PB165 Grafy a sítě. Hledání nejkratších cest. PB165 Grafy a sítě
|
|
- Ivana Procházková
- před 9 lety
- Počet zobrazení:
Transkript
1 Hledání nejkratších cest
2 Obsah přednášky Úvod Nejkratší cesty z jednoho vrcholu Dijkstrův algoritmus A* algoritmus Bellman-Ford algoritmus Cesty mezi všemi vrcholy Floyd-Warshallův algoritmus Distribuovaný Floyd-Warshallův algoritmus
3 Vzdálenost v neohodnoceném grafu Pro připomenutí: Délka cesty v neohodnoceném grafu je rovna počtu hran na této cestě. Vzdálenost δ(u, v) vrcholů u, v v grafu je délka nejkratší cesty z u do v. Vzdálenost mezi dvěma vrcholy nemusí být v případě orientovaného grafu symetrická. Obrázek: Vzdálenosti z u do v a naopak se liší.
4 Vzdálenost v ohodnoceném grafu V reálných aplikacích hledání nejkratších cest jsou hrany grafu obvykle nějakým způsobem ohodnoceny - např. vzdálenosti mezi městy silniční sítě, latence síťových spojů. Definice Délka cesty v ohodnoceném grafu je rovna součtu ohodnocení hran na této cestě. Vzdálenost vrcholů je opět rovna délce nejkratší cesty. Aby měl pojem vzdálenosti smysl, v grafu nemůže existovat cyklus záporné délky.
5 Nejkratší cesty a cykly Věta Pokud v grafu neexistuje cyklus záporné nebo nulové délky, je nejkratší sled v grafu (nejkratší) cestou. Důkaz. Nechť je součástí sledu s cyklus c. Tento cyklus má zřejmě kladnou délku. Potom existuje sled, který je "podsledem" s a cyklus c je z něj "vystřižen". Jelikož c má kladnou délku, je tento sled kratší než sled c obsahující. Takto lze pokračovat a sled zkracovat, dokud obsahuje nějaké cykly. Výsledný sled, který neobsahuje žádný cyklus, je cestou. Obrázek: Nejkratší sled je vyznačen červeně. Delší sledy vedou i po modrých a zelených hranách a tvoří cykly.
6 Trojúhelníková nerovnost Graf G splňuje trojúhelníkovou nerovnost, pokud pro libovolnou trojici jeho vrcholů u, v, w platí: δ(u, w) δ(u, v) + δ(v, w) v u d(u,v) d(v,w) w d(u,w) Obecný graf tuto nerovnost nesplňuje. Příkladem, pro který trojúhelníková nerovnost platí, je např. graf nejkratších (nikoliv přímých) silničních vzdáleností mezi městy.
7 Dijkstrův algoritmus "Klasický" algoritmus hledání nejkratší cesty. Najde nejkratší cesty z jednoho vrcholu do všech ostatních. Pracuje pro orientovaný i neorientovaný graf. Vyžaduje nezáporné ohodnocení všech hran (nejen cyklů). Lineární paměťová složitost. Časová složitost záleží na použité datové struktuře.
8 Dijkstrův algoritmus popis Počáteční vrchol označíme s. Pro každý vrchol v grafu je udržována hodnota d[v] délka nejkratší doposud nalezené cesty z s do v. Na počátku d[s]= 0 pro počáteční vrchol a d[v]= pro ostatní vrcholy. Po skončení výpočtu obsahuje d[v] délku nejkratší cesty v grafu, pokud taková existuje, nebo v opačném případě. Dále v proměnné p[v] ukládáme předchůdce vrcholu v na doposud nalezené nejkratší cestě z s. Před výpočtem nastavíme hodnotu p[v] jako nedefinovanou pro všechny vrcholy. Po skončení výpočtu je nejkratší cesta posloupnost vrcholů s, p[...p[v]...],... p[p[v]], p[v], v.
9 Dijkstrův algoritmus popis Všechny vrcholy jsou rozděleny do dvou vzájemně disjunktních množin: S obsahuje právě ty vrcholy, pro něž je v d[v] uložena definitivní nejkratší cesta z s do v v grafu. Q obsahuje všechny ostatní vrcholy. Vrcholy množiny Q jsou ukládány v prioritní frontě. Nejvyšší prioritu má vrchol u s nejnižší hodnotou d[u] nelze do něj již nalézt kratší cestu než která je aktuální. V každé iteraci jsou provedeny následující kroky: Odstraň vrchol u z počátku fronty. Přesuň vrchol u z množiny Q do S. Relaxuj všechny hrany (u, v): Pokud d[v] > d[u] +w(u, v), uprav d[v]. w(u, v) značíme ohodnocení (weight) hrany (u, v).
10 Dijkstrův algoritmus pseudokód Vycházíme z počátečního vrcholu s. Vlož všechny vrcholy do Q d[s] 0; p[s] undef for all u V \{s} do d[u] p[u] undef end for while Q do Odstraň z Q vrchol u s nejvyšší prioritou for all Hrany (u, v) do if d[v] > d[u] + w(u, v) then d[v] d[u] + w(u, v) p[v] u end if end for end while
11 Dijkstrův algoritmus příklad Obrázek: Vrcholy množiny S jsou vyznačeny modře. Napravo od grafu je znázorněn stav prioritní fronty.
12 Dijkstrův algoritmus animace/ilustrace výpočtu animace výpočtu na ukázkovém grafu DijkstraApplet/DijkstraApplet.htm komentovaný výpočet výpočet s možností definice vlastního grafu http: //
13 Dijkstrův algoritmus časová složitost Označme n = V, m = E. Inicializace je provedena v lineárním čase vzhledem k počtu vrcholů. Každou hranou prochází algoritmus vždy právě jednou nebo dvakrát (v případě neorientovaného grafu). Hlavní cyklus je proveden vždy nkrát. Je tudíž provedeno vždy právě n výběrů z prioritní fronty. Složitost výběru z fronty záleží na její implementaci: Pole, seznam vrcholů výběr lze provést v lineárním čase, složitost celého algoritmu je tedy O(n 2 + m). Binární halda výběr je proveden v čase O(log(n)). Při každé relaxaci hrany může dojít k aktualizaci haldy (O(log(n)), celková složitost je tak rovna O((n + m)log(n)). Fibonacciho halda složitost výběru stejná jako v případě binární haldy, složitost úpravy haldy při relaxaci je ovšem konstantní výsledná složitost algoritmu O(m + nlog(n)).
14 Dijkstrův algoritmus využití Dijkstrův algoritmus je používán v link-state směrovacích protokolech. Ty pracují na principu zasílání sousedních "vrcholů" aktivními síťovými prvky, které se směrování zúčastní. Každý aktivní prvek periodicky rozesílá seznam sousedních vrcholů. Ten je propagován skrze síť ke všem aktivním prvkům. Každý aktivní prvek nezávisle na ostatních vypočítá strom nejkratších cest do všech ostatních aktivních prvků. Riziko vzniků smyček v routovacích tabulkách. Nejpoužívanější link-state protokoly jsou OSPF a IS-IS. Oba používají Dijkstrův algoritmus.
15 A* algoritmus Upravený Dijkstrův algoritmus. Používá se zejména k nalezení cesty do jednoho vrcholu např. navigace. Kromě délky nejkratší cesty do každého vrcholu bere při vyhledávání v úvahu i heuristický odhad jeho vzdálenosti od cíle. Každé cestě je přiřazen heuristický odhad délky F jako součet ohodnocení jejích hran G a heuristické ohodnocení koncového vrcholu H. F=G+H Do prioritní fronty nejsou ukládány vrcholy grafu, ale cesty. Nejvyšší prioritu má cesta s nejnižším heuristickým ohodnocením.
16 A* algoritmus Pro každý vrchol je uloženo, je-li již "uzavřen" či nikoliv, tzn., byl-li již navštíven, prozkoumán odebráním z fronty některé cesty v tomto vrcholu končící. Dijkstrův algoritmus lze použít také k nalezení cesty do jednoho vrcholu grafu. Obvykle ale projde mnoho neperspektivních vrcholů např. při vyhledávání trasy v mapě jde i opačným směrem stejně daleko, jak správným. A* tyto vrcholy eliminuje pomocí heuristiky, je-li vhodně zvolena. Časová složitost záleží na kvalitě zvolené heuristiky nejhůře může být exponenciální, nejlépe polynomiální, a to vůči délce optimální cesty. Paměťová složitost může být v nejhorším případě také exponenciální existuje několik zlepšujících variant algoritmu. Více informací v přednášce doc. Hliněného:
17 A* algoritmus pseudokód Označme počáteční vrchol s, koncový c. Označ všechny vrcholy jako neuzavřené Inicializuj prioritní frontu Q vrcholem (cestou) s while Q do Odstraň cestu p z Q. Nechť x je její koncový vrchol if x je uzavřený then pokračuj další iterací end if if x = c then Vrať cestu p jako výsledek end if Uzavři x for all hrany (x, y) začínající v x do Vlož do fronty cestu p + (x, y) end for end while Vrať zprávu o neexistenci cesty
18 Bellman-Ford algoritmus Stejně jako Dijkstrův algoritmus vypočítá vzdálenosti všech vrcholů grafu z jednoho zdroje. Základní strukturou podobný Dijkstrovu algoritmu. Graf smí obsahovat i záporně ohodnocené hrany. Cykly s celkovým záporným ohodnocením jsou algoritmem detekovány. Namísto výběru hrany k relaxaci v každé iteraci relaxuje všechny hrany. Vyšší časová složitost než Dijkstrův algoritmus O(mn).
19 Bellman-Ford pseudokód Proměnné d[v] a p[v] mají stejný význam jako u Dijkstrova algoritmu. Počet vrcholů grafu označme n. d[s] 0; p[s] undef for all vrcholy v grafu vyjma počátečního do d[u] = ; p[u] =nedef. end for for i = 1 n do for all hrany (u, v) do if d[v] > d[u] + w(u, v) then d[v] d[u] + w(u, v), p[v] u end if end for end for for all hrany (u, v) do if d[v] > d[u] + w(u, v) then Chyba: graf obsahuje cyklus neg. váhy end if end for
20 Bellman-Ford příklad Obrázek: Relaxované hrany v každém kroku jsou vyznačeny modře. Napravo od grafu je vypsána délka nejkratších cest do vrcholů. V poslední (nezobrazené) iteraci již nedojde k žádným změnám. Modře by měly být i hrany (s,a), (s,b) a (s,d) na prvním obrázku.
21 Bellman-Ford animace/ilustrace výpočtu komentovaná animace výpočtu (česky) komentovaná animace výpočtu (anglicky) Bellman-Ford_algorithm
22 Bellman-Ford aplikace Bellman-Ford algoritmus je používán v druhé třídě směrovacích protokolů distance-vector. Namísto struktury celého grafu jsou mezi aktivními prvky přenášeny jim známé vzdálenosti do ostatních aktivních prvků. Každý aktivní prvek periodicky rozesílá tyto sobě známé vzdálenosti k ostatním. Obdrží-li aktivní prvek tabulku vzdáleností, provede relaxaci hran, případně aktualizuje svoji směrovací tabulku a rozešle svým sousedům. Distance-vector protokoly mají nižší výpočetní složitost než link-state protokoly. Nejznámějšími distance-vector protokoly jsou RIP, BGP, EGP.
23 Floyd-Warshallův algoritmus Vypočítává nejkratší vzdálenost mezi všemi dvojicemi vrcholů v grafu. Graf může obsahovat záporně ohodnocené hrany, cykly s celkovým záporným ohodnocením vedou k chybnému řešení. Mezi každými dvěma dvojicemi vrcholů postupně vylepšuje nejkratší známou vzdálenost. V každém kroku algoritmu je definována množina vrcholů, kterými je možno nejkratší cesty vést. Každou iterací je do této množiny přidán jeden vrchol. V každé z n iterací jsou aktualizovány cesty mezi všemi n 2 dvojicemi vrcholů. Časová složitost algoritmu je tedy O(n 3 ). Paměťová složitost algoritmu je O(n 2 ).
24 Floyd-Warshallův algoritmus bližší popis Nechť jsou vrcholy grafu očíslovány 1... n. Nejprve algoritmus uvažuje pouze hrany grafu. Následně prohledává cesty procházející pouze vrcholem 1. Poté cesty procházející pouze vrcholy 1, 2, atd. Mezi každými dvěma vrcholy u, v je v (k + 1)-ní iteraci algoritmu známa cesta využívající vrcholů 1... k. Pro nejkratší cestu mezi těmito vrcholy využívající vrcholů 1... k + 1 jsou dvě možnosti: Vede opět pouze po vrcholech 1... k. Vede po vrcholech 1... k z u do vrcholu k + 1 a z něj poté do v. Na konci výpočtu jsou známy nejkratší cesty využívající všech vrcholů grafu.
25 Floyd-Warshallův algoritmus pseudokód V matici d na pozici d[i, j] je uložena vypočtená vzdálenost vrcholů i, j. Vstupem je graf v podobě matice sousednosti, kde jednotlivé prvky značí ohodnocení hrany nebo for all k = 1 n do for all i = 1 n do for all j = 1 n do d[i, j] min(d[i, j], d[i, k] + d[k, j]) end for end for end for
26 Floyd-Warshallův algoritmus příklad Obrázek: Vrcholy, kterými mohou vést cesty, jsou vyznačeny. Matice udává nejkratší nalezené vzdálenosti mezi dvojicemi vrcholů.
27 Distribuovaný Floyd-Warshall Výhodou Floyd-Warshallova algoritmu je jeho snadná aplikace v distribuovaném prostředí mezi autonomními jednotkami, které si mohou informace předávat jen pomocí zasílání zpráv po síti. Každý vrchol grafu vypočítává nejkratší cesty do všech ostatních vrcholů grafu. Na začátku zná každý vrchol jen cestu do svých sousedů. Stejně jako v sekvenční variantě algoritmu, každá iterace algoritmu přidává jeden vrchol, kterým mohou procházet hledané nejkratší cesty. Přidaný vrchol v každé iteraci rozešle svoji tabulku vzdáleností ostatním vrcholům grafu. Ostatní vrcholy pomocí své a přijaté tabulky aktualizují nejkratší cesty do všech vrcholů.
28 Distribuovaný Floyd-Warshall pseudokód Algoritmus je spuštěn ve vrcholu u. Inicializace: d[u] 0; p[u] nedef for all v V \{u} do if Existuje hrana (u, v) then d[v] w(u, v); p[v] u else d[v] ; p[v] nedef end if end for Hlavní cyklus: while nebyly vybrány všechny vrcholy do Vyber doposud nevybraný vrchol v if u = v then Rozešli ostatním vrcholům pole d else Přijmi od vrcholu v jeho pole d end if for all w V do d[w] min(d[w], d[v] + d [w]) uprav p[v] end for end while
29 Distribuovaný Floyd-Warshall Pro správnost algoritmu je nutné, aby všechny výpočetní uzly (vrcholy grafu) vybraly vždy stejný vrchol, který poté rozesílá svoji tabulku vzdáleností. Algoritmus je neefektivní z hlediska množství zasílaných dat. Pokud v některém vrcholu platí d[v]= pro právě vybraný vrchol v, jeho cesty se nijak neupraví a nemusí mu tedy být zasílána tabulka vzdáleností tohoto vrcholu. Před rozesláním tabulky vzdáleností se mohou vrcholy vzájemně informovat, které mají obdržet tuto tabulku s výrazně nižšími nároky na přenesená data Touegův algoritmus. Další informace: Ajay D. Kshemkalyani, Mukesh Singhal. Distributed Computing: Principles, Algorithms, and Systems. Cambridge University Press, Str
30 Cvičení 1 Na grafu níže vypočítejte nejkratší cesty použitím Dijkstrova, Bellman-Fordova a Floyd-Warshallova algoritmu. V případě prvních dvou použijte různé počáteční vrcholy. 2 Navrhněte způsob implementace nastíněného vylepšení distribuovaného Floyd-Warshallova algoritmu. Uvažujte, že výpočetní uzly mohou zasílat zprávy jen po hranách grafu (broadcasting je implementován přeposíláním zpráv mezi uzly).
31 Cvičení 3 Proč nepracuje Dijkstrův algoritmus korektně na grafech obsahujících záporně ohodnocené hrany? K jakým výsledkům může dojít, je-li na takovém grafu spuštěn? 4 Nechť vstupem Bellman-Fordova algoritmu je graf, v němž každá nejkratší cesta obsahuje nejvýše k hran. Navrhněte úpravu algoritmu umožňující ukončit výpočet po k + 1 iteracích.
3. Ve zbylé množině hledat prvky, které ve srovnání nikdy nejsou napravo (nevedou do nich šipky). Dát do třetí
DMA Přednáška Speciální relace Nechť R je relace na nějaké množině A. Řekneme, že R je částečné uspořádání, jestliže je reflexivní, antisymetrická a tranzitivní. V tom případě značíme relaci a řekneme,
Kapitola 11. Vzdálenost v grafech. 11.1 Matice sousednosti a počty sledů
Kapitola 11 Vzdálenost v grafech V každém grafu lze přirozeným způsobem definovat vzdálenost libovolné dvojice vrcholů. Hlavním výsledkem této kapitoly je překvapivé tvrzení, podle kterého lze vzdálenosti
(a) = (a) = 0. x (a) > 0 a 2 ( pak funkce má v bodě a ostré lokální maximum, resp. ostré lokální minimum. Pokud je. x 2 (a) 2 y (a) f.
I. Funkce dvou a více reálných proměnných 5. Lokální extrémy. Budeme uvažovat funkci f = f(x 1, x 2,..., x n ), která je definovaná v otevřené množině G R n. Řekneme, že funkce f = f(x 1, x 2,..., x n
Vzdálenost uzlů v neorientovaném grafu
Vzdálenosti a grafy Vzdálenost uzlů v neorientovaném grafu Je dán neorientovaný neohodnocený graf G = (V,E,I) vzdálenost uzlů u a v v neorientovaném souvislém grafu G je délka nejkratší cesty spojující
2.8.9 Parametrické rovnice a nerovnice s absolutní hodnotou
.8.9 Parametrické rovnice a nerovnice s absolutní hodnotou Předpoklady: 0,, 806 Pedagogická poznámka: Opět si napíšeme na začátku hodiny na tabuli jednotlivé kroky postupu při řešení rovnic (nerovnic)
STEREOMETRIE. Vzdálenost bodu od přímky. Mgr. Jakub Němec. VY_32_INOVACE_M3r0113
STEREOMETRIE Vzdálenost bodu od přímky Mgr. Jakub Němec VY_32_INOVACE_M3r0113 VZDÁLENOST BODU OD PŘÍMKY V PROSTORU Při hledání vzdálenosti bodu od geometrického útvaru v prostoru je nutné si vždy úlohu
Kvadratické rovnice pro učební obory
Variace 1 Kvadratické rovnice pro učební obory Autor: Mgr. Jaromír JUŘEK Kopírování a jkaékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. 1. Kvadratické
2.4.11 Nerovnice s absolutní hodnotou
.. Nerovnice s absolutní hodnotou Předpoklady: 06, 09, 0 Pedagogická poznámka: Hlavním záměrem hodiny je, aby si studenti uvědomili, že se neučí nic nového. Pouze používají věci, které dávno znají, na
M - Rovnice - lineární a s absolutní hodnotou
Rovnice a jejich ekvivalentní úpravy Co je rovnice Rovnice je matematický zápis rovnosti dvou výrazů. př.: x + 5 = 7x - M - Rovnice - lineární a s absolutní hodnotou Písmeno zapsané v rovnici nazýváme
E-ZAK. metody hodnocení nabídek. verze dokumentu: 1.1. 2011 QCM, s.r.o.
E-ZAK metody hodnocení nabídek verze dokumentu: 1.1 2011 QCM, s.r.o. Obsah Úvod... 3 Základní hodnotící kritérium... 3 Dílčí hodnotící kritéria... 3 Metody porovnání nabídek... 3 Indexace na nejlepší hodnotu...4
zejména Dijkstrův algoritmus pro hledání minimální cesty a hladový algoritmus pro hledání minimální kostry.
Kapitola Ohodnocené grafy V praktických aplikacích teorie grafů zpravidla graf slouží jako nástroj k popisu nějaké struktury. Jednotlivé prvky této struktury mají často přiřazeny nějaké hodnoty (může jít
STROMOVE ALGORITMY Prohledavani do sirky (level-order) Po vodorovnejch carach fronta
STROMOVE ALGORITMY Prohledavani do sirky (level-order) Po vodorovnejch carach vlož do fronty kořen opakuj, dokud není fronta prázdná 1. vyber uzel z fronty a zpracuj jej 2. vlož do fronty levého následníka
3.2.4 Podobnost trojúhelníků II
3..4 odobnost trojúhelníků II ředpoklady: 33 ř. 1: Na obrázku jsou nakresleny podobné trojúhelníky. Zapiš jejich podobnost (aby bylo zřejmé, který vrchol prvního trojúhelníku odpovídá vrcholu druhého trojúhelníku).
Jan Březina. Technical University of Liberec. 17. března 2015
TGH03 - stromy, ukládání grafů Jan Březina Technical University of Liberec 17. března 2015 Kružnice - C n V = {1, 2,..., n} E = {{1, 2}, {2, 3},..., {i, i + 1},..., {n 1, n}, {n, 1}} Cesta - P n V = {1,
PB165 Grafy a sítě. Kostry grafu. PB165 Grafy a sítě
Kostry grafu Obsah přednášky Úvod Budování stromu v grafu Průchod grafem Průchod do šířky Průchod do hloubky Minimální kostra grafu Primův algoritmus Kruskalův algoritmus Terminologický úvod Definice Stromem
Dijkstrův algoritmus
Dijkstrův algoritmus Hledání nejkratší cesty v nezáporně hranově ohodnoceném grafu Necht je dán orientovaný graf G = (V, H) a funkce, která každé hraně h = (u, v) H přiřadí nezáporné reálné číslo označované
{ } 9.1.9 Kombinace II. Předpoklady: 9108. =. Vypiš všechny dvoučlenné kombinace sestavené z těchto pěti prvků. Urči počet kombinací pomocí vzorce.
9.1.9 Kombinace II Předpoklady: 9108 Př. 1: Je dána pěti prvková množina: M { a; b; c; d; e} =. Vypiš všechny dvoučlenné kombinace sestavené z těchto pěti prvků. Urči počet kombinací pomocí vzorce. Vypisujeme
Postup práce s elektronickým podpisem
Obsah 1. Obecné informace o elektronickém podpisu... 2 2. Co je třeba nastavit, abyste mohli používat elektronický podpis v MS2014+... 2 2.1. Microsoft Silverlight... 2 2.2. Zvýšení práv pro MS Silverlight...
Dualita v úlohách LP Ekonomická interpretace duální úlohy. Jiří Neubauer. Katedra ekonometrie FEM UO Brno
Přednáška č. 6 Katedra ekonometrie FEM UO Brno Uvažujme obecnou úlohu lineárního programování, tj. úlohu nalezení takového řešení vlastních omezujících podmínek a 11 x 1 + a 1 x +... + a 1n x n = b 1 a
Pingpongový míček. Petr Školník, Michal Menkina. TECHNICKÁ UNIVERZITA V LIBERCI Fakulta mechatroniky, informatiky a mezioborových studií
Petr Školník, Michal Menkina TECHNICKÁ UNIVERZITA V LIBERCI Fakulta mechatroniky, informatiky a mezioborových studií Tento materiál vznikl v rámci projektu ESF CZ.1.7/../7.47, který je spolufinancován
Využití EduBase ve výuce 2
B.I.B.S., a. s. Využití EduBase ve výuce 2 Projekt Vzdělávání pedagogů v prostředí cloudu reg. č. CZ.1.07/1.3.00/51.0011 Mgr. Jitka Kominácká, Ph.D. a kol. 2015 1 Obsah 1 Obsah... 2 2 Úvod... 3 3 Aktivita:
2.1. Pojem funkce a její vlastnosti. Reálná funkce f jedné reálné proměnné x je taková
.. Funkce a jejich graf.. Pojem funkce a její vlastnosti. Reálná funkce f jedné reálné proměnné je taková binární relace z množin R do množin R, že pro každé R eistuje nejvýše jedno R, pro které [, ] f.
Tvorba trendové funkce a extrapolace pro roční časové řady
Tvorba trendové funkce a extrapolace pro roční časové řady Příklad: Základem pro analýzu je časová řada živě narozených mezi lety 1970 a 2005. Prvním úkolem je vybrat vhodnou trendovou funkci pro vystižení
TGH06 - Hledání nejkratší cesty
TGH06 - Hledání nejkratší cesty Jan Březina Technical University of Liberec 26. března 2013 Motivační problémy Silniční sít reprezentovaná grafem. Najdi nejkratší/nejrychlejší cestu z místa A do místa
1.3.1 Kruhový pohyb. Předpoklady: 1105
.. Kruhový pohyb Předpoklady: 05 Předměty kolem nás se pohybují různými způsoby. Nejde pouze o přímočaré nebo křivočaré posuvné pohyby. Velmi často se předměty otáčí (a některé se přitom pohybují zároveň
Jarníkův algoritmus. Obsah. Popis
1 z 6 28/05/2015 11:44 Jarníkův algoritmus Z Wikipedie, otevřené encyklopedie Jarníkův algoritmus (v zahraničí známý jako Primův algoritmus) je v teorii grafů algoritmus hledající minimální kostru ohodnoceného
Grafové algoritmy. Programovací techniky
Grafové algoritmy Programovací techniky Grafy Úvod - Terminologie Graf je datová struktura, skládá se z množiny vrcholů V a množiny hran mezi vrcholy E Počet vrcholů a hran musí být konečný a nesmí být
Teorie grafů. Bedřich Košata
Teorie grafů Bedřich Košata Co je to graf Možina bodů (uzlů) spojených "vazbami" Uzel = vrchol (vertex, pl. vertices) Vazba = hrana (edge) K čemu je to dobré Obecný model pro Sítě Telekomunikační Elektrické
Často potřebujeme hledat mezi dvěma vrcholy grafu cestu, která je v nějakém
1. Nejkrat¹í cesty Často potřebujeme hledat mezi dvěma vrcholy grafu cestu, která je v nějakém smyslu optimální typicky nejkratší možná. Už víme, že prohledávání do šířky najde cestu s nejmenším počtem
Dutý plastický trojúhelník by Gianelle
Dutý plastický trojúhelník by Gianelle Připravíme si rokajl dle našeho výběru pro začátek nejlépe dvě barvy jedné velikosti Já používám korálky Miyuki Delica v tmavě červené barvě, matné s AB úpravou na
Svobodná chebská škola, základní škola a gymnázium s.r.o. pochopení pojmů a výpočtů objemů a obvodů
METODICKÝ LIST DA46 Název tématu: Autor: Předmět: Ročník: Metody výuky: Formy výuky: Cíl výuky: Získané dovednosti: Stručný obsah: Obvod a obsah I. - obrazce Astaloš Dušan Matematika šestý frontální, fixační,
Dopravní úloha. Jiří Neubauer. Katedra ekonometrie FEM UO Brno
Přednáška č. 9 Katedra ekonometrie FEM UO Brno Distribuční úlohy Budeme se zabývat 2 typy distribučních úloh dopravní úloha přiřazovací problém Dopravní úloha V dopravním problému se v typickém případě
( ) 2.4.4 Kreslení grafů funkcí metodou dělení definičního oboru I. Předpoklady: 2401, 2208
.. Kreslení grafů funkcí metodou dělení definičního oboru I Předpoklady: 01, 08 Opakování: Pokud jsme při řešení nerovnic potřebovali vynásobit nerovnici výrazem, nemohli jsme postupovat pro všechna čísla
Rozvrhování zaměstnanců
Rozvrhování zaměstnanců 23. dubna 2014 1 Úvod 2 Rozvrhování volných dnů 3 Rozvrhování směn 4 Cyklické rozvrhování směn 5 Rozvrhování pomocí omezujících podmínek Rozvrhování zaměstnanců Jedná se o problém
Obchodní řetězec Dokumentace k návrhu databázového systému
Mendelova univerzita v Brně, Provozně ekonomická fakulta Obchodní řetězec Dokumentace k návrhu databázového systému 1. Úvod Cílem této práce je seznámit čtenáře s návrhem databázového systému Obchodní
2.7.2 Mocninné funkce se záporným celým mocnitelem
.7. Mocninné funkce se záporným celým mocnitelem Předpoklady: 70 Mocninné funkce se záporným celým mocnitelem: znamená? 3 y = = = = 3 y y y 3 = ; = ; = ;.... Co to Pedagogická poznámka: Nechávám studenty,
TGH05 - aplikace DFS, průchod do šířky
TGH05 - aplikace DFS, průchod do šířky Jan Březina Technical University of Liberec 28. března 2017 Grafová formulace CPM (critical path method) Orientovaný acyklický graf (DAG) je orientovaný graf neobsahující
TGH05 - aplikace DFS, průchod do šířky
TGH05 - aplikace DFS, průchod do šířky Jan Březina Technical University of Liberec 31. března 2015 Grafová formulace CPM (critical path method) Orientovaný acyklický graf (DAG) je orientovaný graf neobsahující
4.6.6 Složený sériový RLC obvod střídavého proudu
4.6.6 Složený sériový LC obvod střídavého proudu Předpoklady: 41, 4605 Minulá hodina: odpor i induktance omezují proud ve střídavém obvodu, nemůžeme je však sčítat normálně, ale musíme použít Pythagorovu
Dijkstrův algoritmus (připomenutí)
Dijkstrův algoritmus (připomenutí) Základní předpoklad w : H R + (nezáporné délky hran) Upravený algoritmus prohledávání do šířky Dijkstra(G,s,w) 1 InitPaths(G,s) 2 S:= ; InitQueue(Q) 3 for každý uzel
UŽITÍ DERIVACÍ, PRŮBĚH FUNKCE
MENDELOVA UNIVERZITA V BRNĚ LDF MT MATEMATIKA UŽITÍ DERIVACÍ, PRŮBĚH FUNKCE Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakult MENDELU v Brně (LDF) s ohledem na disciplin
Použití dalších heuristik
Použití dalších heuristik zkracování cesty při FIND-SET UNION podle hodností Datové struktury... p[x] - předchůdce uzlu x MAKE-SET(x) p[x] := x hod[x] := 0 hod[x] - hodnost (aprox. výšky) UNION(x,y) LINK(FIND-SET(x),
Abstrakt. Následující text obsahuje detailní popis algoritmu Minimax, který se používá při realizaci rozhodování
Abstrakt Následující text obsahuje detailní popis algoritmu Minimax, který se používá při realizaci rozhodování počítačového hráče v jednoduchých deskových hrách, a jeho vylepšení Alfa-Beta ořezávání,
Kvantové počítače algoritmy (RSA a faktorizace čísla) http://marble.matfyz.cz
Kvantové počítače algoritmy (RSA a faktorizace čísla) http://marble.matfyz.cz 14. 4. 2004 1. Algoritmus RSA Asymetrické šifrování. Existuje dvojice tajného a veřejného klíče, takže není nutné předat klíč
Umělá inteligence. Příklady využití umělé inteligence : I. konstrukce adaptivních systémů pro řízení technologických procesů
Umělá inteligence Pod pojmem umělá inteligence obvykle rozumíme snahu nahradit procesy realizované lidským myšlením pomocí prostředků automatizace a výpočetní techniky. Příklady využití umělé inteligence
TGH06 - Hledání nejkratší cesty
TGH06 - Hledání nejkratší cesty Jan Březina Technical University of Liberec 31. března 2015 Motivační problémy Silniční sít reprezentovaná grafem. Ohodnocené hrany - délky silnic. Najdi nejkratší/nejrychlejší
Lokální a globální extrémy funkcí jedné reálné proměnné
Lokální etrémy Globální etrémy Použití Lokální a globální etrémy funkcí jedné reálné proměnné Nezbytnou teorii naleznete Breviáři vyšší matematiky (odstavec 1.). Postup při hledání lokálních etrémů: Lokální
65. ročník matematické olympiády Řešení úloh klauzurní části školního kola kategorie B
65. ročník matematické olympiády Řešení úloh klauzurní části školního kola kategorie B 1. Nejprve zjistíme, jak lze zapsat číslo 14 jako součet čtyř z daných čísel. Protože 4 + 3 3 < 14 < 4 4, musí takový
Algoritmy na ohodnoceném grafu
Algoritmy na ohodnoceném grafu Dvě základní optimalizační úlohy: Jak najít nejkratší cestu mezi dvěma vrcholy? Dijkstrův algoritmus s t Jak najít minimální kostru grafu? Jarníkův a Kruskalův algoritmus
Funkce více proměnných
Funkce více proměnných Funkce více proměnných Euklidův prostor Body, souřadnice, vzdálenost bodů Množina bodů, které mají od bodu A stejnou vzdálenost Uzavřený interval, otevřený interval Okolí bodu
KIV/ZI Základy informatiky. MS Excel maticové funkce a souhrny
KIV/ZI Základy informatiky MS Excel maticové funkce a souhrny cvičící: Michal Nykl zimní semestr 2012 MS Excel matice (úvod) Vektor: (1D) v = [1, 2, 3, 5, 8, 13] Např.: matice sousednosti Matice: (2D)
Statistiky cyklistů. Základní statistické ukazatele ve formě komentovaných grafů. Dokument mapuje dopravní nehody cyklistů a jejich následky
Základní statistické ukazatele ve formě komentovaných grafů Dokument mapuje dopravní nehody cyklistů a jejich následky 26.2.2013 Obsah 1. Úvod... 3 1.1 Národní databáze... 3 2. Základní fakta... 4 3. Vývoj
Diferenciální počet funkcí jedné proměnné
Diferenciální počet funkcí jedné proměnné 1 Diferenciální počet funkcí jedné proměnné - Úvod Diferenciální počet funkcí jedné proměnné - úvod V přírodě se neustále dějí změny. Naší snahou je nalézt příčiny
16. února 2015, Brno Připravil: David Procházka
16. února 2015, Brno Připravil: David Procházka Skrývání implementace Základy objektového návrhu Připomenutí návrhu použitelných tříd Strana 2 / 17 Obsah přednášky 1 Připomenutí návrhu použitelných tříd
9.2.5 Sčítání pravděpodobností I
9.2.5 Sčítání pravděpodobností I Předpoklady: 9203 Pedagogická poznámka: Následující problém sice zadávám jako příklad, ale minimálně na začátku s žáky počítám na tabuli. I kvůli tomu, aby jejich úprava
GRAFY A GRAFOVÉ ALGORITMY
KATEDRA INFORMATIKY PŘÍRODOVĚDECKÁ FAKULTA UNIVERZITA PALACKÉHO GRAFY A GRAFOVÉ ALGORITMY ARNOŠT VEČERKA VÝVOJ TOHOTO UČEBNÍHO TEXTU JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ
Sekvenční logické obvody
Sekvenční logické obvody 7.přednáška Sekvenční obvod Pokud hodnoty výstupů logického obvodu závisí nejen na okamžitých hodnotách vstupů, ale i na vnitřním stavu obvodu, logický obvod se nazývá sekvenční.
2.1.13 Funkce rostoucí, funkce klesající I
.1.13 Funkce rostoucí, funkce klesající I Předpoklad: 111 Pedagogická poznámka: Následující příklad je dobrý na opakování. Můžete ho studentům zadat na čas a ten kdo ho nestihne nebo nedokáže vřešit, b
NEJKRATŠÍ CESTY I. Doc. RNDr. Josef Kolář, CSc. Katedra teoretické informatiky, FIT České vysoké učení technické v Praze
NEJKRATŠÍ CESTY I Doc. RNDr. Josef Kolář, CSc. Katedra teoretické informatiky, FIT České vysoké učení technické v Praze BI-GRA, LS 2010/2011, Lekce 7 Evropský sociální fond Praha & EU: Investujeme do vaší
Grafové algoritmy. Programovací techniky
Grafové algoritmy Programovací techniky Grafy Úvod - Terminologie Graf je datová struktura, skládá se z množiny vrcholů V a množiny hran mezi vrcholy E Počet vrcholů a hran musí být konečný a nesmí být
Aritmetika s didaktikou I.
Katedra matematiky PF UJEP Aritmetika s didaktikou I. KM1 / 0001 Přednáška 03 Operace v množině, vlastnosti binárních operací O čem budeme hovořit: zavedení pojmu operace binární, unární a další operace
Nyní jste jedním z oněch kouzelníků CÍL: Cílem hry je zničit soupeřovy HERNÍ KOMPONENTY:
Vytvořili Odet L Homer a Roberto Fraga Velikonoční ostrov je tajemný ostrov v jižním Pacifiku. Jeho původní obyvatelé již před mnoha lety zmizeli a jediné, co po nich zůstalo, jsou obří sochy Moai. Tyto
Důkazové metody. Teoretická informatika Tomáš Foltýnek
Důkazové metody Teoretická informatika Tomáš Foltýnek foltynek@pef.mendelu.cz Matematický důkaz Jsou dány axiomy a věta (tvrzení, teorém), o níž chceme ukázat, zda platí. Matematický důkaz je nezpochybnitelné
Aplikované úlohy Solid Edge. SPŠSE a VOŠ Liberec. Ing. Aleš Najman [ÚLOHA 18 TVORBA PLOCH]
Aplikované úlohy Solid Edge SPŠSE a VOŠ Liberec Ing. Aleš Najman [ÚLOHA 18 TVORBA PLOCH] 1 ÚVOD V této kapitole je probírána tématika tvorby ploch pomocí funkcí vysunutí, rotace a tažení. V moderním světě,
Řešení: ( x = (1 + 2t, 2 5t, 2 + 3t, t); X = [1, 2, 2, 0] + t(2, 5, 3, 1), přímka v E 4 ; (1, 2, 2, 0), 0, 9 )
. Vyjádřete koeficienty vektoru (, 8, 9) vzhledem k následující bázi vektorového prostoru V : (,, 5), (,, ), (5,, ). [,, ].. Určete všechny hodnoty parametru u, pro které vektor a patří do vektorového
Hledáme efektivní řešení úloh na grafu
Hledáme efektivní řešení úloh na grafu Mějme dán graf následující úlohy: G = ( V, E), chceme algoritmicky vyřešit Je daný vrchol t dosažitelný z vrcholu s? Pokud ano, jaká nejkratší cesta tyto vrcholy
Jméno autora: Mgr. Zdeněk Chalupský Datum vytvoření: 5. 9. 2012 Číslo DUM: VY_32_INOVACE_13_FY_A
Jméno autora: Mgr. Zdeněk Chalupský Datum vytvoření: 5. 9. 2012 Číslo DUM: VY_32_INOVACE_13_FY_A Ročník: I. Fyzika Vzdělávací oblast: Přírodovědné vzdělávání Vzdělávací obor: Fyzika Tematický okruh: Mechanika
Paralelní grafové algoritmy
Paralelní grafové algoritmy Značení Minimální kostra grafu Nejkratší cesta z jednoho uzlu Nejkratší cesta mezi všemi dvojicemi uzlů Použité značení Definition Bud G = (V, E) graf. Pro libovolný uzel u
15 s. Analytická geometrie lineárních útvarů
5 s Analytická geometrie lineárních útvarů ) Na přímce: a) Souřadnice bodu na přímce: Bod P nazýváme počátek - jeho souřadnice je P [0] Nalevo od počátku leží čísla záporná, napravo čísla kladná. Každý
1. Cizinci v České republice
1. Cizinci v České republice Počet cizinců v ČR se již delší dobu udržuje na přibližně stejné úrovni, přičemž na území České republiky bylo k 31. 12. 2011 evidováno 434 153 osob III. Pokud vezmeme v úvahu
IB108 Sada 1, Příklad 1 Vypracovali: Tomáš Krajča (255676), Martin Milata (256615)
IB108 Sada 1, Příklad 1 ( ) Složitost třídícího algoritmu 1/-Sort je v O n log O (n.71 ). Necht n = j i (velikost pole, které je vstupním parametrem funkce 1/-Sort). Lehce spočítáme, že velikost pole předávaná
Kapitola I - Množiny bodů daných vlastností I.a Co je množinou všech bodů v rovině, které mají od daných dvou různých bodů stejnou vzdálenost? I.
Kapitola I - Množiny bodů daných vlastností I.a Co je množinou všech bodů v rovině, které mají od daných dvou různých bodů stejnou vzdálenost? I.b Co je množinou středů všech kružnic v rovině, které prochází
Jakub Juránek. 1.64 Určete počet kvádru, jejichž velikosti hran jsou přirozená čísla nejvýše rovná deseti. Kolik je v tomto počtu krychlí?
Jakub Juránek UČO 393110 1.64 Určete počet kvádru, jejichž velikosti hran jsou přirozená čísla nejvýše rovná deseti. Kolik je v tomto počtu krychlí? Kvádr a b c, a, b, c {1, 2,..., 10} a b c = c a b -
2.7.1 Mocninné funkce s přirozeným mocnitelem
.7. Mocninné funkce s přirozeným mocnitelem Předpoklad: 0 Pedagogická poznámka: K následujícím třem hodinám je možné přistoupit dvěma způsob. Já osobně doporučuji postupovat podle učebnice. V takovém případě
Domácí úkol DU01_2p MAT 4AE, 4AC, 4AI
Příklad 1: Domácí úkol DU01_p MAT 4AE, 4AC, 4AI Osm spolužáků (Adam, Bára, Cyril, Dan, Eva, Filip, Gábina a Hana) se má seřadit za sebou tak, aby Eva byly první a Dan předposlední. Příklad : V dodávce
Algoritmizace prostorových úloh
INOVACE BAKALÁŘSKÝCH A MAGISTERSKÝCH STUDIJNÍCH OBORŮ NA HORNICKO-GEOLOGICKÉ FAKULTĚ VYSOKÉ ŠKOLY BÁŇSKÉ - TECHNICKÉ UNIVERZITY OSTRAVA Algoritmizace prostorových úloh Grafové úlohy Daniela Szturcová Tento
ORIENTOVANÉ GRAFY, REPREZENTACE GRAFŮ
ORIENTOVANÉ GRAFY, REPREZENTACE GRAFŮ Doc. RNDr. Josef Kolář, CSc. Katedra teoretické informatiky, FIT České vysoké učení technické v Praze BI-GRA, LS 2/2, Lekce Evropský sociální fond Praha & EU: Investujeme
Číselné soustavy Ing. M. Kotlíková, Ing. A. Netrvalová Strana 1 (celkem 7) Číselné soustavy
Číselné soustavy Ing. M. Kotlíková, Ing. A. Netrvalová Strana (celkem 7) Polyadické - zobrazené mnohočlenem desítková soustava 3 2 532 = 5 + 3 + 2 + Číselné soustavy Číslice tvořící zápis čísla jsou vlastně
Střední průmyslová škola strojnická Olomouc, tř.17. listopadu 49
Střední průmyslová škola strojnická Olomouc, tř.17. listopadu 49 Výukový materiál zpracovaný v rámci projektu Výuka moderně Registrační číslo projektu: CZ.1.07/1.5.00/34.0205 Šablona: III/2 Informační
SPOLEHLIVOST KONSTRUKCÍ & TEORIE SPOLEHLIVOSTI část 2: Statistika a pravděpodobnost
SPOLEHLIVOST KONSTRUKCÍ & TEORIE SPOLEHLIVOSTI část 2: Statistika a pravděpodobnost Drahomír Novák Jan Eliáš 2012 Spolehlivost konstrukcí, Drahomír Novák & Jan Eliáš 1 část 2 Statistika a pravděpodobnost
Zvyšování kvality výuky technických oborů
Zvyšování kvality výuky technických oborů Klíčová aktivita IV. Inovace a zkvalitnění výuky směřující k rozvoji matematické gramotnosti žáků středních škol Téma IV.. Kvadratické funkce, rovnice a nerovnice
Úpravy skříní a čelních ploch pro úchopovou lištou
Úpravy skříní a čelních ploch pro úchopovou lištou Úchopová lišta znamená hliníkovou lištu, která je součástí korpusu. Skříňky jsou připraveny pro osazení této lišty, lišta samotná se osazuje až na montáži.
Optika. VIII - Seminář
Optika VIII - Seminář Op-1: Šíření světla Optika - pojem Historie - dva pohledy na světlo ČÁSTICOVÁ TEORIE (I. Newton): světlo je proud částic VLNOVÁ TEORIE (Ch.Huygens): světlo je vlnění prostředí Dělení
Každý jednotlivý záznam datového souboru (tzn. řádek) musí být ukončen koncovým znakem záznamu CR + LF.
Stránka 1 z 6 ABO formát Technický popis struktury formátu souboru pro načtení tuzemských platebních příkazů k úhradě v CZK do internetového bankovnictví. Přípona souboru je vždy *.KPC Soubor musí obsahovat
Obsah prezentace. Základní pojmy v teorii o grafech Úlohy a prohledávání grafů Hledání nejkratších cest
Obsah prezentace Základní pojmy v teorii o grafech Úlohy a prohledávání grafů Hledání nejkratších cest 1 Základní pojmy Vrchol grafu: {množina V} Je to styčná vazba v grafu, nazývá se též uzlem, prvkem
INŽENÝRSKÁ MATEMATIKA LOKÁLNÍ EXTRÉMY
INŽENÝRSKÁ MATEMATIKA LOKÁLNÍ EXTRÉMY FUNKCÍ DVOU PROMĚNNÝCH Robert Mařík 2. října 2009 Obsah z = x 4 +y 4 4xy + 30..................... 3 z = x 2 y 2 x 2 y 2........................ 18 z = y ln(x 2 +y)..........................
Paradigmata programování 1
Paradigmata programování 1 Akumulace Vilém Vychodil Katedra informatiky, PřF, UP Olomouc Přednáška 7 V. Vychodil (KI, UP Olomouc) Akumulace Přednáška 7 1 / 33 Přednáška 7: Přehled 1 Akumulace pomocí foldr
MS WORD 2007 Styly a automatické vytvoření obsahu
MS WORD 2007 Styly a automatické vytvoření obsahu Při formátování méně rozsáhlých textů se můžeme spokojit s formátováním použitím dílčích formátovacích funkcí. Tato činnost není sice nijak složitá, ale
Cíl hry Cílem hry je získat co nejméně trestných bodů. Každá hra se skládá z deseti kol.
DESÍTKA Interakční, taktická karetní hra od holandských autorů. Hra, ve které se snažíte přelstít své soupeře! Hra, ve které může zvítězit i ten, komu štěstí zrovna nepřeje. Podmínkou jsou pevné nervy,
Matice sousednosti NG
Matice sousednosti NG V = [ v ij ] celočíselná čtvercová matice řádu U v ij = ρ -1 ( [u i, u j ] )... tedy počet hran mezi u i a u j?jaké vlastnosti má matice sousednosti?? Smyčky, rovnoběžné hrany? V
Úlohy 22. ročníku Mezinárodní fyzikální olympiády - Havana, Cuba
Úlohy 22. ročníku Mezinárodní fyzikální olympiády - Havana, Cuba Petr Pošta Text pro soutěžící FO a ostatní zájemce o fyziku 2 1. úloha Obrázek 1.1 ukazuje pevný, homogenní míč poloměru R. Před pádem na
KONSTRUKČNÍ ÚLOHY ŘEŠENÉ UŽITÍM MNOŽIN BODŮ
Projekt ŠABLONY NA GVM Gymnázium Velké Meziříčí registrační číslo projektu: CZ.1.07/1.5.00/34.0948 IV-2 Inovace a zkvalitnění výuky směřující k rozvoji matematické gramotnosti žáků středních škol KONSTRUKČNÍ
PŘÍRUČKA K POUŽÍVÁNÍ APLIKACE HELPDESK
PŘÍRUČKA K POUŽÍVÁNÍ APLIKACE HELPDESK Autor: Josef Fröhlich Verze dokumentu: 1.1 Datum vzniku: 4.4.2006 Datum poslední úpravy: 10.4.2006 Liberecká IS, a.s.;jablonecká 41; 460 01 Liberec V; IČ: 25450131;
Kvadratické rovnice pro studijní obory
Variace 1 Kvadratické rovnice pro studijní obory Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. 1. Kvadratické
Úvod do teorie grafů
Úvod do teorie grafů Neorientovaný graf G = (V,E,I) V množina uzlů (vrcholů) - vertices E množina hran - edges I incidence incidence je zobrazení, buď: funkce: I: E V x V relace: I E V V incidence přiřadí
Energetický regulační
Energetický regulační ENERGETICKÝ REGULAČNÍ ÚŘAD ROČNÍK 16 V JIHLAVĚ 25. 5. 2016 ČÁSTKA 4/2016 OBSAH: str. 1. Zpráva o dosažené úrovni nepřetržitosti přenosu nebo distribuce elektřiny za rok 2015 2 Zpráva
IMPORT A EXPORT MODULŮ V PROSTŘEDÍ MOODLE
Nové formy výuky s podporou ICT ve školách Libereckého kraje IMPORT A EXPORT MODULŮ V PROSTŘEDÍ MOODLE Podrobný návod Autor: Mgr. Michal Stehlík IMPORT A EXPORT MODULŮ V PROSTŘEDÍ MOODLE 1 Úvodem Tento
Algoritmus pro hledání nejkratší cesty orientovaným grafem
1.1 Úvod Algoritmus pro hledání nejkratší cesty orientovaným grafem Naprogramoval jsem v Matlabu funkci, která dokáže určit nejkratší cestu v orientovaném grafu mezi libovolnými dvěma vrcholy. Nastudoval
Semestrální práce NÁVRH ÚZKOPÁSMOVÉHO ZESILOVAČE. Daniel Tureček zadání číslo 18 cvičení: sudý týden 14:30
Semestrální práce NÁVRH ÚZKOPÁSMOVÉHO ZESILOVAČE Daniel Tureček zadání číslo 18 cvičení: sudý týden 14:30 1. Ověření stability tranzistoru Při návrhu úzkopásmového zesilovače s tranzistorem je potřeba
SUPPORT VECTOR MACHINES
SUPPORT VECTOR MACHINES (SVM Algoritmy nosných vektorů) Stručný úvod do efektivní metody lineární klasifikace Jan Žižka Ústav informatiky PEF, Mendelova universita v Brně Lineární oddělování tříd, výhody