3 Frekvence a doba příchodu signálu z kosmických sond

Rozměr: px
Začít zobrazení ze stránky:

Download "3 Frekvence a doba příchodu signálu z kosmických sond"

Transkript

1 3 Frekene a doba příhodu ignálu z komikýh ond Prní umělá družie emě, Sputnik, yílala radioý ignál na rekeníh,5 a 4, MHz. Pohyboala e e ýše 5 až 939 km nad porhem emě, její doba oběhu byla 96, minuty. Vypočtěte, jak dlouho letěl ignál z družie k přijímači a na jaké rekene bylo zapotřebí přijímač naladit, pokud družie prolétala nad tanií a apogeu b perigeiu. Stejné ýpočty proeďte pro družii Pioneer, která byla je zdálenoti miliard kilometrů od emě a pohybuje e ryhlotí 7,6 km - měrem od Slune. Tato družie komunikoala na rekeni 8,4 GHz. Řešení: Na začátku této úlohy tála úaha, zda Sputnik neyílal na rekeníh, MHz a 4, MHz a přijímané rekene nebyly oliněny Doppleroým pouem. Pro rekeni přijímanou z pohybujíího e zdroje platí: r kde je yílaná rekene, relatiní ryhlot zdroje ůči pozoroateli a je ryhlot šíření ln daném protředí. V našem případě 3 km - je ryhlot ětla. Pro změnu rekene pak platí Odud už je zřejmé, že Dopplerů je nelze init z toho, že přijímané rekene byly,5 a 4, MHz. Pokud by to opradu způobil Dopplerů je, muela by být rozdíl na rekeni 4 MHz dakrát ětší než na rekeni MHz, ož plyne z ýše uedenýh ztahů. Dopplerů je e ošem při příjmu ignálů z druži uplatňuje a to tím íe, čím je rekene yšší např. u druži ytému GPS, které praují pámu,8 GHz je nutné tím počítat. Uažujme nejpre atelit na kruhoé dráze nad nehybnou emí. Položme h 8 km této ýše e pohybují radioamatérké atelity, použíané r

2 k naazoání pojení na elké zdálenoti nejrůznějšíh rekenčníh pámeh. Oběžná ryhlot takoého atelitu bude k R + h, 4 Pro hodnoty kappa 6,67 -, M 6 4 kg a R 6378 km dotááme pro oběžnou ryhlot takoého atelitu hodnotu 7467 m -. Je ošem zapotřebí i uědomit, že toto je oběžná ryhlot ypočítaná zhledem ke tředu emě. Přijímač e nahází na jejím porhu a relatiní ryhlot družie ůči přijímači e mění iz obr. 4. Obr. 4 Vzájemná ryhlot družie a přijímače nákreu je patrné, že relatiní ryhlot družie je maximální tehdy, je-li družie práě na obzoru eleae, nuloá, je-li družie zenitu eleae 9. Pro relatiní ryhlot družie r zřejmě platí r k R o arin Pro interal eleačníh úhlu <-9 ;9 > lze ypočítat přílušné relatiní ryhloti a poté i Doppleroy pouny: R r o arin 6 Pokud graiky yneeme záilot Doppleroa pounu pro konkrétní rekeni záiloti na eleačním úhlu družie, dotaneme náledujíí gra: 5

3 Dopplerů poun na rekeni, MHz 6 4 [Hz] Eleae -4-6 Obr. XX Dopplerů pou na rekeni, MHz Maximální Dopplerů pou je tomto případě 46 Hz. I kdybyhom do relatiní ryhloti započítali oběžnou ryhlot emě maximálně 465 m - na roníku, Dopplerů pou by byl maximálně 49 Hz. Družie šak naí ětšinou neobíhají roníkoé roině, e kterou jme zde počítali, ale roina jejih dráhy je jiná. V případě Sputniku byla dráha družie kloněna o 65,, ož Dopplerů pou ještě níží. Vypočtěme nyní Doppleroy pouy pro Sputnik apogeu a perigeu a pro případ, kdy je družie práě na obzoru. Pro ýšky nad porhem emě a oběžné ryhloti platí: h 5 km, k R + h 779 m - h 939 km, k 7396 m - Doppleroy pouny pro rekene, MHz a 4,5 MHz dotaneme užitím ztahu 6 pro ýše uedené hodnoty r a h náledujíím způobem:

4 V perigeu r o arin 4 r o arin R R 53 Hz 6 Hz V apogeu r o arin 4 r o arin R R 43 Hz 86 Hz áěrem lze říi, že důody, proč Sputnik yílal práě na těhto nezaokrouhlenýh rekeníh byly ryze kontrukční. V roe 957 ie bylo možné etrojit yílač praujíí na rekeni, MHz, rozhodně by e šak neešel do družie. Co e týče čau, který uplynul mezi yláním ignálu a jeho příjmem na pozemkém přijímači, lze ho určit jako: h 5 km t,7 km 3 h 939 km t,33 km 3 V tomto případě lze říi, že tyto čay byly zela zanedbatelné. Konečnou ryhlot šíření elektromagnetiké lny je šak potřeba mít na paměti např. při komunikai komikými ondami např. případě robotikýh ozítek na Maru tralo průměru čtyři minuty, než data dorazila na emi. Pro komikou ondu Voyager tuto hodnotu zanedbat nemůžeme. Jetliže e pohyboala e zdálenoti miliard kilometrů, pro ča hodu ignálu dotááme 9 km t 4, km 3 ož je pře jedenát hodin. Pro ýpočet Doppleroa pouu je potřeba uážit, že ryhlot 7,6 km - je uažoána zhledem ke Sluni je to ryhlot, e kterou Voyager opouští Sluneční outau. Pokud byhom měli přijímač na Sluni ož je poměrně nepohodlné, Dopplerů pou by e podle ypočetl jako 7,6 8,4 GHz 8,45 GHz 3

5 Přijímač šak bude píše na emi, která e zhledem ke Sluni pohybuje. Jetliže je zdálenot tředů Slune a emě 56 miliónů kilometrů a jeden oběh trá jeden rok, dotááme pro oběžnou ryhlot 6 56 km ob 9,7 km Relatiní ryhlot ondy Voyager e tedy během roku mění interalu <ob-; ob+>, číelně tedy od,66 do 46,78 km - a pro přijímané rekene platí: ob + 8,469 GHz ob - 8,464 GHz To je ouladu ýledkem, který pokytl Jame R. Miller, jeden z radioamatérů ze kupiny AMSAT-DL Group, která roe 6 pomoí paraboliké antény o průměru metrů zahytila ignál z Voyageru. Tehdy byla na přijímači naladěna rekene 8,44 GHz, ož je elie blízko ypočtenýh hodnot roe 6 byla ryhlot družie jiná než dne.

POHYBY V GRAVITAČNÍM POLI ZEMĚ POHYBY TĚLES V HOMOGENNÍM TÍHOVÉM POLI ZEMĚ

POHYBY V GRAVITAČNÍM POLI ZEMĚ POHYBY TĚLES V HOMOGENNÍM TÍHOVÉM POLI ZEMĚ Předmět: Ročník: Vytořil: Datum: FYZIKA PRVNÍ MGR. JÜTTNEROVÁ 9. 9. 01 Náze zpracoaného celku: POHYBY V GRAVITAČNÍM POLI ZEMĚ POHYBY TĚLES V HOMOGENNÍM TÍHOVÉM POLI ZEMĚ Jde o pohyby těles blízkosti porchu

Více

SPECIÁLNÍ TEORIE RELATIVITY

SPECIÁLNÍ TEORIE RELATIVITY SPECIÁLNÍ TEORIE RELATIVITY 1. Základní informae autor Albert Einstein jey pozoroané e DVOU ztažnýh soustaáh, které se zhledem k sobě pohybují ryhlostí blízkou ryhlosti sětla e akuu Co uidí nější a nitřní

Více

Speciální teorie relativity IF relativistická kinematika

Speciální teorie relativity IF relativistická kinematika Prinip relatiity Speiální teorie relatiity IF relatiistiká kinematika Newtonoy pohyboé zákony umožňují popis hoání těles pohybujííh se nízkými ryhlostmi Při ryhlosteh, kterýh dosahují částie uryhloačíh,

Více

Předmět: Ročník: Vytvořil: Datum: FYZIKA PRVNÍ MGR. JÜTTNEROVÁ 24. 7. 2012. Název zpracovaného celku: KINEMATIKA II SKLÁDÁNÍ RYCHLOSTÍ A POHYBŮ

Předmět: Ročník: Vytvořil: Datum: FYZIKA PRVNÍ MGR. JÜTTNEROVÁ 24. 7. 2012. Název zpracovaného celku: KINEMATIKA II SKLÁDÁNÍ RYCHLOSTÍ A POHYBŮ Předmět: Ročník: Vytořil: Datum: FYZIKA PRVNÍ MGR. JÜTTNEROVÁ 4. 7. 0 Náze zpracoaného celku: KINEMATIKA II SKLÁDÁNÍ RYCHLOSTÍ A POHYBŮ VÝUKOVÝ A PRACOVNÍ LIST V běžném žiotě se setkááme s případy, kdy

Více

Kapitola I - Množiny bodů daných vlastností I.a Co je množinou všech bodů v rovině, které mají od daných dvou různých bodů stejnou vzdálenost? I.

Kapitola I - Množiny bodů daných vlastností I.a Co je množinou všech bodů v rovině, které mají od daných dvou různých bodů stejnou vzdálenost? I. Kapitola I - Množiny bodů daných vlastností I.a Co je množinou všech bodů v rovině, které mají od daných dvou různých bodů stejnou vzdálenost? I.b Co je množinou středů všech kružnic v rovině, které prochází

Více

2.8.9 Parametrické rovnice a nerovnice s absolutní hodnotou

2.8.9 Parametrické rovnice a nerovnice s absolutní hodnotou .8.9 Parametrické rovnice a nerovnice s absolutní hodnotou Předpoklady: 0,, 806 Pedagogická poznámka: Opět si napíšeme na začátku hodiny na tabuli jednotlivé kroky postupu při řešení rovnic (nerovnic)

Více

Kvadratické rovnice pro učební obory

Kvadratické rovnice pro učební obory Variace 1 Kvadratické rovnice pro učební obory Autor: Mgr. Jaromír JUŘEK Kopírování a jkaékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. 1. Kvadratické

Více

( ) ( ) 7.2.2 Sčítání vektorů. Předpoklady: 7201

( ) ( ) 7.2.2 Sčítání vektorů. Předpoklady: 7201 7.. Sčítání ektorů Předpoklady: 70 Pedagogická poznámka: Stdenti ětšino necítí potřeb postpoat při definici sčítání ektorů (obecně při zaádění jakékoli operace) tak striktně, jak yžadje matematika. Upozorňji

Více

(a) = (a) = 0. x (a) > 0 a 2 ( pak funkce má v bodě a ostré lokální maximum, resp. ostré lokální minimum. Pokud je. x 2 (a) 2 y (a) f.

(a) = (a) = 0. x (a) > 0 a 2 ( pak funkce má v bodě a ostré lokální maximum, resp. ostré lokální minimum. Pokud je. x 2 (a) 2 y (a) f. I. Funkce dvou a více reálných proměnných 5. Lokální extrémy. Budeme uvažovat funkci f = f(x 1, x 2,..., x n ), která je definovaná v otevřené množině G R n. Řekneme, že funkce f = f(x 1, x 2,..., x n

Více

1.2.7 2. Newtonův zákon III

1.2.7 2. Newtonův zákon III 7 Newtonů zákon III Předpoklady: 0006 Pedagogická poznáka: Hodina á dě části V prní (do příkladu 5 četně) se řeší různé příklady, e druhé (od příkladu 6) se procičuje uplatňoání jednoho postupu různých

Více

Dopravní úloha. Jiří Neubauer. Katedra ekonometrie FEM UO Brno

Dopravní úloha. Jiří Neubauer. Katedra ekonometrie FEM UO Brno Přednáška č. 9 Katedra ekonometrie FEM UO Brno Distribuční úlohy Budeme se zabývat 2 typy distribučních úloh dopravní úloha přiřazovací problém Dopravní úloha V dopravním problému se v typickém případě

Více

Mřížky a vyústky NOVA-C-2-R2. Vyústka do kruhového potrubí. Obr. 1: Rozměry vyústky

Mřížky a vyústky NOVA-C-2-R2. Vyústka do kruhového potrubí. Obr. 1: Rozměry vyústky -1-1-H Vyústka do kruhového potrubí - Jednořadá 1 Dvouřadá 2 L x H Typ regulačního ústrojí 1) R1, RS1, RN1 R2, RS2, RN2 R, RS, RN Lamely horizontální 2) H vertikální V Provedení nerez A- A-16 Povrchová

Více

ZÁKLADY NEBESKÉ MECHANIKY II.

ZÁKLADY NEBESKÉ MECHANIKY II. ZÁKLADY NEBESKÉ MECHANIKY II. Určení polohy tělesa v eliptické dráze, Keplerova rovnice I. Určení polohy tělesa v eliptické dráze, Keplerova rovnice II. Keplerova rovnice je tzv. transcendentní rovnice,

Více

( ) 2.5.7 Neúplné kvadratické rovnice. Předpoklady: 020501

( ) 2.5.7 Neúplné kvadratické rovnice. Předpoklady: 020501 ..7 Neúplné kvadratické rovnice Předpoklady: Pedagogická poznámka: Tato hodina patří mezi vzácné výjimky, kdy naprostá většina studentů skončí více než pět minut před zvoněním. Nechávám je dělat něco jiného

Více

2.8.10 Rovnice s neznámou pod odmocninou a parametrem

2.8.10 Rovnice s neznámou pod odmocninou a parametrem .8.10 Rovnie s neznámou pod odmoninou a parametrem Předpoklady: 806, 808 Budeme postupovat stejně jako v předhozíh hodináh. Nejdříve si zopakujeme obený postup při řešení rovni s neznámou pod odmoninou

Více

1. Kruh, kružnice. Mezi poloměrem a průměrem kružnice platí vztah : d = 2. r. Zapíšeme k ( S ; r ) Čteme kružnice k je určena středem S a poloměrem r.

1. Kruh, kružnice. Mezi poloměrem a průměrem kružnice platí vztah : d = 2. r. Zapíšeme k ( S ; r ) Čteme kružnice k je určena středem S a poloměrem r. Kruh, kružnice, válec 1. Kruh, kružnice 1.1. Základní pojmy Kružnice je množina bodů mající od daného bodu stejnou vzdálenost. Daný bod označujeme jako střed kružnice. Stejnou vzdálenost nazýváme poloměr

Více

ó ž Ž ť Ó Ž Č Ž ž ž Ž ž Ž Š Ž ď ž Ž ž ž Š Ž ž Š Ž Ž ó Ž Ž Č ó ž Ž ž ž ž Ů ž ž Ž Ů ť ž Ž ž Ž Ž ž ž Ž É ó É É ž Ž Ž ó Ž Ě ť ó Á Ž Á ť Ó Ů Ů Ý ÓŽ Ž Ó ž Č Ž ž ž Ů Ů ž Ů ž ž ž ž ž ž ž É ť ó Š ž ó Š ž ť ó Ď

Více

STEREOMETRIE. Vzdálenost bodu od přímky. Mgr. Jakub Němec. VY_32_INOVACE_M3r0113

STEREOMETRIE. Vzdálenost bodu od přímky. Mgr. Jakub Němec. VY_32_INOVACE_M3r0113 STEREOMETRIE Vzdálenost bodu od přímky Mgr. Jakub Němec VY_32_INOVACE_M3r0113 VZDÁLENOST BODU OD PŘÍMKY V PROSTORU Při hledání vzdálenosti bodu od geometrického útvaru v prostoru je nutné si vždy úlohu

Více

{ } 9.1.9 Kombinace II. Předpoklady: 9108. =. Vypiš všechny dvoučlenné kombinace sestavené z těchto pěti prvků. Urči počet kombinací pomocí vzorce.

{ } 9.1.9 Kombinace II. Předpoklady: 9108. =. Vypiš všechny dvoučlenné kombinace sestavené z těchto pěti prvků. Urči počet kombinací pomocí vzorce. 9.1.9 Kombinace II Předpoklady: 9108 Př. 1: Je dána pěti prvková množina: M { a; b; c; d; e} =. Vypiš všechny dvoučlenné kombinace sestavené z těchto pěti prvků. Urči počet kombinací pomocí vzorce. Vypisujeme

Více

Pohyb a klid těles. Průměrnou rychlost pohybu tělesa určíme, když celkovou dráhu dělíme celkovým časem.

Pohyb a klid těles. Průměrnou rychlost pohybu tělesa určíme, když celkovou dráhu dělíme celkovým časem. Pohyb a klid těles Pohyb chápeme jako změnu polohy určitého tělesa vzhledem k jinému tělesu v závislosti na čase. Dráhu tohoto pohybu označujeme jako trajektorii. Délku trajektorie nazýváme dráha, označuje

Více

UŽITÍ DERIVACÍ, PRŮBĚH FUNKCE

UŽITÍ DERIVACÍ, PRŮBĚH FUNKCE MENDELOVA UNIVERZITA V BRNĚ LDF MT MATEMATIKA UŽITÍ DERIVACÍ, PRŮBĚH FUNKCE Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakult MENDELU v Brně (LDF) s ohledem na disciplin

Více

6.1.2 Postuláty speciální teorie relativity, relativita současnosti

6.1.2 Postuláty speciální teorie relativity, relativita současnosti 6.1.2 Postuláty speiální teorie relatiity, relatiita současnosti Předpoklady: 6101 Kone 19. století: Maxwelloy ronie (elektřina a magnetismus) sětlo je elektromagnetiké lnění, šíří se ryhlostí 300 000

Více

Vlnění druhá sada Equation Chapter 1 Section 1

Vlnění druhá sada Equation Chapter 1 Section 1 Vlnění druhá sada Equation Chapter 1 Setion 1 1. Ladička Zadání: Zdroj zuku se pohybuje na ozíku ryhlostí = 5 m s 1 směrem ke stěně. Na opačné straně slyší pozoroatel rázy na frekeni f R = 3 Hz. Jaká byla

Více

E-ZAK. metody hodnocení nabídek. verze dokumentu: 1.1. 2011 QCM, s.r.o.

E-ZAK. metody hodnocení nabídek. verze dokumentu: 1.1. 2011 QCM, s.r.o. E-ZAK metody hodnocení nabídek verze dokumentu: 1.1 2011 QCM, s.r.o. Obsah Úvod... 3 Základní hodnotící kritérium... 3 Dílčí hodnotící kritéria... 3 Metody porovnání nabídek... 3 Indexace na nejlepší hodnotu...4

Více

Vrtání závitů bez vyrovnávací hlavičky (G331, G332)

Vrtání závitů bez vyrovnávací hlavičky (G331, G332) Předpoklady Funkce Technickým předpokladem pro vrtání závitů bez vyrovnávací hlavičky je vřeteno s regulací polohy a systémem pro měření dráhy. Vrtání závitů bez vyrovnávací hlavičky se programuje pomocí

Více

Nyní jste jedním z oněch kouzelníků CÍL: Cílem hry je zničit soupeřovy HERNÍ KOMPONENTY:

Nyní jste jedním z oněch kouzelníků CÍL: Cílem hry je zničit soupeřovy HERNÍ KOMPONENTY: Vytvořili Odet L Homer a Roberto Fraga Velikonoční ostrov je tajemný ostrov v jižním Pacifiku. Jeho původní obyvatelé již před mnoha lety zmizeli a jediné, co po nich zůstalo, jsou obří sochy Moai. Tyto

Více

3.2.4 Podobnost trojúhelníků II

3.2.4 Podobnost trojúhelníků II 3..4 odobnost trojúhelníků II ředpoklady: 33 ř. 1: Na obrázku jsou nakresleny podobné trojúhelníky. Zapiš jejich podobnost (aby bylo zřejmé, který vrchol prvního trojúhelníku odpovídá vrcholu druhého trojúhelníku).

Více

Fyzikální praktikum 3 - úloha 7

Fyzikální praktikum 3 - úloha 7 Fyzikální praktikum 3 - úloha 7 Operační zesilovač, jeho vlastnosti a využití Teorie: Operační zesilovač je elektronická součástka využívaná v měřící, regulační a výpočetní technice. Ideální model má nekonečně

Více

2 3 4 5 6 7 8 9 10 12,999,976 km 9,136,765 km 1,276,765 km 499,892 km 245,066 km 112,907 km 36,765 km 24,159 km 7899 km 2408 km 76 km 12 14 16 3 1 12 7 1 6 2 5 4 3 11 9 10 8 18 20 21 22 23 24 26 28 30

Více

Cena celkem včetně DPH. E122099020 1 215 Kč 971332H001 1 656 Kč 52902P000012 1,2 714 Kč Cena bez DPH Cena celkem včetně DPH.

Cena celkem včetně DPH. E122099020 1 215 Kč 971332H001 1 656 Kč 52902P000012 1,2 714 Kč Cena bez DPH Cena celkem včetně DPH. 15 000 km/12 měsíců GD015ADCMP00 0,9 536 Kč 30 000 km/24 měsíců 45 000 km/36 měsíců GD030ADCMP00 1,4 833 Kč 4 339 Kč 5 251 Kč GD045ADCMP00 0,9 536 Kč 60 000 km/48 měsíců GD060ADCMP00 1,6 952 Kč 4 790 Kč

Více

Semestrální práce NÁVRH ÚZKOPÁSMOVÉHO ZESILOVAČE. Daniel Tureček zadání číslo 18 cvičení: sudý týden 14:30

Semestrální práce NÁVRH ÚZKOPÁSMOVÉHO ZESILOVAČE. Daniel Tureček zadání číslo 18 cvičení: sudý týden 14:30 Semestrální práce NÁVRH ÚZKOPÁSMOVÉHO ZESILOVAČE Daniel Tureček zadání číslo 18 cvičení: sudý týden 14:30 1. Ověření stability tranzistoru Při návrhu úzkopásmového zesilovače s tranzistorem je potřeba

Více

Stanovení závislosti měrné energie čerpadla Y s na objemovém průtoku Q v

Stanovení závislosti měrné energie čerpadla Y s na objemovém průtoku Q v LS2007 VYSOKÁ ŠKOLA BÁŇSKÁ-TU OSTRAVA MĚŘENÍ Č.1 ČERPACÍ TECHNIKA A POTRUBÍ Stanoení záislosti měrné energie čerpadla Y s na objemoém průtoku Q Skupina G442 Jan Noák Zadání: Stanote měřením záislost měrné

Více

Jméno autora: Mgr. Zdeněk Chalupský Datum vytvoření: 5. 9. 2012 Číslo DUM: VY_32_INOVACE_13_FY_A

Jméno autora: Mgr. Zdeněk Chalupský Datum vytvoření: 5. 9. 2012 Číslo DUM: VY_32_INOVACE_13_FY_A Jméno autora: Mgr. Zdeněk Chalupský Datum vytvoření: 5. 9. 2012 Číslo DUM: VY_32_INOVACE_13_FY_A Ročník: I. Fyzika Vzdělávací oblast: Přírodovědné vzdělávání Vzdělávací obor: Fyzika Tematický okruh: Mechanika

Více

Vzorové příklady - 5.cvičení

Vzorové příklady - 5.cvičení Vzoroé příklady - 5.cičení Vzoroý příklad 5.. Voda teplá je ypouštěna z elké nádrže outaou potrubí ýtokem do olna B. Určete délku potrubí =? průměru ( = 0,6 mm, oceloé, ařoané po použití), při níž bude

Více

Propočty přechodu Venuše 8. června 2004

Propočty přechodu Venuše 8. června 2004 Propočty přechodu Venuše 8. června 2004 V tomto dokumentu předkládáme podmínky přechodu Venuše pře luneční kotouč 8. června roku 2004. Naše výpočty jme založili na planetárních teoriích VSOP87 vytvořených

Více

M - Rovnice - lineární a s absolutní hodnotou

M - Rovnice - lineární a s absolutní hodnotou Rovnice a jejich ekvivalentní úpravy Co je rovnice Rovnice je matematický zápis rovnosti dvou výrazů. př.: x + 5 = 7x - M - Rovnice - lineární a s absolutní hodnotou Písmeno zapsané v rovnici nazýváme

Více

LDo paměti přijímače může být zapsáno maximálně 256 kódů vysílačů. Tyto není PŘIJÍMAČ SMXI. Popis výrobku

LDo paměti přijímače může být zapsáno maximálně 256 kódů vysílačů. Tyto není PŘIJÍMAČ SMXI. Popis výrobku Návod SMXI PŘIJÍMAČ SMXI Popis výrobku Součástí řídícíjednotkyjerádiovýpřijímač dálkovéhoovládánípracujícíhonaprincipu plovoucího kódu, náležící k sérii FLOR avery firmy NICE. Charakteristické na této

Více

Vlnění první sada Equation Chapter 1 Section 1

Vlnění první sada Equation Chapter 1 Section 1 Vlnění prní sada Equation Chapter Setion. Nadsětelné ryhlosti prasátko Zadání: Sětelným zdrojem můžeme otočit o 90 za 0. s. Jak daleko musí být projekční ploha, aby se sětelná skrna (prasátko) pohyboala

Více

českém Úvod Obsah balení WWW.SWEEX.COM LC100040 USB adaptér Sweex pro bezdrátovou síť LAN

českém Úvod Obsah balení WWW.SWEEX.COM LC100040 USB adaptér Sweex pro bezdrátovou síť LAN LC100040 USB adaptér Sweex pro bezdrátovou síť LAN Úvod Nejprve bychom vám rádi poděkovali za zakoupení USB adaptéru Sweex pro bezdrátovou síť LAN. USB adaptér umožňuje snadno a bleskově nastavit bezdrátovou

Více

2.4.11 Nerovnice s absolutní hodnotou

2.4.11 Nerovnice s absolutní hodnotou .. Nerovnice s absolutní hodnotou Předpoklady: 06, 09, 0 Pedagogická poznámka: Hlavním záměrem hodiny je, aby si studenti uvědomili, že se neučí nic nového. Pouze používají věci, které dávno znají, na

Více

12/40 Zdroj kmitů budí počátek bodové řady podle vztahu u(o, t) = 2.10 3 m. 14/40 Harmonické vlnění o frekvenci 500 Hz a amplitudě výchylky 0,25 mm

12/40 Zdroj kmitů budí počátek bodové řady podle vztahu u(o, t) = 2.10 3 m. 14/40 Harmonické vlnění o frekvenci 500 Hz a amplitudě výchylky 0,25 mm Vlnění a akustika 1/40 Zdroj kmitů budí počátek bodové řady podle vztahu u(o, t) =.10 3 m, 5π s 1 t. Napište rovnici vlnění, které se šíří bodovou řadou v kladném smyslu osy x rychlostí 300 m.s 1. c =

Více

Pozorování dalekohledy. Umožňují pozorovat vzdálenější a méně jasné objekty (až stonásobně více než pouhým okem). Dají se použít jakékoli dalekohledy

Pozorování dalekohledy. Umožňují pozorovat vzdálenější a méně jasné objekty (až stonásobně více než pouhým okem). Dají se použít jakékoli dalekohledy Vesmírná komunikace Pozorování Za nejběžnější vesmírnou komunikaci lze označit pozorování vesmíru pouhým okem (možno vidět okolo 7000 objektů- hvězdy, planety ).Je to i nejstarší a nejběžnější prostředek.

Více

4.4.2 Kosinová věta. Předpoklady: 4401

4.4.2 Kosinová věta. Předpoklady: 4401 44 Kosinová vět Předpokldy 44 Př Rozhodni zd dokážeme spočítt zývjíí strny úhly u všeh trojúhelníků zdnýh pomoí trojie prvků (délek strn velikostí úhlů) V sinové větě vystupují dvě dvojie strn-protější

Více

a) Slovní úlohy o směsích b) Slovní úlohy o pohybu c) Slovní úlohy o společné práci

a) Slovní úlohy o směsích b) Slovní úlohy o pohybu c) Slovní úlohy o společné práci 9. ročník a) Slovní úlohy o směsích b) Slovní úlohy o pohybu c) Slovní úlohy o společné práci d) Logické slovní úlohy Obecný postup řešení slovní úlohy: 1. Určení neznámých 2. Stanovení dvou vztahů rovnosti

Více

VLIV KONDENZACE VODNÍCH PAR NA ZMĚNY TEPELNÉ VODIVOSTI STAVEBNÍCH HMOT

VLIV KONDENZACE VODNÍCH PAR NA ZMĚNY TEPELNÉ VODIVOSTI STAVEBNÍCH HMOT Abtrt LI KONDENZACE ODNÍCH PAR NA ZMĚNY TEPELNÉ ODIOSTI STAEBNÍCH HMOT Ing. Ondřej Fimn, Ph.D., Ing. Jn Škrmlik, Ph.D. UT Fklt tební, Brno e tební prxi e etkááme přípdy pronikání lhkoti do trktry mteriálů

Více

Příklad 5. řešení. 1. krok Nejprve si celou situaci schematicky znázorníme na obrázku: 2. krok Nyní vypočítáme velikost středového úhlu α:

Příklad 5. řešení. 1. krok Nejprve si celou situaci schematicky znázorníme na obrázku: 2. krok Nyní vypočítáme velikost středového úhlu α: Vypočtěte vzdálenost v na zemském povrchu mezi obratníkem a (23 27 s. š.) a obratníkem a (23 27 j. š.), Nyní vypočítáme velikost středového úhlu : = 23 27 + 23 27 = 46 54 Vypočtěte vzdálenost v na zemském

Více

Dilatace času. Řešení Čas t 0 je vlastní čas trvání děje probíhajícího na kosmické lodi. Z rovnice. v 1 c. po dosazení za t 0 a v pak vyplývá t

Dilatace času. Řešení Čas t 0 je vlastní čas trvání děje probíhajícího na kosmické lodi. Z rovnice. v 1 c. po dosazení za t 0 a v pak vyplývá t Dilatae času 1 Na kosmiké lodi zdalujíí se od Země ryhlostí,1 probíhal určitý děj, který podle měření účastníků letu tral jednu hodinu Jak dlouho trá tento děj pro pozoroatele na Zemi? Je možné, aby děj

Více

( ) 2.4.4 Kreslení grafů funkcí metodou dělení definičního oboru I. Předpoklady: 2401, 2208

( ) 2.4.4 Kreslení grafů funkcí metodou dělení definičního oboru I. Předpoklady: 2401, 2208 .. Kreslení grafů funkcí metodou dělení definičního oboru I Předpoklady: 01, 08 Opakování: Pokud jsme při řešení nerovnic potřebovali vynásobit nerovnici výrazem, nemohli jsme postupovat pro všechna čísla

Více

II. Kinematika hmotného bodu

II. Kinematika hmotného bodu II Kinematika hmotného bodu Všechny vyřešené úlohy jou vyřešeny nejprve obecně, to znamená bez číel Číelné hodnoty jou doazeny až tehdy, dopějeme-li k vyjádření neznámé pomocí vztahu obahujícího pouze

Více

( ) ( ) ( ) 2 ( ) 2.7.16 Rovnice s neznámou pod odmocninou II. Předpoklady: 2715

( ) ( ) ( ) 2 ( ) 2.7.16 Rovnice s neznámou pod odmocninou II. Předpoklady: 2715 .7.6 Rovnice s neznámou pod odmocninou II Předpoklady: 75 Př. : Vyřeš rovnici y + + y = 4 y + + y = 4 / ( y + + y ) = ( 4) y + + 4 y + y + 4 y = 6 5y + 4 y + y = 8 5y + 4 y + y = 8 - v tomto stavu nemůžeme

Více

Svobodná chebská škola, základní škola a gymnázium s.r.o.

Svobodná chebská škola, základní škola a gymnázium s.r.o. METODICKÝ LIST DA41 Název tématu: Autor: Předmět: Ročník: Metody výuky: Formy výuky: Cíl výuky: Poměry III. postupný poměr Astaloš Dušan Matematika sedmý frontální, fixační samostatná práce upevnění znalostí

Více

Označování dle 11/2002 označování dle ADR, označování dle CLP

Označování dle 11/2002 označování dle ADR, označování dle CLP Označování dle 11/2002 označování dle ADR, označování dle CLP Nařízení 11/2002 Sb., Bezpečnostní značky a signály 4 odst. 1 nařízení 11/2002 Sb. Nádoby pro skladování nebezpečných chemických látek, přípravků

Více

INŽENÝRSKÁ MATEMATIKA LOKÁLNÍ EXTRÉMY

INŽENÝRSKÁ MATEMATIKA LOKÁLNÍ EXTRÉMY INŽENÝRSKÁ MATEMATIKA LOKÁLNÍ EXTRÉMY FUNKCÍ DVOU PROMĚNNÝCH Robert Mařík 2. října 2009 Obsah z = x 4 +y 4 4xy + 30..................... 3 z = x 2 y 2 x 2 y 2........................ 18 z = y ln(x 2 +y)..........................

Více

4.2.7 Voltampérová charakteristika rezistoru a žárovky

4.2.7 Voltampérová charakteristika rezistoru a žárovky 4.2.7 Voltampérová charakteristika rezistoru a žárovky Předpoklady: 4205 Pedagogická poznámka: Tuto hodinu učím jako běžnou jednohodinovku s celou třídou. Některé dvojice stihnou naměřit více odporů. Voltampérová

Více

http://www.zlinskedumy.cz

http://www.zlinskedumy.cz Číslo projektu Číslo a název šablony klíčové aktivity Tematická oblast Autor Ročník 2, 3 Obor Anotace CZ.1.07/1.5.00/34.0514 III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Elektronické obvody, vy_32_inovace_ma_42_06

Více

Numerická integrace. 6. listopadu 2012

Numerická integrace. 6. listopadu 2012 Numerická integrace Michal Čihák 6. listopadu 2012 Výpočty integrálů v praxi V přednáškách z matematické analýzy jste se seznámili s mnoha metodami výpočtu integrálů. V praxi se ale poměrně často můžeme

Více

3. Slimák lezl na strom 10m vysoký. Přes den vylezl 4m ale v noci vždycky sklouzl o 3m. Za kolik dní dosáhl vrcholu stromu?

3. Slimák lezl na strom 10m vysoký. Přes den vylezl 4m ale v noci vždycky sklouzl o 3m. Za kolik dní dosáhl vrcholu stromu? Logické úlohy 1. Katka přišla k Janě, která krmila na dvoře drůbež. Katka se ptala: Víš, kolik máte kuřat, kolik housat a kolik kachňat? Jana odpověděla: Vím, a ty si to vypočítej: dohromady máme 90hlav.

Více

4.6.6 Složený sériový RLC obvod střídavého proudu

4.6.6 Složený sériový RLC obvod střídavého proudu 4.6.6 Složený sériový LC obvod střídavého proudu Předpoklady: 41, 4605 Minulá hodina: odpor i induktance omezují proud ve střídavém obvodu, nemůžeme je však sčítat normálně, ale musíme použít Pythagorovu

Více

1.3.1 Kruhový pohyb. Předpoklady: 1105

1.3.1 Kruhový pohyb. Předpoklady: 1105 .. Kruhový pohyb Předpoklady: 05 Předměty kolem nás se pohybují různými způsoby. Nejde pouze o přímočaré nebo křivočaré posuvné pohyby. Velmi často se předměty otáčí (a některé se přitom pohybují zároveň

Více

1. Cizinci v České republice

1. Cizinci v České republice 1. Cizinci v České republice Počet cizinců v ČR se již delší dobu udržuje na přibližně stejné úrovni, přičemž na území České republiky bylo k 31. 12. 2011 evidováno 434 153 osob III. Pokud vezmeme v úvahu

Více

M-10. AU = astronomická jednotka = vzdálenost Země-Slunce = přibližně 150 mil. km. V následující tabulce je závislost doby

M-10. AU = astronomická jednotka = vzdálenost Země-Slunce = přibližně 150 mil. km. V následující tabulce je závislost doby M-10 Jméno a příjmení holka nebo kluk * Třída Datum Škola AU = astronomická jednotka = vzdálenost Země-Slunce = přibližně 150 mil. km V následující tabulce je závislost doby a/au T/rok oběhu planety (okolo

Více

Kvadratické rovnice pro studijní obory

Kvadratické rovnice pro studijní obory Variace 1 Kvadratické rovnice pro studijní obory Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. 1. Kvadratické

Více

Pomůcka pro demonstraci momentu setrvačnosti

Pomůcka pro demonstraci momentu setrvačnosti Pomůcka pro demonstraci momentu setrvačnosti Cílem pomůcky je pochopit význam geometrických charakteristik pro pohybové chování těles na něž působí vnější síly. Princip pomůcky je velmi jednoduchý, jde

Více

Operační program Rybářství 2007-2013

Operační program Rybářství 2007-2013 OP Rybářství 2007-2013 Operační program Rybářství 2007-2013 Elektronické podání Žádosti o dotaci opatření 3.1. a) (6.kolo OP Rybářství) Oddělení metodiky OP Rybářství Ing. Antonín VAVREČKA, Ing. Miroslav

Více

Astronomie 1 ... 3. Dopiš do správných míst schématu vývoje hvězdy následující pojmy: bílý trpaslík, černá díra, globule, neutronová hvězda, obr

Astronomie 1 ... 3. Dopiš do správných míst schématu vývoje hvězdy následující pojmy: bílý trpaslík, černá díra, globule, neutronová hvězda, obr Astronomie Autor: Miroslav Randa. Poloměr Slunce je přibližně stokrát větší než poloměr Země. Kolikrát je větší objem Slunce než objem Země? Poloměr Země je 6 78 km.. Doplňovačka se skrytou tajenkou nejvzdálenější

Více

Praktikum II Elektřina a magnetismus

Praktikum II Elektřina a magnetismus Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK Praktikum II Elektřina a magnetismus Úloha č. VII Název: Měření indukčnosti a kapacity metodou přímou Pracoval: Matyáš Řehák stud.sk.:

Více

PŘÍLOHA č. 2B PŘÍRUČKA IS KP14+ PRO OPTP - ŽÁDOST O ZMĚNU

PŘÍLOHA č. 2B PŘÍRUČKA IS KP14+ PRO OPTP - ŽÁDOST O ZMĚNU PŘÍLOHA č. 2B PRAVIDEL PRO ŽADATELE A PŘÍJEMCE PŘÍRUČKA IS KP14+ PRO OPTP - ŽÁDOST O ZMĚNU OPERAČNÍ PROGRAM TECHNICKÁ POMOC Vydání 1/7, platnost a účinnost od 04. 04. 2016 Obsah 1 Změny v projektu... 3

Více

Využití animací letů kosmických sond ve výuce fyziky

Využití animací letů kosmických sond ve výuce fyziky Využití animací letů kosmických sond ve výuce fyziky TOMÁŠ FRANC Matematicko-fyzikální fakulta UK, Praha Zajímavým oživením hodin fyziky jsou lety kosmických sond, o kterých žáci gymnázií příliš mnoho

Více

Funkce více proměnných

Funkce více proměnných Funkce více proměnných Funkce více proměnných Euklidův prostor Body, souřadnice, vzdálenost bodů Množina bodů, které mají od bodu A stejnou vzdálenost Uzavřený interval, otevřený interval Okolí bodu

Více

Definice 6.2.1. z = f(x,y) vázané podmínkou g(x,y) = 0 jsou z geometrického hlediska lokálními extrémy prostorové křivky k, Obr. 6.2.1. Obr. 6.2.

Definice 6.2.1. z = f(x,y) vázané podmínkou g(x,y) = 0 jsou z geometrického hlediska lokálními extrémy prostorové křivky k, Obr. 6.2.1. Obr. 6.2. Výklad Dalším typem extrémů, kterým se budeme zabývat jsou tzv. vázané extrémy. Hledáme extrémy nějaké funkce vzhledem k předem zadaným podmínkám. Definice 6.2.1. Řekneme, že funkce f : R n D f R má v

Více

Pracovní list vzdáleně ovládaný experiment. Obr. 1: Schéma sériového RLC obvodu, převzato z [3].

Pracovní list vzdáleně ovládaný experiment. Obr. 1: Schéma sériového RLC obvodu, převzato z [3]. Pracovní list vzdáleně ovládaný experiment Střídavý proud (SŠ) Sériový obvod RLC Fyzikální princip Obvod střídavého proudu může mít současně odpor, indukčnost i kapacitu. Pokud jsou tyto prvky v sérii,

Více

Řešení: a) Označme f hustotu a F distribuční funkci náhodné veličiny X. Obdobně označme g hustotu a G distribuční funkci náhodné veličiny Y.

Řešení: a) Označme f hustotu a F distribuční funkci náhodné veličiny X. Obdobně označme g hustotu a G distribuční funkci náhodné veličiny Y. VII. Transformace náhodné veličiny. Náhodná veličina X má exponenciální rozdělení Ex(; ) a náhodná veličina Y = X. a) Určete hustotu a distribuční funkci náhodné veličiny Y. b) Vypočtěte E(Y ) a D(Y ).

Více

Registrace Vašeho spotřebiče do akce Prodloužená záruka

Registrace Vašeho spotřebiče do akce Prodloužená záruka Registrace Vašeho spotřebiče do akce Prodloužená záruka 1. Registraci je možné provést na našich webových stránkách určených přímo pro registraci výrobků: www.registrace zaruka.cz (Česká republika) www.registracia

Více

Informace o stavu bodového systému v České republice PŘESTUPKY A TRESTNÉ ČINY I. Q 2014. O 070 Odbor kabinet ministra O 072 Oddělení tiskové

Informace o stavu bodového systému v České republice PŘESTUPKY A TRESTNÉ ČINY I. Q 2014. O 070 Odbor kabinet ministra O 072 Oddělení tiskové Informace o stavu bodového systému v České republice PŘESTUPKY A TRESTNÉ ČINY I. 2014 O 070 Odbor kabinet ministra O 072 Oddělení tiskové OBSAH Návod Ministerstva dopravy Jak nedostat body... 3 Souhrn

Více

sf_2014.notebook March 31, 2015 http://cs.wikipedia.org/wiki/hudebn%c3%ad_n%c3%a1stroj

sf_2014.notebook March 31, 2015 http://cs.wikipedia.org/wiki/hudebn%c3%ad_n%c3%a1stroj http://cs.wikipedia.org/wiki/hudebn%c3%ad_n%c3%a1stroj 1 2 3 4 5 6 7 8 Jakou maximální rychlostí může projíždět automobil zatáčku (o poloměru 50 m) tak, aby se navylila voda z nádoby (hrnec válec o poloměru

Více

Pohyb hmotného bodu po kružnici ve vodorovné rovině

Pohyb hmotného bodu po kružnici ve vodorovné rovině Náze a adea školy: Střední škola půmyloá a umělecká, Opaa, přípěkoá oganzace, Pakoa 399/8, Opaa, 74601 Náze opeačního pogamu: OP Vzděláání po konkuencechopnot, oblat podpoy 1.5 Regtační čílo pojektu: CZ.1.07/1.5.00/34.019

Více

IMPORT A EXPORT MODULŮ V PROSTŘEDÍ MOODLE

IMPORT A EXPORT MODULŮ V PROSTŘEDÍ MOODLE Nové formy výuky s podporou ICT ve školách Libereckého kraje IMPORT A EXPORT MODULŮ V PROSTŘEDÍ MOODLE Podrobný návod Autor: Mgr. Michal Stehlík IMPORT A EXPORT MODULŮ V PROSTŘEDÍ MOODLE 1 Úvodem Tento

Více

Krajské kolo 2015/16, kategorie GH (6. a 7. třída ZŠ) Identifikace

Krajské kolo 2015/16, kategorie GH (6. a 7. třída ZŠ) Identifikace Identifikace Na každý list se zadním nebo řešením napiš dolů svoje jméno a identifiktor. Neoznačené listy nebudou opraveny! Žk jméno: příjmení: identifiktor: Škola nzev: město: PSČ: Hodnocení A B C D E

Více

Dualita v úlohách LP Ekonomická interpretace duální úlohy. Jiří Neubauer. Katedra ekonometrie FEM UO Brno

Dualita v úlohách LP Ekonomická interpretace duální úlohy. Jiří Neubauer. Katedra ekonometrie FEM UO Brno Přednáška č. 6 Katedra ekonometrie FEM UO Brno Uvažujme obecnou úlohu lineárního programování, tj. úlohu nalezení takového řešení vlastních omezujících podmínek a 11 x 1 + a 1 x +... + a 1n x n = b 1 a

Více

Řešení: ( x = (1 + 2t, 2 5t, 2 + 3t, t); X = [1, 2, 2, 0] + t(2, 5, 3, 1), přímka v E 4 ; (1, 2, 2, 0), 0, 9 )

Řešení: ( x = (1 + 2t, 2 5t, 2 + 3t, t); X = [1, 2, 2, 0] + t(2, 5, 3, 1), přímka v E 4 ; (1, 2, 2, 0), 0, 9 ) . Vyjádřete koeficienty vektoru (, 8, 9) vzhledem k následující bázi vektorového prostoru V : (,, 5), (,, ), (5,, ). [,, ].. Určete všechny hodnoty parametru u, pro které vektor a patří do vektorového

Více

2.7.2 Mocninné funkce se záporným celým mocnitelem

2.7.2 Mocninné funkce se záporným celým mocnitelem .7. Mocninné funkce se záporným celým mocnitelem Předpoklady: 70 Mocninné funkce se záporným celým mocnitelem: znamená? 3 y = = = = 3 y y y 3 = ; = ; = ;.... Co to Pedagogická poznámka: Nechávám studenty,

Více

KIS A JEJICH BEZPEČNOST I PŘENOS INFORMACÍ DOC. ING. BOHUMIL BRECHTA, CSC.

KIS A JEJICH BEZPEČNOST I PŘENOS INFORMACÍ DOC. ING. BOHUMIL BRECHTA, CSC. KIS A JEJICH BEZPEČNOST I PŘENOS INFORMACÍ DOC. ING. BOHUMIL BRECHTA, CSC. Operační program Vzdělávání pro konkurenceschopnost Projekt: Vzdělávání pro bezpečnostní systém státu (reg. č.: CZ.1.01/2.2.00/15.0070)

Více

INFORMACE K POKUSNÉMU OVĚŘOVÁNÍ ORGANIZACE PŘIJÍMACÍHO ŘÍZENÍ SŠ S VYUŽITÍM JEDNOTNÝCH TESTŮ

INFORMACE K POKUSNÉMU OVĚŘOVÁNÍ ORGANIZACE PŘIJÍMACÍHO ŘÍZENÍ SŠ S VYUŽITÍM JEDNOTNÝCH TESTŮ INFORMACE K POKUSNÉMU OVĚŘOVÁNÍ ORGANIZACE PŘIJÍMACÍHO ŘÍZENÍ SŠ S VYUŽITÍM JEDNOTNÝCH TESTŮ INFORMACE PRO UCHAZEČE O PŘIJETÍ KE STUDIU ZÁKLADNÍ INFORMACE KE KONÁNÍ JEDNOTNÝCH TESTŮ Český jazyk a literatura

Více

Návod na použití kamerového systému do přívěsu

Návod na použití kamerového systému do přívěsu Návod na použití kamerového systému do přívěsu Obj. č: 33275 Úvod: Tento produkt pracuje v pásmu o rozsahu ISM-2,4GHz a proto může být legálně používán po celém světě bez povolení nebo schválení. Jsme

Více

ů Ž š ů š ř ř Ž Š ř ý ř ř ř ř ř Ž ý ř š ř ř ř ů ý ř ř ý ř Ž Š ř ř ř Ž Ž ú

ů Ž š ů š ř ř Ž Š ř ý ř ř ř ř ř Ž ý ř š ř ř ř ů ý ř ř ý ř Ž Š ř ř ř Ž Ž ú ů ý ý ž ý ú ž ř ř ú řž řž š ýš ř ž Ž ř řž Ž Ž ř Ú řž Ž ř Ú řž ř š ů Ž š ů Ž š ů š ř ř Ž Š ř ý ř ř ř ř ř Ž ý ř š ř ř ř ů ý ř ř ý ř Ž Š ř ř ř Ž Ž ú š Í ů ř Ž ř ů Ž ý ý ř š ř ů š ř ů ř ř ř š Ž ů ř Ž ř ý Š

Více

Optika. VIII - Seminář

Optika. VIII - Seminář Optika VIII - Seminář Op-1: Šíření světla Optika - pojem Historie - dva pohledy na světlo ČÁSTICOVÁ TEORIE (I. Newton): světlo je proud částic VLNOVÁ TEORIE (Ch.Huygens): světlo je vlnění prostředí Dělení

Více

Í ú Č ž ž é é ů é ž Ž ú Í Š ÍŘÁ Á ů é Ú Ť é Í ůž é é é ů Í é ú ž Ř ž ú ž ŠÍ ů ů é ů ů ň ú ů ů é ů ž ď é ú ů é Ž é é Í ů é ů ů ů é Ť Ť ů é é Íé ú ó é é é é é é ů Í Š é é é Ť é é é é é é é ž ů ů ů é é é

Více

ZJEDNODUŠENÝ POSTUP PRO DOPLNĚNÍ A ZASLÁNÍ ŽÁDOSTI O DOTACI A PŘÍLOH K ZAKÁZKÁM PŘES PORTÁL FARMÁŘE

ZJEDNODUŠENÝ POSTUP PRO DOPLNĚNÍ A ZASLÁNÍ ŽÁDOSTI O DOTACI A PŘÍLOH K ZAKÁZKÁM PŘES PORTÁL FARMÁŘE ZJEDNODUŠENÝ POSTUP PRO DOPLNĚNÍ A ZASLÁNÍ ŽÁDOSTI O DOTACI A PŘÍLOH K ZAKÁZKÁM PŘES PORTÁL FARMÁŘE 1. kolo příjmu žádostí Programu rozvoje venkova (2014 2020) Probíhá v případě zjištění nekompletní dokumentace/vyplněné

Více

x p [k]y p [k + n]. (3)

x p [k]y p [k + n]. (3) STANOVENÍ VLASTNOSTÍ ELEKTROAKUSTICKÝCH SOUSTAV POMOCÍ PSEUDONÁHODNÝCH SIGNÁLŮ 1 Úod Daid Bursík, František Kadlec ČVUT FEL, katedra radioelektroniky, Technická 2, Praha 6 bursikd@feld.cut.cz, kadlec@feld.cut.cz

Více

Elektromagnetická vlna a její využití v telekomunikacích

Elektromagnetická vlna a její využití v telekomunikacích EVROPSKÝ SOCIÁLNÍ FOND Elektromagnetická vlna a její využití v telekomunikacích PRAHA & EU INVESTUJEME DO VAŠÍ BUDOUCNOSTI Podpora kvality výuky informačních a telekomunikačních technologií ITTEL CZ.2.17/3.1.00/36206

Více

První přihlášení a první kroky po přihlášení do Registru zdravotnických prostředků pro již ohlášenou osobu

První přihlášení a první kroky po přihlášení do Registru zdravotnických prostředků pro již ohlášenou osobu První přihlášení a první kroky po přihlášení do Registru zdravotnických prostředků pro již ohlášenou osobu Podle tohoto návodu postupujte tehdy, pokud jste osoba zacházející se zdravotnickými prostředky,

Více

Nakupte více, získejte více!

Nakupte více, získejte více! Novinka! Nakupte více, získejte více! Navyšte svoji slevu s Avonem a prožijte snové léto! Chtěli byste až 50 % slevu? Chtěli byste až 500 Kč od Avonu jako dárek na nákup dalších výrobků? Neváhejte a využijte

Více

Řešení úloh 1. kola 51. ročníku fyzikální olympiády. Kategorie D = s v 2

Řešení úloh 1. kola 51. ročníku fyzikální olympiády. Kategorie D = s v 2 Řešení úloh 1. kola 51. ročníku fyzikální olympiády. Kategorie D Autor úloh: J. Jírů 1.a) Dobaprvníjízdynaprvníčtvrtinětratije 1 4 1 4 48 t 1 = = h= 1 v 1 60 60 h=1min anazbývajícíčátitrati t = 4 v = 4

Více

Úlohy 22. ročníku Mezinárodní fyzikální olympiády - Havana, Cuba

Úlohy 22. ročníku Mezinárodní fyzikální olympiády - Havana, Cuba Úlohy 22. ročníku Mezinárodní fyzikální olympiády - Havana, Cuba Petr Pošta Text pro soutěžící FO a ostatní zájemce o fyziku 2 1. úloha Obrázek 1.1 ukazuje pevný, homogenní míč poloměru R. Před pádem na

Více

Rozšíření počítadla okruhů pro českou autodráhu s roztečí drážek 90 mm (ev. č.: 21103-2)

Rozšíření počítadla okruhů pro českou autodráhu s roztečí drážek 90 mm (ev. č.: 21103-2) Rozšíření počítadla okruhů pro českou autodráhu s roztečí drážek 90 mm (ev. č.: 21103-2) Rozšíření počítadla okruhů pro českou autodráhu umožňuje počítadlu ev. č.: 21102-2 zvětšit počet měřených drah až

Více

9.2.5 Sčítání pravděpodobností I

9.2.5 Sčítání pravděpodobností I 9.2.5 Sčítání pravděpodobností I Předpoklady: 9203 Pedagogická poznámka: Následující problém sice zadávám jako příklad, ale minimálně na začátku s žáky počítám na tabuli. I kvůli tomu, aby jejich úprava

Více

IS SIMON Informační systém pro sledování polohy železničních vozů

IS SIMON Informační systém pro sledování polohy železničních vozů IS SIMON Informační systém pro sledování polohy železničních vozů Ing. Stanislav Kovář obchodní manažer pro ČR a SR Název akce (upravuje se v předloze snímku) místo datum 1 Schema Název akce (upravuje

Více