Moderní technologie ve studiu aplikované fyziky CZ.1.07/2.2.00/ Komplexní čísla

Rozměr: px
Začít zobrazení ze stránky:

Download "Moderní technologie ve studiu aplikované fyziky CZ.1.07/2.2.00/07.0018. 4. Komplexní čísla"

Transkript

1 Moderní technologie ve studiu aplikované fyiky CZ.1.07/..00/ Komplexní čísla Matematickým důvodem pro avedení komplexních čísel ( latinského complexus složený), byla potřeba rošířit množinu (obor) reálných čísel. V oboru reálných čísel totiž existuí algebraické (polynomické) rovnice s reálnými koeficienty a kladnými neápornými celočíselnými exponenty (např. x + 1 = 0), které nemaí v tomto oboru žádné řešení kořeny (čili obor reálných čísel není vhledem k nim uavřený), případně e počet eich reálných kořenů nižší, než stupeň polynomu. Tento problém tak vedl k nutnosti dodefinovat odmocniny e áporného čísla a k avedení množiny komplexních čísel, eíž podmnožinou e množina reálných čísel. Obor komplexních čísel e uavřený neen na výše uvedené kořeny polynomů s reálnými koeficienty, ale i na kořeny polynomů s komplexními koeficienty. Tuto uavřenost aručue Základní věta algebry, která tvrdí, že polynom n-tého stupně má v oboru komplexních čísel n kořenů. Ukáalo se, že i ve fyice nadou komplexní čísla své uplatnění. Přeformulováním řady fyikálních problémů do komplexních čísel se tyto problémy většinou matematicky ednoduší. S komplexními čísly se totiž velmi ednoduše pracue a pro každý typ úlohy (podle matematického ápisu rovnic, podle povahy hledaného řešení, ) e vhodný iný ápis komplexních čísel. Komplexní ápis se s výhodou používá, například, v teorii harmonického kmitání a vlnění, eména při řešení obvodů střídavého proudu (sériový RLC obvod, výpočet tv. alového proudu, atd.). V teorii šíření elektromagnetického vlnění (světla) le ase, například, index lomu považovat a komplexní funkci vlnové délky, kde reálná část má výnam coby obecnění indexu lomu akožto konstanty pro danou vlnovou délku, atímco imaginární část e tv. index absorpce, popisuící míru útlumu áření v daném materiálu. Také kvantová mechanika používá systematicky komplexní ápis pro stavy i operátory příslušeící k poorovatelným veličinám. 4

2 Ponámka: Důležité e vždy správně interpretovat ískané řešení, t. přiřadit komplexním číslům (resp. eich imaginárním částem) správný fyikální smysl. ZÁKLADNÍ POJMY Komplexní číslo (v kartéském tvaru) e výra = a + ib, kde a, b sou reálná čísla, i e imaginární ednotka s vlastností i = 1. a e reálná část, b e imaginární část komplexního čísla ; načí se též a = Re, b = Im. Množina všech komplexních čísel se načí C. Libovolné reálné číslo le pak vyádřit ako komplexní číslo a + i0, odkud plyne, že R C. Pokud platí, že = ib (tedy a = 0), dostáváme rye imaginární číslo. Komplexní čísla 1 = a + ib, = c + id sou si rovna, estliže a = c a b = d; apisueme 1 =. Číslo komplexně sdružené ke komplexnímu číslu = a + ib e číslo a ib; načí se. GEOMETRICKÁ INTERPRETACE Z definice komplexního čísla e řemé, že dvoici reálných čísel a, b odpovídá právě edno komplexní číslo a + ib. Každému komplexnímu číslu le pak přiřadit bod [a, b] v rovině a naopak (vi obr. 4.1). y b = a + ib ϕ 0 a x Obráek 4.1 Gaussova rovina komplexních čísel Ztotožní-li se při této interpretaci každý bod [a, b] roviny s komplexním číslem a + ib, hovoří se o Gaussově rovině komplexních čísel. Reálné číslo a se pak totožní s bodem [a, 0], případně s komplexním číslem a + i0; množina všech reálných čísel v Gaussově rovině e reálná osa x, množina všech komplexních čísel = a + ib, pro něž a = 0 (tedy rye imaginárních čísel), e imaginární osa y, 0 e počátek. 5

3 Další výnamnou interpretaci dostaneme, estliže každému komplexnímu číslu = a + ib přiřadíme v rovině vektor s počátečním bodem [0, 0] a koncovým bodem [a, b] (obr. 4.). y b = a + ib ϕ 0 a x Obráek 4. Komplexní číslo ve vektorové interpretaci OPERACE S KOMPLEXNÍMI ČÍSLY Pro komplexní čísla 1 = a + ib, = c + id se eich součet, rodíl, součin a podíl definue takto: Součet 1 + = (a + ib) + (c + id) = (a + c) + i(b + d). Rodíl 1 = (a + ib) (c + id) = (a c) + i(b d). Součin 1 = (a + ib)(c + id) = ac + iad + ibc + i bd = (ac bd) + i(ad + bc). 1 a+ ib a+ ib c id ac + bd bc ad Podíl = = = + i, když 0, t. c 0 a d 0. c + id c + id c id c + d c + d Z uvedených vtahů vyplývá, že při provádění operací s komplexními čísly postupueme formálně steně ako při operacích s dvočleny reálných čísel, přičemž i nahradíme -1. Snadno se pak dokáže, že tyto operace splňuí axiomy A1 - A4 platné pro reálná čísla (vi kapitola 3). Podotkněme, že pro komplexní čísla nele avést uspořádání pomocí, ak e náme reálných čísel. Příklad: 1 = + i3, = 1 i; 1 + = ( + 1) + i(3 1) = 3 + i; 1 = ( 1) + i(3 + 1) = 1 + i4; 1 = i + i3 3i = 5 + i; 1 + i3 1+ i 1+ 5i 1 5 = = = + i. 1 i 1+ i 6

4 ABSOLUTNÍ HODNOTA (MODUL) Absolutní hodnota (modul) komplexního čísla a + ib e reálné číslo a + b ; načí se. Z obráku 4.1 e patrno, že vyadřue vdálenost bodu [a, b] od bodu 0 = 0 + i0 = [0, 0]. Základní vlastnosti absolutní hodnoty : (a) (tv. troúhelníková nerovnost), (b) 1 = 1, (c) 1 = 1, estliže 0. Ponámka: Platí =. POLÁRNÍ (GONIOMETRICKÝ) TVAR KOMPLEXNÍHO ČÍSLA Komplexní číslo = a + ib le ako bod v rovině adat i iným působem, například vdáleností od počátku 0 (tedy absolutní hodnotou) a úhlem ϕ, který svírá průvodič bodu s kladným směrem osy x (vi obr. 4.1). Pak dostáváme a b cos ϕ =, sinϕ = (4.1) a odtud a+ ib = cosϕ+ i sinϕ = ( cosϕ+ i sinϕ) =. Každé komplexní číslo 0 le tedy vyádřit ve tvaru ( cosϕ i sinϕ) = +, (4.) který se naývá polární tvar (též goniometrický tvar) komplexního čísla. Každé reálné číslo ϕ vyhovuící (4.1) se naývá argument komplexního čísla. Z periodicity funkcí sin a cos plyne, že každé komplexní číslo má nekonečně mnoho argumentů lišících se váemně o celočíselný násobek π. Argument ϕ, pro který platí 0 ϕ < π, se naývá hlavní argument. Každé komplexní číslo 0 se pak vyadřue ve tvaru ( cos ( ϕ+ kπ) + i sin( ϕ+ kπ) ) =, (4.3) kde ϕ e hlavní argument a k e libovolné celé číslo. 7

5 Ve většině případů vystačíme s vyádřením pomocí hlavního argumentu (t. k = 0), což odpovídá tvaru (4.). U odmocniny (vi dále) však e třeba vyít tvaru (4.3). Příklad: = 1 +i ; = ( 1) + 1 =, cos ϕ = =, sin ϕ= =, ϕ = π + kπ, = cos π+ kπ + isin π+ kπ, kde k e libovolné celé číslo; 3/4π e hlavní argument. 4 4 MOIVREŮV VZOREC Pro komplexní čísla ( cosϕ i ϕ ) = +, 1 a1+ ib1 = 1 1 sin 1 platí ( cosϕ i ϕ ) + = a + ib = sin ( cos( ϕ + ϕ ) + ( ϕ + ϕ )), (4.4) 1 = 1 1 i sin 1 1 = cos 1 i 1 ( ( ϕ ϕ ) + sin( ϕ )). 1 ϕ Zobecněním vtahu (4.4) pro n komplexních čísel ( cos ϕ + i sinϕ ) = a + ib =, = 1,,, n dostáváme ( ( ϕ + + ϕ ) + i ( ϕ + + ϕ )) 1 n = 1 n cos 1 n sin 1 n. Speciálně pro = = n = ( cosϕ + sinϕ) = se pak 1 i n n n ( ( cos ( ϕ) + i sin( ϕ) )) = ( cosnϕ+ i sinnϕ) = (4.5) naývá Moivreův vorec. ODMOCNINA KOMPLEXNÍHO ČÍSLA Buďte = (cos(ϕ + kπ) + isin(ϕ + kπ)) komplexní číslo, n přiroené číslo. n-tá odmocnina komplexního čísla e komplexní číslo w, pro něž platí w n =. 8

6 Aplikací (4.5) pro 0 le odvodit, že existue n růných n-tých odmocnin w k komplexního čísla, přičemž n ϕ+ kπ ϕ+ kπ ( ) = w = n + i sin k cos (4.6) n n pro k = 0, 1,, n 1. Je patrno, že všechny n-té odmocniny maí tutéž absolutní hodnotu n π a argumenty se liší o celočíselný násobek ; odtud vyplývá, že n-té odmocniny n tvoří vrcholy pravidelného n-úhelníku vepsaného do kružnice o poloměru n. Příklad: 4 1+i ; π π 1+ i= cos + isin, 4 4 podle (4.6) pak platí w k kde k = 0, 1,, 3 (vi obr. 4.3). = π π + kπ + kπ 4 4 cos + isin = 4 4 π π cos + k 16 + π isin + k, π y w 1 w 0 w 0 8 x w 3 Obráek 4.3 9

7 ZOBECNĚNÝ MOIVREŮV VZOREC Ponatky předchoích dvou odstavců le shrnout pro m, n přiroená čísla, n 0 do následuícího vtahu m n ( ( cos( ϕ ) + i sin( ϕ) )) m m n = n ( cos( mϕ/ n) + i sin( mϕ / n) ) =, (4.7) který se naývá obecněný Moivreův vorec. Tento vorec se pravidla uvádí pro komplexní čísla = (cosϕ + i sinϕ) s modulem = 1, kdy platí m n ( cos( ϕ ) i sin( ϕ) ) = ( cos( mϕ / n) + i sin( mϕ / n) ) +. (4.8) Příklad: Pomocí vtahů (4.7) a (4.8) můžeme apsat n řešení (kořenů) rovnice n = 1, resp. = n 1 ;. Onačíme-li k-tý kořen w k, pak e w k cos( πk/n) + isin( πk/n), = kde k = 0, 1,..., n 1. V souladu s (4.8.) e =1. w n k EULERŮV VZOREC KOMPLEXNÍHO ČÍSLA Le odvodit vorec, který spoue exponenciální funkci imaginárního argumentu s trigonometrickými funkcemi. Tento vorec se naývá Eulerův vorec ± ϕ e i = cosϕ ± i sinϕ. (4.9) tvaru Komplexní číslo ( cosϕ + i sinϕ) = se tak může vyádřit v následuícím iϕ = e, (4.10) kde argument φ e určen vtahem tg ϕ = b/ a, ak plyne e (4.1). Tento ápis komplexního čísla e ve fyice velmi často využíván a onačue se ako Eulerův vorec komplexního čísla. Na ákladě výše řečeného se obecněný Moivreův vorec (4.8.) fakticky redukue na pravidlo o násobení exponentů, elikož platí p iϕ p ipϕ ( cos ϕ + i sinϕ) = ( e ) = e = cos pϕ + i sin pϕ, přičemž le uvažovat p = m / n ako libovolné číslo, ne nutně racionální. 30

8 Cílové nalosti 1. Operace s komplexními čísly.. Polární (goniometrický) tvar komplexního čísla. 3. Moivreův vorec, odmocnina komplexního čísla, obecněný Moivreův vorec. 4. Eulerův vorec komplexního čísla. 31

Moderní technologie ve studiu aplikované fyziky CZ.1.07/2.2.00/07.0018. 3. Reálná čísla

Moderní technologie ve studiu aplikované fyziky CZ.1.07/2.2.00/07.0018. 3. Reálná čísla Moderní technologie ve studiu aplikované fyziky CZ..07/..00/07.008 3. Reálná čísla RACIONÁLNÍ A IRACIONÁLNÍ ČÍSLA Význačnými množinami jsou číselné množiny. K nejvýznamnějším patří množina reálných čísel,

Více

c sin Příklad 2 : v trojúhelníku ABC platí : a = 11,6 dm, c = 9 dm, α = 65 0 30. Vypočtěte stranu b a zbývající úhly.

c sin Příklad 2 : v trojúhelníku ABC platí : a = 11,6 dm, c = 9 dm, α = 65 0 30. Vypočtěte stranu b a zbývající úhly. 9. Úvod do středoškolského studia - rozšiřující učivo 9.. Další znalosti o trojúhelníku 9... Sinova věta a = sin b = sin c sin Příklad : V trojúhelníku BC platí : c = 0 cm, α = 45 0, β = 05 0. Vypočtěte

Více

3. Polynomy Verze 338.

3. Polynomy Verze 338. 3. Polynomy Verze 338. V této kapitole se věnujeme vlastnostem polynomů. Definujeme základní pojmy, které se k nim váží, definujeme algebraické operace s polynomy. Diskutujeme dělitelnost polynomů, existenci

Více

1.7. Mechanické kmitání

1.7. Mechanické kmitání 1.7. Mechanické kmitání. 1. Umět vysvětlit princip netlumeného kmitavého pohybu.. Umět srovnat periodický kmitavý pohyb s periodickým pohybem po kružnici. 3. Znát charakteristické veličiny periodického

Více

7. Odraz a lom. 7.1 Rovinná rozhraní dielektrik - základní pojmy

7. Odraz a lom. 7.1 Rovinná rozhraní dielektrik - základní pojmy Trivium z optiky 45 7 draz a lom V této kapitole se budeme zabývat průchodem (lomem) a odrazem světla od rozhraní dvou homogenních izotropních prostředí Pro jednoduchost se omezíme na rozhraní rovinná

Více

3.1.4 Trojúhelník. Předpoklady: 3103. Každé tři různé body neležící v přímce určují trojúhelník. C. Co to je, víme. Jak ho definovat?

3.1.4 Trojúhelník. Předpoklady: 3103. Každé tři různé body neležící v přímce určují trojúhelník. C. Co to je, víme. Jak ho definovat? 3..4 Trojúhelní Předpolady: 303 Každé tři různé body neležící v přímce určují trojúhelní. o to je, víme. Ja ho definovat? Př. : Definuj trojúhelní jao průni polorovin. Trojúhelní je průni polorovin, a.

Více

Moravské gymnázium Brno s.r.o. Mgr. Věra Jeřábková, Mgr. Marie Chadimová. Matematika, Mnohoúhelníky, pokračování

Moravské gymnázium Brno s.r.o. Mgr. Věra Jeřábková, Mgr. Marie Chadimová. Matematika, Mnohoúhelníky, pokračování Číslo projektu CZ.1.07/1.5.00/34.0743 Název školy Moravské gymnázium Brno s.r.o. Autor Mgr. Věra Jeřábková, Mgr. Marie Chadimová Tematická oblast Matematika, Mnohoúhelníky, pokračování Ročník 2. Datum

Více

(3) Zvolíme pevné z a sledujme dráhu, kterou opisuje s postupujícím časem koncový bod vektoru E v rovině z = konst. Upravíme vztahy (2) a (3)

(3) Zvolíme pevné z a sledujme dráhu, kterou opisuje s postupujícím časem koncový bod vektoru E v rovině z = konst. Upravíme vztahy (2) a (3) Učební tet k přednášce UFY1 Předpokládejme šíření rovinné harmonické vln v kladném směru os z. = i + j kde i, j jsou jednotkové vektor ve směru os respektive a cos ( ) ω ϕ t kz = + () = cos( ωt kz+ ϕ )

Více

Exponenciála matice a její užití. fundamentálních matic. Užití mocninných řad pro rovnice druhého řádu

Exponenciála matice a její užití. fundamentálních matic. Užití mocninných řad pro rovnice druhého řádu 1 Tutoriál č. 3 Exponenciála matice a její užití řešení Cauchyovy úlohy pro lineární systémy užitím fundamentálních matic. Užití mocninných řad pro rovnice druhého řádu 0.1 Exponenciála matice a její užití

Více

Matematický model kamery v afinním prostoru

Matematický model kamery v afinním prostoru CENTER FOR MACHINE PERCEPTION CZECH TECHNICAL UNIVERSITY Matematický model kamery v afinním prostoru (Verze 1.0.1) Jan Šochman, Tomáš Pajdla sochmj1@cmp.felk.cvut.cz, pajdla@cmp.felk.cvut.cz CTU CMP 2002

Více

Příklad 1.3: Mocnina matice

Příklad 1.3: Mocnina matice Řešení stavových modelů, módy, stabilita. Toto cvičení bude věnováno hledání analytického řešení lineárního stavového modelu. V matematickém jazyce je takový model ničím jiným, než sadou lineárních diferenciálních

Více

a m1 a m2 a mn zobrazení. Operaci násobení u matic budeme definovat jiným způsobem.

a m1 a m2 a mn zobrazení. Operaci násobení u matic budeme definovat jiným způsobem. 1 Matice Definice 1 Matice A typu (m, n) je zobrazení z kartézského součinu {1, 2,,m} {1, 2,,n} do množiny R Matici A obvykle zapisujeme takto: a 1n a 21 a 22 a 2n A =, a m1 a m2 a mn kde a ij R jsou její

Více

Příprava na 1. čtvrtletní písemku pro třídu 1EB

Příprava na 1. čtvrtletní písemku pro třídu 1EB Variace 1 Příprava na 1. čtvrtletní písemku pro třídu 1EB Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. 1. Číselné

Více

GEOMETRICKÁ TĚLESA. Mnohostěny

GEOMETRICKÁ TĚLESA. Mnohostěny GEOMETRICKÁ TĚLESA Geometrické těleso je prostorový geometrický útvar, který je omezený (ohraničený), tato hranice mu náleží. Jeho povrch tvoří rovinné útvary a také různé složitější plochy. Geometrická

Více

Zobrazení v rovině je předpis, který každému bodu X roviny připisuje právě jeden bod X roviny. Bod X se nazývá vzor, bod X se nazývá obraz.

Zobrazení v rovině je předpis, který každému bodu X roviny připisuje právě jeden bod X roviny. Bod X se nazývá vzor, bod X se nazývá obraz. 7. Shodná zobrazení 6. ročník 7. Shodná zobrazení 7.1. Shodnost geometrických obrazců Zobrazení v rovině je předpis, který každému bodu X roviny připisuje právě jeden bod X roviny. Bod X se nazývá vzor,

Více

MATEMATIKA I VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STAVEBNÍ JIŘÍ NOVOTNÝ ZÁKLADY LINEÁRNÍ ALGEBRY

MATEMATIKA I VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STAVEBNÍ JIŘÍ NOVOTNÝ ZÁKLADY LINEÁRNÍ ALGEBRY VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STAVEBNÍ JIŘÍ NOVOTNÝ MATEMATIKA I ZÁKLADY LINEÁRNÍ ALGEBRY STUDIJNÍ OPORY PRO STUDIJNÍ PROGRAMY S KOMBINOVANOU FORMOU STUDIA Typeset by L A TEX 2ε, Podpořeno projektem

Více

Mechanismy. Vazby členů v mechanismech (v rovině):

Mechanismy. Vazby členů v mechanismech (v rovině): Mechanismy Mechanismus klikový, čtyřkloubový, kulisový, západkový a vačkový jsou nejčastějšími mechanismy ve strojích (kromě převodů). Mechanismy obsahují členy (kliky, ojnice, těhlice, křižáky a další).

Více

ČÁST PÁTÁ POZEMKY V KATASTRU NEMOVITOSTÍ

ČÁST PÁTÁ POZEMKY V KATASTRU NEMOVITOSTÍ ČÁST PÁTÁ POZEMKY V KATASTRU NEMOVITOSTÍ Pozemkem se podle 2 písm. a) katastrálního zákona rozumí část zemského povrchu, a to část taková, která je od sousedních částí zemského povrchu (sousedních pozemků)

Více

6. přednáška z předmětu GIS1 Souřadnicové systémy a transformace mezi nimi

6. přednáška z předmětu GIS1 Souřadnicové systémy a transformace mezi nimi 6. přednáška z předmětu GIS1 Souřadnicové systémy a transformace mezi nimi Vyučující: Ing. Jan Pacina, Ph.D. e-mail: jan.pacina@ujep.cz Pro přednášku byly použity texty a obrázky od Ing. Magdaleny Čepičkové

Více

( ) Úloha č. 9. Měření rychlosti zvuku a Poissonovy konstanty

( ) Úloha č. 9. Měření rychlosti zvuku a Poissonovy konstanty Fyzikální praktikum IV. Měření ryhlosti zvuku a Poissonovy konstanty - verze Úloha č. 9 Měření ryhlosti zvuku a Poissonovy konstanty 1) Pomůky: Kundtova trubie, mikrofon se sondou, milivoltmetr, měřítko,

Více

(1) (3) Dále platí [1]:

(1) (3) Dále platí [1]: Pracovní úkol 1. Z přiložených ů vyberte dva, použijte je jako lupy a změřte jejich zvětšení a zorná pole přímou metodou. 2. Změřte zvětšení a zorná pole mikroskopu pro všechny možné kombinace ů a ů. Naměřené

Více

6.3. Lineární diferenciální rovnice druhého řádu s konstantními koeficienty

6.3. Lineární diferenciální rovnice druhého řádu s konstantními koeficienty H VRBENSKÁ J BĚLOHLÁVKOVÁ 63 Lineární diferenciální rovnice druhého řádu s onstantními oeficienty 631 Definice Definice Lineární diferenciální rovnicí druhého řádu s onstantními oeficienty nazýváme rovnici

Více

Úlohy domácího kola kategorie C

Úlohy domácího kola kategorie C 50. ročník Matematické olympiády Úlohy domácího kola kategorie 1. Najděte všechna trojmístná čísla n taková, že poslední trojčíslí čísla n 2 je shodné s číslem n. Student může při řešení úlohy postupovat

Více

LINEÁRNÍ ALGEBRA. barto@karlin.mff.cuni.cz, tuma@karlin.mff.cuni.cz

LINEÁRNÍ ALGEBRA. barto@karlin.mff.cuni.cz, tuma@karlin.mff.cuni.cz LINEÁRNÍ ALGEBRA LIBORBARTOAJIŘÍTŮMA barto@karlinmffcunicz, tuma@karlinmffcunicz Toto jsou průběžně vznikající zápisky z přednášek Lineární algebra a geometrie 1 a Lineární algebra a geometrie 2 Pokud

Více

TECHNICKÁ UNIVERZITA V LIBERCI

TECHNICKÁ UNIVERZITA V LIBERCI TECHNICKÁ UNIVERZITA V LIBERCI Fakulta mechatroniky, informatiky a mezioborových studií Základy paprskové a vlnové optiky, optická vlákna, Učební text Ing. Bc. Jiří Primas Liberec 2011 Materiál vznikl

Více

1 Matematické základy teorie obvodů

1 Matematické základy teorie obvodů Matematické základy teorie obvodů Vypracoval M. Košek Toto cvičení si klade možná přemrštěný, možná jednoduchý, cíl dosáhnout toho, aby všichní studenti znali základy matematiky (a fyziky) nutné pro pochopení

Více

Dynamika tuhých těles

Dynamika tuhých těles Dynamika tuhých těles V reálných technických aplikacích lze model bodového tělesa použít jen v omezené míře. Mnohem častější je použití modelu tuhého tělesa. Tuhé těleso je definováno jako těleso, u něhož

Více

11 Soustavy rovnic a nerovnic, Determinanty a Matice

11 Soustavy rovnic a nerovnic, Determinanty a Matice 11 Soustavy rovnic a nerovnic, Determinanty a Matice (r zné typy soustav rovnic a nerovnic, matice druhy matic, operace s maticemi, hodnost matice, inverzní matice, Gaussova elimina ní metoda, determinanty

Více

Výroba ozubených kol. Použití ozubených kol. Převody ozubenými koly a tvary ozubených kol

Výroba ozubených kol. Použití ozubených kol. Převody ozubenými koly a tvary ozubených kol Výroba ozubených kol Použití ozubených kol Ozubenými koly se přenášejí otáčivé pohyby a kroutící momenty. Přenos je zde nucený, protože zuby a zubní mezery do sebe zabírají. Kola mohou mít vnější nebo

Více

MECHANICKÉ KMITÁNÍ A VLNĚNÍ

MECHANICKÉ KMITÁNÍ A VLNĚNÍ Modularizace a modernizace studijního programu počáteční přípravy učitele fyziky Studijní modul MECHANICKÉ KMITÁNÍ A VLNĚNÍ Oldřich Lepil Olomouc 01 Zpracováno v rámci řešení projektu Evropského sociálního

Více

M - Příprava na čtvrtletní písemnou práci

M - Příprava na čtvrtletní písemnou práci M - Příprava na čtvrtletní písemnou práci Určeno pro třídu 1ODK. VARIACE 1 Tento dokument byl kompletně vytvořen, sestaven a vytištěn v programu dosystem - EduBase. Více informací o programu naleznete

Více

Osvětlovací modely v počítačové grafice

Osvětlovací modely v počítačové grafice Západočeská univerzita v Plzni Fakulta aplikovaných věd Semestrální práce z předmětu Matematické modelování Osvětlovací modely v počítačové grafice 27. ledna 2008 Martin Dohnal A07060 mdohnal@students.zcu.cz

Více

Otázka 17. 17.1 Základy vyzařování elektromagnetických vln

Otázka 17. 17.1 Základy vyzařování elektromagnetických vln Otázka 17 Základy vyzařování elektomagnetických vln, přehled základních duhů antén a jejich základní paamety (vstupní impedance, směový diagam, zisk) liniové, plošné, eflektoové stuktuy, anténní řady.

Více

1.2.5 Reálná čísla I. Předpoklady: 010204

1.2.5 Reálná čísla I. Předpoklady: 010204 .2.5 Reálná čísla I Předpoklady: 00204 Značíme R. Reálná čísla jsou čísla, kterými se vyjadřují délky úseček, čísla jim opačná a 0. Každé reálné číslo je na číselné ose znázorněno právě jedním bodem. Každý

Více

KATALOGOVÝ LIST. Měřicí převodníky činného nebo jalového výkonu EW 2.2 DGW 2.2 VGW 2.2 DUW 2.2 VUW 2.2 EB 2.2 DGB 2.2 VGB 2.2 DUB 2.2 VUB 2.

KATALOGOVÝ LIST. Měřicí převodníky činného nebo jalového výkonu EW 2.2 DGW 2.2 VGW 2.2 DUW 2.2 VUW 2.2 EB 2.2 DGB 2.2 VGB 2.2 DUB 2.2 VUB 2. KATALOGOVÝ LIST 062.10cz Měřicí převodníky činného nebo jalového výkonu EW 2.2 DGW 2.2 VGW 2.2 DUW 2.2 VUW 2.2 EB 2.2 DGB 2.2 VGB 2.2 DUB 2.2 VUB 2.2 všechny typy v pouzdře šířky 45 mm Použití Měřicí převodníky

Více

10 je 0,1; nebo taky, že 256

10 je 0,1; nebo taky, že 256 LIMITY POSLOUPNOSTÍ N Á V O D Á V O D : - - Co to je Posloupnost je parta očíslovaných čísel. Trabl je v tom, že aby to byla posloupnost, musí těch čísel být nekonečně mnoho. Očíslovaná čísla, to zavání

Více

4 Vyhodnocení naměřených funkčních závislostí

4 Vyhodnocení naměřených funkčních závislostí 4 Vyhodnocení naměřených funkčních závislostí Kromě měření konstant je častou úlohou měření zjistit, jak nějaká veličina y (závisle proměnná, jinak řečeno funkce) závisí na jiné proměnlivé veličině x (nezávisle

Více

Metoda Lokální multiplikátor LM3. Lokální multiplikátor obecně. Ing. Stanislav Kutáček. červen 2010

Metoda Lokální multiplikátor LM3. Lokální multiplikátor obecně. Ing. Stanislav Kutáček. červen 2010 Metoda Lokální multiplikátor LM3 Ing. Stanislav Kutáček červen 2010 Lokální multiplikátor obecně Lokální multiplikátor 1, vyvinutý v londýnské New Economics Foundation (NEF), 2 pomáhá popsat míru lokalizace

Více

Shodná zobrazení Zobrazení Z v rovin shodné zobrazení nep ímou shodnost shodnost p ímou

Shodná zobrazení Zobrazení Z v rovin shodné zobrazení nep ímou shodnost shodnost p ímou Shodná zobrazení Zobrazení Z v rovině je předpis, který každému bodu X roviny přiřazuje právě jeden bod X roviny. Bod X se nazývá vzor, bod X jeho obraz; zapisujeme Z: X X. Zobrazení v rovině je shodné

Více

Studentská tvůrčí a odborná činnost STOČ 2015

Studentská tvůrčí a odborná činnost STOČ 2015 Studentská tvůrčí a odborná činnost STOČ 2015 ULTRAZUKOVÉ VIDĚNÍ PRO ROBOTICKÉ APLIKACE Bc. Libor SMÝKAL Univerzita Tomáše Bati ve Zlíně Fakulta aplikované informatiky Nad Stráněmi 4511 760 05 Zlín 23.

Více

Metoda konečných prvků. 6. přednáška Tělesové prvky - úvod (lineární trojúhelník a lineární čtyřstěn) Martin Vrbka, Michal Vaverka

Metoda konečných prvků. 6. přednáška Tělesové prvky - úvod (lineární trojúhelník a lineární čtyřstěn) Martin Vrbka, Michal Vaverka Metoda konečných prvků 6. přednáška Tělesové prvky - úvod (lineární trojúhelník a lineární čtyřstěn) Martin Vrbka, Michal Vaverka Diskretizace Analýza pomocí MKP vyžaduje rozdělení řešené oblasti na konečný

Více

Ozubené řemeny XLH. Ozubené řemeny s palcovou roztečí. Provedení XL, L, H, XH, XXH. Konstrukční charakteristiky. Rozměrové charakteristiky

Ozubené řemeny XLH. Ozubené řemeny s palcovou roztečí. Provedení XL, L, H, XH, XXH. Konstrukční charakteristiky. Rozměrové charakteristiky XLH Provedení XL, L, H, XH, XXH Ozubené řemeny s palcovou roztečí Konstrukční charakteristiky Rozvodové řemeny se zuby na vnitřní straně jsou složeny z následujících částí a prvků viz obrázek: A) Tažné

Více

3.5.8 Otočení. Předpoklady: 3506

3.5.8 Otočení. Předpoklady: 3506 3.5.8 Otočení Předpoklady: 3506 efinice úhlu ze základní školy: Úhel je část roviny ohraničená dvojicí polopřímek se společným počátečním bodem (konvexní a nekonvexní úhel). Nevýhody této definice: Nevíme,

Více

1 Pravděpodobnostní prostor

1 Pravděpodobnostní prostor Úvod do pravděpodobnosti prizmatem teorie informace 204 Tomáš Kroupa Pravděpodobnostní prostor Základním objektem teorie pravděpodobnosti je pravděpodobnostní prostor. Modeluje všechny možné elementární

Více

POČÍTAČOVÁ PODPORA ZPRACOVÁNÍ TÝMOVÝCH PROJEKTŮ - MATHCAD

POČÍTAČOVÁ PODPORA ZPRACOVÁNÍ TÝMOVÝCH PROJEKTŮ - MATHCAD Vysoká škola báňská Technická univerzita Ostrava Fakulta strojní POČÍTAČOVÁ PODPORA ZPRACOVÁNÍ TÝMOVÝCH PROJEKTŮ - MATHCAD Mathcad návody do cvičení Ing. Milada Hlaváčková, Ph.D. Ostrava 2011 Tyto studijní

Více

Dů kazové úlohy. Jiří Vaníček

Dů kazové úlohy. Jiří Vaníček Dů kazové úlohy Jiří Vaníček Následující série ú loh je koncipována tak, ž e student nejprve podle předem daného konstrukčního postupu sestrojí konstrukci a v ní podle návodu objeví některý nový poznatek.

Více

ROZCVIČKY. (v nižší verzi může být posunuta grafika a špatně funkční některé odkazy).

ROZCVIČKY. (v nižší verzi může být posunuta grafika a špatně funkční některé odkazy). ROZCVIČKY Z MATEMATIKY 8. ROČ Prezentace jsou vytvořeny v MS PowerPoint 2010 (v nižší verzi může být posunuta grafika a špatně funkční některé odkazy). Anotace: Materiál slouží k procvičení základních

Více

6. Matice. Algebraické vlastnosti

6. Matice. Algebraické vlastnosti Matematický ústav Slezské univerzity v Opavě Učební texty k přednášce ALGEBRA I, zimní semestr 2000/2001 Michal Marvan 6 Matice Algebraické vlastnosti 1 Algebraické operace s maticemi Definice Bud te A,

Více

2. část: Základy matematického programování, dopravní úloha. Ing. Michal Dorda, Ph.D.

2. část: Základy matematického programování, dopravní úloha. Ing. Michal Dorda, Ph.D. 2. část: Základy matematického programováí, dopraví úloha. 1 Úvodí pomy Metody a podporu rozhodováí lze obecě dělit a: Eaktí metody metody zaručuící alezeí optimálí řešeí, apř. Littlův algortimus, Hakimiho

Více

PODMÍNKY ELEKTRONICKÉ AUKCE SPOLEČNOSTI RWE GAS STORAGE, s.r.o. NA NOVOU SKLADOVACÍ KAPACITU

PODMÍNKY ELEKTRONICKÉ AUKCE SPOLEČNOSTI RWE GAS STORAGE, s.r.o. NA NOVOU SKLADOVACÍ KAPACITU PODMÍNKY ELEKTRONICKÉ AUKCE SPOLEČNOSTI RWE GAS STORAGE, s.r.o. NA NOVOU SKLADOVACÍ KAPACITU TERMÍN KONÁNÍ AUKCE: 21. 9. 2010 NABÍZENÁ KAPACITA: 135 000 000 m 3 SKLADOVACÍ OBDOBÍ: 1. 4. 2011 31. 3. 2021

Více

na tyč působit moment síly M, určený ze vztahu (9). Periodu kmitu T tohoto kyvadla lze určit ze vztahu:

na tyč působit moment síly M, určený ze vztahu (9). Periodu kmitu T tohoto kyvadla lze určit ze vztahu: Úloha Autoři Zaměření FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE 2. Měření modulu pružnosti v tahu a modulu pružnosti ve smyku Martin Dlask Měřeno 11. 10., 18. 10., 25. 10. 2012 Jakub Šnor SOFE Klasifikace

Více

pracovní list studenta

pracovní list studenta Výstup RVP: Klíčová slova: pracovní list studenta Rovnice a jejich soustavy Petra Směšná žák měří dané veličiny, analyzuje a zpracovává naměřená data, rozumí pojmu řešení soustavy dvou lineárních rovnic,

Více

Aritmetika s didaktikou II.

Aritmetika s didaktikou II. Katedra matematiky PF UJEP Aritmetika s didaktikou II. KM / 0026 Přednáška 0 Desetinnáčísla O čem budeme hovořit: Budeme definovat desetinnáčísla jako speciální racionálníčísla. Naučíme se poznávat různé

Více

SBORNÍK PŘÍKLADŮ Z MATEMATIKY

SBORNÍK PŘÍKLADŮ Z MATEMATIKY SBORNÍK PŘÍKLADŮ Z MATEMATIKY 1. Výrazy a počítání s nimi... 4 1.1. Mocniny s celým exponentem a s racionálním exponentem... 4 1.2 Počítání s odmocninami... 7 1.3 Úpravy algebraických výrazů... 10 2. Rovnice,

Více

Aplikace počítačů v provozu vozidel 9

Aplikace počítačů v provozu vozidel 9 Aplikace počítačů v provozu vozidel 9 2 Databázové systémy Rozvoj IS je spjatý s rozvojem výpočetní techniky, především počítačů. V počátcích se zpracovávaly velké objemy informací na jednom počítači,

Více

Aplikované úlohy Solid Edge. SPŠSE a VOŠ Liberec. Radek Havlík [ÚLOHA 05 VYŘÍZNUTÍ MATERIÁLU LINEÁRNÍ A ROTACÍ]

Aplikované úlohy Solid Edge. SPŠSE a VOŠ Liberec. Radek Havlík [ÚLOHA 05 VYŘÍZNUTÍ MATERIÁLU LINEÁRNÍ A ROTACÍ] Aplikované úlohy Solid Edge SPŠSE a VOŠ Liberec Radek Havlík [ÚLOHA 05 VYŘÍZNUTÍ MATERIÁLU LINEÁRNÍ A ROTACÍ] 1 CÍL KAPITOLY Cílem této kapitoly je naučit se efektivní práci ve 3D modelování, s použitím

Více

Data v počítači EIS MIS TPS. Informační systémy 2. Spojení: e-mail: jan.skrbek@tul.cz tel.: 48 535 2442 Konzultace: úterý 14 20-15 50

Data v počítači EIS MIS TPS. Informační systémy 2. Spojení: e-mail: jan.skrbek@tul.cz tel.: 48 535 2442 Konzultace: úterý 14 20-15 50 Informační systémy 2 Data v počítači EIS MIS TPS strategické řízení taktické řízení operativní řízení a provozu Spojení: e-mail: jan.skrbek@tul.cz tel.: 48 535 2442 Konzultace: úterý 14 20-15 50 18.3.2014

Více

VYHLÁŠKA ČÁST PRVNÍ STÁTNÍ ZKOUŠKY Z GRAFICKÝCH DISCIPLÍN. Předmět úpravy

VYHLÁŠKA ČÁST PRVNÍ STÁTNÍ ZKOUŠKY Z GRAFICKÝCH DISCIPLÍN. Předmět úpravy 58 VYHLÁŠKA ze dne 10. února 2016 o státních zkouškách z grafických disciplín a o změně vyhlášky č. 3/2015 Sb., o některých dokladech o vzdělání Ministerstvo školství, mládeže a tělovýchovy stanoví podle

Více

Průniky rotačních ploch

Průniky rotačních ploch Gymnázium Christiana Dopplera, Zborovská 45, Praha 5 ROČNÍKOVÁ PRÁCE Průniky rotačních ploch Vypracoval: Vojtěch Trnka Třída: 8. M Školní rok: 2012/2013 Seminář: Deskriptivní geometrie Prohlašuji, že jsem

Více

3.cvičení. k p = {X, Y } u(x, r 1 = XA ), v(y, r 1 = XA ) u v = {A, R} q = AR. 1. Bodem A kolmici: Zvolím bod X p k(a, r 1 = XA ),

3.cvičení. k p = {X, Y } u(x, r 1 = XA ), v(y, r 1 = XA ) u v = {A, R} q = AR. 1. Bodem A kolmici: Zvolím bod X p k(a, r 1 = XA ), 3.cvičení 1. Bodem A kolmici: Zvolím bod X p k(a, r 1 = XA ), k p = {X, Y } u(x, r 1 = XA ), v(y, r 1 = XA ) u v = {A, R} q = AR Bodem A rovnoběžku: Ještě jednu kolmici. Tři úhly, které je možno rozdělit

Více

Kótování na strojnických výkresech 1.část

Kótování na strojnických výkresech 1.část Kótování na strojnických výkresech 1.část Pro čtení výkresů, tj. určení rozměrů nebo polohy předmětu, jsou rozhodující kóty. Z tohoto důvodu je kótování jedna z nejzodpovědnějších prací na technických

Více

MECHANIKA HORNIN A ZEMIN

MECHANIKA HORNIN A ZEMIN MECHANIKA HORNIN A ZEMIN podklady k přednáškám doc. Ing. Kořínek Robert, CSc. Místnost: C 314 Telefon: 597 321 942 E-mail: robert.korinek@vsb.cz Internetové stránky: fast10.vsb.cz/korinek Mechanické vlastnosti

Více

Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/03.0009

Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/03.0009 Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/03.0009 Elektrické napětí Elektrické napětí je definováno jako rozdíl elektrických potenciálů mezi dvěma body v prostoru.

Více

Diamantová suma - řešení příkladů 1.kola

Diamantová suma - řešení příkladů 1.kola Diamantová suma - řešení příladů.ola. Doažte, že pro aždé přirozené číslo n platí.n + 2.n + + n.n < 2. Postupujeme matematicou inducí. Levou stranu nerovnosti označme s n. Nejmenší n, pro než má smysl

Více

9. Lineárně elastická lomová mechanika K-koncepce. Únava a lomová mechanika Pavel Hutař, Luboš Náhlík

9. Lineárně elastická lomová mechanika K-koncepce. Únava a lomová mechanika Pavel Hutař, Luboš Náhlík 9. Lineárně elastická lomová mechanika K-koncepce Únava a lomová mechanika Faktor intenzity napětí Předpokládáme ostrou trhlinu namáhanou třemi základními módy zatížení Zredukujeme-li obecnou trojrozměrnou

Více

4. cvičení: Pole kruhové, rovinné, Tělesa editace těles (sjednocení, rozdíl, ), tvorba složených objektů

4. cvičení: Pole kruhové, rovinné, Tělesa editace těles (sjednocení, rozdíl, ), tvorba složených objektů 4. cvičení: Pole kruhové, rovinné, Tělesa editace těles (sjednocení, rozdíl, ), tvorba složených objektů Příklad 1: Pracujte v pohledu Shora. Sestrojte kružnici se středem [0,0,0], poloměrem 10 a kružnici

Více

Poznámka 1: Každý příklad začneme pro přehlednost do nového souboru tímto krokem:

Poznámka 1: Každý příklad začneme pro přehlednost do nového souboru tímto krokem: Mongeovo promítání základní úlohy metrické (skutečná velikost úsečky - sklápění, kolmice k rovině, vzdálenost bodu od roviny, vzdálenost bodu od přímky, rovina kolmá k přímce, otáčení roviny, trojúhelník

Více

Ne tak letmý úvod k maticím První pracovní verze

Ne tak letmý úvod k maticím První pracovní verze Ne tak letmý úvod k maticím První pracovní verze Tento text na příkladech ukazuje vlastnosti základních algebraických struktur grup, okruhů, polí, vektorových prostorů a algeber. Zvláštní důraz je kladen

Více

ZNALECKÝ POSUDEK. číslo: 3404-94/2013. o ceně pozemku p.č. 190/2 a spoluvlastnického podílu id.1/7 na pozemku p.č. 189/22

ZNALECKÝ POSUDEK. číslo: 3404-94/2013. o ceně pozemku p.č. 190/2 a spoluvlastnického podílu id.1/7 na pozemku p.č. 189/22 ZNALECKÝ POSUDEK číslo: 3404-94/2013 o ceně pozemku p.č. 190/2 a spoluvlastnického podílu id.1/7 na pozemku p.č. 189/22 vše v katastrálním území Helenín, obec Jihlava, kraj Vysočina, včetně příslušenství.

Více

Management. Modul 5 Vedení lidí a leadership

Management. Modul 5 Vedení lidí a leadership Management Modul 5 Vedení lidí a leadership Výukový materiál vzdělávacích kurzů v rámci projektu Zvýšení adaptability zaměstnanců organizací působících v sekci kultura Tento materiál je spolufinancován

Více

Česká zemědělská univerzita v Praze Fakulta provozně ekonomická. Obor veřejná správa a regionální rozvoj. Diplomová práce

Česká zemědělská univerzita v Praze Fakulta provozně ekonomická. Obor veřejná správa a regionální rozvoj. Diplomová práce Česká zemědělská univerzita v Praze Fakulta provozně ekonomická Obor veřejná správa a regionální rozvoj Diplomová práce Problémy obce při zpracování rozpočtu obce TEZE Diplomant: Vedoucí diplomové práce:

Více

Aplikované úlohy Solid Edge. SPŠSE a VOŠ Liberec. Ing. Jiří Haňáček [ÚLOHA 03 VYSUNUTÍ TAŽENÍM A SPOJENÍM PROFILŮ.]

Aplikované úlohy Solid Edge. SPŠSE a VOŠ Liberec. Ing. Jiří Haňáček [ÚLOHA 03 VYSUNUTÍ TAŽENÍM A SPOJENÍM PROFILŮ.] Aplikované úlohy Solid Edge SPŠSE a VOŠ Liberec Ing. Jiří Haňáček [ÚLOHA 03 VYSUNUTÍ TAŽENÍM A SPOJENÍM PROFILŮ.] 1 CÍL KAPITOLY Cílem této kapitoly je naučit uživatele efektivně navrhovat objekty v režimu

Více

1.2.7 Druhá odmocnina

1.2.7 Druhá odmocnina ..7 Druhá odmocnina Předpoklady: umocňování čísel na druhou Pedagogická poznámka: Probrat obsah této hodiny není možné ve 4 minutách. Já osobně druhou část (usměrňování) probírám v další hodině, jejíž

Více

58/2016 Sb. VYHLÁKA ČÁST PRVNÍ STÁTNÍ ZKOUKY Z GRAFICKÝCH DISCIPLÍN

58/2016 Sb. VYHLÁKA ČÁST PRVNÍ STÁTNÍ ZKOUKY Z GRAFICKÝCH DISCIPLÍN 58/2016 Sb. VYHLÁKA ze dne 10. února 2016 o státních zkoukách z grafických disciplín a o změně vyhláky č. 3/2015 Sb., o některých dokladech o vzdělání Ministerstvo kolství, mládeže a tělovýchovy stanoví

Více

Výstupy Učivo Téma. Čas. Základní škola a mateřská škola Hať. Školní vzdělávací program. Průřezová témata, kontexty a přesahy,další poznámky

Výstupy Učivo Téma. Čas. Základní škola a mateřská škola Hať. Školní vzdělávací program. Průřezová témata, kontexty a přesahy,další poznámky provádí pamětné a písemné početní Čísla přirozená Opakování září, říjen operace v oboru přirozených čísel porovnává a uspořádává čísla celá a Čísla celá, racionální racionální, provádí početní operace

Více

Autodesk Inventor 8 vysunutí

Autodesk Inventor 8 vysunutí Nyní je náčrt posazen rohem do počátku souřadného systému. Autodesk Inventor 8 vysunutí Následující text popisuje vznik 3D modelu pomocí příkazu Vysunout. Vyjdeme z náčrtu na obrázku 1. Obrázek 1: Náčrt

Více

MOBILNÍ KOMUNIKACE STRUKTURA GSM SÍTĚ

MOBILNÍ KOMUNIKACE STRUKTURA GSM SÍTĚ MOBILNÍ KOMUNIKACE STRUKTURA GSM SÍTĚ Jiří Čermák Letní semestr 2005/2006 Struktura sítě GSM Mobilní sítě GSM byly původně vyvíjeny za účelem přenosu hlasu. Protože ale fungují na digitálním principu i

Více

Název školy. Moravské gymnázium Brno s.r.o. Mgr. Marie Chadimová Mgr. Věra Jeřábková. Autor. Matematika. Planimetrie. Trojúhelníky. Teorie a příklady.

Název školy. Moravské gymnázium Brno s.r.o. Mgr. Marie Chadimová Mgr. Věra Jeřábková. Autor. Matematika. Planimetrie. Trojúhelníky. Teorie a příklady. Číslo projektu Z.1.07/1.5.00/34.0743 Název školy Moravské gymnázium rno s.r.o. utor Tematická oblast Mgr. Marie hadimová Mgr. Věra Jeřábková Matematika. Planimetrie. Trojúhelníky. Teorie a příklady. Ročník

Více

(k 1)x k + 1. pro k 1 a x = 0 pro k = 1.

(k 1)x k + 1. pro k 1 a x = 0 pro k = 1. . Funkce dvou a více proměnných. Úvod. Určete definiční obor funkce a proveďte klasifikaci bodů z R vzhledem k a rozhodněte zda je množina uzavřená či otevřená. Určete a načrtněte vrstevnice grafu funkce

Více

VYUŽITÍ ENERGIE VĚTRU

VYUŽITÍ ENERGIE VĚTRU INOVACE ODBORNÉHO VZDĚLÁVÁNÍ NA STŘEDNÍCH ŠKOLÁCH ZAMĚŘENÉ NA VYUŽÍVÁNÍ ENERGETICKÝCH ZDROJŮ PRO 21. STOLETÍ A NA JEJICH DOPAD NA ŽIVOTNÍ PROSTŘEDÍ CZ.1.07/1.1.00/08.0010 VYUŽITÍ ENERGIE VĚTRU ING. JAROSLAV

Více

( x ) 2 ( ) 2.5.4 Další úlohy s kvadratickými funkcemi. Předpoklady: 2501, 2502

( x ) 2 ( ) 2.5.4 Další úlohy s kvadratickými funkcemi. Předpoklady: 2501, 2502 .5. Další úlohy s kvadratickými funkcemi Předpoklady: 50, 50 Pedagogická poznámka: Tato hodina patří mezi ty méně organizované. Společně řešíme příklad, při dalším počítání se třída rozpadá. Já řeším příklady

Více

FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE. Mikrovlny

FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE. Mikrovlny FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE Datum měření: 7.5.2012 Jméno: Jakub Kákona Pracovní skupina: 2 Hodina: Po 7:30 Spolupracovníci: - Hodnocení: Mikrovlny Abstrakt V úloze je studováno šíření vln volným

Více

1. a) Přirozená čísla

1. a) Přirozená čísla jednotky desítky stovky tisíce desetitisíce statisíce miliony 1. a) Přirozená čísla Přirozená čísla jsou nejčastějšími čísly, se kterými se setkáváme v běžném životě. Jejich pomocí zapisujeme počet věcí

Více

Metodika výpočtu vlivů poddolování na počítači Program SUBSCH

Metodika výpočtu vlivů poddolování na počítači Program SUBSCH Vysoká škola báňská Technická univerzita Ostrava Hornicko-geologická fakulta Institut geodézie a důlního měřictví Prof. Ing. Jan Schenk, CSc. Metodika výpočtu vlivů poddolování na počítači Program SUBSCH

Více

Matematika pro chemické inženýry. Drahoslava Janovská

Matematika pro chemické inženýry. Drahoslava Janovská Matematika pro chemické inženýry Drahoslava Janovská Přednášky ZS 2011-2012 Fázové portréty soustav nelineárních diferenciálních rovnic Obsah 1 Fázové portréty nelineárních soustav v rovině Klasifikace

Více

Přednáška č.4 Tolerování

Přednáška č.4 Tolerování Fakulta strojní VŠB-TUO Přednáška č.4 Tolerování Tolerování Pro sériovou a hromadnou výrobu je nutná zaměnitelnost a vyměnitelnost součástí strojů. Aby se mohla dodržet tato podmínka je nutné vyrobit součást

Více

Příručka k používání vizualizace

Příručka k používání vizualizace Příručka k používání vizualizace Obsah 1 Spuštění vizualizace a přihlášení uživatele...2 2 Hlavní menu a sledování vizualizace...3 2.1 Archivovaná data zobrazená v grafech...3 2.2 Alarmy a jejich historie...4

Více

Základní škola Fr. Kupky, ul. Fr. Kupky 350, 518 01 Dobruška 5.2 MATEMATIKA A JEJÍ APLIKACE - 5.2.1 MATEMATIKA A JEJÍ APLIKACE Matematika 9.

Základní škola Fr. Kupky, ul. Fr. Kupky 350, 518 01 Dobruška 5.2 MATEMATIKA A JEJÍ APLIKACE - 5.2.1 MATEMATIKA A JEJÍ APLIKACE Matematika 9. 5.2 MATEMATIKA A JEJÍ APLIKACE 5.2.1 MATEMATIKA A JEJÍ APLIKACE Matematika 9. ročník RVP ZV Obsah RVP ZV Kód RVP ZV Očekávané výstupy ŠVP Školní očekávané výstupy ŠVP Učivo M9101 provádí početní operace

Více

Předmět: Ročník: Vytvořil: Datum: ŠČERBOVÁ M. PAVELKA V. NOSNÍKY NOSNÍKY

Předmět: Ročník: Vytvořil: Datum: ŠČERBOVÁ M. PAVELKA V. NOSNÍKY NOSNÍKY Předmět: Ročník: Vytvořil: Datum: MECHANIKA PRVNÍ ŠČERBOVÁ M. PAVELKA V. 16. ČERVNA 2012 Název zpracovaného celku: NOSNÍKY NOSNÍKY Nosníky jsou zpravidla přímá tělesa (pruty) uloţená na podporách nebo

Více

KAPITOLA 6.3 POŽADAVKY NA KONSTRUKCI A ZKOUŠENÍ OBALŮ PRO INFEKČNÍ LÁTKY KATEGORIE A TŘÍDY 6.2

KAPITOLA 6.3 POŽADAVKY NA KONSTRUKCI A ZKOUŠENÍ OBALŮ PRO INFEKČNÍ LÁTKY KATEGORIE A TŘÍDY 6.2 KAPITOLA 6.3 POŽADAVKY NA KONSTRUKCI A ZKOUŠENÍ OBALŮ PRO INFEKČNÍ LÁTKY KATEGORIE A TŘÍDY 6.2 POZNÁMKA: Požadavky této kapitoly neplatí pro obaly, které budou používány dle 4.1.4.1, pokynu pro balení

Více

1. DÁLNIČNÍ A SILNIČNÍ SÍŤ V OKRESECH ČR

1. DÁLNIČNÍ A SILNIČNÍ SÍŤ V OKRESECH ČR 1. DÁIČNÍ A SIIČNÍ SÍŤ V OKRESE ČR Pro dopravu nákladů, osob a informací jsou nutné podmínky pro její realizaci, jako je kupříkladu vhodná dopravní infrastruktura. V případě pozemní silniční dopravy to

Více

Číslicová technika 3 učební texty (SPŠ Zlín) str.: - 1 -

Číslicová technika 3 učební texty (SPŠ Zlín) str.: - 1 - Číslicová technika učební texty (SPŠ Zlín) str.: - -.. ČÍTAČE Mnohá logická rozhodnutí jsou založena na vyhodnocení počtu opakujících se jevů. Takovými jevy jsou např. rychlost otáčení nebo cykly stroje,

Více

Měření základních vlastností OZ

Měření základních vlastností OZ Měření základních vlastností OZ. Zadání: A. Na operačním zesilovači typu MAA 74 a MAC 55 změřte: a) Vstupní zbytkové napětí U D0 b) Amplitudovou frekvenční charakteristiku napěťového přenosu OZ v invertujícím

Více

Kritická síla imperfektovaných systémů

Kritická síla imperfektovaných systémů Kritická síla imperfektovaných systémů Petr Frantík 1, Jiří Macur 2 Úvod V minulém století nově vzniklé obory, opírající se o studium silně nelineárních systémů, jako jsou teorie katastrof, teorie bifurkací

Více

Metodický list pro první soustředění kombinovaného studia. předmětu MATEMATIKA A

Metodický list pro první soustředění kombinovaného studia. předmětu MATEMATIKA A Metodický list pro první soustředění kombinovaného studia předmětu MATEMATIKA A Název tématického celku: Zobrazení,reálné funkce jedné reálné proměnné,elementární funkce a jejich základní vlastnosti,lineární

Více

Paprsková a vlnová optika

Paprsková a vlnová optika Modularizace a modernizace studijního programu počáteční přípravy učitele fyziky Univerzita Palackého v Olomouci Přírodovědecká fakulta Paprsková a vlnová optika Ivo Vyšín, Jan Říha Olomouc 2012 Modularizace

Více

VYUŽITÍ MATLABU PŘI NÁVRHU FUZZY LOGICKÉHO REGULÁTORU. Ing. Aleš Hrdlička

VYUŽITÍ MATLABU PŘI NÁVRHU FUZZY LOGICKÉHO REGULÁTORU. Ing. Aleš Hrdlička VYUŽITÍ MATLABU PŘI NÁVRHU FUZZY LOGICKÉHO REGULÁTORU Ing. Aleš Hrdlička Katedra technické kybernetiky a vojenké robotiky Vojenká akademie v Brně E-mail: hrdlicka@c.vabo.cz Úvod Tento článek popiuje jednoduchou

Více

Počítání s decibely (není třináctá komnata matematiky)

Počítání s decibely (není třináctá komnata matematiky) očítání s decibely (není třináctá komnata matematiky) Hlavním úkolem decibelů je zjednodušit a zpřehlednit výpočty s nimi prováděné a ne prožívat studentské útrapy u tabule, při písemných pracích a u maturitních

Více

Matematická analýza KMA/MA2I 3. p edná²ka Primitivní funkce

Matematická analýza KMA/MA2I 3. p edná²ka Primitivní funkce Matematická analýza KMA/MAI 3. p edná²ka Primitivní funkce Denice a základní vlastnosti P íklad Uvaºujme následující úlohu: Najd te funkci F : R R takovou, ºe F () R. Kdo zná vzorce pro výpo et derivací

Více

Katedra obecné elektrotechniky Fakulta elektrotechniky a informatiky, VŠB - TU Ostrava 16. ZÁKLADY LOGICKÉHO ŘÍZENÍ

Katedra obecné elektrotechniky Fakulta elektrotechniky a informatiky, VŠB - TU Ostrava 16. ZÁKLADY LOGICKÉHO ŘÍZENÍ Katedra obecné elektrotechniky Fakulta elektrotechniky a informatiky, VŠB - TU Ostrava 16. ZÁKLADY LOGICKÉHO ŘÍZENÍ Obsah 1. Úvod 2. Kontaktní logické řízení 3. Logické řízení bezkontaktní Leden 2006 Ing.

Více