Obvody s rozprostřenými parametry
|
|
- Martin Marek
- před 9 lety
- Počet zobrazení:
Transkript
1 Obvody s rozprostřenými parametry EO2 Přednáška 12 Pave Máša - Vedení s rozprostřenými parametry
2 ÚVODEM Každá kroucená dvojinka UTP patch kabeu je samostaným vedením s rozprostřenými parametry Impedance vedení je 100 Ω Obdobná kroucená dvojinka pro USB má 90 Ω Obvodem s rozprostřenými parametry zde není paměť samotná, ae sběrnice vodiče, spojující řadič paměťový modu s řadičem a dáe procesorem; impedance vodičů je 50 Ω Koaxiání kabe vede dvojvodičového vedení ve vzduchu (staré teefonní, 300 Ω pochý teevizní kabe k anténě) patří k nejstarším (patentován r. 1880) typům kabeů vedení s rozprostřenými parametry Vnová impedance je 75 Ω Nás zde zajímají terminační rezistory FSB využívající GTL se poprvé objevia u Pentia 2 U DDR2 byy terminační rezistory integrovány na čipu - Vedení s rozprostřenými parametry
3 PRIMÁRNÍ PARAMETRY VEDENÍ Teče i vodičem eektrický proud, pak se koem vodiče vytváří magnetické poe, konstantou úměrnosti je zde indukčnost Koem eektrického náboje je eektrické poe kapacita Největší známou rychostí ve vesmíru je rychost světa c = ms 1 ve voném prostoru Eektřina se postupně šíří jako eektromagnetické poe, obkopující vodiče Eektrický odpor a nenuová vodivost mezi vodiči způsobuje ztráty Pro předmět EO2 informativní V případě páru vodičů závisí veikost indukčnosti a kapacity na jejich geometrickém uspořádání a rozměrech: Koaxiání kabe: Dvojvodičové vedení: r r 2 L = ¹ r 1 2¼ n r 2 C = 2¼" r 1 n r 2 r 1 a À r r L = ¹ ¼ n a r C = ¼" Protože rychost šíření eektromagnetické vny je konečná, vna nevidí eektrické vedení jako ceek, ae pouze jeho (nekonečně maou) část popis vedení je nutné rozděit na nekonečně mnoho nekonečně maých úseků, popsaných parametry dl, dc, dr, dg Primární parametry vedení uvádíme na jednotku déky: n a r C = C [Fm 1 ], L = L [Hm 1 ], R = R [Ðm 1 ], G = G [Sm 1 ] - Vedení s rozprostřenými parametry
4 ZÁKLADNÍ ROVNICE HOMOGENNÍHO VEDENÍ U i R i dr dldc dg dr dl dc dg R s i(x; t) dr zdroj Mode vedení s rozprostřenými parametry Spotřebič (zátěž) Zákadní eement vedení dl i(x +dx; t) u(x; t) dc dg u(x +dx; t) dx dc = C dx = C dx dr = R dx = R dx Eement popíšeme s pomocí Kirchhofových zákonů obvodovými rovnicemi pro zobrazenou smyčku a pro zobrazený uze dl = L dg = G dx = L dx dx = G dx - Vedení s rozprostřenými parametry
5 Smyčka: u(x; t)+r dxi(x +dx; t)+l i(x +dx; t)+u(x +dx; t) =0 u(x +dx; t) u(x; t) = Ri(x +dx; t)+l i(x +dx; t) im ::: = Ri + L@i 1. zákadní diferenciání rovnice homogenního vedení i(x; t)+g dxu(x +dx; t)+c u(x +dx; t)+i(x +dx; t) =0 i(x +dx; t) i(x; t) = Gu(x +dx; t)+c u(x +dx; t) im = Gu + 2. zákadní diferenciání rovnice homogenního vedení - Vedení s rozprostřenými parametry
6 1. = Ri + L@i 2. = Gu + @x 2 2 = u +(LG + RC)@u 2 + RG 2 2 = i +(LG + RC)@i 2 + RG i = R@i + L@ = + u = G@u + 2 t Dáe se budeme zabývat bezeztrátovým vedením, kde R = 0, G = 0 - Vedení s rozprostřenými parametry
7 ŘEŠENÍ VLNOVÉ ROVNICE PRO BEZEZTRÁTOVÉ VEDENÍ Vnové rovnice pro bezeztrátové 2 2 = u 2 2 = i 2 d Aembertovo řešení: (popisuje též např. kmitání struny) řešením rovnice musí být funkce argumentu x vt Pro předmět EO2 informativní Zavedeme pomocné proměnné Apikujeme řetězové pravido: Potom má vnová rovnice tvar:» = x vt, = x @ @ μ u 2 + μ + v@u = v =0 Viz např.: Pokud: v = r 1 LC - Vedení s rozprostřenými parametry
8 Uvedená parciání deferenciání rovnice má řešení: u(x; t) =f(»)+g( ) =u p (x vt)+u z (x + vt) 2 2 [u p(x vt)+u z (x + vt)] = u 00 p(x vt)+u 00 z(x + 2 u h i 2 2 [u p(x vt)+u z (x + vt)] = v 2 u 00 p(x vt)+u 00 z(x + vt) u 00 p (x vt)+u00 z (x + vt) =LCv2 h u 00 p (x vt)+u00 z (x + vt) i Význam: u p (x vt) u z (x + vt) v v = p 1 = p 1 = LC ¹" p r ³m a vna nap et ³ -pohybujeseodpo c atku ke konci zp etn a vna nap et ³ - pohybuje se od konce k po c atku rychost s ³ ren ³ vny nap et ³ c p ¹r " r - Vedení s rozprostřenými parametry
9 Do 2. zákadní rovnice dosadíme za napětí PROUD @x = [u p(x vt)+u z (x + vt)] = vcu 0 p(x vt)+vcu 0 z(x + vt) Integrací pode x dostaneme: i(x; t) =i p (x vt)+i z (x +vt) =vc [u p (x vt) u z (x + vt)] = G 0 u(x; t) kde G 0 = vc má význam vodivosti Vnový odpor: R 0 = i(0; 0) r L C R 0 je ae vastností eektromagnetického poe, které obkopuje vodiče, je závisá geometrií a vastnostmi prostředí V žádném případě nemá vastnosti skutečného odporu jmenovitě průchodem proudu nevzniká tepo!!! V čase t = 0 zdroj vidí kabe jako obyčejný odpor o veikosti R 0 U i R i R 0 u(0; 0) u(0; 0) = U i R 0 R i + R 0 - Vedení s rozprostřenými parametry
10 ŠÍŘENÍ NAPĚTÍ /PROUDU VEDENÍM u p (x vt) i p (x vt) = R 0 u z (x + vt) i z (x + vt) = R 0 vna proudu má opačnou orientaci - Vedení s rozprostřenými parametry
MAGNETICKÉ POLE. 1. Stacionární magnetické pole I I I I I N S N N
MAGETCKÉ POLE 1. Stacionární magnetické poe V E S T C E D O R O Z V O J E V Z D Ě L Á V Á Í je část prostoru, kde se veičiny popisující magnetické poe nemění s časem. Vzniká v bízkosti stacionárních vodičů
Couloumbuv zákon stejne jako vetsina zakonu elektrostatiky jsou velmi podobna zakonum gravitacniho pole.
1) Eektrostaticke poe, Cooumbuv zákon, Permitivita kazde dve teesa nabite eektrickym nabojem Q na sebe pusobi vzajemnou siou. Ta je vysise pomoci Couombovyho zákona: F = 1 4 Q Q 1 2 r r 2 0 kde první cast
Trojfázová vedení vvn Přenosové soustavy, mezinárodní propojení. Cíl: vztah poměrů na obou koncích, ztráty, účinnost. RLGC Vedení s rovnoměrně
Trojázová vedení vvn Přenosové soustavy, mezinárodní propojení. Cí: vztah poměrů na obou koncích, ztráty, účinnost. RLGC Vedení s rovnoměrně rozoženými parametry Homogenní vedení parametry R, L, G, C jsou
Trojfázová vedení vvn Přenosové soustavy, mezinárodní propojení. Cíl: vztah poměrů na obou koncích, ztráty, účinnost. RLGC Vedení s rovnoměrně
Trojázová vedení vvn Přenosové soustavy, mezinárodní propojení. Cí: vztah poměrů na obou koncích, ztráty, účinnost. RLGC Vedení s rovnoměrně rozoženými parametry Homogenní vedení parametry R, L, G, C jsou
FYZIKA II. Petr Praus 9. Přednáška Elektromagnetická indukce (pokračování) Elektromagnetické kmity a střídavé proudy
FYZIKA II Petr Praus 9. Přednáška Elektromagnetická indukce (pokračování) Elektromagnetické kmity a střídavé proudy Osnova přednášky Energie magnetického pole v cívce Vzájemná indukčnost Kvazistacionární
PSK1-15. Metalické vedení. Úvod
PSK1-15 Název školy: Autor: Anotace: Vzdělávací oblast: Předmět: Tematická oblast: Výsledky vzdělávání: Klíčová slova: Druh učebního materiálu: Typ vzdělávání: Ověřeno: Zdroj: Vyšší odborná škola a Střední
3 Z volného prostoru na vedení
volného prostoru na vedení 3 volného prostoru na vedení předchozí kapitole jsme se zabývali šířením elektromagnetických vln ve volném prostoru. lna se šířila od svého zdroje (vysílací antény) do okolí.
Základní otázky pro teoretickou část zkoušky.
Základní otázky pro teoretickou část zkoušky. Platí shodně pro prezenční i kombinovanou formu studia. 1. Síla současně působící na elektrický náboj v elektrickém a magnetickém poli (Lorentzova síla) 2.
Jev elektromagnetické indukce
Jev eektromagnetické indukce V minuých kapitoách jsme si jistě uvědomii, že pojmy kid a pohyb, které byy vemi významné u mechanických dějů, při zkoumání eektrických a magnetických jevů nabyy přímo zásadní
Kmitání struny. Jelikožpředpokládáme,ževýchylkystrunyjsoumalé,budeplatitcosϕ 1,2 1,takže můžeme psát. F 2 F 1 = F 2 u x 2 x.
Kmitání struny 1 Odvození vnové rovnice Vnovou rovnici pro(příčné) vny šířící se na struně odvodíme za předpokadu, že výchykastruny u(x, t)vrovině,vnížstrunakmitá,jemaá,cožnámumožníprovésthned někoik zjednodušení.
1.7 Magnetické pole stacionárního proudu
1.7 Magnetické poe stacionárního proudu Pohybující se e. náboje (e. proud) vytvářejí magnetické poe. Naopak poe působí siou na pohybující se e. náboje. 1.7.1 E. proud, Ohmův zákon v diferenciáním tvaru
Fakulta biomedic ınsk eho inˇzen yrstv ı Teoretick a elektrotechnika Prof. Ing. Jan Uhl ıˇr, CSc. L eto 2017
Fakulta biomedicínského inženýrství Teoretická elektrotechnika Prof. Ing. Jan Uhlíř, CSc. Léto 2017 6. Vedení 1 Homogenní vedení vedení se ztrátami R/2 L/2 L/2 R/2 C G bezeztrátové vedení L/2 L/2 C 2 Model
Obvodové prvky a jejich
Obvodové prvky a jejich parametry Ing. Martin Černík, Ph.D. Projekt ESF CZ.1.07/2.2.00/28.0050 Modernizace didaktických metod a inovace. Elektrický obvod Uspořádaný systém elektrických prvků a vodičů sloužící
Základní pasivní a aktivní obvodové prvky
OBSAH Strana 1 / 21 Přednáška č. 2: Základní pasivní a aktivní obvodové prvky Obsah 1 Klasifikace obvodových prvků 2 2 Rezistor o odporu R 4 3 Induktor o indukčnosti L 8 5 Nezávislý zdroj napětí u 16 6
Z toho se η využije na zajištění funkcí automobilu a na překonání odporu vzduchu. l 100 km. 2 body b) Hledáme minimum funkce θ = 1.
Řešení úoh. koa 59. ročníku fyzikání oympiády. Kategorie A Autor úoh: J. Thomas.a) Na dráze vt bude zapotřebí objem paiva V θ θv t. Při jeho spáení se získá tepo Q mh ρv H ρθvh t. Z toho se η využije na
Řešení úloh 1. kola 60. ročníku fyzikální olympiády. Kategorie B Autoři úloh: J. Thomas (1, 2, 3, 4, 5, 7), M. Jarešová (6)
Řešení úoh 1. koa 60. ročníku fyzikání oympiády. Kategorie B Autoři úoh: J. Thomas (1, 2, 3, 4, 5, 7), M. Jarešová (6) h 1.a) Protože vzdáenost bodů K a O je cos α, je doba etu kuičky z bodu K do bodu
15. Elektrický proud v kovech, obvody stejnosměrného elektrického proudu
15. Elektrický proud v kovech, obvody stejnosměrného elektrického proudu 1. Definice elektrického proudu 2. Jednoduchý elektrický obvod a) Ohmův zákon pro část elektrického obvodu b) Elektrický spotřebič
Základní elektronické obvody
Základní elektronické obvody Soustava jednotek Coulomb (C) = jednotka elektrického náboje q Elektrický proud i = náboj, který proteče průřezem vodiče za jednotku času i [A] = dq [C] / dt [s] Volt (V) =
Elektromagnetický oscilátor
Elektromagnetický oscilátor Již jsme poznali kmitání mechanického oscilátoru (závaží na pružině) - potenciální energie pružnosti se přeměňuje na kinetickou energii a naopak. T =2 m k Nejjednodušší elektromagnetický
Základní otázky ke zkoušce A2B17EPV. České vysoké učení technické v Praze ID Fakulta elektrotechnická
Základní otázky ke zkoušce A2B17EPV Materiál z přednášky dne 10/5/2010 1. Síla současně působící na elektrický náboj v elektrickém a magnetickém poli (Lorentzova síla) 2. Coulombův zákon, orientace vektorů
ELEKTRICKÝ PROUD V KOVECH. Mgr. Jan Ptáčník - GJVJ - Fyzika - Elektřina a magnetismus - 3. ročník
ELEKTRICKÝ PROUD V KOVECH Mgr. Jan Ptáčník - GJVJ - Fyzika - Elektřina a magnetismus - 3. ročník Elektrický proud Uspořádaný pohyb volných částic s nábojem Směr: od + k ( dle dohody - ve směru kladných
ZÁKLADY ELEKTROTECHNIKY pro OPT
ZÁKLADY ELEKTROTECHNIKY pro OPT Přednáška Rozsah předmětu: 24+24 z, zk 1 Literatura: [1] Uhlíř a kol.: Elektrické obvody a elektronika, FS ČVUT, 2007 [2] Pokorný a kol.: Elektrotechnika I., TF ČZU, 2003
ZDROJE MĚŘÍCÍHO SIGNÁLU MĚŘÍCÍ GENERÁTORY
INOVACE ODBORNÉHO VZDĚLÁVÁNÍ NA STŘEDNÍCH ŠKOLÁCH ZAMĚŘENÉ NA VYUŽÍVÁNÍ ENERGETICKÝCH ZDROJŮ PRO 21. STOLETÍ A NA JEJICH DOPAD NA ŽIVOTNÍ PROSTŘEDÍ CZ.1.07/1.1.00/08.0010 ZDROJE MĚŘÍCÍHO SIGNÁLU MĚŘÍCÍ
Osciloskopy a další technika pro elektronickou výrobu a vývoj. Ing. Otto Vodvářka ROHDE & SCHWARZ - Praha, s.r.o.
Oscioskopy a daší technika pro eektronickou výrobu a vývoj Ing. Otto Vodvářka ROHDE & SCHWARZ - Praha, s.r.o. Kdo jsme Největší výrobce eektronické měřicí techniky Evropě Zaujímá přední místo v technoogii
Přechodné děje 2. řádu v časové oblasti
Přechodné děje 2. řádu v časové oblasti EO2 Přednáška 8 Pavel Máša - Přechodné děje 2. řádu ÚVODEM Na předchozích přednáškách jsme se seznámili s obecným postupem řešení přechodných dějů, jmenovitě pak
PARCIÁLNÍ DIFERENCIÁLNÍ ROVNICE JAROMÍR KUBEN PAVLÍNA RAČKOVÁ
PARCIÁLNÍ DIFERENCIÁLNÍ ROVNICE JAROMÍR KUBEN PAVLÍNA RAČKOVÁ Brno 2014 Verze 12. června 2014 Obsah 1 Parciání diferenciání rovnice 1 1.1 Úvod...................................... 1 1.2 Lineární parciání
UNIVERZITA PARDUBICE FAKULTA CHEMICKO-TECHNOLOGICKÁ. katedra fyziky ZÁKLADY FYZIKY II. Pro obory DMML, TŘD a AID prezenčního studia DFJP
UNIVERZITA PARDUBICE FAKULTA CHEMICKO-TECHNOLOGICKÁ katedra fyziky ZÁKLADY FYZIKY II Pro obory DMML, TŘD a AID prezenčního studia DFJP RNDr Jan Z a j í c, CSc, 005 4 MAGNETICKÉ JEVY 4 NESTACIONÁRNÍ ELEKTROMAGNETICKÉ
ELT1 - Přednáška č. 6
ELT1 - Přednáška č. 6 Elektrotechnická terminologie a odborné výrazy, měřicí jednotky a činitelé, které je ovlivňují. Rozdíl potenciálů, elektromotorická síla, napětí, el. napětí, proud, odpor, vodivost,
Zakončení viskózním tlumičem. Charakteristická impedance.
Kapitola 1 Odraz vln 1.1 Korektní zakončení struny Zakončení viskózním tlumičem. Charakteristická impedance. V mnoha praktických situacích požadujeme, aby prostředím postupovaly signály pouze jedním směrem,
2.1 Stáčivost v závislosti na koncentraci opticky aktivní látky
1 Pracovní úkoy 1. Změřte závisost stočení poarizační roviny na koncentraci vodního roztoku gukozy v rozmezí 0 500 g/. Pro jednu zvoenou koncentraci proveďte 5 měření úhu stočení poarizační roviny. Jednu
Přehled veličin elektrických obvodů
Přehled veličin elektrických obvodů Ing. Martin Černík, Ph.D Projekt ESF CZ.1.7/2.2./28.5 Modernizace didaktických metod a inovace. Elektrický náboj - základní vlastnost některých elementárních částic
Základní vztahy v elektrických
Základní vztahy v elektrických obvodech Ing. Martin Černík, Ph.D. Projekt ESF CZ.1.07/2.2.00/28.0050 Modernizace didaktických metod a inovace. Klasifikace elektrických obvodů analogové číslicové lineární
10a. Měření rozptylového magnetického pole transformátoru s toroidním jádrem a jádrem EI
0a. Měření rozptylového magnetického pole transformátoru s toroidním jádrem a jádrem EI Úvod: Klasický síťový transformátor transformátor s jádrem skládaným z plechů je stále běžně používanou součástí
Identifikátor materiálu: VY_32_INOVACE_356
Identifikátor materiálu: VY_32_INOVACE_356 Anotace Autor Jazyk Očekávaný výstup Výuková prezentace.na jednotlivých snímcích jsou postupně odkrývány informace, které žák zapisuje či zakresluje do sešitu.
Obecná vlnová rovnice pro intenzitu elektrického pole Vlnová rovnice mimo oblast zdrojů pro obecný časový průběh veličin Vlnová rovnice mimo oblast
Obecná vlnová rovnice pro intenzitu elektrického pole Vlnová rovnice mimo oblast zdrojů pro obecný časový průběh veličin Vlnová rovnice mimo oblast zdrojů pro harmonický časový průběh veličin Laplaceův
4. OBYČEJNÉ DIFERENCIÁLNÍ ROVNICE
FBI VŠB-TUO 28. března 2014 4.1. Základní pojmy Definice 4.1. Rovnice tvaru F (x, y, y, y,..., y (n) ) = 0 se nazývá obyčejná diferenciální rovnice n-tého řádu a vyjadřuje vztah mezi neznámou funkcí y
Hlavní body. Teplotní závislosti fyzikálních veličin. Teplota, měření
e r i k a Havní body epota, ěření epotní závisosti fyzikáních veičin Kinetická teorie pynů Maxweova rozděovací funkce epo, ěrné tepo, kaorietrie epota Je zákadní veičinou, kterou neze odvodit? Čověk ji
Stacionární magnetické pole. Kolem trvalého magnetu existuje magnetické pole.
Magnetické pole Stacionární magnetické pole Kolem trvalého magnetu existuje magnetické pole. Stacionární magnetické pole Pilinový obrazec magnetického pole tyčového magnetu Stacionární magnetické pole
c) vysvětlení jednotlivých veličin ve vztahu pro okamžitou výchylku, jejich jednotky
Harmonický kmitavý pohyb a) vysvětlení harmonického kmitavého pohybu b) zápis vztahu pro okamžitou výchylku c) vysvětlení jednotlivých veličin ve vztahu pro okamžitou výchylku, jejich jednotky d) perioda
U R U I. Ohmův zákon V A. ohm
Ohmův zákon Ohmův zákon Spojíme li vodivě svorky zdroje o napětí U, začne vodičem procházet proud I. Napětí tedy vyvolalo elektrický proud Proud je pak přímo úměrný napětí (Ohmův zákon): I U R R V A U
anténa x støedovlnná rozhlasová
Vážení zákazníci, dovoujeme si Vás upozornit, že na tuto ukázku knihy se vztahují autorská práva, tzv. copyright. To znamená, že ukázka má soužit výhradnì pro osobní potøebu potenciáního kupujícího (aby
6. Střídavý proud. 6. 1. Sinusových průběh
6. Střídavý proud - je takový proud, který mění v čase svoji velikost a smysl. Nejsnáze řešitelný střídavý proud matematicky i graficky je sinusový střídavý proud, který vyplývá z konstrukce sinusovky.
Zapnutí a vypnutí proudu spínačem S.
ELEKTROMAGNETICKÁ INDUKCE Dva Faradayovy pokusy odpovídají na otázku zda může vzniknout elektrický proud vlivem magnetického pole Pohyb tyčového magnetu k (od) vodivé smyčce s měřidlem, nebo smyčkou k
Elektromagnetismus 163
Elektromagnetismus 163 I I H= 2πr Magnetické pole v blízkosti vodi e s proudem x r H Relativní permeabilita Materiály paramagnetické feromagnetické (nap. elezo, nikl, kobalt) diamagnetické Ve vzduchu je
Řešení elektronických obvodů Autor: Josef Sedlák
Řešení elektronických obvodů Autor: Josef Sedlák 1. Zdroje elektrické energie a) Zdroje z hlediska průběhu zatěžovací charakteristiky b) Charakter zdroje c) Přenos výkonu ze zdroje do zátěže 2. Řešení
Jaký význam má kritický kmitočet vedení? - nejnižší kmitočet vlny, při kterém se vlna začíná šířit vedením.
Jaký význam má kritický kmitočet vedení? - nejnižší kmitočet vlny, při kterém se vlna začíná šířit vedením. Na čem závisí účinnost vedení? účinnost vedení závisí na činiteli útlumu β a na činiteli odrazu
Základy elektrotechniky 2 (21ZEL2) Přednáška 1
Základy elektrotechniky 2 (21ZEL2) Přednáška 1 Úvod Základy elektrotechniky 2 hodinová dotace: 2+2 (př. + cv.) zakončení: zápočet, zkouška cvičení: převážně laboratorní informace o předmětu, kontakty na
Skalární a vektorový popis silového pole
Skalární a vektorový popis silového pole Elektrické pole Elektrický náboj Q [Q] = C Vlastnost materiálových objektů Interakce (vzájemné silové působení) Interakci (vzájemné silové působení) mezi dvěma
ELEKTŘINA A MAGNETIZMUS
EEKTŘINA A MAGNETIZMUS XII Střídavé obvody Obsah STŘÍDAÉ OBODY ZDOJE STŘÍDAÉHO NAPĚTÍ JEDNODUHÉ STŘÍDAÉ OBODY EZISTO JAKO ZÁTĚŽ 3 ÍKA JAKO ZÁTĚŽ 5 3 KONDENZÁTO JAKO ZÁTĚŽ 6 3 SÉIOÝ OBOD 7 3 IMPEDANE 3
Odrušení plošných spoj Vlastnosti plošných spoj Odpor Kapacitu Induk nost mikropáskového vedení Vlivem vzájemné induk nosti a kapacity eslechy
Odrušení plošných spojů Ing. Jiří Vlček Tento text je určen pro výuku praxe na SPŠE. Doplňuje moji publikaci Základy elektrotechniky Elektrotechnologii. Vlastnosti plošných spojů Odpor R = ρ l/s = ρ l/t
Mgr. Jan Ptáčník. Elektrodynamika. Fyzika - kvarta! Gymnázium J. V. Jirsíka
Mgr. Jan Ptáčník Elektrodynamika Fyzika - kvarta! Gymnázium J. V. Jirsíka Vodič v magnetickém poli Vodič s proudem - M-pole! Vložení vodiče s proudem do vnějšího M-pole = interakce pole vnějšího a pole
Hlavní body - elektromagnetismus
Elektromagnetismus Hlavní body - elektromagnetismus Lorenzova síla, hmotový spektrograf, Hallův jev Magnetická síla na proudovodič Mechanický moment na proudovou smyčku Faradayův zákon elektromagnetické
Univerzita Tomáše Bati ve Zlíně
Univerzita Tomáše Bati ve Zlíně Ústav elektrotechniky a měření Základní pojmy elektrotechniky Přednáška č. 1 Milan Adámek adamek@ft.utb.cz U5 A711 +420576035251 Základní pojmy elektrotechniky 1 Elektrotechnika:
OTÁZKY Z TEORIE ELEKTROMAGNETICKÉHO POLE Letní semestr 2003/2004 poslední úprava 25. června 2004
OTÁZKY Z TEORIE ELEKTROMAGNETICKÉHO POLE Letní semestr 2003/2004 posední úprava 25. června 2004 1. ía současně působící na eektrický náboj v eektrickém a magnetickém poi (Lorentzova sía) [ ] F m = Q E
Řešení elektrických sítí pomocí Kirchhoffových zákonů
4.2.8 Řešení elektrických sítí pomocí Kirchhoffových zákonů Předpoklady: 427 Pedagogická poznámka: Hodina obsahuje čtyři obvody. Fyzikálně mezi nimi není velký rozdíl, druhé dva jsou však podstatně obtížnější
1 U Zapište hodnotu časové konstanty derivačního obvodu. Vyznačte měřítko na časové ose v uvedeném grafu.
v v 1. V jakých jednotkách se vyjadřuje proud uveďte název a značku jednotky. 2. V jakých jednotkách se vyjadřuje indukčnost uveďte název a značku jednotky. 3. V jakých jednotkách se vyjadřuje kmitočet
DIGITÁLNÍ UČEBNÍ MATERIÁL
DIGITÁLNÍ UČEBNÍ MATERIÁL škola Střední škola F. D. Roosevelta pro tělesně postižené, Brno, Křižíkova 11 číslo projektu číslo učebního materiálu předmět, tematický celek ročník CZ.1.07/1.5.00/34.1037 VY_32_INOVACE_ZIL_VEL_123_12
9.7. Vybrané aplikace
Cíle V rámci témat zaměřených na lineární diferenciální rovnice a soustavy druhého řádu (kapitoly 9.1 až 9.6) jsme dosud neuváděli žádné aplikace. Je jim společně věnována tato závěrečné kapitola, v níž
ELEKTRICKÝ PROUD ELEKTRICKÝ ODPOR (REZISTANCE) REZISTIVITA
ELEKTRICKÝ PROD ELEKTRICKÝ ODPOR (REZISTANCE) REZISTIVITA 1 ELEKTRICKÝ PROD Jevem Elektrický proud nazveme usměrněný pohyb elektrických nábojů. Např.:- proud vodivostních elektronů v kovech - pohyb nabitých
Rezistor je součástka kmitočtově nezávislá, to znamená, že se chová stejně v obvodu AC i DC proudu (platí pro ideální rezistor).
Rezistor: Pasivní elektrotechnická součástka, jejíž hlavní vlastností je schopnost bránit průchodu elektrickému proudu. Tuto vlastnost nazýváme elektrický odpor. Do obvodu se zařazuje za účelem snížení
Výkon střídavého proudu, účiník
ng. Jaromír Tyrbach Výkon střídavého proudu, účiník odle toho, kterého prvku obvodu se výkon týká, rozlišujeme u střídavých obvodů výkon činný, jalový a zdánlivý. Ve střídavých obvodech se neustále mění
Elektromagnetické pole, vlny a vedení (A2B17EPV) PŘEDNÁŠKY
Elektromagnetické pole, vlny a vedení (A2B17EPV) PŘEDNÁŠKY Garant: Škvor Z. Vyučující: Pankrác V., Škvor Z. Typ předmětu: Povinný předmět programu (P) Zodpovědná katedra: 13117 - Katedra elektromagnetického
V následujícím obvodě určete metodou postupného zjednodušování hodnoty zadaných proudů, napětí a výkonů. Zadáno: U Z = 30 V R 6 = 30 Ω R 3 = 40 Ω R 3
. STEJNOSMĚNÉ OBVODY Příklad.: V následujícím obvodě určete metodou postupného zjednodušování hodnoty zadaných proudů, napětí a výkonů. 5 5 U 6 Schéma. = 0 V = 0 Ω = 0 Ω = 0 Ω = 60 Ω 5 = 90 Ω 6 = 0 Ω celkový
Nezávislý zdroj napětí
Nezávislý zdroj napětí Ideální zdroj: Udržuje na svých svorkách napětí s daným časovým průběhem Je schopen dodat libovolný proud, i nekonečně velký, tak, aby v závislosti na zátěži zachoval na svých svorkách
Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/
Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/03.0009 1. Základní informace o této fyzikální veličině Symbol vlastní indukčnosti je L, základní jednotka henry, symbol
PŘEDNÁŠKA 2 - OBSAH. Přednáška 2 - Obsah
PŘEDNÁŠKA 2 - OBSAH Přednáška 2 - Obsah i 1 Bipolární diferenciální stupeň 1 1.1 Dif. stupeň s nesymetrickým výstupem (R zátěž) napěťový zisk... 4 1.1.1 Parametr CMRR pro nesymetrický dif. stupeň (R zátěž)...
Elektromagnetické kmitání
Elektromagnetické kmitání Elektromagnetické kmity pozorujeme v paralelním LC obvodu. L C Sepneme-li spínač, kondenzátor se začne vybíjet přes cívku, která se chová jako rezistor. C L Proud roste, napětí
Ekvivalence obvodových prvků. sériové řazení společný proud napětí na jednotlivých rezistorech se sčítá
neboli sériové a paralelní řazení prvků Rezistor Ekvivalence obvodových prvků sériové řazení společný proud napětí na jednotlivých rezistorech se sčítá Paralelní řazení společné napětí proudy jednotlivými
4.2.8 Odpor kovového vodiče, Ohmův zákon
4.2.8 Odpor kovového vodiče, Ohmův zákon Předpoklady: 4207 Některé výsledky minulé hodiny. Odpor 180 Ω VA charakteristika odporu 180 ohmů napětí [V] 0 1,71 3,42 5,38 7,17 8,93 10,71 proud [A] 0,000 0,008
2 Odvození pomocí rovnováhy sil
Řetězovka Abstrakt: Ukážeme si, že řetěz pověšený mezi dvěma body v homogenním gravitačním poli se prohne ve tvaru grafu funkce hyperbolický kosinus. Odvození provedeme dvojím způsobem: pomocí rovnováhy
Derivace funkce. Přednáška MATEMATIKA č Jiří Neubauer
Přednáška MATEMATIKA č. 9-11 Katedra ekonometrie FEM UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Šotová, J., Doudová, L. Diferenciální počet funkcí jedné proměnné Motivační příklady
1.5 Operační zesilovače I.
.5 Operační zesilovače I..5. Úkol:. Změřte napěťové zesílení operačního zesilovače v neinvertujícím zapojení 2. Změřte napěťové zesílení operačního zesilovače v invertujícím zapojení 3. Ověřte vlastnosti
Téma 4 Normálové napětí a přetvoření prutu namáhaného tahem (prostým tlakem)
Pružnost a pasticita, 2.ročník bakaářského studia Téma 4 ormáové napětí a přetvoření prutu namáhaného tahem (prostým takem) Zákadní vztahy a předpokady řešení apětí a přetvoření osově namáhaného prutu
3.9. Energie magnetického pole
3.9. nergie agnetického poe 1. Uět odvodit energii agnetického poe cívky tak, aby bya vyjádřena poocí paraetrů obvodu (I a L).. Znát vztah pro energii agnetického poe cívky jako funkci veičin charakterizujících
Řešení úloh 1. kola 47. ročníku fyzikální olympiády. Kategorie B
Řešení úloh 1. kola 47. ročníku fyzikální olympiády. Kategorie B Autořiúloh:P.Šedivý(1,2,4,6,7)aM.Jarešová(3,5) 1. a) Má-li být vlákno stále napnuto, nesmí být amplituda kmitů větší než prodloužení vláknavrovnovážnépoloze.zdeplatí
I. STEJNOSMĚ RNÉ OBVODY
Řešené příklady s komentářem Ing. Vítězslav Stýskala, leden 000 Katedra obecné elektrotechniky FEI, VŠB-Technická univerzita Ostrava stýskala, 000 Určeno pro posluchače bakalářských studijních programů
"vinutý program" (tlumivky, odrušovací kondenzátory a filtry), ale i odporové trimry jsou
Společnost HARLINGEN převzala počátkem roku 2004 část výroby společnosti TESLA Lanškroun, a.s.. Jde o technologii přesných tenkovrstvých rezistorů a tenkovrstvých hybridních integrovaných obvodů, jejichž
Obr. 9.1: Elektrické pole ve vodiči je nulové
Stejnosměrný proud I Dosud jsme se při studiu elektrického pole zabývali elektrostatikou, která studuje elektrické náboje v klidu. V dalších kapitolách budeme studovat pohybující se náboje elektrický proud.
Elektrotechnika - test
Základní škola, Šlapanice, okres Brno-venkov, příspěvková organizace Masarykovo nám. 1594/16, 664 51 Šlapanice www.zsslapanice.cz MODERNÍ A KONKURENCESCHOPNÁ ŠKOLA reg. č.: CZ.1.07/1.4.00/21.2389 Elektrotechnika
1. Obecná struktura pohonu s napěťovým střídačem
1. Obecná struktura pohonu s napěťovým střídačem Topologicky můžeme pohonný systém s asynchronním motorem, který je napájen z napěťového střídače, rozdělit podle funkce a účelu do následujících částí:
Řešení elektrických sítí pomocí Kirchhoffových zákonů
4.2.19 Řešení elektrických sítí pomocí Kirchhoffových zákonů Předpoklady: 4218 Pedagogická poznámka: Hodina obsahuje čtyři obvody. Fyzikálně mezi nimi není velký rozdíl, druhé dva jsou však podstatně obtížnější
V následujícím obvodě určete metodou postupného zjednodušování hodnoty zadaných proudů, napětí a výkonů. Zadáno: U Z = 30 V R 6 = 30 Ω R 3 = 40 Ω R 3
. STEJNOSMĚNÉ OBVODY Příklad.: V následujícím obvodě určete metodou postupného zjednodušování hodnoty zadaných proudů, napětí a výkonů. Z 5 5 4 4 6 Schéma. Z = 0 V = 0 Ω = 40 Ω = 40 Ω 4 = 60 Ω 5 = 90 Ω
F7 MOMENT SETRVAČNOSTI
F7 MOMENT ETRVAČNOTI Evropský sociání fond Praha & EU: Investujeme do vaší budoucnosti F7 MOMENT ETRVAČNOTI V této části si spočteme některé jednoduché příkady na rotační pohyby a seznámíme se s někoika
Elektřina a magnetismus úlohy na porozumění
Elektřina a magnetismus úlohy na porozumění 1) Prázdná nenabitá plechovka je umístěna na izolační podložce. V jednu chvíli je do místa A na vnějším povrchu plechovky přivedeno malé množství náboje. Budeme-li
2 Tokové chování polymerních tavenin reologické modely
2 Tokové chování polymerních tavenin reologické modely 2.1 Reologie jako vědní obor Polymerní materiály jsou obvykle zpracovávány v roztaveném stavu, proto se budeme v prvé řadě zabývat jejich tokovým
Kirchhoffovy zákony. Kirchhoffovy zákony
Kirchhoffovy zákony 1. Kirchhoffův zákon zákon o zachování elektrických nábojů uzel, větev obvodu... Algebraický součet všech proudů v uzlu se rovná nule Kirchhoffovy zákony 2. Kirchhoffův zákon zákon
Zkouškové otázky z A7B31ELI
Zkouškové otázky z A7B31ELI 1 V jakých jednotkách se vyjadřuje napětí - uveďte název a značku jednotky 2 V jakých jednotkách se vyjadřuje proud - uveďte název a značku jednotky 3 V jakých jednotkách se
USTÁLE Ý SS. STAV V LI EÁR ÍCH OBVODECH
USTÁLE Ý SS. STAV V LI EÁR ÍCH OBVODECH Odporový dělič napětí - nezatížený Příklad 1 Odporový dělič napětí - zatížený I 1 I 2 I p Příklad 2 1 Příklad 3 Odporový dělič proudu Příklad 4 2 Věty o náhradních
ITO. Semestrální projekt. Fakulta Informačních Technologií
ITO Semestrální projekt Autor: Vojtěch Přikryl, xprikr28 Fakulta Informačních Technologií Vysoké Učení Technické v Brně Příklad 1 Stanovte napětí U R5 a proud I R5. Použijte metodu postupného zjednodušování
PRAKTIKUM II. Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK. Název: Charakteristiky termistoru. stud. skup.
Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK PRAKTIKUM II. Úloha č. IX Název: Charakteristiky termistoru Pracoval: Lukáš Vejmelka stud. skup. FMUZV (73) dne 17.10.2013 Odevzdal
Modelování a simulace Lukáš Otte
Modelování a simulace 2013 Lukáš Otte Význam, účel a výhody MaS Simulační modely jsou nezbytné pro: oblast vědy a výzkumu (základní i aplikovaný výzkum) analýzy složitých dyn. systémů a tech. procesů oblast
Elektřina a magnetismus UF/01100. Základy elektřiny a magnetismu UF/PA112
Elektřina a magnetismus UF/01100 Rozsah: 4/2 Forma výuky: přednáška Zakončení: zkouška Kreditů: 9 Dop. ročník: 1 Dop. semestr: letní Základy elektřiny a magnetismu UF/PA112 Rozsah: 3/2 Forma výuky: přednáška
6 Potenciály s δ funkcemi II
6 Potenciály s δ funkcemi II 6.1 Periodická δ funkce (Diracův hřeben) Částice o hmotnosti M se pohybuje v jednorozměrné mřížce popsané periodickým potenciálem V(x) = c δ(x na), (6.1.1) n= kde a je vzdálenost
Zadání úlohy: Schéma zapojení: Střední průmyslová škola elektroniky a informatiky, Ostrava, příspěvková organizace. Třída/Skupina: / Měřeno dne:
Číslo úlohy: Jméno a příjmení: Třída/Skupina: / Měřeno dne: Název úlohy: Zobrazení hysterézní smyčky feromagnetika pomocí osciloskopu Spolupracovali ve skupině.. Zadání úlohy: Proveďte zobrazení hysterezní
7 Kvantová částice v centrálně symetrickém potenciálu.
7 Kvantová částice v centráně symetrickém potenciáu. Představte si, že hodíte kámen do vody a chcete popsat vny, které vzniknou. Protože hadina je D, můžete vny popsat funkcí f x, y. Ae pokud jste chytří,
Stavba hmoty. Název školy. Střední škola informatiky, elektrotechniky a řemesel Rožnov pod Radhoštěm
Stavba hmoty Popis podstaty elektrických jevů, vyplývajících ze stavby hmoty Stavba hmoty VY_32_INOVACE_04_01_01 Materiál slouží k podpoře výuky předmětu v 1. ročníku oboru Elektronické zpracování informací.
Digitální učební materiál
Digitální učební materiál Číslo projektu CZ.1.07/1.5.00/34.0802 Název projektu Zkvalitnění výuky prostřednictvím ICT Číslo a název šablony klíčové aktivity III/2 Inovace a zkvalitnění výuky prostřednictvím
4.2.7 Odpor kovového vodiče, Ohmův zákon
4.2.7 Odpor kovového vodiče, Ohmův zákon Předpoklady: 4201, 4205, 4206 Př. 1: Změř závislost proudu procházejícího rezistorem na napětí (VA charakteristiku). Měření proveď pro dva různé rezistory. Hodnotu
PŘÍKLAD PŘECHODNÝ DĚJ DRUHÉHO ŘÁDU ŘEŠENÍ V ČASOVÉ OBLASTI A S VYUŽITÍM OPERÁTOROVÉ ANALÝZY
PŘÍKLAD PŘECHODNÝ DĚJ DRHÉHO ŘÁD ŘEŠENÍ V ČASOVÉ OBLASTI A S VYŽITÍM OPERÁTOROVÉ ANALÝZY A) Časová oblast integro-diferenciální rovnice K obvodu na obrázku je v čase t 0 napětí u b (t). t 0 připojen zdroj
2.6. Vedení pro střídavý proud
2.6. Vedení pro střídavý proud Při výpočtu krátkých vedení počítáme většinou buď jen s činným odporem vedení (nn) nebo u vn s činným a induktivním odporem. 2.6.1. Krátká jednofázová vedení nn U krátkých