesy. Příprava TUV Při variantě vlastního vytápění dřevostavby plynovým kotlem navrhujeme ohřev TUV zásobníkem v ohřívači o objemu minimálně 70 l. Topná tělesa Topná tělesa jsou navrhnutá panelová na poschodí. Na tělesech jsou navrhnuté radiátorové ventily s termostatickými hlavicemi s vestavěným teplotním čidlem, které umožní nastavení vnitřní teploty podle potřeb provozu. Potrubní rozvod Potrubní rozvod je navrhnutý dvoutrubkový symetrický. Vytápěcí systém objektu bude mít jeden okruh. Potrubní rozvody k vytápěcím tělesům budou z plastohliníkového potrubí. Potrubí bude uložené v podlaze. Svislé potrubí bude z měděných trubek. Tlak v potrubním systému bude udržovaný tlakovou nádobou s membránou. Doplňovaní systému bude ruční z řádového vodovodu. 23

29 6.4 Výroba tepelné energie CZT Níže v tabulkách jsou zohledněny fixní i variabilní náklady, se kterými se musí počítat při výrobě tepelné energie v CZT a cena je konečná za GJ. Tab. 4 - vytápění dřevostavby CZT Dřevní štěpka Rozsah a struktura oprávněných nákladů ceny tepla pro rok CZT dřevní štěpka Instalovaný výkon kotlů na zemní plyn : Instalovaný výkon kotle na biomasu - dřevní štěpku : Instalovaný výkon kotlů dohromady : 1,80 MW 2,00 MW 3,80 MW Objednané množství tepla na vytápění a na přípravu teplé vody : Podíl zemního plynu na výrobě tepla : 47 % Podíl biomasy - dřevní štěpky na výrobě tepla : 53 % Daň - spotrební daň na zemní plyn pro nedomácnosti DPH 20 % Por. č. Název nákladů Náklady Cena tepla s daní bez daně s daní (tis. Kč) (tis. Kč) (Kč/GJ) , ,00 322,82 Variabilní náklady na primáru 1.1 Zemní plyn 576,00 576,00 53, Biomasa - dřevní štěpka 2 873, ,00 268,91 2. Ostatní variabilní náklady 307,5 307,5 28, Elektřina , Technologická voda 8,5 8,5 0, Technologické hmoty ,15 I. Variabilní složka ceny tepla bez DPH 351,60 3. Fixní náklady 2 212, ,00 207, Odpisy HIM 955,00 955,00 89, Opravy a udržování dohromady 79,00 79,00 7, Úroky z úvěru , až 6 Ostatní fixní náklady 55,00 55,00 5, Vlastní režijní náklady 859,00 859,00 80,40 4. Přiměřený zisk 0 0,00 0,00 II. Fixní složka ceny tepla bez DPH III. CENA TEPLA BEZ DPH IV. CENA TEPLA S DPH 207,04 558,64 670,37 V tabulce jsou ukázané veškeré náklady, se kterými se musí počítat při tvorbě ceny z CZT. 24

30 Tab. 5 - vytápění dřevostavby CZT Obilná sláma Rozsah a struktura oprávněných nákladů ceny tepla pro rok CZT obilná sláma Instalovaný výkon kotlů na zemní plyn : Instalovaný výkon kotle na biomasu - obilnou slámu : Instalovaný výkon kotlů dohromady : 2,00 MW 4,65 MW 6,65 MW Objednané množství tepla na vytápění a na přípravu teplé vody : Podíl zemního plynu na výrobě tepla : 30 % Podíl biomasy - obilné slámy na výrobě tepla : 70 % Daň - spotrební daň na zemní plyn pro nedomácnosti DPH 20 % Por. č. Název nákladů Náklady Cena tepla s daní bez daně s daní (tis. Kč) (tis. Kč) (Kč/GJ) 1. Variabilní náklady na primáru 6 856, ,10 230, Zemní plyn 3 943, ,50 132, Biomasa - obilná sláma 2 913, ,60 98,00 2. Ostatní variabilní náklady ,1 45, Elektřina 681,5 681,6 22, Technologická voda 40,5 40,5 1, Technologické hmoty ,82 I. Variabilní složka ceny tepla bez DPH 275,74 3. Fixní náklady 6 764, ,50 227, Odpisy HIM 2 935, ,00 98, Opravy a udržování dohromady 1 176, ,00 39, Úroky z úvěru , až 6 Ostatní fixní náklady 379,00 379,00 12, Vlastní režijní náklady 1 744, ,50 58,68 4. Přiměřený zisk ,00 26,71 II. Fixní složka ceny tepla bez DPH III. CENA TEPLA BEZ DPH IV. CENA TEPLA S DPH 254,25 529,99 635,99 V tabulce jsou ukázané veškeré náklady, se kterými se musí počítat při tvorbě ceny z CZT. 25

31 Tab. 6 - vytápění dřevostavby CZT Kogenerační jednotka Rozsah a struktura oprávněných nákladů ceny tepla pro rok CZT kogenerační jednotka Instalovaný výkon kotlů na zemní plyn : Instalovaný výkon kogenerační jednotky - zemní plyn : Instalovaný výkon kotlů a KJ dohromady : 20,00 MW 2,00 MW 22,00 MW Objednané množství tepla na vytápění a na přípravu teplé vody : Podíl zemního plynu na výrobě tepla : 100 % Daň - spotrební daň na zemní plyn pro nedomácnosti DPH 20 % Por. č. Název nákladů Náklady Cena tepla s daní bez daně s daní (tis. Kč) (tis. Kč) (Kč/GJ) 1. Variabilní náklady na primáru , ,80 372, Zemní plyn , ,80 372, Biomasa 0,00 0,00 0,00 2. Ostatní variabilní náklady -7753,9-7753,9-52, Elektřina -8471,5-8471,5-57, Technologická voda , Technologické hmoty 573,6 573,6 3,87 I. Variabilní složka ceny tepla bez DPH 320,48 3. Fixní náklady , ,20 176, Odpisy HIM 4 376, ,00 29, Opravy a udržování dohromady 9 120, ,00 61, Úroky z úvěru , až 6 Ostatní fixní náklady 3853, ,70 25, Vlastní režijní náklady 7 538, ,50 50,85 4. Přiměřený zisk 3422, ,40 23,09 II. Fixní složka ceny tepla bez DPH III. CENA TEPLA BEZ DPH IV. CENA TEPLA S DPH 199,87 520,35 624,42 V tabulce jsou ukázané veškeré náklady, se kterými se musí počítat při tvorbě ceny z CZT. 26

32 Tab. 7 cenová kalkulace vytápění dřevostavby CZT Dřevní štěpka Cena za GJ tepla s DPH - CZT Dřevní štěpka 670,37 Kč Roční spotřeba tep. energie v GJ dřevostavby - var. A a var.b 41,6 52,3 III. CENA TEPLA BEZ DPH Kč Kč IV. CENA TEPLA S DPH Kč Kč Výpočet ceny tepla z vybraného CZT - roční náklady za vyrobenou tepelnou energii dřevostavby Tab. 8 - cenová kalkulace vytápění dřevostavby CZT Obilná sláma Cena za GJ tepla s DPH - CZT Obilná sláma 635,99 Kč Roční spotřeba tep. energie v GJ dřevostavby - var. A a var.b 41,6 52,3 III. CENA TEPLA BEZ DPH Kč Kč IV. CENA TEPLA S DPH Kč Kč Výpočet ceny tepla z vybraného CZT - roční náklady za vyrobenou tepelnou energii dřevostavby Tab. 9 - vytápění dřevostavby CZT Kogenerační jednotka Cena za GJ tepla s DPH - CZT Kogenerační jednotka 624,42 Kč Roční spotřeba tep. energie v GJ dřevostavby - var. A a var.b 41,6 52,3 III. CENA TEPLA BEZ DPH Kč Kč IV. CENA TEPLA S DPH Kč Kč Výpočet ceny tepla z vybraného CZT - roční náklady za vyrobenou tepelnou energii dřevostavby 27

33 6.5 Výroba tepelné energie Vlastní Tab vytápění dřevostavby var. A a var. B s vlastní technologií Druh vytápění Kondenzační kotel na zemní plyn spotřeba energie dřevostevby Var.A GJ/Rok spotřeba energie dřevostevby Var.B GJ/Rok cena tepla Kč / GJ roční náklady na vytápění dřevostevby Var.A roční náklady na vytápění dřevostevby Var.B 41,60 52,30 370,10 Kč Kč Kč Kotel na peletky 41,60 52,30 321,50 Kč Kč Kč Tepelné čerpadlo 41,60 52,30 316,10 Kč Kč Kč V této tabulce jsou ceny za GJ pouze při použití vlastní technologe a následně roční náklady za vyrobenou tepelnou energii dřevostavby 28

34 7 Výsledky 7.1 Náklady na životnost technologie a aktuálních srovnání cen vytápění Tab vytápění dřevostavby var.a a var.b s CZT a vlastní technologií (dohromady) Druh vytápění spotřeba energie dřevostevby Var.A GJ/Rok spotřeba energie dřevostevby Var.B GJ/Rok cena tepla Kč / GJ roční náklady na vytápění dřevostevby Var.A roční náklady na vytápění dřevostevby Var.B CZT (Výměník) - Sláma 41,60 52,30 636,00 Kč Kč Kč CZT (výměník) - Dřevní štěpka CZT (výměník) - Kogenerační jednotka Kondenzační kotel na zemní plyn 41,60 52,30 670,50 Kč Kč Kč 41,60 52,30 624,50 Kč Kč Kč 41,60 52,30 370,10 Kč Kč Kč Kotel na peletky 41,60 52,30 321,50 Kč Kč Kč Tepelné čerpadlo 41,60 52,30 316,10 Kč Kč Kč V této tabulce jsou veškeré ceny za GJ za použití všech technologií dohromady a následně roční náklady za vyrobenou tepelnou energii dřevostavby Tab. 12 náklady na výrobu tepelné energie dřevostavby var.a a var.b uvažovaná životnost u technologie na 20 let Druh vytápění pořizovací cena technologie roční náklady technologie při životnosti kotle 20 let náklady na vytápění Var.A náklady na vytápění Var.B celkové roční náklady na vytápění Var.A celkové roční náklady na vytápění Var.B CZT (Výměník) - Sláma Kč 3000, Kč Kč Kč Kč CZT (výměník) - Dřevní štěpka CZT (výměník) - Kogenerační jednotka Kondenzační kotel na zemní plyn Kč 3000, Kč Kč Kč Kč Kč 3000, Kč Kč Kč Kč Kč 2500, Kč Kč Kč Kč Kotel na peletky Kč 13000, Kč Kč Kč Kč Tepelné čerpadlo Kč 17500, Kč Kč Kč Kč V této tabulce jsou veškeré pořizovací náklady za vybrané technologie na tepelnou energii, rozpočítané náklady jsou na 20 let a jsou započítány do ceny za GJ na rok. 29

35 Graf. 1 pořizovací cena technologie (bez dotací) V tomto grafu je znázorněná cenová různorodost použité technologie na výrobu tepelné energie Tab. 13 náklady na tepelnou energii za 1rok a za 20let dřevostavby var.a a var.b Druh vytápění celkové roční celkové roční náklady na vytápění náklady na vytápění Var.A Var.B celkové náklady na vytápění za 20 let Var.A celkové náklady na vytápění za 20 let Var.B celkové náklady na vytápění za 20 let Var.A celkové náklady na vytápění za 20 let Var.B CZT (Výměník) - Sláma Kč Kč Kč Kč Kč Kč CZT (výměník) - Dřevní štěpka CZT (výměník) - Kogenerační jednotka Kondenzační kotel na zemní plyn Kč Kč Kč Kč Kč Kč Kč Kč Kč Kč Kč Kč Kč Kč Kč Kč Kč Kč Kotel na peletky Kč Kč Kč Kč Kč Kč Tepelné čerpadlo Kč Kč Kč Kč Kč Kč V této tabulce jsou vyčísleny náklady na tepelnou energii za 1 rok, za 20 let a barevně je vyčíslena cena tepelné energie za 20 let s 4% inflací každý rok, což je životnost technologie 30

36 Graf. 2 roční náklady na tepelnou energii dřevostavby dle její konstrukce V tomto grafu jsou znázorněny cenové rozdíly za tepelnou energii mezi dvěma konstrukcemi dřevostavby varianty A a B Tab výhřevnosti použitých paliv Druh paliva vlhkost - % množství výhřevnost - GJ Obilná sláma do 15 1 kg 0,014-0,016 Dřevní štěpka do 40 1 kg 0,010-0,016 Peletky 10 1 kg 0,018-0,019 Plyn 0 1 m 3 0,034 Tato tabulka nám ukazuje, jaké výhřevnosti paliva lze dosáhnout při dané vlhkosti a množství 31

37 Tab. 15 porovnání ceny dřevostaveb var.a a var.b Název Pořizovací cena bez DPH Pořizovací cena vč. DPH Dřevostavba var.a ,- Kč ,- Kč Dřevostavba var.b ,- Kč ,- Kč Tato tabulka porovnává pořizovací ceny mezi dřevostavbami, porovnání je mezi lepším zateplením dřevostavby a horším zateplením Tab. 16 porovnání cen energie za 20 let a jejich úspora, návratnost mezi var.a a var.b Druh vytápění celkové náklady na vytápění za 20 let Var.A celkové náklady na vytápění za 20 let Var.B rozdíl spotřeby energií mezi zateplením dřevostavby po 20letech rozdíl mezi cenami dřevostaveb Var.A a Var.B orientační návratnost investice do lépe zatepleného domu CZT (Výměník) - Sláma Kč Kč Kč 32 let CZT (výměník) - Dřevní štěpka CZT (výměník) - Kogenerační jednotka Kondenzační kotel na zemní plyn Kč Kč Kč 30 let Kč Kč Kč 33 let Kč Kč Kč Kč 55 let Kotel na peletky Kč Kč Kč 63 let Tepelné čerpadlo Kč Kč Kč 64 let Tabulka ukazuje jaký je finanční rozdíl mezi zateplenou dřevostavbou a nezateplenou dřevostavbou, následně je spočtena návratnost investice do lepšího zateplení budovy 32

38 Tab. 17 ceny energie za 1rok mezi var.a a var.b Druh vytápění celkové náklady na vytápění za 1 rok Var.A celkové náklady na vytápění za 1 rok Var.B celkové náklady na technologii za 1 rok Var.A a B rozdíl mezi náklady na dřevostavbu u vytápění při lepší izolaci celkové náklady na vytápění za rok Var.A celkové náklady na vytápění za rok Var.B CZT (Výměník) - Sláma Kč Kč Kč Kč Kč CZT (výměník) - Dřevní štěpka CZT (výměník) - Kogenerační jednotka Kondenzační kotel na zemní plyn Kč Kč 3000 Kč Kč Kč Kč Kč 3000 Kč Kč Kč Kč Kč Kč 2500 Kč Kč Kč Kotel na peletky Kč Kč Kč Kč Kč Tepelné čerpadlo Kč Kč Kč Kč Kč Tabulka ukazuje jaký je roční finanční rozdíl mezi spotřebou energie u zateplené dřevostavby a nezateplené dřevostavby, následně je připočtena cena za technologii za rok Graf. 3 celkové náklady na výrobu tepelné energie za 1 rok u var.a a var.b Grafické znázornění celkových nákladů na tepelnou energii za rok 33

MěÚ Vejprty, Tylova 870/6, 431 91 Vejprty

MěÚ Vejprty, Tylova 870/6, 431 91 Vejprty 1. Úvodní část 1.1 Identifikační údaje Zadavatel Obchodní jméno: Statutární zástupce: Identifikační číslo: Bankovní spojení: Číslo účtu: MěÚ Vejprty, Tylova 87/6, 431 91 Vejprty Gavdunová Jitka, starostka

Více

REKONSTRUKCE VYTÁPĚNÍ ZŠ A TĚLOCVIČNY LOUČOVICE

REKONSTRUKCE VYTÁPĚNÍ ZŠ A TĚLOCVIČNY LOUČOVICE REKONSTRUKCE VYTÁPĚNÍ ZŠ A TĚLOCVIČNY LOUČOVICE Objekt Základní školy a tělocvičny v obci Loučovice Loučovice 231, 382 76 Loučovice Stupeň dokumentace: Dokumentace pro výběr zhotovitele (DVZ) Zodpovědný

Více

Integrace solárních soustav a kotlů na biomasu do soustav pro vytápění budov

Integrace solárních soustav a kotlů na biomasu do soustav pro vytápění budov SOLÁRNÍ TERMICKÉ SYSTÉMY A ZDROJE TEPLA NA BIOMASU MOŽNOSTI INTEGRACE A OPTIMALIZACE 29. října 2007, ČVUT v Praze, Fakulta strojní Integrace solárních soustav a kotlů na biomasu do soustav pro vytápění

Více

Zpráva o energetickém auditu Zdravotní středisko, Rohle

Zpráva o energetickém auditu Zdravotní středisko, Rohle Zpráva o energetickém auditu Zdravotní středisko, Rohle Snížení energetické náročnosti objektu zdravotního střediska v obci Rohle Vypracováno podle 9 zákona č. 406/2000 Sb. O hospodaření energií, ve znění

Více

Porovnání zdrojů energie v pasivním domu Celková dodaná energie, potřeba primární energie, Emise CO 2

Porovnání zdrojů energie v pasivním domu Celková dodaná energie, potřeba primární energie, Emise CO 2 Porovnání zdrojů energie v pasivním domu Celková dodaná energie, potřeba primární energie, Emise CO 2 Autor: Jakub Štěpánek Konzultace: Václav Šváb, ENVIC, o.s. Objekt: Jednopodlažní nepodsklepený rodinný

Více

Souhrnné podklady k evaluaci kritérií podle DIAGRAMu INTENSE

Souhrnné podklady k evaluaci kritérií podle DIAGRAMu INTENSE KRITERIUM 3 KRITERIUM 2 KRITERIUM 1 Souhrnné podklady k evaluaci kritérií podle DIAGRAMu INTENSE Celkové investiční náklady V našem případě celkové investiční náklady zahrnují: architektonické a technické

Více

ení spotřeby energie

ení spotřeby energie 1.3 Zhodnocení výchozího stavu Energetická bilance Kontrola stávaj vajících ch údajů: vstupy paliv a energie, změnu stavu zásob z paliv prodej energie fyzickým a právnickým osobám provozní ukazatele zdroje

Více

Miroslav Punčochář, Komenského 498, 262 42 Rožmitál p. Tř. Česká republika

Miroslav Punčochář, Komenského 498, 262 42 Rožmitál p. Tř. Česká republika BYTOVÁ PŘEDÁVACÍ STANICE SVOČ FST 2009 Miroslav Punčochář, Komenského 498, 262 42 Rožmitál p. Tř. Česká republika ABSTRAKT Tato práce se zabývá návrhem a posouzením optimálního zapojení předávací stanice

Více

ENERGETICKÝ AUDIT. Budovy občanské vybavenosti ul. Ráčkova čp. 1734, 1735, 1737 Petřvald Dům s pečovatelskou službou 3 budovy

ENERGETICKÝ AUDIT. Budovy občanské vybavenosti ul. Ráčkova čp. 1734, 1735, 1737 Petřvald Dům s pečovatelskou službou 3 budovy Kontaktní adresa SKAREA s.r.o. Poděbradova 2738/16 702 00 Ostrava Moravská Ostrava tel.: +420/596 927 122 www.skarea.cz e-mail: skarea@skarea.cz IČ: 25882015 DIČ: CZ25882015 Firma vedena u KS v Ostravě.

Více

PRŮKAZ ENERGETICKÉ NÁROČNOSTI BUDOVY rodinný dům, Mařenice č.p. 16, č.p. 21 (okr. Česká Lípa) parc. č. st. 128/1, 128/2 dle Vyhl.

PRŮKAZ ENERGETICKÉ NÁROČNOSTI BUDOVY rodinný dům, Mařenice č.p. 16, č.p. 21 (okr. Česká Lípa) parc. č. st. 128/1, 128/2 dle Vyhl. PRŮKAZ ENERGETICKÉ NÁROČNOSTI BUDOVY rodinný dům, Mařenice č.p. 16, č.p. 21 (okr. Česká Lípa) parc. č. st. 128/1, 128/2 dle Vyhl. 148/2007 Sb Zadavatel: Vypracoval: František Eis Dubická 1804, Česká Lípa,

Více

1. IDENTIFIKAČNÍ ÚDAJE

1. IDENTIFIKAČNÍ ÚDAJE REKONSTRUKCE BYTU NA HUTÍCH STUPEŇ DSP TECHNICKÁ ZPRÁVA-VYTÁPĚNÍ OBSAH 1. IDENTIFIKAČNÍ ÚDAJE... 1 2. ÚVOD... 1 3. VÝCHOZÍ PODKLADY... 2 4. VÝPOČTOVÉ HODNOTY KLIMATICKÝCH POMĚRŮ... 2 5. TEPELNÁ BILANCE...

Více

Energetická náročnost budov

Energetická náročnost budov Energetická náročnost budov Energetická náročnost budov - právní rámec směrnice 2002/91/EC, o energetické náročnosti budov Prováděcí dokument představuje vyhláška 148/2007 Sb., o energetické náročnosti

Více

Praktická aplikace metodiky hodnocení energetické náročnosti budov ŠKOLA. PŘÍLOHA 4 protokol průkazu energetické náročnosti budovy

Praktická aplikace metodiky hodnocení energetické náročnosti budov ŠKOLA. PŘÍLOHA 4 protokol průkazu energetické náročnosti budovy Příloha č. 4 k vyhlášce č. xxx/26 Sb. Protokol pro průkaz energetické náročnosti budovy a) Identifikační údaje budovy Adresa budovy (místo, ulice, číslo, PSČ): ZŠ Dušejov, č.p. 8, 88 Účel budovy: základní

Více

Analýza využitelnosti EPC

Analýza využitelnosti EPC Analýza využitelnosti EPC pro areál: Nemocnice s poliklinikou Česká Lípa, a.s. Zpracovatel: AB Facility a.s. Divize ENERGY e-mail: energy@abfacility.com http://www.abfacility.com Praha 01/ 2015 Identifikační

Více

Protokol k průkazu energetické náročnosti budovy

Protokol k průkazu energetické náročnosti budovy Protokol k průkazu energetické náročnosti budovy (1) Protokol a) identifikační údaje budovy Adresa budovy (místo, ulice, číslo, PSČ): Účel budovy: BYTOVÝ DŮM NA p.č. 2660/1, 2660/5. 2660/13, k.ú. ČESKÉ

Více

Praktická aplikace metodiky hodnocení energetické náročnosti budov RODINNÝ DŮM. PŘÍLOHA 4 protokol průkazu energetické náročnosti budovy

Praktická aplikace metodiky hodnocení energetické náročnosti budov RODINNÝ DŮM. PŘÍLOHA 4 protokol průkazu energetické náročnosti budovy Příloha č. 4 k vyhlášce č. xxx/26 Sb. Protokol pro průkaz energetické náročnosti budovy a) Identifikační údaje budovy Adresa budovy (místo, ulice, číslo, PSČ): Rodinný dům Účel budovy: Rodinný dům Kód

Více

Technické a cenové řešení výstavby a provozu nového zdroje tepla (plynové kotelny) pro dům Barunčina 1853/40, Praha 12 aktualizace původní nabídky.

Technické a cenové řešení výstavby a provozu nového zdroje tepla (plynové kotelny) pro dům Barunčina 1853/40, Praha 12 aktualizace původní nabídky. Technické a cenové řešení výstavby a provozu nového zdroje tepla (plynové kotelny) pro dům Barunčina 1853/40, Praha 12 aktualizace původní nabídky. Vypracováno pro: Bytové družstvo Barunčina 1849 1853

Více

POROTHERM pro nízkoenergetické bydlení

POROTHERM pro nízkoenergetické bydlení POROTHERM pro nízkoenergetické bydlení Petr Veleba Úvod do globálního zateplování 1 TEPELNÁ OCHRANA BUDOV NOVÁ SMĚRNICE EU, pohled do budoucnosti? PRŮKAZ ENERGETICKÉ NÁROČNOSTI BUDOVY praxe, mýty, realita.

Více

MÉNĚ ENERGIE VÍCE KOMFORTU aneb energie kolem nás

MÉNĚ ENERGIE VÍCE KOMFORTU aneb energie kolem nás MÉNĚ ENERGIE VÍCE KOMFORTU aneb energie kolem nás CO JE TO SPOTŘEBA1 KWH ENERGIE? 1 kwh představuje: 6,5 hod. puštěné televize o příkonu 150 W 1 hodinu žehlení vyprání 5 kg prádla (1 prací cyklus) uvaření

Více

Průkaz energetické náročnosti budovy podle vyhlášky 148/2007 Sb.

Průkaz energetické náročnosti budovy podle vyhlášky 148/2007 Sb. Průkaz energetické náročnosti budovy podle vyhlášky 148/2007 Sb. A Adresa budovy (místo, ulice, popisné číslo, PSČ): Účel budovy: Kód obce: Kód katastrálního území: Parcelní číslo: Vlastník nebo společenství

Více

PRŮKAZ ENERGETICKÉ NÁROČNOSTI BUDOVY rodinný dům, Hraničná parc. č. 12/4 (67) dle Vyhl. 148/2007 Sb

PRŮKAZ ENERGETICKÉ NÁROČNOSTI BUDOVY rodinný dům, Hraničná parc. č. 12/4 (67) dle Vyhl. 148/2007 Sb PRŮKAZ ENERGETICKÉ NÁROČNOSTI BUDOVY rodinný dům, Hraničná parc. č. 12/4 (67) dle Vyhl. 148/2007 Sb Zadavatel: Jiří a Markéta Matějovic Energetický auditor: ING. PETR SUCHÁNEK, PH.D. energetický auditor

Více

Snížení energetické náročnosti budovy TJ Sokol Mšeno instalace nového zdroje vytápění Výměna zdroje tepla

Snížení energetické náročnosti budovy TJ Sokol Mšeno instalace nového zdroje vytápění Výměna zdroje tepla Snížení energetické náročnosti budovy TJ Sokol Mšeno instalace nového zdroje vytápění Výměna zdroje tepla Zodpovědný projektant: Ing. Luboš Knor Vypracoval: Ing. Daniela Kreisingerová Stupeň dokumentace:

Více

499/2006 Sb. VYHLÁŠKA. o dokumentaci staveb

499/2006 Sb. VYHLÁŠKA. o dokumentaci staveb 499/2006 Sb. VYHLÁŠKA ze dne 10. listopadu 2006 o dokumentaci staveb Ministerstvo pro místní rozvoj stanoví podle 193 zákona č. 183/2006 Sb., o územním plánování a stavebním řádu (stavební zákon): 1 Úvodní

Více

PRŮKAZ ENERGETICKÉ NÁROČNOSTI BUDOVY rodinný dům, Třeboc 83, 270 54 parc. č. 103 dle Vyhl. 148/2007 Sb

PRŮKAZ ENERGETICKÉ NÁROČNOSTI BUDOVY rodinný dům, Třeboc 83, 270 54 parc. č. 103 dle Vyhl. 148/2007 Sb PRŮKAZ ENERGETICKÉ NÁROČNOSTI BUDOVY rodinný dům, Třeboc 83, 270 54 parc. č. 103 dle Vyhl. 148/2007 Sb Zadavatel: Lukáš Kubín, Žerotínova 1144/40, Praha 3, 130 00 Energetický auditor: ING. PETR SUCHÁNEK,

Více

Vytápění BT01 TZB II cvičení

Vytápění BT01 TZB II cvičení CZ.1.07/2.2.00/28.0301 Středoevropské centrum pro vytváření a realizaci inovovaných technicko-ekonomických studijních programů Vytápění BT01 TZB II cvičení Cvičení 6: Návrh zdroje tepla pro RD Zadání V

Více

Technická zařízení budov zdroje energie pro dům

Technická zařízení budov zdroje energie pro dům Technická zařízení budov zdroje energie pro dům (Rolf Disch SolarArchitektur) Zdroje energie dělíme na dva základní druhy. Toto dělení není příliš šťastné, ale protože je už zažité, budeme jej používat

Více

BUDOVY. Bytový dům Okružní p.č. 372, Slaný 274 01

BUDOVY. Bytový dům Okružní p.č. 372, Slaný 274 01 PRŮKAZ ENERGETICKÉ NÁROČNOSTI BUDOVY (dle vyhl. č. 78/2013 Sb. o energetické náročnosti budovy) Bytový dům Okružní p.č. 372, Slaný 274 01 Předkládá: Ing. Pavel KOLOUCH oprávnění MPO č. 0999 E: kolouch.pavel@atlas.cz

Více

TECHNICKÁ ZPRÁVA - VYTÁPĚNÍ

TECHNICKÁ ZPRÁVA - VYTÁPĚNÍ D.1.4.d.1.1 TECHNICKÁ ZPRÁVA - VYTÁPĚNÍ Akce: PASÁŽ A NOVOSTAVBA KOMUNIKAČNÍHO JÁDRA DOMU Č. 49, JAROMĚŘ Objekt: Část: Vypracoval: Archívní číslo: Jaroměř Kavárna Vytápění Ing. Jiří Hájek P13P138 Datum:

Více

01 ZÁKLADNÍ PRINCIPY. www.pasivnidomy.cz. Radíme a vzděláváme

01 ZÁKLADNÍ PRINCIPY. www.pasivnidomy.cz. Radíme a vzděláváme 01 ZÁKLADNÍ PRINCIPY Radíme a vzděláváme Centrum pasivního domu je neziskovým sdružením právnických i fyzických osob, které vzniklo za účelem podpory a propagace standardu pasivního domu a za účelem zajištění

Více

NÁVRH ZPRÁVY. CS Jednotná v rozmanitosti CS. Evropský parlament 2016/2058(INI) 20.4.2016. o strategii EU pro vytápění a chlazení (2016/2058(INI))

NÁVRH ZPRÁVY. CS Jednotná v rozmanitosti CS. Evropský parlament 2016/2058(INI) 20.4.2016. o strategii EU pro vytápění a chlazení (2016/2058(INI)) Evropský parlament 2014-2019 Výbor pro průmysl, výzkum a energetiku 2016/2058(INI) 20.4.2016 NÁVRH ZPRÁVY o strategii EU pro vytápění a chlazení (2016/2058(INI)) Výbor pro průmysl, výzkum a energetiku

Více

obnovitelné zdroje ČVUT v Praze Fakulta stavební Katedra technických zařízení budov

obnovitelné zdroje ČVUT v Praze Fakulta stavební Katedra technických zařízení budov ČVUT v Praze Fakulta stavební Katedra technických zařízení budov TZ1 Vytápění Zdroje tepla - elektrické vytápění, obnovitelné zdroje 1 Elektrická energie - výroba Situace v ČR 55% uhelné 42% jádro 3% vodní

Více

Tipy na úspory energie v domácnosti

Tipy na úspory energie v domácnosti Tipy na úspory energie v domácnosti Kategorie BYDLÍM V NOVÉM RODINNÉM DOMĚ Bez investic Větrání a únik tepla Větrejte krátce, ale intenzivně. Při rychlém intenzivním vyvětrání se vzduch ochladí, ale stěny

Více

Průkaz energetické náročnosti budovy podle vyhlášky 148/2007 Sb.

Průkaz energetické náročnosti budovy podle vyhlášky 148/2007 Sb. Průkaz energetické náročnosti budovy podle vyhlášky 148/2007 Sb. A Identifikační údaje budovy Adresa budovy (místo, ulice, popisné číslo, PSČ): Nová Karolína Ostrava, Objekt 1.B.006 Blok u Galerijní třídy

Více

ANALÝZA VARIANT NÁVRHU ENERGETICKÝCH OPATŘENÍ NA ZÁKLADĚ ENERGETICKÉHO AUDITU ANALYSIS OF POSSIBLE MEASURES FOR REDUCING OF ENERGY CONSUMPTION

ANALÝZA VARIANT NÁVRHU ENERGETICKÝCH OPATŘENÍ NA ZÁKLADĚ ENERGETICKÉHO AUDITU ANALYSIS OF POSSIBLE MEASURES FOR REDUCING OF ENERGY CONSUMPTION 143 ANALÝZA VARIANT NÁVRHU ENERGETICKÝCH OPATŘENÍ NA ZÁKLADĚ ENERGETICKÉHO AUDITU ANALYSIS OF POSSIBLE MEASURES FOR REDUCING OF ENERGY CONSUMPTION ZDEŇKA PERUTKOVÁ - JAN MAREČEK Abstract This study presents

Více

Vzduchotechnika. Tepelná bilance řešené části objektu: Bilance spotřeby energie a paliva:

Vzduchotechnika. Tepelná bilance řešené části objektu: Bilance spotřeby energie a paliva: TECHNICKÁ ZPRÁVA k projektové dokumentaci zařízení pro vytápění staveb Projekt: OBLASTNÍ NEMOCNICE NÁCHOD- Rekonstrukce operačních sálů ortopedie Investor: Královehradecký kraj, Pivovarské nám. 1245 Stupeň

Více

Nízkoenergetický dům EPS, Praha východ

Nízkoenergetický dům EPS, Praha východ PŘÍKLAD 19 Název stavby: Generální projektant: Investor, uživatel: Nízkoenergetický dům EPS, Praha východ Ing. arch. Josef Smola Soukromá osoba, postaveno s podporou Sdružení EPS v ČR Realizace: červen

Více

Rekonstrukce bytového domu v Dubňanech projekt a zkušenosti z užívání domu

Rekonstrukce bytového domu v Dubňanech projekt a zkušenosti z užívání domu "Budovy s takmer nulovou potrebou energie fikcia alebo blízka budúcnosť?" Rekonstrukce bytového domu v Dubňanech projekt a zkušenosti z užívání domu Zdeněk Kaňa Ing. arch. David Vašíček Martin Jindrák

Více

ohřevu teplé vody pro rodinný důmd

ohřevu teplé vody pro rodinný důmd VŠB TU Ostrava Fakulta strojní Katedra Energetiky Kombinovaný systém m vytápění a ohřevu teplé vody pro rodinný důmd Obhajoba diplomové práce Bc. Jana Marie Navrátilov tilová 8.6.2010 Popis objektu - Potštát

Více

Podíl dodané energie připadající na [%]: Větrání 0,6 06.04.2020. Jméno a příjmení : Ing. Jan Chvojka. Osvědčení č. : 0440

Podíl dodané energie připadající na [%]: Větrání 0,6 06.04.2020. Jméno a příjmení : Ing. Jan Chvojka. Osvědčení č. : 0440 PRŮKAZ ENERGETICKÉ NÁROČNOSTI BUDOVY Typ budovy, místní označení: novostavba rodinného domu Adresa budovy: bytová zástavba Nová Cihelna Celková podlahová plocha A c : 158.3 m 2

Více

STUDIE DISPOZIČNÍHO ŘEŠENÍ OBJEKTU. DSZP Kavkaz A, Vysoká 735/9, VEJPRTY

STUDIE DISPOZIČNÍHO ŘEŠENÍ OBJEKTU. DSZP Kavkaz A, Vysoká 735/9, VEJPRTY STUDIE DISPOZIČNÍHO ŘEŠENÍ OBJEKTU DSZP Kavkaz A, Vysoká 735/9, VEJPRTY Září 2013 O B S A H : 1. Úvod str. 3 2. Popis objektu str. 3 3. Stávající využití objektu str. 4 4. Budoucí využití objektu str.

Více

TECHNICKÁ ZPRÁVA VYTÁPĚNÍ

TECHNICKÁ ZPRÁVA VYTÁPĚNÍ TECHNICKÁ ZPRÁVA VYTÁPĚNÍ Obsah: 1.0 Koncepce zásobení teplem 2.0 Systém vytápění 3.0 Tepelné ztráty 4.0 Zdroj tepla 5.0 Pojistné zařízení 6.0 Topné okruhy 7.0 Rozvod potrubí 8.0 Topná plocha 9.0 Doplňování

Více

Akumulace tepla do vody. Havlíčkův Brod

Akumulace tepla do vody. Havlíčkův Brod Akumulace tepla do vody Havlíčkův Brod Proč a kdy potřebujeme akumulovat energii? Období přebytku /možnosti výroby/ energie Přenos v čase Období nedostatku /potřeby/ energie Akumulace napomáhá srovnat

Více

Základní škola Hořovice Svatopluka Čecha 455. Energetický audit

Základní škola Hořovice Svatopluka Čecha 455. Energetický audit Hořovice Svatopluka Čecha 455 Energetický audit Aktualizace 2012 dle změny ČSN 73 0540-10/2011 OBSAH: 1. Identifikační údaje 3 1.1. Identifikace zadavatele 3 1.2. Identifikace majitele předmětu energetického

Více

PÍSEMNÁ ZPRÁVA O ENERGETICKÉM AUDITU

PÍSEMNÁ ZPRÁVA O ENERGETICKÉM AUDITU PÍSMNÁ PRÁVA O NRGTICKÉM AUDITU MATŘSKÁ ŠKOLA DUBIC DUBIC 79, 4 2 DUBIC Vypracoval: PRO KO-POINT, s.r.o.; Ing. Jaromír Štancl Číslo oprávnění: 765 PRO KO POINT, s.r.o. Datum: 1/213 PRO KO-POINT s.r.o.

Více

ÚZEMNÍ ENERGETICKÁ KONCEPCE MORAVSKOSLEZSKÉHO KRAJE

ÚZEMNÍ ENERGETICKÁ KONCEPCE MORAVSKOSLEZSKÉHO KRAJE ÚZEMNÍ ENERGETICKÁ KONCEPCE MORAVSKOSLEZSKÉHO KRAJE 1. SOUHRNY, ZÁSADY PRO REALIZACI NAVRŽENÉ STRATEGIE 2. ZÁSADY PRO ÚZEMNÍ PLÁNOVÁNÍ zákazník Moravskoslezský kraj stupeň IV. zakázkové číslo 4873-900-2

Více

Řešení pro cihelné zdivo. Navrhujeme nízkoenergetický a pasivní dům

Řešení pro cihelné zdivo. Navrhujeme nízkoenergetický a pasivní dům Řešení pro cihelné zdivo Navrhujeme nízkoenergetický a pasivní dům Řešení pro cihelné zdivo Úvod Nízkoenergetický a pasivní cihlový dům Porotherm Moderní dům s ověřenými vlastnostmi Při navrhování i realizaci

Více

Zdroje energie a tepla

Zdroje energie a tepla ZDROJE ENERGIE A TEPLA - II 173 Zdroje energie a tepla Energonositel Zdroj tepla Distribuce tepla Sdílení tepla do prostoru Paliva Uhlí Zemní plyn Bioplyn Biomasa Energie prostředí Solární energie Geotermální

Více

Snížení energetické náročnosti objektu základní školy ve městě Rajhrad včetně výměny zdroje vytápění. Projektová dokumentace pro výměnu zdroje tepla

Snížení energetické náročnosti objektu základní školy ve městě Rajhrad včetně výměny zdroje vytápění. Projektová dokumentace pro výměnu zdroje tepla Snížení energetické náročnosti objektu základní školy ve městě Rajhrad včetně výměny zdroje vytápění Projektová dokumentace pro výměnu zdroje tepla Stupeň dokumentace: Dokumentace pro Výběr Zhotovitele

Více

Výpočet tepelných ztrát rodinného domku

Výpočet tepelných ztrát rodinného domku Výpočet tepelných ztrát rodinného domku Výpočet tepelných ztrát rodinného domku Výpočet tepelných zrát je vázan na normu ČSN 060210/1994 "Výpočet tepelných ztrát budov při ústředním vytápěním. K vyrovnání

Více

Kompetenční centrum Kuřim kód zakázky: 077-10-20-3

Kompetenční centrum Kuřim kód zakázky: 077-10-20-3 OBSAH: 1. ZADÁNÍ PROJEKTU... 2 2. PODKLADY... 2 2.1. Výkresová dokumentace... 2 2.2. Průzkum... 2 3. TEPELNÉ ZTRÁTY A POTŘEBA TEPLA... 2 3.3. Klimatické poměry... 2 3.4. Vnitřní výpočtové teploty:... 2

Více

Kalksandstein (zdicí materiál, pěn. sklo, zajištění certifikace u PHI Darmstadt)

Kalksandstein (zdicí materiál, pěn. sklo, zajištění certifikace u PHI Darmstadt) PŘÍKLAD 18 Název stavby: Projekt k SP: Pasivní dům Jenišov Ing. Štěpánka Hamatová Projekt vzduchotechniky: Mgr. David Koranda Stavební fyzika: Ing. Jiří Vápeník, Ing.Martin Konečný Dodavatel stav. materiálů:

Více

Efektivní financování úspor energie www.energy-benefit.cz. budovách. FOR ARCH 2008, 26. září 2008 Ing. Libor Novák

Efektivní financování úspor energie www.energy-benefit.cz. budovách. FOR ARCH 2008, 26. září 2008 Ing. Libor Novák Efektivní financování úspor energie www.energy-benefit.cz Využití sluneční energie v budovách Dotační zdroje pro instalace solárních zařízení FOR ARCH 2008, 26. září 2008 Ing. Libor Novák Efektivní financování

Více

Budovy s téměř nulovou spotřebou energie

Budovy s téměř nulovou spotřebou energie ČVUT v Praze Fakulta stavební Katedra technických zařízení budov Budovy s téměř nulovou spotřebou energie prof. Ing. Karel Kabele, CSc. Miroslav Urban Michal Kabrhel Daniel Adamovský Stanislav Frolík KLIMATICKÉ

Více

Výzva k podání nabídky. Forma zakázky Veřejná zakázka malého rozsahu na stavební práce není zadávána dle zákona o veřejných zakázkách.

Výzva k podání nabídky. Forma zakázky Veřejná zakázka malého rozsahu na stavební práce není zadávána dle zákona o veřejných zakázkách. Výzva k podání nabídky Název zakázky Výměna zdroje vytápění v budově školy, školky a úřadu, čp. 126 Forma zakázky Veřejná zakázka malého rozsahu na stavební práce není zadávána dle zákona o veřejných zakázkách.

Více

Jak bydlet v úsporném domě aneb 7.000,- Kč za vytápění ročně

Jak bydlet v úsporném domě aneb 7.000,- Kč za vytápění ročně Jak bydlet v úsporném domě aneb 7.000,- Kč za vytápění ročně Postavení vlastního domu je v životě každého člověka významným okamžikem a dům poté užíváme většinou po zbytek našeho života. O to více jsou

Více

PRŮKAZ ENERGETICKÉ NÁROČNOSTI BUDOVY rodinný dům, Horosedly parc. č. st. 26 dle Vyhl. 148/2007 Sb

PRŮKAZ ENERGETICKÉ NÁROČNOSTI BUDOVY rodinný dům, Horosedly parc. č. st. 26 dle Vyhl. 148/2007 Sb PRŮKAZ ENERGETICKÉ NÁROČNOSTI BUDOVY rodinný dům, Horosedly parc. č. st. 26 dle Vyhl. 148/2007 Sb Zadavatel: Anna Polívková, Pečice 65, 262 31 Příbram Energetický auditor: ING. PETR SUCHÁNEK, PH.D. energetický

Více

TZB - Vytápění. Daniel Macek Katedra ekonomiky a řízení ve stavebnictví, Fakulta stavební, ČVUT v Praze

TZB - Vytápění. Daniel Macek Katedra ekonomiky a řízení ve stavebnictví, Fakulta stavební, ČVUT v Praze TZB - Vytápění Daniel Macek Katedra ekonomiky a řízení ve stavebnictví, Fakulta stavební, ČVUT v Praze Volba paliva pro vytápění Zemní plyn nejrozšířenější palivo v ČR relativně čistý zdroj tepelné energie

Více

PROJEKTOVÁ DOKUMENTACE PRO INSTALACI ÚSTŘEDNÍHO VYTÁPĚNÍ PROVÁDĚCÍ PROJEKT ZDROJ TEPLA TEPELNÉ ČERPADLO VZDUCH VODA

PROJEKTOVÁ DOKUMENTACE PRO INSTALACI ÚSTŘEDNÍHO VYTÁPĚNÍ PROVÁDĚCÍ PROJEKT ZDROJ TEPLA TEPELNÉ ČERPADLO VZDUCH VODA PROJEKTOVÁ DOKUMENTACE PRO INSTALACI ÚSTŘEDNÍHO VYTÁPĚNÍ - PROVÁDĚCÍ PROJEKT ZDROJ TEPLA TEPELNÉ ČERPADLO VZDUCH VODA (OBEC OKROUHLO) Obsah Obsah...2 1 Úvod...3 2 Výchozí podklady...3 3 Tepelně technické

Více

Středoškolská technika 2012 NÍZKOENERGETICKÉ A PASIVNÍ DOMY

Středoškolská technika 2012 NÍZKOENERGETICKÉ A PASIVNÍ DOMY Středoškolská technika 2012 Setkání a prezentace prací středoškolských studentů na ČVUT NÍZKOENERGETICKÉ A PASIVNÍ DOMY Lucie Novotná Střední zdravotnická škola Máchova 400, Benešov Úvod Toto téma jsem

Více

1811/19 TECHNICKÁ ZPRÁVA

1811/19 TECHNICKÁ ZPRÁVA Novostavba rodinného domu v Dobřichovicích TECHNICKÁ ZPRÁVA F.3.01. Vytápění V Praze, červenec 2011 1 Ing. Vladimír Cvejn 1. Identifikační údaje Název akce: Novostavba rodinného domu v Dobřichovicích,

Více

Portfolio návrhu. Nová radnice pro Prahu 7 ANOT ACE AUTORSKY POPIS PROJEKTU. a) urbanisticko-architektonické řešení. Urbanismus.

Portfolio návrhu. Nová radnice pro Prahu 7 ANOT ACE AUTORSKY POPIS PROJEKTU. a) urbanisticko-architektonické řešení. Urbanismus. Portfolio návrhu Nová radnice pro Prahu 7 ANOT ACE Návrh přetváří stávající administrativní budovu na moderního reprezentanta transparentní státní správy. Dominantu radnici vtiskne symbolika nárožní věže

Více

ENERGETICKÝ AUDIT. ENERGETICKY VĚDOMÁ MODERNIZACE PANELOVÉ BUDOVY CHABAŘOVICKÁ 1321 1321 --1326 Praha 8 BUDOV A BUDOV

ENERGETICKÝ AUDIT. ENERGETICKY VĚDOMÁ MODERNIZACE PANELOVÉ BUDOVY CHABAŘOVICKÁ 1321 1321 --1326 Praha 8 BUDOV A BUDOV ENERGETICKÝ AUDIT ENERGETICKY ENERGETICKY VĚDOMÁ VĚDOMÁ MODERNIZACE MODERNIZACE ENERGETICKÉHO ENERGETICKÉHO HOSPODÁŘSTVÍ HOSPODÁŘSTVÍ A BUDOV BUDOV ENERGETICKY VĚDOMÁ MODERNIZACE PANELOVÉ BUDOVY CHABAŘOVICKÁ

Více

Průvodní zpráva Souhrnná technická zpráva

Průvodní zpráva Souhrnná technická zpráva Průvodní zpráva Souhrnná technická zpráva 1 Obsah: A. Průvodní zpráva A.1 Identifikační údaje stavby a stavebníka A.2 Základní údaje A.2.1 A.2.2 A.2.3 A.2.4 Základní údaje charakterizující stavbu a její

Více

Projektová dokumentace pro oblast podporyinstalace solárně termických panelů pro ohřev teplé vody

Projektová dokumentace pro oblast podporyinstalace solárně termických panelů pro ohřev teplé vody Projektová dokumentace pro oblast podporyinstalace solárně termických panelů pro ohřev teplé vody 1. Technická zpráva: Datum : 11/.2013 autorizovaný inženýr č.1003613 Údaje o stavbě: Název stavby: Dům

Více

Problematika oceňování energeticky úsporných staveb

Problematika oceňování energeticky úsporných staveb Bankovní institut vysoká škola Praha Katedra podnikání a oceňování Problematika oceňování energeticky úsporných staveb Bakalářská práce Autor: Lenka Valová Oceňování majetku Vedoucí práce: doc. Ing. Jan

Více

T:257810072,736771783 Kralupy nad Vltavou část projektu - Vytápění cizek_tzb@volny.cz. F1.4a VYTÁPĚNÍ TECHNICKÁ ZPRÁVA

T:257810072,736771783 Kralupy nad Vltavou část projektu - Vytápění cizek_tzb@volny.cz. F1.4a VYTÁPĚNÍ TECHNICKÁ ZPRÁVA Stavba : STAVEBNÍ ÚPRAVY, PŘÍSTAVBA A NÁSTAVBA OBJEKTU Č.P. 139 Místo stavby : st.p.č. 189, k.ú. Kralupy nad Vltavou Stupeň projektu : DOKUMENTACE PRO PROVÁDĚNÍ STAVBY ( DPS ) Vypracoval : PARÉ Č. Ing.Vladimír

Více

ţ ţ Průkaz ENB podle vyhlášky č.78/2013 Sb. PROTOKOL PRŮKAZU Účel zpracování průkazu

ţ ţ Průkaz ENB podle vyhlášky č.78/2013 Sb. PROTOKOL PRŮKAZU Účel zpracování průkazu Průkaz ENB podle vyhlášky č.78/213 Sb. Průkaz 213 v.4.1.3 PROTECH spol. s r.o. 2926 Ing.Milan Olszar Bystřice Datum tisku: 7. 9. 215 Zakázka: Slunná 373374, Šaratice Archiv: 215/11 PROTOKOL PRŮKAZU Účel

Více

Výměna zdroje vytápění v objektu základní školy v městysu Ostrovu Macochy. Projektová dokumentace pro výměnu zdroje tepla

Výměna zdroje vytápění v objektu základní školy v městysu Ostrovu Macochy. Projektová dokumentace pro výměnu zdroje tepla Výměna zdroje vytápění v objektu základní školy v městysu Ostrovu Macochy Projektová dokumentace pro výměnu zdroje tepla Stupeň dokumentace: Dokumentace pro Výběr Zhotovitele (DVZ) v rozsahu Dokumentace

Více

Integrace solárních soustav do bytových domů Bořivoj Šourek

Integrace solárních soustav do bytových domů Bořivoj Šourek Integrace solárních soustav do bytových domů Bořivoj Šourek Siemens, s.r.o., Building Technologies Ústav techniky prostředí Fakulta strojní, ČVUT v Praze Solární tepelné soustavy pro BD Typy solárních

Více

Obr. č. 1: Pasivní dům Plzeň-Božkov, jihozápadní pohled

Obr. č. 1: Pasivní dům Plzeň-Božkov, jihozápadní pohled PŘÍKLAD 17 Název stavby: Autor návrhu: Investor: Zhotovitel: Pasivní dům v Plzni Božkově Ing. arch. Martin Spěváček, Plzeň SETRITE, s.r.o., Ve Višňovce 21, 326 00 Plzeň-Božkov SETRITE, s.r.o., Ve Višňovce

Více

ENS. Nízkoenergetické a pasivní stavby. Přednáška č. 11. Vysoká škola technická a ekonomická V Českých Budějovicích

ENS. Nízkoenergetické a pasivní stavby. Přednáška č. 11. Vysoká škola technická a ekonomická V Českých Budějovicích Vysoká škola technická a ekonomická V Českých Budějovicích ENS Nízkoenergetické a pasivní stavby Přednáška č. 11 Přednášky: Ing. Michal Kraus, Ph.D. Cvičení: Ing. Michal Kraus, Ph.D. Garant: Ing. Michal

Více

09 ÚSPORNÉ ZDROJE ENERGIE

09 ÚSPORNÉ ZDROJE ENERGIE Radíme a vzděláváme Centrum pasivního domu je neziskovým sdružením právnických i fyzických osob, které vzniklo za účelem podpory a propagace standardu pasivního domu a za účelem zajištění kvality pasivních

Více

průkaz energetické náročnosti budovy

průkaz energetické náročnosti budovy 2015-1205-TZ Velešovice, 10. 2. 2015 průkaz energetické náročnosti budovy Bytový dům Mišákova 452/12 779 00 Olomouc - Povel zpracovatel Ing. Pavel Šuster Velešovice 344 683 01 Rousínov Tel.: - +420 739

Více

Vyhláška č. xx/2012 Sb., o energetické náročnosti budov. ze dne 2012, Předmět úpravy

Vyhláška č. xx/2012 Sb., o energetické náročnosti budov. ze dne 2012, Předmět úpravy Verze 2. 3. 202 Vyhláška č. xx/202 Sb., o energetické náročnosti budov ze dne 202, Ministerstvo průmyslu a obchodu (dále jen ministerstvo ) stanoví podle 4 odst. 5 zákona č. 406/2000 Sb., o hospodaření

Více

Operační program životní prostředí podpora projektů v oblasti ochrany ovzduší, obnovitelných zdrojů energie a energetických úspor 8.10.

Operační program životní prostředí podpora projektů v oblasti ochrany ovzduší, obnovitelných zdrojů energie a energetických úspor 8.10. Operační program životní prostředí podpora projektů v oblasti ochrany ovzduší, obnovitelných zdrojů energie a energetických úspor 8.10.2007 1 Obsah Operační program životní prostředí stav přípravy Typy

Více

Kontrolní hodnoty, ceny tepelné energie a energetické ukazatele

Kontrolní hodnoty, ceny tepelné energie a energetické ukazatele Kontrolní hodnoty, ceny tepelné energie a energetické ukazatele ve výkazu 31, 32-CL a) Kontrolní hodnoty a ceny tepelné energie podle úrovně předání (budou vypočteny automaticky) V posledních sloupcích

Více

BIOSUNTEC HOME KOMFORTNÍ A LEVNÉ ENERGETICKÉ ŘEŠENÍ PRO DŮM

BIOSUNTEC HOME KOMFORTNÍ A LEVNÉ ENERGETICKÉ ŘEŠENÍ PRO DŮM BIOSUNTEC HOME KOMFORTNÍ A LEVNÉ ENERGETICKÉ ŘEŠENÍ PRO DŮM 1) za co platíme (náklady na energie) 2) jak funguje dům z hlediska vytápění 3) problematika distribuce tepla 4) vyřešení ohřevu vody 5) problematika

Více

OTOPNÁ TĚLESA Rozdělení otopných těles 1. Lokální tělesa 2. Konvekční tělesa Článková otopná tělesa

OTOPNÁ TĚLESA Rozdělení otopných těles 1. Lokální tělesa 2. Konvekční tělesa Článková otopná tělesa OTOPNÁ TĚLESA Rozdělení otopných těles Stejně jako celé soustavy vytápění, tak i otopná tělesa dělíme na lokální tělesa a tělesa ústředního vytápění. Lokální tělesa přeměňují energii v teplo a toto předávají

Více

Příloha č. 1. Přehled nákladů na výtapění při spotřebě tepla 80 GJ

Příloha č. 1. Přehled nákladů na výtapění při spotřebě tepla 80 GJ Příloha č. 1 Přehled nákladů na výtapění při spotřebě tepla 80 GJ Druh paliva Výhřevnost Cena paliva Spalovací zařízení Účinnost Cena tepla Cena tepla (MJ/kg) (Kč) - průměrná (%) (Kč/kWh) (Kč/GJ) hnědé

Více

Základní vzor žádosti o poskytnutí dotace v rámci Prioritní osy 2, Specifický cíl 2.1

Základní vzor žádosti o poskytnutí dotace v rámci Prioritní osy 2, Specifický cíl 2.1 Základní vzor žádosti o poskytnutí dotace v rámci Prioritní osy 2, Specifický cíl 2.1 Snížit emise z lokálního vytápění domácností podílející se na expozici obyvatelstva nadlimitním koncentracím znečišťujících

Více

DOPLŇUJÍCÍ PROTOKOL HODNOCENÉ BUDOVY

DOPLŇUJÍCÍ PROTOKOL HODNOCENÉ BUDOVY program ERGETIKA verze 2.0.2 DOPLŇUJÍCÍ PROTOKOL HODNOCENÉ BUDOVY Způsob výpočtu: - Identifikační číslo průkazu: 19-2013 Identifikační údaje o zpracovateli průkazu - energetickém specialistovi: název zpracovatele:

Více

Společný předpis. Podmínky pro připojení na soustavu centralizovaného zásobování teplem pro město Štětí

Společný předpis. Podmínky pro připojení na soustavu centralizovaného zásobování teplem pro město Štětí Společný předpis Podmínky pro připojení na soustavu centralizovaného zásobování teplem pro město Štětí 2015 Obsah 1. Dodavatel tepla 2. Účel připojovacích podmínek (PP) 3. Pojmy a zkratky 4. Popis soustavy

Více

RODINNÉ DOMY v rámci 3. výzvy k podávání žádostí

RODINNÉ DOMY v rámci 3. výzvy k podávání žádostí z podprogramu Nová zelená úsporám RODINNÉ DOMY v rámci 3. výzvy k podávání žádostí Závazné pokyny pro žadatele a příjemce podpory z podprogramu Nová zelená úsporám RODINNÉ DOMY v rámci 3. výzvy k podávání

Více

Doba Amortizace Opatření

Doba Amortizace Opatření Doba Amortizace Opatření Amortizace jednotlivých opatření u Objektů V energetickém auditu jsou hodnocena jednotlivá opatření i jednotlivě. To nám dává možnost udělat si přehled o návratnosti opatření jako

Více

Obnovitelné zdroje energie Otázky k samotestům

Obnovitelné zdroje energie Otázky k samotestům ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta stavební Obnovitelné zdroje energie Otázky k samotestům Ing. Michal Kabrhel, Ph.D. Praha 2011 Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti

Více

ENERGETICKÝ AUDIT. Budova Diakonie Vsetín č. p. 1864 - Domov pro seniory Vsetín Ohrada

ENERGETICKÝ AUDIT. Budova Diakonie Vsetín č. p. 1864 - Domov pro seniory Vsetín Ohrada ENERGETICKÝ AUDIT Budova Diakonie č. p. 1864 Vsetín Domov pro seniory Vsetín Ohrada - 1 - ENERGETICKÝ AUDIT Vypracováno dle zákona O hospodaření energií č.406/2000 Sb. 9 a vyhlášky 213/2001 Sb. a její

Více

ENERGETICKÝ POSUDEK zpracovaný dle vyhl.480/2012 Sb. PRO ÚČELY ŽÁDOSTI O PODPORU SFŽP V PROGRAMU NOVÁ ZELENÁ ÚSPORÁM

ENERGETICKÝ POSUDEK zpracovaný dle vyhl.480/2012 Sb. PRO ÚČELY ŽÁDOSTI O PODPORU SFŽP V PROGRAMU NOVÁ ZELENÁ ÚSPORÁM ENERGETICKÝ POSUDEK zpracovaný dle vyhl.480/2012 Sb. PRO ÚČELY ŽÁDOSTI O PODPORU SFŽP V PROGRAMU NOVÁ ZELENÁ ÚSPORÁM 1. Titulní list Název předmětu EP: Zateplení RD na p.p.č. 6/1 v k.ú. Jindřišská, okr.

Více

SOLÁRNÍ SYSTÉM S DLOUHODOBOU AKUMULACÍ TEPLA VE SLATIŇANECH ANALÝZA PROVOZU

SOLÁRNÍ SYSTÉM S DLOUHODOBOU AKUMULACÍ TEPLA VE SLATIŇANECH ANALÝZA PROVOZU SOLÁRNÍ SYSTÉM S DLOUHODOBOU AKUMULACÍ TEPLA VE SLATIŇANECH ANALÝZA PROVOZU Martin Kny student Ph.D., ČVUT v Praze, fakulta stavební, katedra technických zařízení budov martin.kny@fsv.cvut.cz Konference

Více

DOKUMENTACE VĚTRACÍCH A KLIMATIZAČNÍCH SYSTÉMŮ

DOKUMENTACE VĚTRACÍCH A KLIMATIZAČNÍCH SYSTÉMŮ Kontrola klimatizačních systémů 6. až 8. 6. 2011 Praha DOKUMENTACE VĚTRACÍCH A KLIMATIZAČNÍCH SYSTÉMŮ Vladimír Zmrhal ČVUT v Praze, Fakulta strojní, Ústav techniky prostředí Technická 4, 166 07 Praha 6

Více

Obr. č. 1: Pasivní domy Koberovy jihovýchodní pohled

Obr. č. 1: Pasivní domy Koberovy jihovýchodní pohled PŘÍKLAD 7 Název stavby: Soubor pasivních rodinných domů Koberovy Návrh domu, autor koncepce: ing. Petr Morávek CSc. Spoluautoři: prof. ing. Jan Tywoniak CSc., arch. J. Kořínek, ing. arch. T. Koumar, ing.

Více

Souhrnná technická zpráva

Souhrnná technická zpráva INDEX ZMĚNA DATUM JMÉNO PODPIS Vedoucí projektant Vedoucí zakázky Pluhař Martin Ing., CSc. Projektant BPO spol. s r.o. Lidická 1239 363 01 OSTROV Tel.: +420353675111 Fax: +420353612416 projekty@bpo.cz

Více

OBSAH ŠKOLENÍ. Internet DEK netdekwifi

OBSAH ŠKOLENÍ. Internet DEK netdekwifi OBSAH ŠKOLENÍ 1) základy stavební tepelné techniky pro správné posuzování skladeb 2) samotné školení práce v aplikaci TEPELNÁ TECHNIKA 1D Internet DEK netdekwifi 1 Základy TEPELNÉ OCHRANY BUDOV 2 Legislativa

Více

Biomasa zelené teplo do měst, šance nebo promarněná příležitost? Miroslav Mikyska

Biomasa zelené teplo do měst, šance nebo promarněná příležitost? Miroslav Mikyska Biomasa zelené teplo do měst, m šance nebo promarněná příležitost? Miroslav Mikyska Třebíč Počet obyvatel: necelých 39.000 Počet vytápěných bytů z CZT: 9.720, dále školy, školky, plavecký areál Teplárna

Více

Důvodová zpráva (DZ)

Důvodová zpráva (DZ) Důvodová zpráva (DZ) Smlouva o poskytování energetických služeb se zaručeným výsledkem (určených veřejnému zadavateli) (dále jen Smlouva ) Verifikační zpráva a dodatky ke Smlouvě Zastupitelstvo statutárního

Více

Oblastní stavební bytové družstvo, Jeronýmova 425/15, Děčín IV. Směrnice pro vyúčtování služeb spojených s bydlením

Oblastní stavební bytové družstvo, Jeronýmova 425/15, Děčín IV. Směrnice pro vyúčtování služeb spojených s bydlením Oblastní stavební bytové družstvo, Jeronýmova 425/15, Děčín IV Směrnice pro vyúčtování služeb spojených s bydlením Platnost směrnice: - tato směrnice je platná pro městské byty ve správě OSBD, Děčín IV

Více

RODINNÉ DOMY v rámci 3. výzvy k podávání žádostí

RODINNÉ DOMY v rámci 3. výzvy k podávání žádostí Metodický pokyn k upřesnění výpočetních postupů a okrajových podmínek pro podprogram NZÚ RODINNÉ DOMY v rámci 3. výzvy k podávání žádostí Podoblast podpory C.3 Instalace solárních termických a fotovoltaických

Více

Obr. č. 1: Rodinný dům Litoměřice, jižní fasáda, slunolam nad okny před instalací solárních panelů

Obr. č. 1: Rodinný dům Litoměřice, jižní fasáda, slunolam nad okny před instalací solárních panelů PŘÍKLAD 12 Název stavby: Návrh domu: Projekt VZT systému Atrea: Projektant/dodavatel: Rodinný dům Litoměřice ing. arch. Pavel Šmelhaus, ing. arch. Kateřina Rottová Petra Nosková Wolf System spol. s r.o.

Více

Zákon o hospodaření energií, směrnice EU

Zákon o hospodaření energií, směrnice EU , směrnice EU Ing. František Plecháč 1 Zákon byl vydán pod č. 406/2000 Sb. Hlavní důvody posledních novelizací zákona: - směrnice Evropského parlamentu a Rady č. 2002/91/ES o energetické náročnosti budov,

Více

Výkaz cenové lokality (část a + b)

Výkaz cenové lokality (část a + b) Výkaz cenové lokality (část a + b) 31, 32-CL a): Výkaz cenové lokality (část a) Držitel licence na výrobu nebo rozvod tepelné energie uvede požadované údaje samostatně pro každou cenovou lokalitu za licencovanou

Více

2.1 Vliv orientace budovy ke světovým stranám na její tepelnou bilanci

2.1 Vliv orientace budovy ke světovým stranám na její tepelnou bilanci 2.1 Vliv orientace budovy ke světovým stranám na její tepelnou bilanci Úloha 2.1.1 S přesností 45 určete orientaci budovy ke světovým stranám tak, aby tepelný zisk sluneční radiací okny o ploše A byl v

Více