VLNY NA VEDENÍCH, LECHEROVY DRÁTY

Rozměr: px
Začít zobrazení ze stránky:

Download "VLNY NA VEDENÍCH, LECHEROVY DRÁTY"

Transkript

1 Úko: VLNY NA VEDENÍCH, LECHEROVY DRÁTY 1. Ověřte vznik stojatho vnění na Leherovýh dráteh. 2. měřte vnovou impedani a daší parametry předoženýh vzorků dvojvodičovho vedení. 3. Proveďte proměření impedane koaiáního kabeu a teevizní dvojinky při vysok frekveni, a to bez zátěže, a při zkratu. Teoretiký úvod: Vedení (tak nazýváno inka) je pasivní prvek, který zajišťuje přenos energie. Eektromagnetiká energie přenášená dvěma paraeními vodiči se šíří v prostoru mezi těmito vodiči, přičemž vastní vodiče určují směr přenosu tto energie. Prostor koem vodičů může být tvořen vzduhem nebo jiným dieektrikem, vedení je zakončeno nejčastěji nějakou obenou impedaní, zkratem nebo může být na koni otevřen. Jak je známo z teorie obvodů je viv prostředí obkopujíí vodiče zahrnut do parametru vnová impedane. Každá nehomogenita prostředí a to včetně zakončení vodičů vede k odrazům vn postupujíím po vedení a ke změnám ampitudy a fáze prostupujíí vny. Soustřeďme se dáe na diskontuitu vedení v podnm směru, a to v místě zakončení vedení. ajímat se budeme pouze douhým vedením, to je takovým, kter svou dkou přesahuje dku vny, nebo je s touto dkou srovnaten. Vedení je na začátku napájeno budíím harmonikým napětím u = U m sin wt. Pomineme-i jistou fiki - nekonečně douh vedení, mohou nastat tyto typik případy: a) Vedení je zatíženo impedaní rovnou vnov impedani tohoto vedení. Potom se jedná o vedení přizpůsoben a vna se od takovto zátěže neodráží. b) Vedení je zatíženo obenou ipmedaní z. ) Vedení je na koni zkratováno, tedy zatíženo nuovou impedaní. V tomto případě musí být úbytek napětí na takovto impedani nuový. Obeně však postupná vna nuovho napětí na koni nedosahuje. Musí zde tedy vzniknout vna zpětná, s opačně orientovanou stejně vekou hodnotou napětí. Obě sožky se spou sčítají tak, aby výsedn napětí na koni vedení nuov skutečně byo. Případ je anaogiký s dopadem vny na povrh dokonaho vodiče, kde musí být tak nuová hodnota intenzity eektrikho poe. Při dokonam zkratu (destičkou komou na osy vodičů - vektor rovinn vny E je rovnoběžný s touto destičkou) vzniká jen dominantní vid (zákadní harmoniká) zpětn vny. U nedokonaho zkratu rozměrnýh vodičů (např. tenkým drátkem) má poe v místě zkratu sožitější tvar, s tím, že na drátku musí být opět nuov napětí. Toho ze doíit jen tak, že v místě zkratu vznikají vyšší vidy emag. vn, kter jsou však na vemi krátk vzdáenosti od místa zkratu utumeny. Pod vedení na koni zkratovanho, vzniká stojatá vna s nuami a kmitnami (maima napětí) umístěnými v geometriky konstantníh místeh. krat na koni vedení se může nahradit fiktivním zdrojem, který dává opačně poarizovan napětí (znamnko -), to ae znamená, že proudová odražená vna musí být ve fázi s přímou proudovou vnou (znamnko +). Pro výsednou stojatou vnu tedy můžeme psát: 1

2 u zpětná pøímá = U ê æ ö æ ö sin sin m ç - ç ú 2 p (1) osw t + osw t - =- 2U m wt ê è ø è øú zpětná pøímá i = I ê æ ö æ ö çt + + t - ú m os ç I t ê w os è ø w = m è øú os w 2p 2 os (2) d) Vedení je na koni otevřeno, tedy zatíženo nekonečnou impedaní. Takovouto impedaní neprotká proud. Postupná vna proudu se tedy musí od nehomogenity (rozpojen vedení) odrazit s opačnou fází. Vzniká opět stojatá vna. Pro výsednou stojatou vnu patí anaogiky se zkratem: æ ö i Im t t Im t sin 2 = ê æ ö ç - ç ú p osw + osw - = 2 w sin (3) ê è ø è ø ú u = U ê æ ö æ ö m çt + çt ú Um t os s 2 p osw + osw - =- 2 w o (4) ê è ø è øú Leherovým vedením (Leherovými dráty) nazýváme tzv. rezonanční vedení se zanedbatenými ztrátami, na koni zkratovan, jehož dka je n. nebo n./2 (n je e číso), případně ji můžeme na tyto dky přestavovat posuvným zkratem. Rezonančním vedením je nazváno vedení se stojatými vnami, tj. vedení zakončeno jinak než činným odporem rovným harakteristik impedani. Leherovy dráty se užívají při eperimenteh s proudy vemi obr. 1 i o R o L o R o L o i R o L o u o C o G o C o G o C o G o u = 0 vysokýh frekvení. Kmitny napětí na rezonujíím vedení se vyskytují v místeh uzů proudů a naopak. Maimum napětí a nejbižší maimum proudu na vedení jsou tedy od sebe vzdáeny vzájemně o /4, maima napětí respekt. proudu jsou od sebe vzdáeny o /2, z čehož ze vypočíst frekvene zdroje. Douh dvojvodičov vedení (tj. vedení deší než je dka vny jím přenášenho signáu) si můžeme nahradit kaskádně spojenými čánky pode obr. 1. 2

3 Sriov čeny R o a L o způsobují zmenšování přenášenho napětí, příčn čeny C o a G o způsobují zmenšování proudu. Proud v těhto čeneh je tím menší, čím jsou čeny vzdáenější od počátku vedení. Proto tak na začátku vedení kesá napětí a proud přenášenho signáu daeko ryheji, než v dašíh úseíh a výsedn napětí se nezmenšuje ineárně ae eponeniáně. Přenos energie by mě probíhat s minimáními ztrátami. Pro posouzení ztrát se zavádí ve sděovaí tehnie tzv. míra přenosu (tak nazývána konstanta šíření) g = b - ja (5) která je obeně kompení veičinou. Reánou sožku b nazýváme měrný útum (konstanta útumu), imaginární a měrný posuv. Měrný útum, tedy útum vedení na jednotku dky bude v případě zde prováděnýh měření minimání (R o 0, G o 0) a nebudeme s ním počítat. V prai se udává většinou v db/m, ve staršíh iteraturáh v nepereh/m (přepočet 1N = 8,68 db). Měrný posuv a nám říká, o koik stupňů je na jednotku dky vedení pootočen vektor napětí proti napětí na počátku vedení. Určuje tedy tak dku vny na vedení. a = w L0 C0 (6) Vektor napětí u se natočí o 2p (v rad) neboi 360 o na vzdáenosti dky vny p = 2 (7) a Vyděíme-i dku vny dobou kmitu T dostáváme ryhost šíření vny na vedení nebo v = = f (8) T 2p w v = f = = a a 1 ( LC 0 0 ) Vnová impedane (harakteristiká impedane) vedení je vastně odpor, který vedení kade střídavmu proudu. a předpokadu zanedbání parametrů R o a G o je v = Porovnáme-i vnovou impedani vedení uoženho ve vzduhu v s vnovou impedaní stejnho vedení umístěnho v dieektriku s e (označ. ' v ) potom L 0 C0 e v v = Vzduhov dvojvodičov vedení mívá větší indukčnost než kabeová dvojinka, protože vzdáenost vodičů ve vzduhu je zpravida větší než u dvojinky, a jak známo ve vztahu pro výpočet indukčnosti dvojvodičovho vedení figuruje vzdáenost vodičů v čitatei ogaritmu. Naopak permitivita, a tedy i kapaita dvojinky (9) (10) 3

4 je větší než u vzduhu. Obeně tedy bývá vnová impedane počítána ze vztahu (9) menší u kabeovýh vedení než u vedení ve vzduhu. Jak již byo řečeno, zmenšuje se zároveň vnová dka na vedení. ' = e = K., kde K je součinite zkráení. Vzhedem ke zkráení" vnov dky dieektrikem bude eektriká dka e takovho vedení vždy větší než jeho dka geometriká g. e = g / K (11) Při zjišťování tto impedane měřením musíme mít kone vedení při měření kapaity rozpojen, při měření indukčnosti zkratován. Od naměřenýh hodnot odečteme kapaitu (krokosvorky rozpojeny) a indukčnost (krokosvorky zkratovány) přívodu. Probematik je měření indukčnosti při nižšíh frekveníh např. u LCRG metru BM591 na rozsahu 1000Hz. V tomto případě je u dvojinky i koaiáu již u dky koem 1m činný odpor vedení větší než induktivní reaktane wl vedení. Pokud měříme indukčnost na vedení geometriky krátkm, je výhodn měřit při vyšší frekveni. Frekvene by ae neměa být natoik vysoká, aby se projevova nadmíru viv kapait. Při optimání frekveni by měa induktivní reaktane převyšovat hodnotu činnho odporu asi stokrát. Charakteristikou impedani vedení ze tak určit na zákadě měření impedane vzorku nakrátko k a naprázdno o (na koni otevřenho). Potom vypočteme harakteristikou impedani jako geometriký střed těhto hodnot v = 0 k (12) Vztah patí přesně u vedení geometriky krátkýh s maým činným odporem (vzhedem k indukčnosti). U vedení geometriky douhýh s vekým útumem jsou hodnoty o a k srovnaten. Jejih rozdí je vemi maý a výpočet obtížný. Vf vedení může být v podstatě buď symetrik (dvojinka) nebo nesymetrik (koaiání kabe), eistuje řada modifikaí v závorkáh uvedenýh zákadníh typů. Jak již byo řečeno, mění se jejih vstupní impedane pode dky vedení, tedy pode vyadění inky. Při zkratovanm vedení dosáhne vstupní impedane hodnoty a při otevřenm vedení vst = j v.tg a, kde a = 360 vst = - j v.otg a (14) těhto výrazů vypývá, že vedení na koni zkratovan, kratší než /4 má harakter indukční atd. v souadu z násedujíí tabukou: Vedení dky /2 (nebo násobky) působí jako opakovač impedane (transformuje impedani 1:1), tzn., že bez ohedu na veikost vnovho odporu takovhoto vedení bude mít vedení zakončen odporem R z vstupní impedani stejnou jako je odpor na kone vedení R vst = R z Tohoto jevu využíváme při měření impedane na těžko dostupnm místě (kde se nedostaneme s měřiím můstkem). Neznámou impedani připojíme k můstku vedením /2 a změříme impedani v místě připojení na můstek. Ta je stejná jako impedane měřená. (13) 4

5 X L X C X L X C X L X C < / 4 / 4 < < / 2 = / 4 = / 2 / 4 < < / 2 < / 4 = / 2 = / 4 U vedení dky /4 (a ihýh násobků) patí pro vnovou impedani v, impedani zátěže na koni kabeu z a impedani vstupní (na začátku kabeu) vst vztah: 2 v vst = (15) Jinak řečeno impedane vst a z nebo odpory R vst a R z ze vzájemně přizpůsobit vedením douhým /4 o impedani: Postup měření - body onačeny: v = vst z nebo v = R vst Rz červeně se provádějí na stanovišti pro měření harakteristik antn. modře se provádějí na RLC můstku. černě se provádějí na BM 650. z (16) 1. na měřiím přípravku SIP 360 spojte koaiáním kabeem konektory XMTR OUT A LECHER LINE INPUT. 2. připojte do zdířky METER OUT měřií přístroj PU510, zvote rozsah 200mV ss, černý banánek do ^. 3. přepínač POWER zdroje 300PSB zapněte do poohy ON. 4. posunujte jezde na horní hraně SIP 360 po 0,5 m a zapisujte hodnoty napětí. 5. z průběhu vny na vedení odhadněte frekveni zdroje. 6. měřičem impedane BM 650 změřte u zadanýh vzorků při frekveníh 2MHz, 20MHz, a 110MHz impedane naprázdno a nakrátko. Vypočtěte vnovou impedani vzorků a v závěru protokou posuďte viv frekvene. 7. pomoí LCRG metru změřte L a C teevizní dvojinky a jednoho vzorku koaiáního kabeu při 1000Hz, 8. na zákadě změřen impedane naprázdno a prvníh čenů shmatu obr. 1 (v srii R,L,C) vypočtěte nejprve L a potom pode (9) harakteristikou impedani vzorku, dku vny na vedení a činite zkráení. 5

6 9. proveďte proměření impedane koaiáního kabeu bez zátěže v rozsahu MHz s krokem 2 MHz (v obasteh etrmů, tj. pro min, ma, j = 0 zjemněte). V grafeh (f) a j(f) vyznačte paraení a sriov rezonane. 10. na koni kabeu proveďte zkrat a proveďte znovu měření pode bodu 9. Výsedky zakresete do stejnho grafu. 11. proměřte podobně impedani na koni otevřen a zkratovan dvojinky v rozsahu frekvení MHz (krok vote tak, aby jste zahytii etrmy. Oba průběhy zakresete do stejnho grafu. Výsedky bodů 8 10 uveďte do grafů v ogaritmikýh souřadniíh - f, j - f, Re{} - f, Im{} - f, - h/ (h je dka vedení, násobená činiteem zkráení 0,67). Označte rezonanční frekvene (sriov a paraení) a harakter impedane (kapaitní nebo induktivní). Příoha MĚŘIČ IMPEDANCE BM 653 Postup měření: 1. Připojte měřič impedane na síť a stisknutím tačítka 9 jej zapněte. Rozsvítí se dispej. Přibižně po 1 min. se ustáí výhyka ručky měřida v okoí hodnoty 9 na stupnii 10W a ručka měřida j v okoí nuy. Po zapnutí přístroje se vyčká asi 15 min., až se výhyka na měřide zea ustáí. Výhyky ruček musí být stá, bez zřetenho nekidu. Tento krok při měření zkraťte, protože vedouí vičení před začátkem vičení již zpravida měřič impedane zapnu. 2. Před měřením proveďte předběžn nastavení kaibrae - stiskněte tačítko "Kaibrae 1 kw" (16) a zvote rozsah 3 kw tačítky 11a 12. Přitom vstup je voný. Knofík "Kaibrae" (17) se vytočí zea doeva. 3. Proveďte přesnou kaibrai - otáčením knofíku 17 pomau doprava se dostaví přesná hodnota = 1 kw a knofíkem "nua j" se nastaví j = 0. Tato kaibrae se při měření občas zkontrouje (asi po 1 hod. nebo při změnáh okoní tepoty). Kaibrae je v převážn části rozsahu kmitočtově nezávisá. Pouze pro kmitočty nad 200 khz se provádí při přesnějšíh měřeníh pro každý kmitočet znovu. V tom případě se kaibruje na rozsahu 3kW. Kaibrae pak patí pro všehny rozsahy kw i W. (Pouze rozsah 1000W je možno pode potřeby kaibrovat zvášť). 4. Tačítkem 4 zvote požadovaný rozsah frekvene f. Lze voit jeden ze zákadníh dekadiky uspořádanýh rozsahů z ekovho rozsahu 5 Hz 500 khz. K nastavení kmitočtu uvnitř těhto rozsahů souží knofík (3) pro adění v rozsahu kmitočtů 1 : Na svorky X, Y připojte o nejkratšími přívody měřenou impedani. (Při měření č.4 se do těhto svorek přímo zasune měřií přípravek). 6. Pokud ze přibižně veikost impedane odhadnout, zvote předem přísušný hrubý rozsah pro očekávanou hodnotu. Přitom pro zákadní rozsah W se voí spíše vyšší rozsah (1000W) a při ma výhye se postupně rozsah snižuje. Naopak pro rozsah kw se voí nejnižší rozsah (3kW) a při ma výhye ručky měřida se rozsah zvětšuje. Až se údaj obou měřide ustáí a je kidný bez zřetenýh nestabiit odečtěte hodnotu a j na obou měřideh. Pouze na nejnižšíh kmitočteh mírně zakmitává ručka měřida v rytmu použitho kmitočtu. 6

MĚŘENÍ NAPĚTÍ A PROUDŮ VE STEJNOSMĚRNÝCH OBVODECH.

MĚŘENÍ NAPĚTÍ A PROUDŮ VE STEJNOSMĚRNÝCH OBVODECH. MĚŘENÍ NAPĚTÍ A PROUDŮ VE STEJNOSMĚRNÝCH OBVODECH. 1. Měření napětí ručkovým voltmetrem. 1.1 Nastavte pomocí ovládacích prvků na ss zdroji napětí 10 V. 1.2 Přepněte voltmetr na rozsah 120 V a připojte

Více

22.9. 29.9. 11. Vyšší odborná škola a Střední průmyslová škola elektrotechnická Božetěchova 3, Olomouc Laboratoře elektrotechnických měření

22.9. 29.9. 11. Vyšší odborná škola a Střední průmyslová škola elektrotechnická Božetěchova 3, Olomouc Laboratoře elektrotechnických měření Vyšší odborná škola a Střední průmyslová škola elektrotechnická Božetěchova 3, Olomouc Laboratoře elektrotechnických měření Název úlohy Číslo úlohy MĚŘENÍ NA VEDENÍ 102-4R-T,S Zadání 1. Sestavte měřící

Více

anténa x støedovlnná rozhlasová

anténa x støedovlnná rozhlasová Vážení zákazníci, dovoujeme si Vás upozornit, že na tuto ukázku knihy se vztahují autorská práva, tzv. copyright. To znamená, že ukázka má soužit výhradnì pro osobní potøebu potenciáního kupujícího (aby

Více

10a. Měření rozptylového magnetického pole transformátoru s toroidním jádrem a jádrem EI

10a. Měření rozptylového magnetického pole transformátoru s toroidním jádrem a jádrem EI 0a. Měření rozptylového magnetického pole transformátoru s toroidním jádrem a jádrem EI Úvod: Klasický síťový transformátor transformátor s jádrem skládaným z plechů je stále běžně používanou součástí

Více

1. Zadání. 2. Teorie úlohy ID: 78 357. Jméno: Jan Švec. Předmět: Elektromagnetické vlny, antény a vedení. Číslo úlohy: 7. Měřeno dne: 30.3.

1. Zadání. 2. Teorie úlohy ID: 78 357. Jméno: Jan Švec. Předmět: Elektromagnetické vlny, antény a vedení. Číslo úlohy: 7. Měřeno dne: 30.3. Předmět: Elektromagnetické vlny, antény a vedení Úloha: Symetrizační obvody Jméno: Jan Švec Měřeno dne: 3.3.29 Odevzdáno dne: 6.3.29 ID: 78 357 Číslo úlohy: 7 Klasifikace: 1. Zadání 1. Změřte kmitočtovou

Více

PRAKTIKUM II Elektřina a magnetismus

PRAKTIKUM II Elektřina a magnetismus Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK PRAKTIKUM II Elektřina a magnetismus Úloha č.: XIV Název: Relaxační kmity Pracoval: Pavel Brožek stud. skup. 12 dne 5.12.2008 Odevzdal

Více

Indukce, Kapacita, Odpor, Diody LCR MULTIMETR. Model : LCR-9083

Indukce, Kapacita, Odpor, Diody LCR MULTIMETR. Model : LCR-9083 Indukce, Kapacita, Odpor, Diody LCR MULTIMETR Model : LCR-9083 OBSAH 1. Vlastnosti... 1 2. Specifikace....1 2-1 Základní specifikace....1 2-2 Elektrické specifikace....2 A. Indukce...2 B. Kapacita....2

Více

SMĚŠOVAČ 104-4R 6.10. 13.10. 7

SMĚŠOVAČ 104-4R 6.10. 13.10. 7 Vyšší odborná škola a Střední průmyslová škola elektrotechnická Božetěchova 3, Olomouc Laboratoře elektrotechnických měření Název úlohy Číslo úlohy SMĚŠOVAČ 104-4R Zadání 1. Sestavte měřící obvod pro měření

Více

2.1 Stáčivost v závislosti na koncentraci opticky aktivní látky

2.1 Stáčivost v závislosti na koncentraci opticky aktivní látky 1 Pracovní úkoy 1. Změřte závisost stočení poarizační roviny na koncentraci vodního roztoku gukozy v rozmezí 0 500 g/. Pro jednu zvoenou koncentraci proveďte 5 měření úhu stočení poarizační roviny. Jednu

Více

Měření vlnové délky, impedance, návrh impedančního přizpůsobení

Měření vlnové délky, impedance, návrh impedančního přizpůsobení Měření vlnové délky, impedance, návrh impedančního přizpůsobení 1. Zadání: a) Změřte závislost v na kmitočtu pro f 8,12GHz. b) Změřte zadanou impedanci a impedančně ji přizpůsobte. 2. Schéma měřicí soupravy:

Více

Návod k přípravku pro laboratorní cvičení v předmětu EO.

Návod k přípravku pro laboratorní cvičení v předmětu EO. Měření na výkonovém zesilovači Návod k přípravku pro laboratorní cvičení v předmětu EO. Cílem měření je seznámit se s funkcí výkonového zesilovače, pracujícího ve třídě B, resp. AB. Hlavními úkoly jsou:

Více

4.6.6 Složený sériový RLC obvod střídavého proudu

4.6.6 Složený sériový RLC obvod střídavého proudu 4.6.6 Složený sériový LC obvod střídavého proudu Předpoklady: 41, 4605 Minulá hodina: odpor i induktance omezují proud ve střídavém obvodu, nemůžeme je však sčítat normálně, ale musíme použít Pythagorovu

Více

A U. kde A je zesílení zesilovače, U 2 je výstupní napětí zesilovače a U 1 je vstupní napětí na zesilovači. Zisk po té můžeme vypočítat podle vztahu:

A U. kde A je zesílení zesilovače, U 2 je výstupní napětí zesilovače a U 1 je vstupní napětí na zesilovači. Zisk po té můžeme vypočítat podle vztahu: RIEDL 4.EB 6 /8.ZDÁNÍ a) Na předložeém ízkofrekvečím zesilovači změřte vstupí impedaci b) Změřte zesíleí a zisk pro výko 50% c) Změřte útlumovou charakteristiku Měřeí proveďte při cc =0V a maximálě 50%

Více

Úvod do problematiky ochrany proti hluku v dřevostavbách by

Úvod do problematiky ochrany proti hluku v dřevostavbách by OCHRANA PROTI HLUKU V DŘEVOSTAVBÁCH Úvod do probematiky ochrany proti huku v dřevostavbách by mě projektantům, zhotoviteům a investorům v obasti dřevostaveb poskytnout všeobecný zákad pro diskuzi a objasnění

Více

Rovinná harmonická elektromagnetická vlna

Rovinná harmonická elektromagnetická vlna Rovinná harmonická elektromagnetická vlna ---- 1. příklad -------------------------------- 2 GHz prochází prostředím s parametry: r 5, r 1, 0.005 S / m. Amplituda intenzity magnetického pole je H m 0.25

Více

Používání 75 Ohmových měřicích přístrojů v dnešní době

Používání 75 Ohmových měřicích přístrojů v dnešní době Používání 75 Ohmových měřicích přístrojů v dnešní době Dědictvím minulosti jsou měřicí přístroje konstruované pro impedanci 75 Ohmů. Příkladem je vf milivoltmetr BM495A s rozsahem 10 khz až 1,2 Ghz, obdobný

Více

Synchronní detektor, nazývaný též fázově řízený usměrňovač, je určen k měření elektrolytické střední hodnoty periodického signálu podle vztahu.

Synchronní detektor, nazývaný též fázově řízený usměrňovač, je určen k měření elektrolytické střední hodnoty periodického signálu podle vztahu. ZADÁNÍ: ) Seznamte se se zapojením a principem činnosti synchronního detektoru 2) Změřte statickou převodní charakteristiku synchronního detektoru v rozsahu vstupního ss napětí ±V a určete její linearitu.

Více

1 Přesnost měření efektivní hodnoty různými typy přístrojů

1 Přesnost měření efektivní hodnoty různými typy přístrojů 1 Přesnost měření efektivní hodnoty různými typy přístrojů Cíl: Cílem této laboratorní úlohy je ověření vhodnosti použití různých typů měřicích přístrojů při měření efektivních hodnot střídavých proudů

Více

Pro vš echny body platí U CC = ± 15 V (pokud není uvedeno jinak). Ke kaž dému bodu nakreslete jednoduché schéma zapojení.

Pro vš echny body platí U CC = ± 15 V (pokud není uvedeno jinak). Ke kaž dému bodu nakreslete jednoduché schéma zapojení. OPEAČNÍ ZESILOVAČ 304 4 Pro vš echny body platí U CC = ± 15 V (pokud není uvedeno jinak). Ke kaž dému bodu nakreslete jednoduché schéma zapojení. 1. Ověřte měření m některé katalogové údaje OZ MAC 157

Více

- + C 2 A B V 1 V 2 - U cc

- + C 2 A B V 1 V 2 - U cc RIEDL 4.EB 10 1/6 1. ZADÁNÍ a) Změřte frekvenční charakteristiku operačního zesilovače v invertujícím zapojení pro růžné hodnoty zpětné vazby (1, 10, 100, 1000kΩ). Vstupní napětí volte tak, aby nedošlo

Více

Harmonický ustálený stav pokyny k měření Laboratorní cvičení č. 1

Harmonický ustálený stav pokyny k měření Laboratorní cvičení č. 1 Harmonický ustálený stav pokyny k měření Laboratorní cvičení č. Zadání. Naučte se pracovat s generátorem signálů Agilent 3320A, osciloskopem Keysight a střídavým voltmetrem Agilent 34405A. 2. Zobrazte

Více

výkon střídavého proudu, kompenzace jalového výkonu

výkon střídavého proudu, kompenzace jalového výkonu , výkon střídavého proudu, kompenzace jalového výkonu Návod do měření ng. Václav Kolář, Ph.D., Doc. ng. Vítězslav týskala, Ph.D., poslední úprava 0 íl měření: Praktické ověření vlastností reálných pasivních

Více

Kvadratické rovnice pro učební obory

Kvadratické rovnice pro učební obory Variace 1 Kvadratické rovnice pro učební obory Autor: Mgr. Jaromír JUŘEK Kopírování a jkaékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. 1. Kvadratické

Více

Moderní číslicové řídicí systémy vstupy, výstupy, připojení snímačů, problematika rušení (zpracoval P. Beneš)

Moderní číslicové řídicí systémy vstupy, výstupy, připojení snímačů, problematika rušení (zpracoval P. Beneš) Moderní číslicové řídicí systémy vstupy, výstupy, připojení snímačů, problematika rušení (zpracoval P. Beneš) Řídicí systém obvykle komunikuje s řízenou technologií prostřednictvím snímačů a akčních členů.

Více

Operace s polem příklady

Operace s polem příklady Equation Chapter 1 Setion 1 1 Gradient Operae s polem příklady Zadání: Nadmořská výška libovolného bodu na povrhu kope je dána formulí h(x y) = A exp [ (x/l 0 ) 9(y/l 0 ) ] kde A = 500 m l 0 = 100 m Nalezněte

Více

Obvody s rozprostřenými parametry

Obvody s rozprostřenými parametry Obvody s rozprostřenými parametry EO2 Přednáška 12 Pave Máša - Vedení s rozprostřenými parametry ÚVODEM Každá kroucená dvojinka UTP patch kabeu je samostaným vedením s rozprostřenými parametry Impedance

Více

Zkouškové otázky z A7B31ELI

Zkouškové otázky z A7B31ELI Zkouškové otázky z A7B31ELI 1 V jakých jednotkách se vyjadřuje napětí - uveďte název a značku jednotky 2 V jakých jednotkách se vyjadřuje proud - uveďte název a značku jednotky 3 V jakých jednotkách se

Více

( ) Úloha č. 9. Měření rychlosti zvuku a Poissonovy konstanty

( ) Úloha č. 9. Měření rychlosti zvuku a Poissonovy konstanty Fyzikální praktikum IV. Měření ryhlosti zvuku a Poissonovy konstanty - verze Úloha č. 9 Měření ryhlosti zvuku a Poissonovy konstanty 1) Pomůky: Kundtova trubie, mikrofon se sondou, milivoltmetr, měřítko,

Více

1. Měření parametrů koaxiálních napáječů

1. Měření parametrů koaxiálních napáječů . Měření parametrů koaxiálních napáječů. Úvod Napáječ je vedení, které spojuje zdroj a zátěž. Vlastnosti napáječe popisujeme charakteristickou impedancí Z [], měrnou fází [rad/m] a měrným útlumem [/m].

Více

10 Měření parametrů vzduchové cívky

10 Měření parametrů vzduchové cívky 10 10.1 adání úlohy a) měřte indukčnost a ohmický (činný) odpor vzduchové cívky ohmovou metodou. b) měřte indukčnost a ohmický odpor cívky rezonanční metodou. c) měřte indukčnost a ohmický odpor cívky

Více

Laboratorní úloha KLS 1 Vliv souhlasného rušení na výsledek měření stejnosměrného napětí

Laboratorní úloha KLS 1 Vliv souhlasného rušení na výsledek měření stejnosměrného napětí Laboratorní úloha KLS Vliv souhlasného rušení na výsledek měření stejnosměrného napětí (Multisim) (úloha pro seznámení s prostředím MULTISIM.0) Popis úlohy: Cílem úlohy je potvrdit často opomíjený, byť

Více

6. Střídavý proud. 6. 1. Sinusových průběh

6. Střídavý proud. 6. 1. Sinusových průběh 6. Střídavý proud - je takový proud, který mění v čase svoji velikost a smysl. Nejsnáze řešitelný střídavý proud matematicky i graficky je sinusový střídavý proud, který vyplývá z konstrukce sinusovky.

Více

3.4 Ověření Thomsonova vztahu sériový obvod RLC

3.4 Ověření Thomsonova vztahu sériový obvod RLC 3.4 Ověření Thomsonova vztahu sériový obvod RLC Online: http://www.sclpx.eu/lab3r.php?exp=9 Tímto experimentem ověřujeme známý vztah (3.4.1) pro frekvenci LC oscilátoru, který platí jak pro sériové, tak

Více

Couloumbuv zákon stejne jako vetsina zakonu elektrostatiky jsou velmi podobna zakonum gravitacniho pole.

Couloumbuv zákon stejne jako vetsina zakonu elektrostatiky jsou velmi podobna zakonum gravitacniho pole. 1) Eektrostaticke poe, Cooumbuv zákon, Permitivita kazde dve teesa nabite eektrickym nabojem Q na sebe pusobi vzajemnou siou. Ta je vysise pomoci Couombovyho zákona: F = 1 4 Q Q 1 2 r r 2 0 kde první cast

Více

MĚŘENÍ TRANZISTOROVÉHO ZESILOVAČE

MĚŘENÍ TRANZISTOROVÉHO ZESILOVAČE Úloha č. 3 MĚŘÍ TRAZISTOROVÉHO ZSILOVAČ ÚOL MĚŘÍ:. Změřte a) charakteristiku I = f (I ) při U = konst. tranzistoru se společným emitorem a nakreslete její graf; b) zesilovací činitel β tranzistoru se společným

Více

Měření vlastností optických vláken a WDM přenos

Měření vlastností optických vláken a WDM přenos Obecný úvod Měření vlastností optických vláken a WDM přenos Úloha se věnuje měření optických vláken, jejich vlastností a rušivých jevů souvisejících s vzájemným nedokonalým navázáním v konektorech. Je

Více

Kompenzovaný vstupní dělič Analogový nízkofrekvenční milivoltmetr

Kompenzovaný vstupní dělič Analogový nízkofrekvenční milivoltmetr Kompenzovaný vstupní dělič Analogový nízkofrekvenční milivoltmetr. Zadání: A. Na předloženém kompenzovaném vstupní děliči k nf milivoltmetru se vstupní impedancí Z vst = MΩ 25 pf, pro dělící poměry :2,

Více

Integrovaná střední škola, Kumburská 846, Nová Paka Elektronika - Zdroje SPÍNANÉ ZDROJE

Integrovaná střední škola, Kumburská 846, Nová Paka Elektronika - Zdroje SPÍNANÉ ZDROJE SPÍNANÉ ZDROJE Problematika spínaných zdrojů Popularita spínaných zdrojů v poslední době velmi roste a stávají se převažující skupinou zdrojů na trhu. Umožňují vytvářet kompaktní přístroje s malou hmotností

Více

Obrázek č. 1 : Operační zesilovač v zapojení jako neinvertující zesilovač

Obrázek č. 1 : Operační zesilovač v zapojení jako neinvertující zesilovač Teoretický úvod Nízkofrekvenční zesilovač s OZ je poměrně jednoduchý elektronický obvod, který je tvořen několika základními prvky. Základní komponentou zesilovače je operační zesilovač v neinvertujícím

Více

Otázka č. 18 Základní druhy antén

Otázka č. 18 Základní druhy antén Otázka č. 18: Zákadní druhy antén Otázka č. 18 Zákadní druhy antén Anténu ze definovat jako zařízení pro vyzařování nebo příjem radiových vn. 1 Jedná se tedy o přechodovou strukturu, o hraniční prvek radiokomunikačního

Více

Pracovní třídy zesilovačů

Pracovní třídy zesilovačů Pracovní třídy zesilovačů Tzv. pracovní třída zesilovače je určená polohou pracovního bodu P na převodní charakteristice dobou, po kterou zesilovacím prvkem protéká proud, vzhledem ke vstupnímu zesilovanému

Více

Seznámení s přístroji, používanými při měření. Nezatížený a zatížený odporový dělič napětí, měření a simulace PSpice

Seznámení s přístroji, používanými při měření. Nezatížený a zatížený odporový dělič napětí, měření a simulace PSpice Cvičení Seznámení s přístroji, používanými při měření Nezatížený a zatížený odporový dělič napětí, měření a simulace PSpice eaktance kapacitoru Integrační článek C - přenos - měření a simulace Derivační

Více

3.1.7 Kyvadlo. Předpoklady: 3106

3.1.7 Kyvadlo. Předpoklady: 3106 37 Kyvado ředpokady: 306 edaoická poznámka: Ceý obsah hodiny není možné stihnout za 45 minut Je třeba se ozhodnout, co je podstatné: testování vzoce paktickým sestojováním kyvade, povídání o kyvadových

Více

Cvičení 11. B1B14ZEL1 / Základy elektrotechnického inženýrství

Cvičení 11. B1B14ZEL1 / Základy elektrotechnického inženýrství Cvičení 11 B1B14ZEL1 / Základy elektrotechnického inženýrství Obsah cvičení 1) Výpočet proudů v obvodu Metodou postupného zjednodušování Pomocí Kirchhoffových zákonů Metodou smyčkových proudů 2) Nezatížený

Více

VY_32_INOVACE_ENI_2.MA_04_Zesilovače a Oscilátory

VY_32_INOVACE_ENI_2.MA_04_Zesilovače a Oscilátory Číslo projektu Číslo materiálu CZ..07/.5.00/34.058 VY_3_INOVACE_ENI_.MA_04_Zesilovače a Oscilátory Název školy Střední odborná škola a Střední odborné učiliště, Dubno Autor Ing. Miroslav Krýdl Tematická

Více

Pokud není uvedeno jinak, uvedený materiál je z vlastních zdrojů autora

Pokud není uvedeno jinak, uvedený materiál je z vlastních zdrojů autora Číslo projektu Číslo materiálu Název školy Autor Název Téma hodiny Předmět Ročník /y/ CZ.1.07/1.5.00/34.0394 VY_32_INOVACE_EM_2.11_měření rekvence a áze Střední odborná škola a Střední odborné učiliště,

Více

Výpis. platného rozsahu akreditace stanoveného dokumenty: HES, s.r.o. kalibrační laboratoř U dráhy 11, 664 49, Ostopovice.

Výpis. platného rozsahu akreditace stanoveného dokumenty: HES, s.r.o. kalibrační laboratoř U dráhy 11, 664 49, Ostopovice. Český institut pro akreditaci, o.p.s. List 1 z 39!!! U P O Z O R N Ě N Í!!! Tento výpis má pouze informativní charakter. Jeho obsah je založen na dokumentech v něm citovaných, jejichž originály jsou k

Více

Návod k obsluze VEGAMET 381 4 20 ma - vyhodnocovací jednotka

Návod k obsluze VEGAMET 381 4 20 ma - vyhodnocovací jednotka Návod k obsuze VEGAMET 381 4 20 ma - vyhodnocovací jednotka in out Obsah Obsah 1 O tomto dokumentu 1.1 Funkce.............................. 4 1.2 Cíová skupina......................... 4 1.3 Použité symboy.......................

Více

9 Impedanční přizpůsobení

9 Impedanční přizpůsobení 9 Impedanční přizpůsobení Impedančním přizpůsobením rozumíme situaci, při níž činitelé odrazu zátěže ΓL a zdroje (generátoru) Γs jsou komplexně sdruženy. Za této situace nedochází ke vzniku stojatého vlnění.

Více

Operační zesilovač, jeho vlastnosti a využití:

Operační zesilovač, jeho vlastnosti a využití: Truhlář Michal 6.. 5 Laboratorní práce č.4 Úloha č. VII Operační zesilovač, jeho vlastnosti a využití: Úkol: Zapojte operační zesilovač a nastavte jeho zesílení na hodnotu přibližně. Potvrďte platnost

Více

Použití: Sled fází Přístroj indikuje sled fází a dále chybové stavy (např. nepřítomnost některého fázového napětí).

Použití: Sled fází Přístroj indikuje sled fází a dále chybové stavy (např. nepřítomnost některého fázového napětí). Použití: Měření přechodových odporů a vodivé spojení Zkratový proud při měření přechodových odporů je minimálně 200 ma. Měření probíhá s automatickým přepólováním zkušebního proudu. Je možné vykompenzovat

Více

Návrh vysokofrekvenčních linkových transformátorů

Návrh vysokofrekvenčních linkových transformátorů inové transformátory inové transformátory Při požadavu na transformaci impedancí v široém frevenčním pásmu, dy nelze obsáhnout požadovanou oblast mitočtů ani široopásmovými obvody, je třeba použít široopásmových

Více

ELEKTROTECHNICKÁ MĚŘENÍ PRACOVNÍ SEŠIT 2-3

ELEKTROTECHNICKÁ MĚŘENÍ PRACOVNÍ SEŠIT 2-3 ELEKTROTECHNICKÁ MĚŘENÍ PRACOVNÍ SEŠIT - Název úlohy: Měření vlastností regulačních prvků Listů: List: Zadání: Pro daný regulační prvek zapojený jako dělič napětí změřte a stanovte: a, Minimálně regulační

Více

Elektrotechnická měření - 2. ročník

Elektrotechnická měření - 2. ročník Protokol SADA DUM Číslo sady DUM: Název sady DUM: VY_32_INOVACE_EL_7 Elektrotechnická měření pro 2. ročník Název a adresa školy: Střední průmyslová škola, Hronov, Hostovského 910, 549 31 Hronov Registrační

Více

Kmitání struny. Jelikožpředpokládáme,ževýchylkystrunyjsoumalé,budeplatitcosϕ 1,2 1,takže můžeme psát. F 2 F 1 = F 2 u x 2 x.

Kmitání struny. Jelikožpředpokládáme,ževýchylkystrunyjsoumalé,budeplatitcosϕ 1,2 1,takže můžeme psát. F 2 F 1 = F 2 u x 2 x. Kmitání struny 1 Odvození vnové rovnice Vnovou rovnici pro(příčné) vny šířící se na struně odvodíme za předpokadu, že výchykastruny u(x, t)vrovině,vnížstrunakmitá,jemaá,cožnámumožníprovésthned někoik zjednodušení.

Více

Činitel zkrácení. , neboť platí následující vztahy (1) c ε. ε= (2) f

Činitel zkrácení. , neboť platí následující vztahy (1) c ε. ε= (2) f Činit zkrání Činit zkrání J-i mzi vodiči vysokorkvnčního vdní jiný izoační matriá nž vzduh, nní v tomto případě ryhost šířní ktromagntikého vnění tímto vdním rovna ryhosti šířní světa, a j mnší, a závisí

Více

17 Vlastnosti ručkových měřicích přístrojů

17 Vlastnosti ručkových měřicích přístrojů 17 Vlastnosti ručkových měřicích přístrojů Ručkovými elektrickými přístroji se měří základní elektrické veličiny, většinou na principu silových účinků poli. ato pole jsou vytvářena buď přímo měřeným proudem,

Více

Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/03.0009

Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/03.0009 Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/03.0009 Antény Antény jsou potřebné k bezdrátovému přenosu informací. Vysílací anténa vyzařuje elektromagnetickou energii

Více

Měření kapacity Opakování kapacita C (farad F) kapacita deskového kondenzátoru

Měření kapacity Opakování kapacita C (farad F) kapacita deskového kondenzátoru Měření kapacity Opakování kapacita C (farad F) kapacita deskového kondenzátoru kde ε permitivita S plocha elektrod d tloušťka dielektrika kapacita je schopnost kondenzátoru uchovávat náboj kondenzátor

Více

13 Měření na sériovém rezonančním obvodu

13 Měření na sériovém rezonančním obvodu 13 13.1 Zadání 1) Změřte hodnotu indukčnosti cívky a kapacity kondenzátoru RC můstkem, z naměřených hodnot vypočítej rezonanční kmitočet. 2) Generátorem nastavujte frekvenci v rozsahu od 0,1 * f REZ do

Více

ZOL, ZTL SIGMA PUMPY HRANICE ZUBOVÁ MONOBLOKOVÁ ÈERPADLA 426 1.99 21.02

ZOL, ZTL SIGMA PUMPY HRANICE ZUBOVÁ MONOBLOKOVÁ ÈERPADLA 426 1.99 21.02 SIGMA UMY HRANICE ZUBOVÁ MONOBLOKOVÁ ÈERADLA SIGMA UMY HRANICE, s.r.o. Tovární 60, 0 Hranice te.: 8 66, fax: 8 602 8 Emai: sigmahra@sigmahra.cz ZOL, ZTL 426.99.02 Zubová monoboková èerpada ZOLZTL oužití

Více

SYMETRICKÉ ČTYŘPÓLY JAKO FILTRY

SYMETRICKÉ ČTYŘPÓLY JAKO FILTRY SYMETRICKÉ ČTYŘPÓLY JAKO FILTRY V této úloze budou řešeny symetrické čtyřpóly jako frekvenční filtry. Bude představena jejich funkce na praktickém příkladu reproduktorů. Teoretický základ Pod pojmem čtyřpól

Více

Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/03.0009 NAPÁJECÍ ZDROJE

Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/03.0009 NAPÁJECÍ ZDROJE Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/03.0009 NAPÁJECÍ ZDROJE Použitá literatura: Kesl, J.: Elektronika I - analogová technika, nakladatelství BEN - technická

Více

Úloha č. 8 Vlastnosti optických vláken a optické senzory

Úloha č. 8 Vlastnosti optických vláken a optické senzory Úloha č. 8 Vlastnosti optických vláken a optické senzory Optické vlákna patří k nejmodernějším přenosovým médiím. Jejich vysoká přenosová kapacita a nízký útlum jsou hlavní výhody, které je staví před

Více

LABORATORNÍ CVIČENÍ Elektrotechnika a elektronika

LABORATORNÍ CVIČENÍ Elektrotechnika a elektronika VUT FSI BRNO ÚVSSaR, ODBOR ELEKTROTECHNIKY JMÉNO: ŠKOLNÍ ROK: 2010/2011 PŘEDNÁŠKOVÁ SKUPINA: 1E/95 LABORATORNÍ CVIČENÍ Elektrotechnika a elektronika ROČNÍK: 1. KROUŽEK: 2EL SEMESTR: LETNÍ UČITEL: Ing.

Více

4.2.7 Voltampérová charakteristika rezistoru a žárovky

4.2.7 Voltampérová charakteristika rezistoru a žárovky 4.2.7 Voltampérová charakteristika rezistoru a žárovky Předpoklady: 4205 Pedagogická poznámka: Tuto hodinu učím jako běžnou jednohodinovku s celou třídou. Některé dvojice stihnou naměřit více odporů. Voltampérová

Více

Symbolicko - komplexní metoda II Sériové zapojení prvků R, L a C

Symbolicko - komplexní metoda II Sériové zapojení prvků R, L a C Symboliko - komplexní metoda Sériové zapojení prvků, a Použité zdroje: Blahove, A.: Elektrotehnika, nformatorium spol.s r.o., Praha 2005 Wojnar, J.: áklady elektrotehniky, Tribun E s.r.o., Brno 2009 http://hyperphysis.phy-astr.gsu.edu

Více

Vysokofrekvenční transformátory a vedení

Vysokofrekvenční transformátory a vedení Vysokofrekvenční transformátory a vedení Úkol měření: 1. Stanovte amplitudovou a fázovou přenosovou charakteristiku předložených vzorků vf. transformátorů 2. Stanovte vstupní impedanci předložených vzorků

Více

Historické pokusy s elektromagnetickou vlnou a dnešní technické možnosti

Historické pokusy s elektromagnetickou vlnou a dnešní technické možnosti Veletrh nápadů učitelů'/yziky učitelů.fyziky 7 Historické pokusy s elektromagnetickou vlnou a dnešní technické možnosti JOSEF HUBEŇAK. JIŘÍ HUBEŇAK Univerzita Hradec Králové Poznatky z oblasti elektromagnetických

Více

11. Odporový snímač teploty, měřicí systém a bezkontaktní teploměr

11. Odporový snímač teploty, měřicí systém a bezkontaktní teploměr Úvod: 11. Odporový snímač teploty, měřicí systém a bezkontaktní teploměr Odporové senzory teploty (například Pt100, Pt1000) použijeme pokud chceme měřit velmi přesně teplotu v rozmezí přibližně 00 až +

Více

VF vedení. λ /10. U min. Obr.1.Stojaté vlnění na vedení

VF vedení. λ /10. U min. Obr.1.Stojaté vlnění na vedení VF veení Rozělení Nejříve si položíme otázku, ky se stává z běžného voiče veení. Opověď rozělme na vě části. V analogových obvoech, poku je élka voiče srovnatelná s vlnovou élkou nebo větší, můžeme v prvním

Více

MĚŘICÍŘETĚZEC A ELEKTROMAGNETICKÉ RUŠENÍ

MĚŘICÍŘETĚZEC A ELEKTROMAGNETICKÉ RUŠENÍ MĚŘICÍŘETĚZEC A ELEKTROMAGNETICKÉ RUŠENÍ 4.1. Princip a rozdělení elektromagnetického rušení 4.2. Vazební mechanizmy přenosu rušení 4.3. Ochrana před elektromagnetickým rušením 4.4. Optimalizace zapojení

Více

Možnosti potlačení asymetrické EMI v pásmu jednotek až desítek MHz

Možnosti potlačení asymetrické EMI v pásmu jednotek až desítek MHz Možnosti potlačení asymetrické EMI v pásmu jednotek až desítek MHz Jedním ze základních prvků filtrů potlačujících šíření rušení po vedeních jsou odrušovací tlumivky. V případě rušení asymetrického, jaké

Více

s XR2206 ale navíc je zapojení vybaveno regulací výstupní amplitudy. vlivu případ- ného nevhodného napájení na funkci generátoru.

s XR2206 ale navíc je zapojení vybaveno regulací výstupní amplitudy. vlivu případ- ného nevhodného napájení na funkci generátoru. Funkční generátor stavebnice č. 435 Funkční generátor je přístroj nezbytně nutný pro oživování a zkoušení mnoha zařízení z oblasti nf techniky. V čísle 8/97 jsme uveřejnili stavebnici generátoru s integrovaným

Více

Zemní ochrana rotoru generátoru ve spojení proudové injektážní jednotky PIZ 50V a ochrany REJ 521

Zemní ochrana rotoru generátoru ve spojení proudové injektážní jednotky PIZ 50V a ochrany REJ 521 Zemní ochrana rotoru generátoru ve spojení proudové injektážní jednotky PIZ 50V a ochrany REJ 521 Číslo dokumentu: 1MCZ300045 CZ Datum vydání: Září 2005 Revize: Copyright Petr Dohnálek, 2005 ISO 9001:2000

Více

Jak měřit Q rezonančního obvodu s VNA (Aprílové kibicování od OK5US ) 8/4/2013

Jak měřit Q rezonančního obvodu s VNA (Aprílové kibicování od OK5US ) 8/4/2013 Jak měřit Q rezonančního obvodu s VNA (Aprílové kibicování od OK5US ) 8/4/2013 ( VNA = Vektorový analyzátor obvodů), minivna a i ty od HP, Rhode Schwarz či Agilent. Reakce na webový článek OK1CJB. http://www.ok1cjb.cz/index.php?option=com_content&view=article&id=719:3-860&catid=8:minivna-prakticky&itemid=15.

Více

KAPACITNÍ, INDUKČNOSTNÍ A INDUKČNÍ SNÍMAČE

KAPACITNÍ, INDUKČNOSTNÍ A INDUKČNÍ SNÍMAČE KAPACITNÍ, INDUKČNOSTNÍ A INDUKČNÍ SNÍMAČE (2.2, 2.3 a 2.4) Ing. Pavel VYLEGALA 2014 Kapacitní snímače Vyhodnocují kmity oscilačního obvodu RC. Vniknutím předmětu do elektrostatického pole kondenzátoru

Více

Úloha 1 Multimetr. 9. Snižte napájecí napětí na 0V (otočením ovládacího knoflíku výstupního napětí zcela doleva).

Úloha 1 Multimetr. 9. Snižte napájecí napětí na 0V (otočením ovládacího knoflíku výstupního napětí zcela doleva). Úloha 1 Multimetr CÍLE: Po ukončení tohoto laboratorního cvičení byste měli být schopni: Použít multimetru jako voltmetru pro měření napětí v provozních obvodech. Použít multimetru jako ampérmetru pro

Více

Ústav fyziky a měřicí techniky Laboratoř chemických vodivostních senzorů. Měření elektrofyzikálních parametrů krystalových rezonátorů

Ústav fyziky a měřicí techniky Laboratoř chemických vodivostních senzorů. Měření elektrofyzikálních parametrů krystalových rezonátorů Ústav fyziky a měřicí techniky Laboratoř chemických vodivostních senzorů Návod na laboratorní úlohu Měření elektrofyzikálních parametrů krystalových rezonátorů . Úvod Krystalový rezonátor (krystal) je

Více

Návod k použití digitálních multimetrů řady MY6xx

Návod k použití digitálních multimetrů řady MY6xx Návod k použití digitálních multimetrů řady MY6xx 1. Bezpečnostní opatření: Multimetr je navržen podle normy IEC-1010 pro elektrické měřicí přístroje s kategorií přepětí (CAT II) a znečistění 2. Dodržujte

Více

Praktikum II Elektřina a magnetismus

Praktikum II Elektřina a magnetismus Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK Praktikum II Elektřina a magnetismus Úloha č. VII Název: Měření indukčnosti a kapacity metodou přímou Pracoval: Matyáš Řehák stud.sk.:

Více

Elektromagnetický oscilátor

Elektromagnetický oscilátor Elektromagnetický oscilátor Již jsme poznali kmitání mechanického oscilátoru (závaží na pružině) - potenciální energie pružnosti se přeměňuje na kinetickou energii a naopak. T =2 m k Nejjednodušší elektromagnetický

Více

2. Změřte a nakreslete časové průběhy napětí u 1 (t) a u 2 (t). 3. Nakreslete převodní charakteristiku komparátoru

2. Změřte a nakreslete časové průběhy napětí u 1 (t) a u 2 (t). 3. Nakreslete převodní charakteristiku komparátoru GENEÁTO PILOVITÉHO PŮBĚHU 303-4. Na nepájivém kontaktním poli sestavte obvod dle schématu na obr.. Hodnoty součástek a napájení zadá vyučující: =,7 kω, 3 = 3 = 0 kω, C = 00 nf, U CC = ± V. Změřte a nakreslete

Více

Měření statických parametrů tranzistorů

Měření statických parametrů tranzistorů Měření statických parametrů tranzistorů 1. Úkol měření Změřte: a.) závislost prahového napětí UT unipolárních tranzistorů typu MIS KF522 a KF521 na napětí UBS mezi substrátem a sourcem UT = f(ubs) b.)

Více

1.5 Operační zesilovače I.

1.5 Operační zesilovače I. .5 Operační zesilovače I..5. Úkol:. Změřte napěťové zesílení operačního zesilovače v neinvertujícím zapojení 2. Změřte napěťové zesílení operačního zesilovače v invertujícím zapojení 3. Ověřte vlastnosti

Více

VY_32_INOVACE_ENI_2.MA_06_Demodulace a Demodulátory

VY_32_INOVACE_ENI_2.MA_06_Demodulace a Demodulátory Číslo projektu Číslo materiálu CZ.1.07/1.5.00/34.0581 VY_32_INOVACE_ENI_2.MA_06_Demodulace a Demodulátory Název školy Střední odborná škola a Střední odborné učiliště, Dubno Autor Ing. Miroslav Krýdl Tematická

Více

Laboratorní úloha č. 1 Základní elektrická měření

Laboratorní úloha č. 1 Základní elektrická měření Laboratorní úloha č. 1 Základní elektrická měření Úkoly měření: 1. Zvládnutí obsluhy klasických multimetrů. 2. Jednoduchá elektrická měření měření napětí, proudu, odporu. 3. Měření volt-ampérových charakteristik

Více

INFORMACE NRL č. 12/2002 Magnetická pole v okolí vodičů protékaných elektrickým proudem s frekvencí 50 Hz. I. Úvod

INFORMACE NRL č. 12/2002 Magnetická pole v okolí vodičů protékaných elektrickým proudem s frekvencí 50 Hz. I. Úvod INFORMACE NRL č. 12/2 Magnetická pole v okolí vodičů protékaných elektrickým proudem s frekvencí Hz I. Úvod V poslední době se stále častěji setkáváme s dotazy na vliv elektromagnetického pole v okolí

Více

Fyzikální praktikum 3 - úloha 7

Fyzikální praktikum 3 - úloha 7 Fyzikální praktikum 3 - úloha 7 Operační zesilovač, jeho vlastnosti a využití Teorie: Operační zesilovač je elektronická součástka využívaná v měřící, regulační a výpočetní technice. Ideální model má nekonečně

Více

ÚTLUM KABELŮ A PSV. Měřeni útlumu odrazu (Impedančního přizpůsobení) antény

ÚTLUM KABELŮ A PSV. Měřeni útlumu odrazu (Impedančního přizpůsobení) antény . ÚTLUM KABELŮ A PSV Měření výkonu vysílače 1. indikátor DMU zapněte přepínačem 5 do polohy PWR 3. do konektoru ANT (2) připojte impedančně přizpůsobenou zátěž 4. do konektoru AP (1) připojte vhodným krátkým

Více

Aktivní filtry. 1. Zadání: A. Na realizovaných invertujících filtrech 1.řádu s OZ: a) Dolní propust b) Horní propust c) Pásmová propust

Aktivní filtry. 1. Zadání: A. Na realizovaných invertujících filtrech 1.řádu s OZ: a) Dolní propust b) Horní propust c) Pásmová propust Aktivní filtry. Zadání: A. Na realizovaných invertujících filtrech.řádu s OZ: a) Dolní propust b) orní propust c) Pásmová propust B. Změřte: a) Amplitudovou frekvenční charakteristiku napěťového přenosu

Více

4 Vibrodiagnostika elektrických strojů

4 Vibrodiagnostika elektrických strojů 4 Vibrodiagnostika elektrických strojů Cíle úlohy: Cílem úlohy je seznámit se s technologií měření vibrací u točivých elektrických strojů a vyhodnocováním diagnostiky jejích provozu. 4.1 Zadání Pomocí

Více

Elektrická měření pro I. ročník (Laboratorní cvičení)

Elektrická měření pro I. ročník (Laboratorní cvičení) Střední škola informatiky a spojů, Brno, Čichnova 23 Elektrická měření pro I. ročník (Laboratorní cvičení) Studentská verze Zpracoval: Ing. Jiří Dlapal B R N O 2011 Úvod Výuka předmětu Elektrická měření

Více

Pracovní list vzdáleně ovládaný experiment. Obr. 1: Schéma sériového RLC obvodu, převzato z [3].

Pracovní list vzdáleně ovládaný experiment. Obr. 1: Schéma sériového RLC obvodu, převzato z [3]. Pracovní list vzdáleně ovládaný experiment Střídavý proud (SŠ) Sériový obvod RLC Fyzikální princip Obvod střídavého proudu může mít současně odpor, indukčnost i kapacitu. Pokud jsou tyto prvky v sérii,

Více

Poř. č. Příjmení a jméno Třída Skupina Školní rok 2 BARTEK Tomáš S3 1 2009/10

Poř. č. Příjmení a jméno Třída Skupina Školní rok 2 BARTEK Tomáš S3 1 2009/10 Vyšší odborná škola a Střední průmyslová škola elektrotechnická Božetěchova 3, Olomouc Laboratoře elektrotechnických měření Název úlohy MĚŘENÍ CHARAKTERISTIK REZONANČNÍCH OBVODŮ Číslo úlohy 301-3R Zadání

Více

Napájení elektrifikovaných tratí

Napájení elektrifikovaných tratí Napájení elektrifikovaných tratí Elektrická trakce je pohon hnacího vozidla pomocí metrického točivého stroje elektromotoru kterému říkáme trakční motor. Přívod proudu do elektrických vozidel je realizovaný

Více

SNÍMAČE PRO MĚŘENÍ VZDÁLENOSTI A POSUVU

SNÍMAČE PRO MĚŘENÍ VZDÁLENOSTI A POSUVU SNÍMAČE PRO MĚŘENÍ VZDÁLENOSTI A POSUVU 7.1. Odporové snímače 7.2. Indukční snímače 7.3. Magnetostrikční snímače 7.4. Kapacitní snímače 7.5. Optické snímače 7.6. Číslicové snímače 7.1. ODPOROVÉ SNÍMAČE

Více

NÁVOD K POUŽÍVÁNÍ PU 294 DELTA PŘÍSTROJ PRO REVIZE ELEKTRICKÝCH SPOTŘEBIČŮ

NÁVOD K POUŽÍVÁNÍ PU 294 DELTA PŘÍSTROJ PRO REVIZE ELEKTRICKÝCH SPOTŘEBIČŮ NÁVOD K POUŽÍVÁNÍ PU 294 DELTA PŘÍSTROJ PRO REVIZE ELEKTRICKÝCH SPOTŘEBIČŮ OBSAH: 1 POUŽITÍ 4 1.1 KONSTRUKCE PŘÍSTROJE 4 1.2 ZÁKLADNÍ POKYNY PRO POUŽÍVÁNÍ PŘÍSTROJE 4 1.3 UVEDENÍ PŘÍSTROJE DO PROVOZU 4

Více