Modely pro nestacionární časové řady
|
|
- Dana Burešová
- před 8 lety
- Počet zobrazení:
Transkript
1 Statistika II Katedra ekonometrie FVL UO Brno kancelář 69a, tel
2 Modely ARIMA Transformace Proces náhodné procházky Random Walk Process Proces Y t = Y t 1 + ɛ t je označuje jako proces náhodné procházky. Pomocí operátoru zpětného posunutí lze vyjádřit jako (1 L)Y t = ɛ t. ACF tohoto procesu klesá pomalu, PACF hodnotu φ 11 = 1, ostatní hodnoty jsou nulové.
3 Modely ARIMA Transformace Proces náhodné procházky Random Walk Process
4 Modely ARIMA Transformace Procesy ARIMA Diferenci Y t = Y t Y t 1 lze pomocí operátoru zpětného posunutí zapsat jako Y t = Y t Y t 1 = Y t LY t = (1 L)Y t. Pro diferenci 2. řádu 2 Y t = (Y t Y t 1) = Y t Y t 1 = Y t Y t 1 (Y t 1 Y t 2) = Y t 2Y t 1 + Y t 2 lze pomocí operátoru zpětného posunutí zapsat jako 2 Y t = (1 L) 2 Y t. Diferencování časové řady v R-ku provedeme funkcí diff.
5 Modely ARIMA Transformace Procesy ARIMA Pro některý procesy platí, že po transformaci pomocí diference řádu d, je lze popsat jako proces ARMA(p, q). Takový model označujeme jako model ARIMA(p, d, q) (1 φ 1L φ pl p ) d Y t = (1 + θ 1L + + θ ql q )ɛ t, (1 φ 1L φ pl p )(1 L) d Y t = (1 + θ 1L + + θ ql q )ɛ t. K ověřování nestacionarity procesu slouží tzv. testy jednotkových kořenů unit root tests. Mezi nejznámější patří Dickey-Fullerovy testy (ADF testy). Odhady parametrů ARIMA modelů získáme v R-ku pomocí funkce arima, základní diagnostiku vhodnosti modelu dává funkce tsdiag, předpovědi určíme s využitím funkce predict.
6 Modely ARIMA Transformace Procesy ARIMA
7 Modely ARIMA Transformace Procesy ARIMA
8 Modely ARIMA Transformace Logaritmování Mimo diferencování existují i jiné transformace, pomocí nichž lze dosáhnou stacionarity. Asi nejpoužívanější transformací je logaritmování. Předpokládejme, že Y t > 0 pro Všechna t a že E(Y t) = µ t a D(Yt) = µ tσ. Předpoklad popisuje situaci, kdy se rozptyl mění v závislosti na střední hodnotě. Potom E(ln Y t) ln µ t a D(ln Y t) σ 2. Tyto závěry vyplývají z Taylorova rozvoje ln Y t ln µ t + Yt µt µ t.
9 Modely ARIMA Transformace Box-Coxova transformace Pro danou hodnotu parametru λ je transformace definována následovně { x λ 1 pro λ 0, g(x) = λ ln x pro λ = 0. Hodnota parametru λ může být odhadnuta v R-ku pomocí funkce BoxCox.ar. Požití ukážeme na časové řadě popisující množství elektrické energie vyrobené v USA v období 01/ / měsíční data.
10 Modely ARIMA Transformace Box-Coxova transformace
11
12 Uvažujme nejprve stacionární modely. Označme s sezónní periodu (pro měsíční časové řady s = 12, pro čtvrtletní s = 4). Mějme proces Všimněme si, že ale Y t = ɛ t + Θɛ t 12. C(Y t, Y t 1) = C(ɛ t + Θɛ t 12, ɛ t 1 + Θɛ t 13) = 0, C(Y t, Y t 12) = C(ɛ t + Θɛ t 12, ɛ t 12 + Θɛ t 24) = Θσ 2 ɛ. Tento proces je stacionární a má nenulové autokorelace pouze pro zpoždění 12.
13 Definujme sezónní MA(Q) proces s periodou s následovně Y t = ɛ t + Θ 1ɛ t s + Θ 2ɛ t 2s +... Θ Q ɛ t Qs. Charakteristický polynom má tvar Θ(z) = 1 + Θ 1z s + Θ 2z 2 s + + Θ Q z Qs. Analogicky definujeme sezónní AR(P) proces s periodou s Y t = Φ 1Y t s + Φ 2Y t 2s + + Φ P Y t 2s s charakteristickým polynomem Φ(z) = 1 Φ 1z s Φ 2z 2 s +... Φ P z Ps. Sezónní ARMA model vznikne spojením modelů AR(P) a MA(Q)
14 Sezónní ARMA(p, q)(p, Q) model s periodou s jen model s AR charakteristickým polynomem φ(z)φz a s MA charakteristickým polynomem θ(z)θ(z), kde φ(z) = 1 φ 1z φ 2z φ pz p, Φ(z) = 1 Φ 1z s Φ 2z 2 s +... Φ P z Ps, θ(z) = 1 + θ 1z + θ 2z θ qz q, Θ(z) = 1 + Θ 1z s + Θ 2z 2 s + + Θ Q z Qs.
15 U ARIMA procesů se stacionarity dosáhlo pomocí diferencování ( Y t = Y t Y t 1). U nestacionárních sezónních procesů definujeme sezónní diferenci sy t = Y t Y t s. Lze definovat obecný nestacionární proces SARIMA(p, d, q)(p, D, Q), kde d značí D řád sezónní diference. φ(l)φ(l s ) d D s = θ(l)θ(l s )ɛ t Např. SARIMA(0, 1, 1)(0, 1, 1) 12 má tvar (1 L)(1 L 12 )Y t = (1 + θ 1L)(1 + Θ 1L)ɛ t, nebo ekvivalentně Y t Y t 1 Y t 12 + Y t 13 = ɛ t + θ 1ɛ t 1 + Θ 1ɛ t 12 + θ 1Θ 1ɛ t 13.
16 CO 2
17 CO 2 Call: arima(x = co2, order = c(0, 1, 1), seasonal = list(order = c(0, 1, 1), period = 12)) Coefficients: ma1 sma s.e sigma^2 estimated as : log likelihood = , aic =
18 CO 2
19 CO 2
Modely pro nestacionární časové řady
Modely pro nestacionární časové řady Jiří Neubauer Katedra ekonometrie FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Jiří Neubauer (Katedra ekonometrie UO Brno) Modely pro nestacionární
Úvod do analýzy časových řad
Přednáška STATISTIKA II - EKONOMETRIE Katedra ekonometrie FEM UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Posloupnost náhodných veličin {Y t, t = 0, ±1, ±2... } se nazývá stochastický
Modely stacionárních časových řad
Statistika II Katedra ekonometrie FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Proces bílého šumu Proces {ɛ t} nazveme bílým šumem s nulovou střední hodnotou a rozptylem σ 2 a
Časové řady, typy trendových funkcí a odhady trendů
Statistika II Katedra ekonometrie FVL UO Brno kancelář 69a, tel 973 442029 email:jirineubauer@unobcz Stochastický proces Posloupnost náhodných veličin {Y t, t = 0, ±1, ±2 } se nazývá stochastický proces
Časové řady, typy trendových funkcí a odhady trendů
Časové řady, typy trendových funkcí a odhady trendů Jiří Neubauer Katedra ekonometrie FVL UO Brno kancelář 69a, tel 973 442029 email:jirineubauer@unobcz Jiří Neubauer (Katedra ekonometrie UO Brno) Časové
SEMINÁRNÍ PRÁCE Z 4ST432 Tereza Michlíková (xmict05) ZS 06/07
SEMINÁRNÍ PRÁCE Z 4ST432 Tereza Michlíková (xmict05) ZS 06/07 Nesezónní časová řada - Základní údaje o časové řadě Časová řada příjmy z daní z příjmu v Austrálii ( http://www.economagic.com/emcgi/data.exe/tmp/213-220-208-205!20061203093308
Aplikovaná ekonometrie 7. Lukáš Frýd
Aplikovaná ekonometrie 7 Lukáš Frýd Nestacionární časové řady Možné příčinny Sezonost Deterministický trend (time trend) Jednotkový kořen (Stochastický trend) Strukturní zlomy Časový trend (deterministický
Univerzita Palackého v Olomouci , Ostrava
Časové řady II Ondřej Vencálek Univerzita Palackého v Olomouci ondrej.vencalek@upol.cz seminář pro VŠB-TUO 2015-03-20, Ostrava Nové kreativní týmy v prioritách vědeckého bádání CZ.1.07/2.3.00/30.0055 Tento
Zdánlivá regrese ekonomických
Univerzita Karlova v Praze Matematicko-fyzikální fakulta DIPLOMOVÁ PRÁCE Magdalena Komzáková Zdánlivá regrese ekonomických ukazatelů Katedra pravděpodobnosti a matematické statistiky Vedoucí diplomové
REGRESNÍ ANALÝZA NESTACIONÁRNÍCH EKONOMICKÝCH ČASOVÝCH ŘAD
Politická ekonomie 45: (2), str. 281-289, VŠE Praha, 1997. ISSN 0032-3233. (Rukopis) REGRESNÍ ANALÝZA NESTACIONÁRNÍCH EKONOMICKÝCH ČASOVÝCH ŘAD Josef ARLT, Vysoká škola ekonomická, Praha 1. Úvod Pro modelování
Bodové a intervalové odhady parametrů v regresním modelu
Statistika II Katedra ekonometrie FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Lineární regresní model Mějme lineární regresní model (LRM) Y = Xβ + e, kde y 1 e 1 β y 2 Y =., e
Teorie časových řad Test 2 Varianta A HODNOCENÍ (max. 45 bodů z 50 možných)
Teorie časových řad Test 2 Varianta A HODNOCENÍ (max. 45 bodů z 50 možných) 1. SPECIFIKACE (12 bodů): (1) Graf průběhu proměnných (1) Obě řady se chovají stejně, lze předpokládat jejich lineární vztah
Cvičení 9 dekompozice časových řad a ARMA procesy
Cvičení 9 dekompozice časových řad a ARMA procesy Příklad 1: Dekompozice časové řady Soubor 18AEK-cv09.xls obsahuje dvě časové řady (X a Y) se 72 pozorováními. Použijte časovou řadu Y. a) Pokuste se na
Základy teorie odhadu parametrů bodový odhad
Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Odhady parametrů Úkolem výběrového šetření je podat informaci o neznámé hodnotě charakteristiky základního souboru
Lineární modely časových řad a jejich aplikace na vybraných ekonomických problémech
PŘÍRODOVĚDECKÁ FAKULTA UNIVERZITY PALACKÉHO V OLOMOUCI Katedra matematické analýzy a aplikací matematiky školní rok 2012/2013 DIPLOMOVÁ PRÁCE Lineární modely časových řad a jejich aplikace na vybraných
Testování hypotéz o parametrech regresního modelu
Statistika II Katedra ekonometrie FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Lineární regresní model kde Y = Xβ + e, y 1 e 1 β y 2 Y =., e = e 2 x 11 x 1 1k., X =....... β 2,
Testování hypotéz o parametrech regresního modelu
Testování hypotéz o parametrech regresního modelu Ekonometrie Jiří Neubauer Katedra kvantitativních metod FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Jiří Neubauer (Katedra UO
5 Časové řady. Definice 16 Posloupnost náhodných veličin {X t, t T } nazveme slabě stacionární, pokud
5 Časové řady Časovou řadou rozumíme posloupnost reálných náhodných veličin X 1,..., X n, přičemž indexy t = 1,..., n interpretujeme jako časové okamžiky. Někdy však uvažujeme i nekonečné posloupnosti
STATISTICKÝCH METOD SE ZAMĚŘENÍM NA METODU BOX-JENKINS
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA STROJNÍHO INŽENÝRSTVÍ ÚSTAV MATEMATIKY FACULTY OF MECHANICAL ENGINEERING INSTITUTE OF MATHEMATICS ANALÝZA A PŘEDPOVĚĎ ČASOVÝCH ŘAD POMOCÍ
Univerzita Karlova v Praze procesy II. Zuzana. Predikce
ne ve Náhodné 1 1 Katedra pravděpodobnosti a matematické statistiky Univerzita Karlova v Praze email: praskova@karlin.mff.cuni.cz 23.4.-7.5. 2010 ne ve 1 ne Outline 2 ve ne ve Definice: Nechť H je Hilbertův
Modely CARMA. 22. listopadu Matematicko fyzikální fakulta Univerzity Karlovy v Praze. Modely CARMA. Úvod. CARMA proces. Definice CARMA procesu
Matematicko fyzikální fakulta Univerzity Karlovy v Praze ÚTIA AV ČR 22. listopadu 2010 u Obsah Definice u u u Motivace Známe. Umíme používat, odhadovat jejich koeficienty atd. Co když ale data nemají konstantní
Výběrové charakteristiky a jejich rozdělení
Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Statistické šetření úplné (vyčerpávající) neúplné (výběrové) U výběrového šetření se snažíme o to, aby výběrový
4ST432. Kamil Kladívko. 1 Cena a výnos aktiva, volatilita 2. 1.1 Odhad očekávaného výnosu, interval spolehlivosti, test hypotézy...
4ST432 Modely ekonomických a finančních časových řad Kamil Kladívko Zadání úkolů a data najdete v souboru zadani432.xlsx. Výpočty jsou v souboru solution432.xlsx. Obsah 1 Cena a výnos aktiva, volatilita
Statistika II. Jiří Neubauer
Statistika II Katedra ekonometrie FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Zaměříme se především na popis dvourozměrných náhodných veličin (vektorů). Definice Nechť X a Y jsou
Beáta Stehlíková Časové rady, FMFI UK, 2013/2014. CvičenievR-kuI.:ARIMAmodely p.1/15
Cvičenie v R-ku I.: ARIMA modely Beáta Stehlíková Časové rady, FMFI UK, 2013/2014 CvičenievR-kuI.:ARIMAmodely p.1/15 Príklad 1: dáta Použité dáta: Počet používatel ov prihlásených na server, dáta po minútach,
Limitní věty teorie pravděpodobnosti. Jiří Neubauer. Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel
Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Jestliže opakujeme nezávisle nějaký pokus, můžeme z pozorovaných hodnot sestavit rozdělení relativních četností
MATEMATICKÁ STATISTIKA. Katedra matematiky a didaktiky matematiky Technická univerzita v Liberci
MATEMATICKÁ STATISTIKA Dana Černá http://www.fp.tul.cz/kmd/ Katedra matematiky a didaktiky matematiky Technická univerzita v Liberci Matematická statistika Matematická statistika se zabývá matematickým
Periodicita v časové řadě, její popis a identifikace, exponenciální vyrovnáván
Periodicita v časové řadě, její popis a identifikace, exponenciální vyrovnávání Statistika II Katedra ekonometrie FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Periodicita v časových
Analýza hlavních komponent
Analýza hlavních komponent Ekonometrie Jiří Neubauer Katedra ekonometrie FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz J. Neubauer, J. Michálek (Katedra ekonometrie UO) Analýza
Regresní analýza. Ekonometrie. Jiří Neubauer. Katedra ekonometrie FVL UO Brno kancelář 69a, tel
Regresní analýza Ekonometrie Jiří Neubauer Katedra ekonometrie FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Jiří Neubauer (Katedra ekonometrie UO Brno) Regresní analýza 1 / 23
Ekonomické èasové øady. doc. Ing. Josef Arlt, CSc. Ing. Markéta Arltová, Ph.D. Vlastnosti, metody modelování, pøíklady a aplikace
doc. Ing. Josef Arlt, CSc. Ing. Markéta Arltová, Ph.D. Ekonomické èasové øady Vlastnosti, metody modelování, pøíklady a aplikace Vydala Grada Publishing, a.s. U Prùhonu 22, 170 00 Praha 7 tel.: +420 220
Testování hypotéz testy o tvaru rozdělení. Jiří Neubauer. Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel
Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Statistickou hypotézou se rozumí určité tvrzení o parametrech rozdělení zkoumané náhodné veličiny (µ, σ 2, π,
VYUŽITÍ WAVELETŮ PŘI ANALÝZE ČASOVÝCH ŘAD 2. PRAKTICKÁ ČÁST
EMI, Vol., Issue 3, ISSN: -99 (Print), 5-353X (Online) VYUŽITÍ WAVELETŮ PŘI ANALÝZE ČASOVÝCH ŘAD. PRAKTICKÁ ČÁST USING WAVELETS BY TIME SERIES ANALYSIS. PRACTICAL PART Vratislava Mošová Moravská vysoká
Kontingenční tabulky, korelační koeficienty
Statistika II Katedra ekonometrie FVL UO Brno kancelář 69a, tel 973 442029 email:jirineubauer@unobcz Budeme předpokládat, že X a Y jsou kvalitativní náhodné veličiny, obor hodnot X obsahuje r hodnot (kategorií,
3 Bodové odhady a jejich vlastnosti
3 Bodové odhady a jejich vlastnosti 3.1 Statistika (Skripta str. 77) Výběr pořizujeme proto, abychom se (více) dověděli o souboru, ze kterého jsme výběr pořídili. Zde se soustředíme na situaci, kdy známe
Fakulta elektrotechnická. Komponenta pro měření a predikci spotřeby elektrické energie
ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta elektrotechnická DIPLOMOVÁ PRÁCE Komponenta pro měření a predikci spotřeby elektrické energie Praha, 2014 Autor: Tomáš Reichl i Poděkování Chtěl bych na tomto
Faktorová analýza. Ekonometrie. Jiří Neubauer. Katedra ekonometrie FVL UO Brno kancelář 69a, tel
Ekonometrie Jiří Neubauer Katedra ekonometrie FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz J. Neubauer, J. Michálek (Katedra ekonometrie UO) 1 / 27 úvod Na sledovaných objektech
Pravděpodobnost a statistika
Pravděpodobnost a statistika Bodové odhady a intervaly spolehlivosti Vilém Vychodil KMI/PRAS, Přednáška 10 Vytvořeno v rámci projektu 963/011 FRVŠ V. Vychodil (KMI/PRAS, Přednáška 10) Bodové odhady a intervaly
Ekonometrie. Jiří Neubauer
Úvod do analýzy časových řad Ekonometrie Jiří Neubauer Katedra ekonometrie FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Jiří Neubauer (Katedra ekonometrie UO Brno) Úvod do analýzy
Ekonometrie. Jiří Neubauer, Jaroslav Michálek
Ekonometrie Jiří Neubauer, Jaroslav Michálek Katedra ekonometrie FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz J. Neubauer, J. Michálek (Katedra ekonometrie UO) Zobecněný lineární
Statistika a spolehlivost v lékařství Charakteristiky spolehlivosti prvků I
Statistika a spolehlivost v lékařství Charakteristiky spolehlivosti prvků I Příklad Tahová síla papíru používaného pro výrobu potravinových sáčků je důležitá charakteristika kvality. Je známo, že síla
VEKTOROVÉ AUTOREGRESE. APLIKACE V PROGNÓZOVÁNÍ.
VEKTOROVÉ AUTOREGRESE. APLIKACE V PROGNÓZOVÁNÍ. Vektorové autoregrese (VAR se používají tehdy, když chceme zkoumat časové řady dvou či více proměnných. Je sice možné za tím účelem použít dynamické modely
Statistika II. Jiří Neubauer
Statistika II Katedra ekonometrie FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Časová řada konečná posloupnost reálných hodnot určitého sledovaného ukazatele měřeného v určitých
Základy ekonometrie. X. Regrese s časovými řadami. Základy ekonometrie (ZAEK) X. Regrese s časovými řadami Podzim / 47
Základy ekonometrie X. Regrese s časovými řadami Základy ekonometrie (ZAEK) X. Regrese s časovými řadami Podzim 2015 1 / 47 Obsah tématu 1 ADL model 2 Regrese se stacionárními řadami 3 Regrese s řadami
Základy ekonometrie. XI. Vektorové autoregresní modely. Základy ekonometrie (ZAEK) XI. VAR modely Podzim / 28
Základy ekonometrie XI. Vektorové autoregresní modely Základy ekonometrie (ZAEK) XI. VAR modely Podzim 2015 1 / 28 Obsah tématu 1 Prognózování s VAR modely 2 Vektorové modely korekce chyb (VECM) 3 Impulzní
Markovské metody pro modelování pravděpodobnosti
Markovské metody pro modelování pravděpodobnosti rizikových stavů 1 Markovský řetězec Budeme uvažovat náhodný proces s diskrétním časem (náhodnou posloupnost) X(t), t T {0, 1, 2,... } s konečnou množinou
KGG/STG Statistika pro geografy. Mgr. David Fiedor 4. května 2015
KGG/STG Statistika pro geografy 11. Analýza časových řad Mgr. David Fiedor 4. května 2015 Motivace Úvod chceme získat představu o charakteru procesu, která časová řada reprezentuje Jaké jevy lze znázornit
PRAVDĚPODOBNOST A STATISTIKA
PRAVDĚPODOBNOST A STATISTIKA Náhodný výběr Nechť X je náhodná proměnná, která má distribuční funkci F(x, ϑ). Předpokládejme, že známe tvar distribuční funkce (víme jaké má rozdělení) a neznáme parametr
8 Coxův model proporcionálních rizik I
8 Coxův model proporcionálních rizik I Předpokládané výstupy z výuky: 1. Student umí formulovat Coxův model proporcionálních rizik 2. Student rozumí významu regresních koeficientů modelu 3. Student zná
Analýza rozptylu. Ekonometrie. Jiří Neubauer. Katedra kvantitativních metod FVL UO Brno kancelář 69a, tel
Analýza rozptylu Ekonometrie Jiří Neubauer Katedra kvantitativních metod FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Jiří Neubauer (Katedra UO Brno) Analýza rozptylu 1 / 30 Analýza
Značení 1.1 (posloupnost výsledků pokusu). Mějme posloupnost opakovaných (i závislých) pokusů,
Rekurentní jevy Značení. (posloupnost výsledků pokusu). Mějme posloupnost opakovaných (i závislých) pokusů, kde každý má tutéž konečnou nebo spočetnou množinu výsledků E, E,...}. Pak E j,..., E jn } značí
Stochastické diferenciální rovnice
KDM MFF UK, Praha Aplikace matematiky pro učitele 15.11.2011 Kermack-McKendrickův model Kermack-McKendrickův model s vakcinací Model pro nemoc s rychlým šířením a krátkou dobou léčby. Příkladem takovéto
Marek Mikoška Modely kointegrovaných časových řad
Univerzita Karlova v Praze Matematicko-fyzikální fakulta DIPLOMOVÁ PRÁCE Marek Mikoška Modely kointegrovaných časových řad Katedra pravděpodobnosti a matematické statistiky Vedoucí diplomové práce: Doc.
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA STROJNÍHO INŽENÝRSTVÍ ÚSTAV MATEMATIKY FACULTY OF MECHANICAL ENGINEERING INSTITUTE OF MATHEMATICS ANALÝZA A SROVNÁNÍ ČASOVÝCH ŘAD POMOCÍ
Odhady Parametrů Lineární Regrese
Odhady Parametrů Lineární Regrese Mgr. Rudolf B. Blažek, Ph.D. prof. RNDr. Roman Kotecký, DrSc. Katedra počítačových systémů Katedra teoretické informatiky Fakulta informačních technologií České vysoké
z dat nasbíraných v letech 1959 1994. Ke zpracování dat byl použit statistický software R. Základní model poptávkové funkce, ze kterého vycházíme,
Úloha 1: V naší studii se zabýváme poptávkovou funkcí životního pojištění, vycházíme z dat nasbíraných v letech 1959 1994. Ke zpracování dat byl použit statistický software R. Základní model poptávkové
Univerzita Pardubice. Fakulta ekonomicko-správní Ústav systémového inženýrství a informatiky
Univerzita Pardubice Fakulta ekonomicko-správní Ústav systémového inženýrství a informatiky Využití autokorelační funkce při zpracování dat Michaela Hettlerová Diplomová práce 2013 PROHLÁŠENÍ Prohlašuji,
Kontingenční tabulky, korelační koeficienty
Statistika II Katedra ekonometrie FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Mějme kategoriální proměnné X a Y. Vytvoříme tzv. kontingenční tabulku. Budeme tedy testovat hypotézu
ČESKÁ ZEMĚDĚLSKÁ UNIVERZITA V PRAZE PROVOZNĚ
ČESKÁ ZEMĚDĚLSKÁ UNIVERZITA V PRAZE PROVOZNĚ EKONOMICKÁ FAKULTA Katedra ekonomiky Prognostické metody Seminární práce Autor: Miloš Uldrich Cvičící: Ing. Lukáš Čechura, Ph.D. ČT 12:15 (su) 2009 ČZU v Praze
Soustavy lineárních rovnic
Přednáška MATEMATIKA č 4 Katedra ekonometrie FEM UO Brno kancelář 69a, tel 973 442029 email:jirineubauer@unobcz 27 10 2010 Soustava lineárních rovnic Definice Soustava rovnic a 11 x 1 + a 12 x 2 + + a
Univerzita Karlova v Praze procesy II. Zuzana. funkce
Náhodné 1 1 Katedra pravděpodobnosti a matematické statistiky Univerzita Karlova v Praze email: praskova@karlin.mff.cuni.cz 11.-12.3. 2010 1 Outline Lemma 1: 1. Nechť µ, ν jsou konečné míry na borelovských
Lineární algebra : Vlastní čísla, vektory a diagonalizace
Lineární algebra : Vlastní čísla, vektory a diagonalizace (14. přednáška) František Štampach, Karel Klouda LS 2013/2014 vytvořeno: 21. dubna 2014, 19:37 1 2 14.1 Vlastní čísla a vlastní vektory Nechť je
ŠKODA AUTO VYSOKÁ ŠKOLA, O.P.S. D I P L O M O V Á P R Á C E Bc. Petr Zápotocký
ŠKODA AUTO VYSOKÁ ŠKOLA, O.P.S. D I P L O M O V Á P R Á C E 216 Bc. Petr Zápotocký ŠKODA AUTO VYSOKÁ ŠKOLA, O.P.S. Studijní program: N628 Ekonomika a management Studijní obor: 628T88 Podniková ekonomika
JIHOČESKÁ UNIVERZITA V ČESKÝCH BUDĚJOVICÍCH. Ekonomická fakulta. Katedra aplikované matematiky a informatiky. Diplomová práce
JIHOČESKÁ UNIVERZITA V ČESKÝCH BUDĚJOVICÍCH Ekonomická fakulta Katedra aplikované matematiky a informatiky Diplomová práce Matematické modelování kurzu koruny Vypracoval: Bc. Žaneta Uhlířová Vedoucí práce:
Analýza časových řad pomoci SAS82 for Win
Analýza časových řad pomoci SAS82 for Win 1) Vstupní data Vstupní data musí mít vhodný formát, tj. žádný oddělovač tisíců, správně nastavený desetinný oddělovač. Název proměnné pro SAS nesmí obsahovat
Alternativní způsoby investičního rozhodování u vybraných akciových podílových fondů v ČR
MENDELOVA ZEMĚDĚLSKÁ A LESNICKÁ UNIVERZITA V BRNĚ Fakulta provozně ekonomická Ústav financí Alternativní způsoby investičního rozhodování u vybraných akciových podílových fondů v ČR Karel Urban Vedoucí
Odhad parametrů N(µ, σ 2 )
Odhad parametrů N(µ, σ 2 ) Mějme statistický soubor x 1, x 2,, x n modelovaný jako realizaci náhodného výběru z normálního rozdělení N(µ, σ 2 ) s neznámými parametry µ a σ. Jaký je maximální věrohodný
2011 (datový soubor life expectancy CR.txt). Budeme predikovat vývoj očekávané doby dožití pomocí
Příklady užití časových řad k predikci rizikových jevů 1 Očekávaná doba dožití v ČR Máme k dispozici časovou řadu udávající očekávanou dobu dožití v České republice od roku 1960 do roku 2011 (datový soubor
KGG/STG Statistika pro geografy
KGG/STG Statistika pro geografy 4. Teoretická rozdělení Mgr. David Fiedor 9. března 2015 Osnova Úvod 1 Úvod 2 3 4 5 Vybraná rozdělení náhodných proměnných normální rozdělení normované normální rozdělení
Regresní a korelační analýza
Přednáška STATISTIKA II - EKONOMETRIE Katedra ekonometrie FEM UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Regresní analýza Cíl regresní analýzy: stanovení formy (trendu, tvaru, průběhu)
10. cvičení z PST. 5. prosince T = (n 1) S2 X. (n 1) s2 x σ 2 q χ 2 (n 1) (1 α 2 ). q χ 2 (n 1) 2. 2 x. (n 1) s. x = 1 6. x i = 457.
0 cvičení z PST 5 prosince 208 0 (intervalový odhad pro rozptyl) Soubor (70, 84, 89, 70, 74, 70) je náhodným výběrem z normálního rozdělení N(µ, σ 2 ) Určete oboustranný symetrický 95% interval spolehlivosti
5 Obsah Předmluva............................... 9 1 Finanční časové řady a jejich charakteristické vlastnosti........ 11 1.1 Finanční časové řady.......................... 12 1.2 Klasické předpoklady
IV120 Spojité a hybridní systémy. Jana Fabriková
IV120 Spojité a hybridní systémy Základní pojmy teorie řízení David Šafránek Jiří Barnat Jana Fabriková Problém řízení IV120 Základní pojmy teorie řízení str. 2/25 Mějme dynamický systém S definovaný stavovou
Bootstrap - konfidenční intervaly a testy
9. prosince 2008 Konfidenční intervaly obecně Máme data X 1...X n F,(iid), kde F neznáme. Konfidenční intervaly obecně Máme data X 1...X n F,(iid), kde F neznáme. Chceme odhadnout θ = t(f), např. t(f)
Univerzita Karlova v Praze Matematicko-fyzikální fakulta DIPLOMOVÁ PRÁCE. Martin Hrba
Univerzita Karlova v Praze Matematicko-fyzikální fakulta DIPLOMOVÁ PRÁCE Martin Hrba Aplikace modelů mnohorozměrných časových řad ve finanční analýze Katedra pravděpodobnosti a matematické statistiky Vedoucí
MKI Funkce f(z) má singularitu v bodě 0. a) Stanovte oblast, ve které konverguje hlavní část Laurentova rozvoje funkce f(z) v bodě 0.
MKI -00 Funkce f(z) má singularitu v bodě 0. a) Stanovte oblast, ve které konverguje hlavní část Laurentova rozvoje funkce f(z) v bodě 0. V jakém rozmezí se může pohybovat poloměr konvergence regulární
Funkce v ıce promˇ enn ych Extr emy Pˇredn aˇska p at a 12.bˇrezna 2018
Funkce více proměnných Extrémy Přednáška pátá 12.března 2018 Zdroje informací Diferenciální počet http://homen.vsb.cz/~kre40/esfmat2/fceviceprom.html http://www.studopory.vsb.cz/studijnimaterialy/sbirka_uloh/pdf/7.pdf
VYBRANÁ ROZDĚLENÍ. SPOJITÉ NÁH. VELIČINY Martina Litschmannová
VYBRANÁ ROZDĚLENÍ SPOJITÉ NÁH. VELIČINY Martina Litschmannová Opakování hustota pravděpodobnosti f(x) Funkce f(x) je hustotou pravděpodobností (na intervalu a x b), jestliže splňuje následující podmínky:
MATEMATICKÁ STATISTIKA - XP01MST
MATEMATICKÁ STATISTIKA - XP01MST 1. Úvod. Matematická statistika (statistics) se zabývá vyšetřováním zákonitostí, které v sobě obsahují prvek náhody. Zpracováním hodnot, které jsou výstupem sledovaného
Radka Picková Transformace náhodných veličin
Univerzita Karlova v Praze Matematicko-fyzikální fakulta BAKALÁŘSKÁ PRÁCE Radka Picková Transformace náhodných veličin Katedra pravděpodobnosti a matematické statistiky Vedoucí bakalářské práce: Mgr Zdeněk
2 Hlavní charakteristiky v analýze přežití
2 Hlavní charakteristiky v analýze přežití Předpokládané výstupy z výuky: 1. Student umí definovat funkci přežití, rizikovou funkci a kumulativní rizikovou funkci a zná funkční vazby mezi nimi 2. Student
Nestranný odhad Statistické vyhodnocování exp. dat M. Čada
Nestranný odhad 1 Parametr θ Máme statistický (výběrový) soubor, který je realizací náhodného výběru 1, 2, 3,, n z pravděpodobnostní distribuce, která je kompletně stanovena jedním nebo více parametry
Modelování finančních časových řad pomocí vybraného stochastického modelu
U N I V E R ZI T A P A R D U B I C E FAKULTA EKONOMICKO-SPRÁVNÍ Ú S T A V S Y S TÉMOVÉHO IN ŽE N Ý R S T VÍ A I N F ORMATIKY Modelování finančních časových řad pomocí vybraného stochastického modelu DIPLOMOVÁ
MASARYKOVA UNIVERZITA ÚSTAV MATEMATIKY A STATISTIKY
MASARYKOVA UNIVERZITA PŘÍRODOVĚDECKÁ FAKULTA ÚSTAV MATEMATIKY A STATISTIKY Bakalářská práce BRNO 2013 PETR BOŘIL MASARYKOVA UNIVERZITA PŘÍRODOVĚDECKÁ FAKULTA ÚSTAV MATEMATIKY A STATISTIKY Modelování a
Časové řady a jejich periodicita pokračování
Časové řady a jejich periodicita pokračování Jana Klicnarová Katedra aplikované matematiky a informatiky Jihočeská Univerzita v Českých Budějovicích, Ekonomická fakulta 2010 Dekompozice časových řad Jak
Střední hodnota a rozptyl náhodné. kvantilu. Ing. Michael Rost, Ph.D.
Střední hodnota a rozptyl náhodné veličiny, vybraná rozdělení diskrétních a spojitých náhodných veličin, pojem kvantilu Ing. Michael Rost, Ph.D. Príklad Předpokládejme že máme náhodnou veličinu X která
M - ODHADY M - ODHADY
M - ODHADY Jan Voříšek 26. 10. 2009 Obsah Obecný případ Odhady polohy Odhady měřítka Optimally bounding the gross-error sensitivity Change-of-variance function Obecný případ Úvod Názem M-odhad je odvozen
PŘÍSPĚVEK K PLÁNOVÁNÍ ÚDRŽBY ŽELEZNIČNÍCH VOZIDEL CONTRIBUTION TO THE MAINTENANCE PLANNING OF RAIL VEHICLES
PŘÍSPĚVEK K PLÁNOVÁNÍ ÚDRŽBY ŽELEZNIČNÍCH VOZIDEL CONTRIBUTION TO THE MAINTENANCE PLANNING OF RAIL VEHICLES Jan Famfulík 1 Anotace:Při plánování údržby železničních vozidel máme k dispozici určité (omezené)
4EK211 Základy ekonometrie
4EK211 Základy ekonometrie LS 2014/15 Cvičení 7: Autokorelace LENKA FIŘTOVÁ KATEDRA EKONOMETRIE, FAKULTA INFORMATIKY A STATISTIKY VYSOKÁ ŠKOLA EKONOMICKÁ V PRAZE 1. Autokorelace - teorie Zopakujte si G-M
4EK211 Základy ekonometrie
4EK11 Základy ekonometrie Autokorelace Cvičení 5 Zuzana Dlouhá Gauss-Markovy předpoklady Náhodná složka: Gauss-Markovy předpoklady 1. E(u) = náhodné vlivy se vzájemně vynulují. E(uu T ) = σ I n konečný
Subexponenciální algoritmus pro diskrétní logaritmus
Subexponenciální algoritmus pro diskrétní logaritmus 22. a 23. přednáška z kryptografie Alena Gollová SEDL 1/33 Obsah 1 Využívaná fakta y-hladká čísla 2 3 Alena Gollová SEDL 2/33 y-hladká čísla Subexponenciální
FP - SEMINÁŘ Z NUMERICKÉ MATEMATIKY. Katedra matematiky a didaktiky matematiky Technická univerzita v Liberci
FP - SEMINÁŘ Z NUMERICKÉ MATEMATIKY Dana Černá http://www.fp.tul.cz/kmd/ Katedra matematiky a didaktiky matematiky Technická univerzita v Liberci OBSAH A CÍLE SEMINÁŘE: Opakování a procvičení vybraných
Učební texty k státní bakalářské zkoušce Matematika Diferenciální rovnice. študenti MFF 15. augusta 2008
Učební texty k státní bakalářské zkoušce Matematika Diferenciální rovnice študenti MFF 15. augusta 2008 1 7 Diferenciální rovnice Požadavky Soustavy lineárních diferenciálních rovnic prvního řádu lineární
Maximálně věrohodné odhady v časových řadách
Univerzita Karlova v Praze Matematicko-fyzikální fakulta BAKALÁŘSKÁ PRÁCE Hana Tritová Maximálně věrohodné odhady v časových řadách Katedra pravděpodobnosti a matematické statistiky Vedoucí bakalářské
Drsná matematika III 6. přednáška Obyčejné diferenciální rovnice vyšších řádů, Eulerovo přibližné řešení a poznámky o odhadech chyb
Drsná matematika III 6. přednáška Obyčejné diferenciální rovnice vyšších řádů, Eulerovo přibližné řešení a poznámky o odhadech chyb Jan Slovák Masarykova univerzita Fakulta informatiky 23. 10. 2006 Obsah
Interpolace, ortogonální polynomy, Gaussova kvadratura
Interpolace, ortogonální polynomy, Gaussova kvadratura Petr Tichý 20. listopadu 2013 1 Úloha Lagrangeovy interpolace Dán omezený uzavřený interval [a, b] a v něm n + 1 různých bodů x 0, x 1,..., x n. Nechť
4EK211 Základy ekonometrie
4EK211 Základy ekonometrie ZS 2015/16 Cvičení 7: Časově řady, autokorelace LENKA FIŘTOVÁ KATEDRA EKONOMETRIE, FAKULTA INFORMATIKY A STATISTIKY VYSOKÁ ŠKOLA EKONOMICKÁ V PRAZE 1. Časové řady Data: HDP.wf1
Ing. Michael Rost, Ph.D.
Úvod do testování hypotéz, jednovýběrový t-test Ing. Michael Rost, Ph.D. Testovaná hypotéza Pokud nás zajímá zda platí, či neplatí tvrzení o určitém parametru, např. o parametru Θ, pak takovéto tvrzení
Aplikovaná numerická matematika
Aplikovaná numerická matematika 6. Metoda nejmenších čtverců doc. Ing. Róbert Lórencz, CSc. České vysoké učení technické v Praze Fakulta informačních technologií Katedra počítačových systémů Příprava studijních
4 Parametrické odhady
4 Parametrické odhady Předpokládané výstupy z výuky: 1. Student zná základní rozdělení pravděpodobnosti dat přežití 2. Student rozumí principu odhadu funkce přežití a rizikové funkce s využitím metody