Vlnění druhá sada Equation Chapter 1 Section 1
|
|
- Filip Holub
- před 7 lety
- Počet zobrazení:
Transkript
1 Vlnění druhá sada Equation Chapter 1 Setion 1 1. Ladička Zadání: Zdroj zuku se pohybuje na ozíku ryhlostí = 5 m s 1 směrem ke stěně. Na opačné straně slyší pozoroatel rázy na frekeni f R = 3 Hz. Jaká byla frekene zdroje zuku, jestliže je ryhlost zuku S = 340 m/s? Řešení: Pozoroatel slyší jednak přímou lnu nižší frekene (zdroj se zdaluje) a jednak lnu odraženou od stěny (yšší frekene zdroj se pohybuje ke stěně). Obě lny se skládají rázy na rozdíloé frekeni: æ ö æ ö f = f 1, f f 1, f f f f = + = - = 0 R 1 0 (1) çè ø èç ø Koreke frekene na pohyb zdroje jsme napsali do čitatele (<< S ). Vidíme, že f 0 = f R S /(). Výsledek: f 0 = 040 Hz.. Pískajíí lokomotia Zadání: Lokomotia jedouí ryhlostí 7 km/h píská sekundy. Jak dlouho trá zuk, který nímá klidu stojíí pozoroatel a) přijíždí-li lokomotia k němu b) zdaluje-li se lokomotia od něho. Ryhlost zuku je 340 ms 1. Řešení: Celkoý počet kmitů obsaženýh signálu se liem Doppleroa jeu nemění. Mění se jen frekene a doba trání signálů místě pozoroatele. Označíme-li n počet kmitů signálu, lze psát n f 0t0 f 1t1 f t. Kmitočet f 0 se při přibližoání zdroje změní důsledku Doppleroa jeu na f1 f0, při zdaloání na f1 f0. S použitím uedenýh ztahů dostaneme pro přibližoání n ft t1 t0 1,88 s. f 1 f a pro zdaloání n ft t t0,1 s. f f S
2 3. Rotujíí hězda Zadání: Nalezněte ztah pro rozšíření spektrální čáry způsobené rotaí hězdy. Vztah přepište pro lnoou délku čar. Řešení: Rotae hězdy způsobuje, že jeden okraj hězdy se k nám přibližuje ryhlostí = R ω a druhý okraj se toutéž ryhlostí zdaluje. R je poloměr hězdy a ω úhloá ryhlost rotae hězdy. Výsledkem je doppleroské rozšíření spektrální čáry. Krajní frekene budou dány ztahy f 1, = f 0 (1 ± Rω/) a krajní lnoé délky λ 1, = /[f 0 (1 ± Rω/)] ~ ( ± Rω)/f 0. Opět jsme yužili toho, že koreke jsou malé a lze je se změnou znaménka přeézt z jmenoatele do čitatele (1/[1 + x] ~ [1 x]). Rozdíl lnoýh délek obou čar tedy bude Δλ = Rω/f Rázoá lna za letadlem Zadání. Letadlo Conorde letí konstantní ýše h 18 km ryhlostí w 376 km/h. Za jakou dobu uslyší pozoroatel na porhu země soniký třesk letadla poté, o jej uiděl kolmo nad hlaou? (Zanedbejte zakřiení a ostatní neronosti zemského porhu a nehomogenitu atmosféry, pro ýpočet uažujte = 330 m/s. Jaký další předpoklad je následujíím řešení obsažen? w h P Řešení: Letadlo letí nadzukoou ryhlostí, ytoří se rázoá lna. Její čelo se pohybuje (normáloou) ryhlostí a dorazí k pozoroateli za čas. Pro poloiční rholoý úhel rázoé lny platí sin w /. Poloha pozoroatele je šak určena ýškou h, kterou yjádříme pomoí, a w h os 1 sin 1 w, () h 1 47, s w. (3) Předpokládá se, že ryhlost šíření sětla (iz sloo uiděl ) je dostatečně elká oproti ryhlosti zuku, aby ji bylo možno zanedbat. 5. Vlnoá ronie Zadání: V (malé ale konečné) části periody jisté jednorozměrné postupné příčné lny bylo zjištěno konstantní zryhlení a kmitajíího elementu. Stanote, jak ryhle se mění ýhylka h elementu během průhodu této části lny jistým bodem prostoru e směru šíření. Fázoá ryhlost šíření je známa.
3 Řešení: Vlnění lze popsat jednorozměroou lnoou ronií h 1 h 0, x t kde ýraz h/ t předstauje našem případě zryhlení kmitajíího bodu. Je tedy f 1 h 1 h akonst K K. f t f x Ryhlost změny ýhylky podle souřadnie x je u u 1 x dx Kdx Kx ax. x x uažoaném interalu se proto mění lineárně. Poznámka: Již ze zadání snadno nahlédneme, že se e směru kolmém na ryhlost šíření jedná o pohyb ronoměrně zryhlený a ýhylka se bude i podle souřadnie x měnit s lineárně rostouí nebo klesajíí ryhlostí. Vlnoá ronie nám šak poskytuje i hodnotu ryhlosti této změny. f 6. Disperzní relae lnoé ronie Zadání: Nalezněte disperzní relai lnoé ronie Řešení: Na klasikou lnoou ronii narazíme mnoha ědníh odětíh. Odpoídá jednoduhým lnám bez disperze. 1 0 t Ronie je lineární a každé její rozumné řešení je možné zapsat pomoí Fourieroy transformae jako superpozii roinnýh ln. Po dosazení roinné lny do lnoé ronie získáme disperzní relai (4) k. (5) Standardním postupem určíme fázoou a grupoou ryhlost: f ; g. (6) k k Fázoá i grupoá ryhlost je stejná a nezáisí na lnoé déle pariální lny, ož je harakteristiké pro lineární disperzní relae typu ω = k. 7. Disperzní relae Kleinoy-Gordonoy ronie Zadání: Nalezněte disperzní relai Kleinoy-Gordonoy ronie Řešení: Kleinoa-Gordonoa ronie je spránou relatiistikou ronií pro olnou částii se spinem roným nule 1 m 0;. (7) t Jde o lnoou ronii s konstantním členem, která se yužíá pro popis části s nuloým spinem kantoé teorii. Ronie je lineární, její řešení opět budeme hápat jako superpozii roinnýh ln. Po proedení Fourieroy transformae Kleinoy-Gordonoy ronie získáme disperzní relai
4 k. Standardním postupem určíme fázoou a grupoou ryhlost: (8) f g 1 1, k k 4 k 1 1 k 4 Na prní pohled je zřejmé, že grupoá ryhlost je ždy podsětelná. Oproti tomu fázoá ryhlost je ždy nadsětelná a nemá ýznam přenosu informae. Mezi oběma ryhlostmi je jednoduhý ztah f g =. Obě ryhlosti záisí na lnoé déle pariální lny (tz. disperze).. (9) 8. Zukoé lny pohybliém prostředí Zadání: Nalezněte disperzní relai pro zukoé lny pohybujíím se plynu Řešení: Za ýhozí soustau roni yužijme ronii kontinuity, pohyboou ronii a staoou ronii e taru di u 0, t u u u p, (10) t p p( ) K. Připusťme nyní nenuloou ryhlost e staionárním řešení (to odpoídá šíření zuku pohybujíím se prostředí) a požadujme řešení e taru, uu u, p p p. (11) Výpočet probíhá zela analogiky jako u zukoýh ln nepohybliém prostředí. Nejpre proedeme linearizai ( roniíh poneháme členy lineární poruháh): Po Fourieroě transformai máme di 0 uu0 0, t u 0 0u0u p, (1) t p p ;. ( ku ) ku0, 0 0 k p ( ku ) u, (13) 0 0 p p ;. Po eliminai proměnnýh (z poslední ronie určíme δp, z předposlední δu získáme disperzní relai
5 p ku 0 ( 0) k 0; (14) a z ní pozoroanou úhloou frekeni u0 p k s ku 0 k s ku0os k s 1 os.; S (15) s Ve ýrazu jsme označili úhel mezi lnoým ektorem k a ryhlostí prostředí u 0. značímeli ještě frekeni zuku nepohybliém prostředí 0 k s, máme ýsledný ztah u os, (16) s který není ni jiného než Dopplerů zore pro změnu frekene liem pohybu zdroje lnění. U pohybujííh se tekutin se tedy disperzní relai objeí místo úhloé frekene ω kombinae Ω = ω k u 0.
Vlnění první sada Equation Chapter 1 Section 1
Vlnění prní sada Equation Chapter Setion. Nadsětelné ryhlosti prasátko Zadání: Sětelným zdrojem můžeme otočit o 90 za 0. s. Jak daleko musí být projekční ploha, aby se sětelná skrna (prasátko) pohyboala
Dilatace času. Řešení Čas t 0 je vlastní čas trvání děje probíhajícího na kosmické lodi. Z rovnice. v 1 c. po dosazení za t 0 a v pak vyplývá t
Dilatae času 1 Na kosmiké lodi zdalujíí se od Země ryhlostí,1 probíhal určitý děj, který podle měření účastníků letu tral jednu hodinu Jak dlouho trá tento děj pro pozoroatele na Zemi? Je možné, aby děj
3. Vlny. 3.1 Úvod. 3.2 Rovnice postupné vlny v bodové řadě a v prostoru
3. Vlny 3. Úod Vlnění můžeme pozoroat například na odní hladině, hodíme-li do ody kámen. Mechanické lnění je děj, při kterém se kmitání šíří látkoým prostředím. To znamená, že například zuk, který je mechanickým
Speciální teorie relativity IF relativistická kinematika
Prinip relatiity Speiální teorie relatiity IF relatiistiká kinematika Newtonoy pohyboé zákony umožňují popis hoání těles pohybujííh se nízkými ryhlostmi Při ryhlosteh, kterýh dosahují částie uryhloačíh,
FYZIKA 2. ROČNÍK. Pozorovaný pohyb vlny je pohybem stavu hmoty, a nikoli pohybem hmoty samé.
Poěst, která znikne jednom městě, pronikne elmi brzo do druhého města, i když nikdo z lidí, kteří mají podíl na šíření zprá, neodcestuje z jednoho města do druhého. Účast na tom mají da docela různé pohyby,
SPECIÁLNÍ TEORIE RELATIVITY. Studijní text pro fyzikální seminář
SPECIÁLNÍ TEORIE RELATIVITY Studijní text pro fyzikální seminář 1. Klasiká fyzika Klasiká (newtonoská) fyzika, kterou známe z naší každodenní zkušenosti, má několik lastností. Např. pokud se bude těleso
1) Zvolíme vztažný výkon; v tomto případě to může být libovolné číslo, například S v
A1B15EN kraty Příklad č. 1 V soustaě na obrázku je označeném místě trojfázoý zkrat. rčete: a) počáteční rázoý zkratoý proud b) počáteční rázoý zkratoý ýkon c) nárazoý proud Řešení: 1) olíme ztažný ýkon;
Vlnění příklady Equation Chapter 1 Section 1
Vlnění přílady Equation Chapter 1 Setion 1 1. Nadsvětelné ryhlosti prasáto Zadání: Světelným zdrojem můžeme otočit o 90 za 0.1 s. Ja daleo musí být proječní ploha, aby se světelná svrna (prasáto) pohybovala
Postřelené špalíky. Veletrh nápadů učitelů fyziky 22 VLADIMÍR VÍCHA *, TOMÁŠ FAIKL **
Veletrh nápadů učitelů fyziky Postřelené špalíky VLADIMÍR VÍCHA *, OMÁŠ FAIKL ** * Gymnázium, Pardubie, Dašiká 1083; ÚEF ČVU Praha ** Student Gymnázia, Pardubie, Dašiká 1083 Abstrakt Jestliže diabolka
6.1.2 Postuláty speciální teorie relativity, relativita současnosti
6.1.2 Postuláty speiální teorie relatiity, relatiita současnosti Předpoklady: 6101 Kone 19. století: Maxwelloy ronie (elektřina a magnetismus) sětlo je elektromagnetiké lnění, šíří se ryhlostí 300 000
Úvod TEORIE RELATIVITY SPECIÁLNÍ A MINIMUM OBECNÉ. Prostor a čas v klasické mechanice
TEORIE RELATIVITY SPECIÁLNÍ A MINIMUM OBECNÉ RNDr. Pael Kantorek Albert Einstein (1879 1955) Úod 19. století še e fyzie objeeno klasiká fyzika běžnýh ryhlostí a hmotností poč.. stol. kantoá fyzika (KF)
Smíšený součin
7..14 Smíšený součin Předpoklady: 713 Je dán ronoběžnostěn LMNOPR. R O P N M L Jeho objem umíme spočítat stereometrikým zorem: V = S. p Ronoběžnostěn je také určen třemi ektory a, b a R O P b N M a L jeho
SPECIÁLNÍ TEORIE RELATIVITY
SPECIÁLNÍ TEORIE RELATIVITY 1. Základní informae autor Albert Einstein jey pozoroané e DVOU ztažnýh soustaáh, které se zhledem k sobě pohybují ryhlostí blízkou ryhlosti sětla e akuu Co uidí nější a nitřní
Obsah KAPITOLY ZE SPECIÁLNÍ TEORIE RELATIVITY
9. Zásahy začátku a kone laku bleskem nastaly dříe, než pozoroatel B dorazil k pozoroateli. Podle pozoroatele B obě události proběhly e stejné zdálenosti roné poloině klidoé délky laku, tedy současně.
Relativita I příklady
quation Chapter 1 ection 1 Relatiita I příklad 1 Mion Zadání: Doba žiota mionu (těžkého elektronu) je = 10 6 s Mion nikl e ýšce h = 30 km nad porchem Země interakcí kosmického áření s horními rstami atmosfér
Úloha IV.5... vrhač nožů
Fyziální orespondenční seminář MFF UK Úloha IV5 rhač nožů 4 body; průměr 1,41; řešilo 37 studentů Vrhací nůž opustí ruu e chíli, dy je jeho těžiště e ýšce h a má pouze horizontální složu rychlosti 0 Jaou
vzdálenost těžiště (myslí se tím těžiště celého tělesa a ne jeho jednotlivých částí) od osy rotace
Přehled příkladů 1) Valiý pohyb, zákon zachoání energie ) Těžiště tělesa nebo moment setračnosti ýpočet integrací - iz http://kf.upce.cz/dfjp/momenty_setracnosti.pdf Nejčastější chyby: záměna momentu setračnosti
1.8.10 Proudění reálné tekutiny
.8.0 Proudění reálné tekutiny Předpoklady: 809 Ideální kapalina: nestlačitelná, dokonale tekutá, bez nitřního tření. Reálná kapalina: zájemné posouání částic brzdí síly nitřního tření. Jaké mají tyto rozdíly
18.2 RYCHLOST ZVUKU 18.1 ZVUKOVÉ VLNĚNÍ
18 Vlny ó II Netop r plnè tmï nejen ÑidÌì letìcì hmyz, ale naìc pozn, jak rychle se Ëi nïmu pohybuje. To mu umoûúuje hmyz loit. Na jakèm principu funguje jeho detekënì systèm? Jak m zp sobem se m ûe hmyz
3. VEKTOROVÝ POČET A ANALYTICKÁ GEOMETRIE
Euklidoský prostor. VEKTOROVÝ POČET A ANALYTICKÁ GEOMETRIE Průodce studiem Geometrii lze budoat metodou syntetickou nebo metodou analytickou. Při syntetické metodě pracujeme přímo s geometrickými objekty.
3.3. Operace s vektory. Definice
Operace s ektory.. Operace s ektory Výklad Definice... Nechť ϕ je úhel do nenloých ektorů, (obr. ). Skalárním sočinem ektorů, rozmíme číslo, které bdeme označoat. (někdy strčně ) a které definjeme roností.
Příklad 1 (25 bodů) Částice nesoucí náboj q vletěla do magnetického pole o magnetické indukci B ( 0,0, B)
Přijímací zkouška na naazující magisterské studium - 05 Studijní program Fyzika - šechny obory kromě Učitelstí fyziky-matematiky pro střední školy, Varianta A Příklad Částice nesoucí náboj q letěla do
Řešení úloh celostátního kola 60. ročníku fyzikální olympiády Úlohy navrhli J. Thomas (1, 2, 3) a V. Wagner (4)
Řešení úlo elostátnío kola 60. ročníku fyzikální olympiády Úloy narli J. Tomas 1,, 3) a V. Wagner 4) 1.a) Z ronosti ydrostatiký tlaků 1,5Rρ 1 g = 1 ρ g 1 = 1,5R ρ 1 = 3 R = 3,75 m. ρ 8 1 b) Označme ýšku
Přenosové linky. Obr. 1: Náhradní obvod jednofázového vedení s rozprostřenými parametry
Přenosoé linky Na obr. je znázorněno náhradní schéma jednofázoého edení s rozprostřenými parametry o délce l (R označuje podélný odpor, X podélnou reaktanci, G příčnou konduktanci a B příčnou susceptanci,
Operace s polem příklady
Equation Chapter 1 Setion 1 1 Gradient Operae s polem příklady Zadání: Nadmořská výška libovolného bodu na povrhu kope je dána formulí h(x y) = A exp [ (x/l 0 ) 9(y/l 0 ) ] kde A = 500 m l 0 = 100 m Nalezněte
Šíření elektromagnetických vln Smithův diagram
Šíření elektromanetických ln Smithů diaram Příklady k procičení jsou podle [] Diaram nese náze podle inženýra společností RCA Philipa H. Smitha, který e třicátých letech minulého století odstranil leou
7.2.10 Skalární součin IV
7.2.10 Sklární sočin IV Předpokld: 7209 Pedgogiká poznámk: Tto hodin je kontet čebnie zláštní. Obshje d důkz jeden příkld z klsiké čebnie. Všehn tři zdání jso znčně obtížná ždjí nápd, proto je řeším normálně
1.8. Mechanické vlnění
1.8. Mechanické vlnění 1. Umět vysvětlit princip vlnivého pohybu.. Umět srovnat a zároveň vysvětlit rozdíl mezi periodickým kmitavým pohybem jednoho bodu s periodickým vlnivým pohybem bodové řady. 3. Znát
Metody měření rychlosti světla
Metody měření ryhlosti sětla a) metody římé Prní (neúsěšný) okus o změření ryhlosti sětla roedl Galileo s oužitím dou lueren s dířky umístěnýh na dou několik kilometrů zdálenýh ršíh. 1. Roemeroa metoda
Smíšený součin
7..14 Smíšený součin Předpokldy: 713 Je dán ronoěžnostěn LMNOPR. R O P N M L Jeho ojem umíme spočítt stereometrikým zorem: V = S. p Ronoěžnostěn je tké určen třemi ektory, : R O P N M L jeho ojem musí
Elektrický proud Q 1 Q 2 Q 3
Elektrcký proud tomto odstac lastně jž opouštíme elektrostatcké pole, protože elčnu elektrcký proud zaádíme stuac, kdy elektrcké náboje prostoru nejsou nehybné, ale ykazují nějaký pohyb. íme jž, že jednou
qb m cyklotronová frekvence
Způsob popisu Pohb části poli nějším Pohb části selfonsistentním poli Kinetié ronie Hdrodnamié ronie * teutin * 1 teutina * magnetohdrodnamia Pohb části e nějším poli A) Homogenní pole a) E = d m q = =
m cyklotronová frekvence
Způsob popisu Pohb části poli nějším Pohb části selfonsistentním poli Kinetié ronie Hdrodnamié ronie * teutin * 1 teutina * magnetohdrodnamia Pohb části e nějším poli A) Homogenní pole a) E = d m q dt
1. Dráha rovnoměrně zrychleného (zpomaleného) pohybu
. Dráha ronoměrně zrychleného (zpomaleného) pohybu teorie Veličina, která charakterizuje změnu ektoru rychlosti, se nazýá zrychlení. zrychlení akcelerace a, [a] m.s - a a Δ Δt Zrychlení je ektoroá fyzikální
Relativita I příklady
quation Chapter 1 ection 1 Relatiita I příklad 1 Mion Zadání: Doba žiota mionu (těžkého elektronu) je Δτ = 10 6 s Mion nikl e ýšce h = 30 km nad porchem Země interakcí kosmického áření s horními rstami
Zoe napsal: Já si myslim, že ti (a zdaleka ne jen tobě) pro samé pitvání se v rozměrové analýze, poněkud unikl fyzikální obsah celého sdělení.
Opis debaty >yolený< z Aldebaranu. ( Níže komentář >umlčený< ) Vojta Hála Zaslal: út, 15. prosine 009, 17:48 Předmět: Já si myslim, že ti (a zdaleka ne jen tobě) pro samé pitání se rozměroé analýze, poněkud
Určete počáteční rázový zkratový proud při trojfázovém, dvoufázovém a jednofázovém zkratu v označeném místě schématu na Obr. 1.
AB5EN Nesmetrické zkrat Příklad č. Určete počáteční rázoý zkratoý proud při trojfázoém, doufázoém a jednofázoém zkratu označeném místě schématu na Obr.. G T 0,5/0 kv = MVA u k = % T3 0,5/0 kv = 80 MVA
IV. Relativistická kinematika
K přednáše NUFY097 Teorie relatiity prozatímní učební tet, erze 0 IV. Relatiistiká kinematika Leoš Dořák, MFF UK Praha, 05 IV. Relatiistiká kinematika IV.. Důsledky Lorentzoy transformae Odození Lorentzoy
Plynové turbíny. Nevýhody plynových turbín: - menší mezní výkony ve srovnání s parní turbínou - vyšší nároky na palivo - kvalitnější materiály
Plynoé turbíny Plynoá turbína je teeý stroj řeměňujíí teeou energie obsaženou raoní láte q roházejíí motorem na energii mehanikou a t (obr.). Praoní látkou je zduh, resektie saliny, které se ytářejí teeém
Pohyb po kružnici - shrnutí. ω = Předpoklady:
.3.3 Pohyb po kružnici - shrnuí Předpokldy: 3 Pomocí dou ě U kruhoého pohybu je ýhodnější měři úhel (kerý je pro šechny body sejný) než dráhu (kerá se pro body s různou zdálenosí od osy liší). Ke kždé
1.8.9 Bernoulliho rovnice
89 Bernoulliho ronice Předpoklady: 00808 Pomůcky: da papíry, přicucáadlo, fixírka Konec minulé hodiny: Pokud se tekutina proudí trubicí s různými průměry, mění se rychlost jejího proudění mění se její
POHYBY V GRAVITAČNÍM POLI ZEMĚ POHYBY TĚLES V HOMOGENNÍM TÍHOVÉM POLI ZEMĚ
Předmět: Ročník: Vytořil: Datum: FYZIKA PRVNÍ MGR. JÜTTNEROVÁ 9. 9. 01 Náze zpracoaného celku: POHYBY V GRAVITAČNÍM POLI ZEMĚ POHYBY TĚLES V HOMOGENNÍM TÍHOVÉM POLI ZEMĚ Jde o pohyby těles blízkosti porchu
Fyzika mikrosvěta aktivně Aleš Trojánek
Fyzika mikrosěta aktině Aleš Trojánek Úod Je možno idět atomy? Jak porozumět periodiké soustaě prků? Co je to tuneloý je a jak prauje tuneloý rastroaí mikroskop? Jaký je prinip laseru a kde se šude laser
EKONOMETRIE 10. přednáška Modely zpožděných proměnných
EKONOMERIE 10. přednáška Modely zpožděnýh proměnnýh Časové posuny mezi působením určitýh faktorů (vyvolány např. informačními, rozhodovaími, instituionálními a tehnologikými důvody). Setrvačnost ve vývoji
Zkraty v ES Zkrat: příčná porucha, prudká havarijní změna v ES nejrozšířenější porucha v ES při zkratu vznikají přechodné jevy Vznik zkratu:
Zkraty ES Zkrat: příčná porucha, prudká haarijní změna ES nejrozšířenější porucha ES při zkratu znikají přechodné jey Vznik zkratu: poruchoé spojení fází nazájem nebo fáze (fází) se zemí soustaě s uzemněným
6. cvičení. Technické odstřely a jejich účinky
6. cičení Technické odstřely a jejich účinky Řízený ýlom SOUČÁSTI NÁVHU: A, Parametry odstřelu na obrysu díla B, Parametry odstřelu při rozpojoání jádra profilu C, oznět náloží D, Škodlié účinky odstřelů
4. V jednom krychlovém metru (1 m 3 ) plynu je 2, molekul. Ve dvou krychlových milimetrech (2 mm 3 ) plynu je molekul
Fyzika 20 Otázky za 2 body. Celsiova teplota t a termodynamická teplota T spolu souvisejí známým vztahem. Vyberte dvojici, která tento vztah vyjadřuje (zaokrouhleno na celá čísla) a) T = 253 K ; t = 20
FYZIKA 4. ROČNÍK. Pole a éter. Souřadnicové soustavy (SS) Éter a pohyb
Poe a éter Pro fyzika 19. stoetí neexistoao poe jen substane a změny její poohy prostoru poe půodně jen berička postupně substani zastínio Maxwe poe je ytářeno e. nábojem Sěto má astnosti nění (interferene,
7. SEMINÁŘ Z MECHANIKY
- 4-7 SEINÁŘ Z ECHANIKY 4 7 Prázdný železniční agón o hotnosti kgse pohbuje rchlostí,9 s po 4 odoroné trati a srazí se s naložený agóne o hotnosti kgstojící klidu s uolněnýi brzdai Jsou-li oba oz při nárazu
Na obrázku je nakreslen vlak, který se pohybuje po přímé trati, nakresli k němu vhodnou souřadnou soustavu. v
..7 Znaménka Předpoklad: 4 Opakoání: Veličin s elikostí a směrem = ektoroé eličin. Vektor je určen také sým koncoým bodem (pokud začíná počátku) polohu bodu můžeme určit pomocí ektoru, který začíná počátku
Praktikum I Mechanika a molekulová fyzika
Oddělení fyzikálních praktik při Kabinetu ýuky obecné fyziky MFF UK Praktikum I Mechanika a molekuloá fyzika Úloha č. XXI Náze: Měření tíhoého zrychlení Pracoal: Matyáš Řehák stud.sk.: 16 dne: 9.5.008
3 Z volného prostoru na vedení
volného prostoru na vedení 3 volného prostoru na vedení předchozí kapitole jsme se zabývali šířením elektromagnetických vln ve volném prostoru. lna se šířila od svého zdroje (vysílací antény) do okolí.
silový účinek proudu, hydraulický ráz Proudění v potrubí
: siloý účinek proudu, hydraulický ráz SILOVÝ ÚČINEK PROUDU: x nější síly na ymezený objem kapaliny: stupní ýstupní i Výpočtoá ektoroá ronice pro reálnou kapalinu: Q rychlost y G A G R A R A = p S... tlakoá
Výpočet stability (odolnosti koryta)
CVIČENÍ 5: VÝPOČET STABILITY KORYTA Výpočet stability (odolnosti koryta) Výpočtem stability se prokazuje, že koryto jako celek je pro nárhoé hydraulické zatížení stabilní. Nárhoé hydraulické zatížení pro
STANOVENÍ DISPERZNÍ KŘIVKY ZE ZÁZNAMŮ SEISMICKÝCH POVRCHOVÝCH VLN PŘI HARMONICKÉM ZDROJI
TANOVENÍ DIPEZNÍ KŘIVKY ZE ZÁZNAMŮ EIMICKÝCH POVCHOVÝCH VLN PŘI HAMONICKÉM ZDOJI. Gaždoá, J. Vilhelm Uniersita Karloa Praha, Přírodoědecká fakulta Abstrakt Příspěek se zabýá stanoením disperzní křiky porchoých
DOPLŇKOVÉ TEXTY BB01 PAVEL SCHAUER INTERNÍ MATERIÁL FAST VUT V BRNĚ HYDRODYNAMIKA
DOPLŇKOVÉ TEXTY BB0 PAVEL CHAUER INTERNÍ MATERIÁL FAT VUT V BRNĚ HYDRODYNAMIKA Obsah Úod... Průtok kapaliny... Ronice kontinuity... 3 Energie proudící kapaliny... 3 Objemoá hustota energie... 3 Bernoulliho
ω=2π/t, ω=2πf (rad/s) y=y m sin ωt okamžitá výchylka vliv má počáteční fáze ϕ 0
Kmity základní popis kmitání je periodický pohyb, při kterém těleso pravidelně prochází rovnovážnou polohou mechanický oscilátor zařízení vykonávající kmity Základní veličiny Perioda T [s], frekvence f=1/t
Zvuk. 1. základní kmitání. 2. šíření zvuku
Zvuk 1. základní kmitání - vzduchem se šíří tlakové vzruchy (vzruchová vlna), zvuk je systémem zhuštěnin a zředěnin - podstatou zvuku je kmitání zdroje zvuku a tím způsobené podélné vlnění elastického
1.6.8 Pohyby v centrálním gravitačním poli Země
1.6.8 Pohyby centrálním graitačním poli emě Předpoklady: 160 Pedagogická poznámka: Pokud necháte experimentoat s modelem studenty, i případě, že už program odellus znají, stráíte touto hodinou dě yučoací
1 U. 33. Zapište hodnotu časové konstanty derivačního obvodu. Vyznačte měřítko na časové ose.
1. V jakých jednotkách se yjadřuje proud ueďte náze a značku jednotky 2. V jakých jednotkách se yjadřuje indukčnost ueďte náze a značku jednotky 3. V jakých jednotkách se yjadřuje kmitočet ueďte náze a
Výpočet stability (odolnosti koryta)
CVIČENÍ 5: VÝPOČET STABILITY KORYTA Výpočet stability (odolnosti koryta) Výpočtem stability se prokazuje, že koryto jako celek je pro nárhoé hydraulické zatížení stabilní. Nárhoé hydraulické zatížení pro
Auto během zrychlování z počáteční rychlost 50 km/h se zrychlením dráhu 100 m. Jak dlouho auto zrychlovalo? Jaké rychlosti dosáhlo?
..7 Ronoměrně zrychlený pohyb příkldech III Předpokldy: 6 Pedgogická poznámk: Hodinu dělím n dě části: 5 minut n prní d příkldy zbytek n osttní. I když šichni nestihnout spočítt druhý příkld je potřeb,
2-Kinematika Bodu KINEMATIKA
7 -Kinematika Bodu KINEMATIKA Kinematika-úod Kinematika jako část mechaniky je nauka o pohybu těles bez ohledu na síly, které pohyb způsobily. Tělesa nebudou mít našich úahách hmotnost a budou popsána
k + q. Jestliže takový dipól kmitá s frekvencí ν (odpovídající
Vlastnosti kmitajíího dipólu Podle klasiké teoie je nejefektivnějším zdojem elektomagnetikého záření kmitajíí elektiký dipól. Intenzita jeho záření o několik řádů převyšuje intenzity ostatníh zdojů záření
2. Vlnění. π T. t T. x λ. Machův vlnostroj
2. Vlnění 2.1 Vlnění zvláštní případ pohybu prostředí Vlnění je pohyb v soustavě velkého počtu částic navzájem vázaných, kdy částice kmitají kolem svých rovnovážných poloh. Druhy vlnění: vlnění příčné
III. Východiska speciální teorie relativity a Lorentzova transformace
K přednáše NUFY097 Teorie relatiity prozatímní učební text, erze 01 I. Výhodiska STR, Lorentzoa transformae Leoš Dořák, MFF UK Praha, 015 III. Výhodiska speiální teorie relatiity a Lorentzoa transformae
2. Akustika, základní pojmy a veličiny v akustice
. Akustika, základní pojmy a veličiny v akustie. Předmět akustiky Akustika je definována jako věda zabývajíí se fyzikálními ději, které jsou spojeny se vznikem zvukového vlnění, jeho dalším šířením a vnímáním
10.1 CO JE TO SRÁŽKA?
10 Sr ûky Fyzik Ronald McNair byl jednìm z astronaut, kte Ì zahynuli p i ha rii raketopl nu Challenger. Byl takè nositelem ËernÈho p sku karate a jedin m derem dok zal zlomit nïkolik betono ch tabulek.
14. přednáška. Přímka
14 přednáška Přímka Začneme vyjádřením přímky v prostoru Přímku v prostoru můžeme vyjádřit jen parametricky protože obecná rovnice přímky v prostoru neexistuje Přímka v prostoru je určena bodem A= [ a1
tečné napětí (τ), které je podle Newtona úměrné gradientu rychlosti, tj. poměrnému
III. TERMODYNAMIKA PROUDÍCÍCH PLYNŮ A PAR Termodynamika plynů a par sleduje změny stau látek za předpokladu, že jsou látky klidu, nebo že li rychlosti proudění látky má zanedbatelný li na změnu termodynamického
TERMIKA II. Stacionární vedení s dokonalou i nedokonalou izolací; Obecná rovnice vedení tepla; Přestup a prostup tepla;
TERMIKA II Šíření tepla vedením, prouděním a zářením; Stacionární vedení s dokonalou i nedokonalou izolací; Nestacionární vedení tepla; Obecná rovnice vedení tepla; Přestup a prostup tepla; 1 Šíření tepla
4 Brzdová zařízení kolejových vozidel
4 Brzdoá zařízení kolejoých ozidel 4. Součinnost brzdoých systémů Praidla součinnosti různých brzdoých systémů, které jsou současně instaloány na ozidle, musí být stanoena tak, aby byl maximálně yžitý
1141 HYA (Hydraulika)
ČVUT Praze, akulta staební katedra hydrauliky a hydrologie (K4) Přednáškoé slidy předmětu 4 HYA (Hydraulika) erze: 09/008 K4 FS ČVUT Tato weboá stránka nabízí k nahlédnutí/stažení řadu pd souborů složených
LABORATORNÍ CVIČENÍ Z FYZIKY. Měření činitele zvukové pohltivosti materiálů v akustickém interferometru
ČESKÉ VYSOKÉ ČENÍ TECHNICKÉ V PRAZE KATEDRA FYZIKY LABORATORNÍ CVIČENÍ Z FYZIKY Jméno: Petr Česák Datum měření: 0..000 Stuijní rok: 000-00, Ročník: Datum oezání: 3..000 Stuijní skupina: 5 Laboratorní skupina:
, p = c + jω nejsou zde uvedeny všechny vlastnosti viz lit.
Statiké a dynamiké harakteristiky Úvod : Základy Laplaeovy transformae dále LT: viz lit. hlavní užití: - převádí difereniální rovnie na algebraiké (nehomogenní s konstantními koefiienty - usnadňuje řešení
BIOMECHANIKA KINEMATIKA
BIOMECHANIKA KINEMATIKA MECHANIKA Mechanika je nejstarším oborem fyziky (z řeckého méchané stroj). Byla původně vědou, která se zabývala konstrukcí strojů a jejich činností. Mechanika studuje zákonitosti
Přijímací zkouška na navazující magisterské studium 2015
Přijímací zkouška na navazující magisterské studium 205 Studijní program: Studijní obory: Fyzika FFUM Varianta A Řešení příkladů pečlivě odůvodněte. Příklad (25 bodů) Pro funkci f(x) := e x 2. Určete definiční
Speciální teorie relativity IF
Speiální teorie relativity IF Speiální teorie relativity Newtonovy pohybové zákony umožňují popis hování těles pohybujííh se nízkými ryhlostmi. Při ryhlosteh, kterýh dosahují částie v uryhlovačíh, však
1.6.5 Vodorovný vrh. Předpoklady: Pomůcky: kulička, stůl, případně metr a barva (na měření vzdálenosti doapdu a výšky stolu).
165 Vodoroný rh Předpoklad: 164 Pomůck: kulička, stůl, případně metr a bara (na měření zdálenosti doapdu a ýšk stolu) Pedaoická poznámka: Stejně jako předchozí i tato hodina stojí a padá s tím, jak dobře
Základní vlastnosti funkcí
teorie řešené úloh vičení tip k maturitě výsledk Základní vlastnosti funkí Víš, že Tomáš Garrigue Masark zastával funki prezidenta víe než 17 let? rodina plní řadu funkí reprodukční, soiálně ekonomikou,
Vzorce počítačové grafiky
Vektorové operace součet vektorů rozdíl vektorů opačný vektor násobení vektoru skalárem úhel dvou vektorů velikost vektoru a vzdálenost dvojice bodů v rovině (v prostoru analogicky) u = B A= b a b a u
Na obrázku je nakreslený vlak, který se pohybuje po přímé trati, nakresli k němu vhodnou souřadnou soustavu. v
..6 Znaménka Předpoklad: 3, 5 Opakoání: Veličin s elikostí a směrem = ektoroé eličin Vektor je určen také sým koncoým bodem (pokud začíná počátku) polohu bodu můžeme určit pomocí ektoru, který začíná počátku
Nehomogenní vlnová rovnice
Nehomogenní vlnová rovnie Viděli jsme, že ve vakuu lze s použitím Lorentzovy kalibrae soustavu 4 Maxwellovýh rovni převést na soustavu dvou vlnovýh rovni ( 2 ρ( r, t 2 t 2 Φ( r, t = ( ɛ 0 ( 2 A( r, 2 t
2 = 1/εµ. Tento objev na konci 19. století podnítil inten-
SPECIÁLNÍ TEORIE RELATIVITY A SÍLY ELEKTROMAGNETICKÉHO POLE (Ladisla Szántó) K nejětším přínosům Maxwelloýh roni patří konstatoání, že ryhlost šíření elektro- a magnetikýh ln (sětla) e akuu záisí jedině
KLASICKÁ MECHANIKA. Předmětem mechaniky matematický popis mechanického pohybu v prostoru a v čase a jeho příčiny.
MECHANIKA 1 KLASICKÁ MECHANIKA Předmětem mechaniky matematický popis mechanického pohybu v prostoru a v čase a jeho příčiny. Klasická mechanika rychlosti těles jsou mnohem menší než rychlost světla ve
Fourierovská optika a speciální optické aplikace
Forieroská optika a speciální optické aplikace Terminologie Vlnoá podstata sětla Difrakce Interference Vlnoý popis interakce foton optický sstém Holografie Optical compting Forieroa transformace f ( t)
rovnic), Definice y + p(x)y = q(x), Je-li q(x) = 0 na M, nazývá se y + p(x)y =
Cíle Přehled základních typů diferenciálních rovnic prvního řádu zakončíme pojednáním o lineárních rovnicích, které patří v praktických úlohách k nejfrekventovanějším. Ukážeme například, že jejich řešení
K Mechanika styku kolo vozovka
Mechanika styku kolo ozoka Toto téma se zabýá kinematikou a dynamikou kola silničních ozidel. Problematika styku kolo ozoka má zásadní ýznam pro stanoení parametrů jízdy silničních ozidel, neboť má li
KMS cvičení 6. Ondřej Marek
KMS cvičení 6 Ondřej Marek NETLUMENÝ ODDAJNÝ SYSTÉM S DOF analytické řešení k k Systém se stupni volnosti popisují pohybové rovnice: x m m x m x + k + k x k x = m x k x + k x = k x m x k x x m k x x m
Kinematika hmotného bodu
Kinemaika hmoného bodu 1. MECHANICKÝ POHYB Základní pojmy kinemaiky Relaino klidu a pohybu. POLOHA HMOTNÉHO BODU 3. TRAJEKTORIE A DRÁHA HMOTNÉHO BODU 4. RYCHLOST HMOTNÉHO BODU 5. ZRYCHLENÍ HMOTNÉHO BODU
I. MECHANIKA 6. Kmity a vlnění II
I. MECHNIK 6. Kmiy a lnění II Obsah Pojem lny, příčné a podélné lnění, polarizae. Vlnoá ronie, operáory. Popis lnění (ázoá ryhlos, lnoá déla, reene. Ryhlos lny na srně, ryhlos lny ené yči, ryhlos z. Harmoniá
1.6.7 Složitější typy vrhů
.6.7 Složitější tp rhů Předpoklad: 66 Pedaoická poznámka: Tato hodina přesahuje běžnou látku, probírám ji pouze případě, že mám přebtek času. Za normálních podmínek není příliš reálné s ětšinou tříd řešit
Fyzika II, FMMI. 1. Elektrostatické pole
Fyzika II, FMMI 1. Elektrostatické pole 1.1 Jaká je velikost celkového náboje (kladného i záporného), který je obsažen v 5 kg železa? Předpokládejme, že by se tento náboj rovnoměrně rozmístil do dvou malých
VY_32_INOVACE_G 21 11
Náze a adresa školy: Střední škola růmysloá a uměleká, Oaa, řísěkoá organizae, Praskoa 99/8, Oaa, 7460 Náze oeračního rogramu: OP Vzděláání ro konkureneshonost, oblast odory.5 Registrační číslo rojektu:
CVIČENÍ č. 10 VĚTA O ZMĚNĚ TOKU HYBNOSTI
CVIČENÍ č. 10 VĚTA O ZMĚNĚ TOKU HYBNOSTI Stojící povrch, Pohybující se povrch Příklad č. 1: Vodorovný volný proud vody čtvercového průřezu o straně 25 cm dopadá kolmo na rovinnou desku. Určete velikost
1 Rozdělení mechaniky a její náplň
1 Rozdělení mechaniky a její náplň Mechanika je nauka o rovnováze a pohybu hmotných útvarů pohybujících se rychlostí podstatně menší, než je rychlost světla (v c). Vlastnosti skutečných hmotných útvarů
Analytická geometrie ( lekce)
Analytická geometrie (5. - 6. lekce) Sylva Potůčková, Dana Stesková, Lubomír Sedláček Gymnázium a Jazyková škola s právem státní jazykové zkoušky Zlín Zlín, 20. června 2011 Vektory Vektorový součin Vektorový
Kinematika hmotného bodu
DOPLŇKOVÉ TEXTY BB1 PAVEL SCHAUER INTERNÍ MATERIÁL FAST VUT V BRNĚ Kinemik hmoného bodu Obsh Klsická mechnik... Vzžný sysém... Polohoý ekor... Trjekorie... Prmerické ronice rjekorie... 3 Příkld 1... 3
x p [k]y p [k + n]. (3)
STANOVENÍ VLASTNOSTÍ ELEKTROAKUSTICKÝCH SOUSTAV POMOCÍ PSEUDONÁHODNÝCH SIGNÁLŮ 1 Úod Daid Bursík, František Kadlec ČVUT FEL, katedra radioelektroniky, Technická 2, Praha 6 bursikd@feld.cut.cz, kadlec@feld.cut.cz
TRANSPORT VLHKOSTI VE VZORCÍCH IZOLAČNÍCH MATERIÁLŮ
TRANSPORT VLHKOSTI VE VZORCÍCH IZOLAČNÍCH MATERIÁLŮ Gunnar Kűnzel, Mlosla Lnda Abstract V příspěku jsou uedeny analoge elčn a parametrů př transportu lhkost zorkem materálu e formě desky a elektrckém obodu.