Stochastické diferenciální rovnice

Rozměr: px
Začít zobrazení ze stránky:

Download "Stochastické diferenciální rovnice"

Transkript

1 KDM MFF UK, Praha Aplikace matematiky pro učitele

2 Kermack-McKendrickův model Kermack-McKendrickův model s vakcinací Model pro nemoc s rychlým šířením a krátkou dobou léčby. Příkladem takovéto nemoci je chřipka. Předpokládáme konstantní velikost populace N, která je rozdělena do tří skupin: x t... zdraví jedinci, kteří mohou být nakaženi, y t... nakažení jedinci, kteří mohou šířit danou nemoc, z t... jedinci, kteří nemohou nemoc šířit ani nemohou být znovu nakaženi.

3 Kermack-McKendrickův model Kermack-McKendrickův model s vakcinací Tento model je popsán následující diferenciální rovnicí: dx t = βx t y t dt dy t = βx t y t dt γy t dt dz t = γy t dt. kde β značí intenzitu přenosu nemoci a 1 γ je intenzita léčby (tj. γ popisuje střední dobu trvání nemoci).

4 Kermack-McKendrickův model Kermack-McKendrickův model s vakcinací subpopulations subpopulations time time Průběh epidemie s parametry β = , γ = 0.45 (levý obrázek) a β = , γ = 0.25 (pravý obrázek).

5 Kermack-McKendrickův model Kermack-McKendrickův model s vakcinací Tento model je zobecňením předchozího modelu. Uvažujeme obecnější formu intenzity šíření nemoci β a vakcinační funkci ϑ(.). Model je popsán následující diferenciální rovnicí: dx t = β(z t )[x t ϑ(z t )] + y t dt dy t = β(z t )[x t ϑ(z t )] + y t dt γy t dt dz t = γy t dt.

6 Kermack-McKendrickův model Kermack-McKendrickův model s vakcinací Lze ukázat, že z je řešením rovnice: z = N X (z), kde X (z) = [ x 0 + z 0 { u β(u) 0 ϑ(u) exp β(s)ds γ γ exp { z } 0 β(u)du γ du } ].

7 Kermack-McKendrickův model Kermack-McKendrickův model s vakcinací subpopulations subpopulations time time Průběh epidemie s různou vakcinační strategíı. Levý obrázek ukazuje vývoj s ϑ(z) = z, pravý obrázek s ϑ(z) = z. Celkově 363 vakcinovaných jedinců v prvním případě a 443 jedinců v druhém připadě.

8 Kermack-McKendrickův model Kermack-McKendrickův model s vakcinací maximum of Y number of removals in time t= number of vaccinated people number of vaccinated people Na obrazcích je znázorněn efekt vakcinace (modrá čára) a předvakcinace (černá čára) vzhledem k maximálnímu počtu nakažených jedinců (obrázek vlevo) a celkovému počtu nakažených jedinců (obrázek vpravo).

9 Kermack-McKendrickův model Kermack-McKendrickův model s vakcinací Pro určení optimální vakcinační strategie zvolme následující penalizační funkci: kde f = c(y T + z T ) + c 0 ϑ 0 + c 1 ϑ 1, y T + z T... počet lidí, kteří byli infikováni do času T, ϑ 0... počet jedinců, kteří dostali vakcínu před začátkem epidemie, ϑ 1... počet jedinů navakcinovaných během časového intervalu (0, T ), c... penalizace za jednoho nakaženého jedince, c 0, c 1... penalizace za předvakcinaci, resp. vakcinaci, jednoho jedince.

10 Kermack-McKendrickův model Kermack-McKendrickův model s vakcinací V našem případě hladáme optimální lineární vakcinační strategii, tj. ϑ(z) = v 0 + v 1 z.

11 f f Deterministické modely epidemíı Kermack-McKendrickův model Kermack-McKendrickův model s vakcinací v1 5 1e+05 4e+05 3e+05 2e+05 v0 10 v1 5 1e+05 4e+05 3e+05 2e+05 v0 0 0e e+00 Na obrazcích je znázorněna penalizační funkce f v závislosti na volbě koeficientů lineární vakcinace v 0 a v 1. Vlevo jsou zvoleny penalizační koeficienty c 0 = a c 1 = , vpravo c 0 = c 1 = 0.5.

12 Stochastický model s vakcinací Model s více patogeny (Allen, Kirupaharan) Nechť (Ω, F, P) je pravděpodobnostní prostor, pak množinu náhodných veličin (X (t), t 0) definovaných na tomto pravděpodobnostním prostoru nazveme náhodným procesem. Na náhodný proces lze také nahĺıžet jako na zobrazení popřípadě X (t, ω) : R + Ω R, X (., ω) : Ω R R+. X (., ω) se nazýva trajektorie procesu X.

13 Stochastický model s vakcinací Model s více patogeny (Allen, Kirupaharan) Wienerův proces (Brownův pohyb) W t je náhodný proces s následujícímy vlastnostmi: W 0 = 0 skoro jistě, Wienerův proces má nezávislé přírůstky, rozdělení Wienerova procesu v čase t je N(0, t), Wienerův proces má spojité trajektorie.

14 Stochastický model s vakcinací Model s více patogeny (Allen, Kirupaharan)

15 Stochastický model s vakcinací Model s více patogeny (Allen, Kirupaharan) Stochastický integrál b a X (t)dw (t) si lze velmi zjednodušeně představit jako limitu n 1 lim 0 i=0 X (t i )(W (t i+1 ) W (t i )) kde a = t 0 < t 1 <... < t n = b a t i+1 t i =.

16 Stochastický model s vakcinací Model s více patogeny (Allen, Kirupaharan) Stochastický proces X t je řešením stochastické diferenciální rovnice dx t = b(x t )dt + σ(x t )dw t, X 0 = x 0, pokud t t X t = x 0 + b(x s )ds + σ(x s )dw s. 0 0

17 Stochastický model s vakcinací Model s více patogeny (Allen, Kirupaharan) dx t = β(z t )Y t [X t ϑ(z t )] + dt + β(z t )Y t [X t ϑ(z t )] + dw t, dy t =β(z t )Y t [X t ϑ(z t )] + dt γy t dt (1) β(z t )Y t [X t ϑ(z t )] + dw t, dz t =γy t dt,

18 Stochastický model s vakcinací Model s více patogeny (Allen, Kirupaharan) ssubpopulation time Pět realizací řešení stochastické diferenciální rovnice (1).

19 Stochastický model s vakcinací Model s více patogeny (Allen, Kirupaharan) Histogram of Ymax Histogram of Tmax Density Density Ymax Na levém obrázku je znázorněn histogram a odhad hustoty maximálního počtu nakažených jedinců, vpravo je histogram a odhad hustoty času kulminace epidemie. Tmax

20 Stochastický model s vakcinací Model s více patogeny (Allen, Kirupaharan) Histogram of Z[, deleni + 1] Density Z[, deleni + 1] Histogram celkového počtu nakažených jedinců během epidemie.

21 Stochastický model s vakcinací Model s více patogeny (Allen, Kirupaharan) K určení optimální vakcinační strategie zvolme následující penalizační funkci: kde f = E[c(Y T + Z T ) + c 0 ϑ 0 + c 1 V 1 + c 2 T ep ], Y T + Z T... počet lidí, kteří byli infikováni do časut, ϑ 0... počet jedinců, kteří dostali vakcínu před začátkem epidemie, V 1... počet jedinů navakcinovaných během časového intervalu (0, T ), T ep... délka časového intervalu, po který bylo nakaženo více než 5% populace, c... penalizace za jednoho nakaženého jedince, c 0, c 1... penalizace za předvakcinaci, resp. vakcinaci, jednoho jedince, c 2... penalizace za každý den, po který bylo nakaženo více než 5% populace.

22 f f Deterministické modely epidemíı Stochastický model s vakcinací Model s více patogeny (Allen, Kirupaharan) v v0 400 v v Penalizační funkce f = E[Z ϑ ϑ 1 Z T ep ] (levý obrázek) a f = E[Z ϑ ϑ 1 Z 150 ] (pravý obrázek).

23 Stochastický model s vakcinací Model s více patogeny (Allen, Kirupaharan) Mějme populaci, jejíž velikost se v čase mění. Sledujeme vývoj nemoci s více pathogeny, kde očekáváme, že žadný jedinec nemůže být infikován více než jedním pathogenem nemoci. N t... počet jedinců v populaci v čase t, X t... počet zdravých jedincu v čase t, Y k t... počet jedinců, kteří jsou nakaženi k-tým pathogenem sledované nemoci v čase t, b, b k... intenzity rození v populaci, b k < b, k, d(n t ), α k... intenzity vymírání populace, β k... intenzita přenosu k-tého pathogenu.

24 Stochastický model s vakcinací Model s více patogeny (Allen, Kirupaharan) dx t =X t (b d(n t ) + dyt j =Yt j d k=1 d k=1 ) β k Yt k dt N t d+1 b k Yt k dt + B 1.k (X t, Yk 1,..., Y k d )dw t k, k=1 ( b b j d(n t ) α j + β jx t N t d+1 + k=1 ) dt B j+1.k (X t, Y 1 k,..., Y d k )dw k t, j = 1,..., d,

25 Stochastický model s vakcinací Model s více patogeny (Allen, Kirupaharan) Průběh epidemie s jedním patogenem (levý obrázek) a se dvěma patogeny (pravý obrázek).

26 Model Trhu Geometrický Brownův pohyb Evropská opce, Black-Scholes model

27 Model Trhu Geometrický Brownův pohyb Evropská opce, Black-Scholes model kde dxt 0 = ρ(t, ω)xt 0 dt, X0 0 = 1 m dxt i = µ i (t, ω)dt + σ ij (t, ω)dwt i, X0 i = x 0. j=1 X 0... vývoj hodnoty bezrizikového aktiva X i, i = 1,..., m... vývoj hodnoty rizikového aktiva

28 Model Trhu Geometrický Brownův pohyb Evropská opce, Black-Scholes model Označíme θ t = (θ 0 t, θ 1 t,..., θ n t ) portfólio v čase t. Pak hodnota tohoto portfólia V t je dána rovnicí dv t = θ t dx t = θ 0 t dx 0 t + = θ 0 t ρ(t, ω)x 0 t dt + V 0 = θ n θ0x i i. i=1 n θtdx i t i i=1 n θtµ i i (t, ω)dt + i=1 m σ ij (t, ω)dw i j=1 t

29 Model Trhu Geometrický Brownův pohyb Evropská opce, Black-Scholes model Velmi často se pro modelování ceny finančních aktiv používá Geometrický Brownův pohyb. Tento proces je dán rovnicí: dx t = µx t dt + σx t dw t, X 0 = x 0. Lze ukázat, že X t = x 0 exp } {(µ σ2 2 )t + σw t s.j.

30 Model Trhu Geometrický Brownův pohyb Evropská opce, Black-Scholes model Označme a Tedy p t = (µ σ2 2 )t + σw t r t = p t+1 p t = ln X t+1 ln X t N E(r t ) = ) (µ σ2, var(r t ) = σ 2. 2 ) (µ σ2 2, σ2.

31 Model Trhu Geometrický Brownův pohyb Evropská opce, Black-Scholes model Z odhadů dostaneme r = n t=1 r t, s 2 r = 1 n 1 ˆσ = n (r t r) 2, t=1 s 2r, ˆµ = r + ˆσ2 2.

32 Model Trhu Geometrický Brownův pohyb Evropská opce, Black-Scholes model cena cena cas cas

33 Model Trhu Geometrický Brownův pohyb Evropská opce, Black-Scholes model Odhad modelu: dx t = X t dt X t dw t, X 0 =

34 Model Trhu Geometrický Brownův pohyb Evropská opce, Black-Scholes model cena cas

35 Model Trhu Geometrický Brownův pohyb Evropská opce, Black-Scholes model Uvažujme model trhu: dxt 0 = ρxt 0 dt, X0 0 = 1, dxt 1 = µxt 1 dt + σxt 1 dw t, X0 1 = x 0 > 0, kde T... čas splatnosti, K... prováděcí cena.

36 Model Trhu Geometrický Brownův pohyb Evropská opce, Black-Scholes model (Fischer Black a Myron Scholes 1973). Spravedlivá cena call opce je p = x 0 φ(η σ T ) Ke ρt φ(η 1 2 σ T ), kde ( η = σ 1 T 1 2 ln x ) 0 K + ρt a φ je distribuční funkce normovanéno normálního rozdělení. Nobelova cena pro R. Mertona a M. Scholese 1997.

37 Model Trhu Geometrický Brownův pohyb Evropská opce, Black-Scholes model Uvažujme call opci na unci zlata s dobou splatnosti jeden rok, tedy a s prováděcí cenou K = 1850 ($/unci). Použijme model odhadnutý na předchozích slidech, tedy model geometrického Brownova pohybu s parametry µ = a σ = , ale s počáteční podmínkou X 0 = (tedy s cenou ze dne ). Uvažujeme-li roční výnos u bezrizikového aktiva 3%, pak cena Evropské call opce je $.

Matematicko-fyzikální fakulta Univerzity Karlovy

Matematicko-fyzikální fakulta Univerzity Karlovy Oceňování finančních derivátů ve spojitém čase Václav Kozmík Matematicko-fyzikální fakulta Univerzity Karlovy 4. 10. 2010 Úvod Stochastický kalkulus Wienerův proces stochastické procesy Itoovo lemma změna

Více

X = x, y = h(x) Y = y. hodnotám x a jedné hodnotě y. Dostaneme tabulku hodnot pravděpodobnostní

X = x, y = h(x) Y = y. hodnotám x a jedné hodnotě y. Dostaneme tabulku hodnot pravděpodobnostní ..08 8cv7.tex 7. cvičení - transformace náhodné veličiny Definice pojmů a základní vzorce Je-li X náhodná veličina a h : R R je měřitelná funkce, pak náhodnou veličinu Y, která je definovaná vztahem X

Více

PŘEDNÁŠKA 9 KŘIVKOVÝ A PLOŠNÝ INTEGRÁL 1. DRUHU

PŘEDNÁŠKA 9 KŘIVKOVÝ A PLOŠNÝ INTEGRÁL 1. DRUHU PŘEDNÁŠKA 9 KŘIVKOVÝ A PLOŠNÝ INTEGRÁL 1. DRUHU 6.1 Křivkový integrál 1. druhu Definice 1. Množina R n se nazývá prostá regulární křivka v R n právě tehdy, když existuje vzájemně jednoznačné zobrazení

Více

Téma 22. Ondřej Nývlt

Téma 22. Ondřej Nývlt Téma 22 Ondřej Nývlt nyvlto1@fel.cvut.cz Náhodná veličina a náhodný vektor. Distribuční funkce, hustota a pravděpodobnostní funkce náhodné veličiny. Střední hodnota a rozptyl náhodné veličiny. Sdružené

Více

Kapitola 12: Soustavy diferenciálních rovnic 1. řádu

Kapitola 12: Soustavy diferenciálních rovnic 1. řádu Kapitola 12: Soustavy diferenciálních rovnic 1. řádu Základní pojmy Definice: Rovnice tvaru = f(t, x, y) = g(t, x, y), t I nazýváme soustavou dvou diferenciálních rovnic 1. řádu. Řešením soustavy rozumíme

Více

Někdy lze výsledek pokusu popsat jediným číslem, které označíme X (nebo jiným velkým písmenem). Hodíme dvěma kostkami jaký padl součet?

Někdy lze výsledek pokusu popsat jediným číslem, které označíme X (nebo jiným velkým písmenem). Hodíme dvěma kostkami jaký padl součet? Náhodné veličiny Náhodné veličiny Někdy lze výsledek pokusu popsat jediným číslem, které označíme X (nebo jiným velkým písmenem). Příklad Vytáhneme tři karty z balíčku zajímá nás, kolik je mezi nimi es.

Více

Charakterizace rozdělení

Charakterizace rozdělení Charakterizace rozdělení Momenty f(x) f(x) f(x) μ >μ 1 σ 1 σ >σ 1 g 1 g σ μ 1 μ x μ x x N K MK = x f( x) dx 1 M K = x N CK = ( x M ) f( x) dx ( xi M 1 C = 1 K 1) N i= 1 K i K N i= 1 K μ = E ( X ) = xf

Více

Přemysl Bejda.

Přemysl Bejda. premyslbejda@gmail.com 2010 Obsah 1 2 3 Obchodovatelnost Cena rizika Obsah 1 2 3 Obchodovatelnost Cena rizika Obsah 1 2 3 Obchodovatelnost Cena rizika Itôovo lemma Lemma (Itôovo) Necht X t je stochastický

Více

Martin Chudoba. Seminář - Stochastické modelování v ekonomii a financích KPMS MFF UK. dluhopisů pomocí. Black-Scholesova modelu. M.Chudoba.

Martin Chudoba. Seminář - Stochastické modelování v ekonomii a financích KPMS MFF UK. dluhopisů pomocí. Black-Scholesova modelu. M.Chudoba. Martin Chudoba s Seminář - Stochastické modelování v ekonomii a financích KPMS MFF UK 18.10.2010 Uvažujeme bezkupónový dluhopis vyplácející jednotku v čase T Za předpokladu konstantní úrokové míry r pro

Více

Základy teorie odhadu parametrů bodový odhad

Základy teorie odhadu parametrů bodový odhad Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Odhady parametrů Úkolem výběrového šetření je podat informaci o neznámé hodnotě charakteristiky základního souboru

Více

1. Náhodný vektor (X, Y ) má diskrétní rozdělení s pravděpodobnostní funkcí p, kde. p(x, y) = a(x + y + 1), x, y {0, 1, 2}.

1. Náhodný vektor (X, Y ) má diskrétní rozdělení s pravděpodobnostní funkcí p, kde. p(x, y) = a(x + y + 1), x, y {0, 1, 2}. VIII. Náhodný vektor. Náhodný vektor (X, Y má diskrétní rozdělení s pravděpodobnostní funkcí p, kde p(x, y a(x + y +, x, y {,, }. a Určete číslo a a napište tabulku pravděpodobnostní funkce p. Řešení:

Více

I. D i s k r é t n í r o z d ě l e n í

I. D i s k r é t n í r o z d ě l e n í 6. T y p y r o z d ě l e n í Poznámka: V odst. 5.5-5.10 jsme uvedli příklady náhodných veličin a jejich distribučních funkcí. Poznali jsme, že se od sebe liší svým typem. V příkladech 5.5, 5.6 a 5.8 jsme

Více

Optimální řízení pro geometrický Brownův pohyb

Optimální řízení pro geometrický Brownův pohyb 1/39 Optimální řízení pro geometrický Brownův pohyb Lenka Slámová Katedra pravděpodobnosti a matematické statistiky Matematicko fyzikální fakulta Univerzity Karlovy Stochastické modelování v ekonomii a

Více

p(x) = P (X = x), x R,

p(x) = P (X = x), x R, 6. T y p y r o z d ě l e n í Poznámka: V odst. 5.5-5.10 jsme uvedli příklady náhodných veličin a jejich distribučních funkcí. Poznali jsme, že se od sebe liší svým typem. V příkladech 5.5, 5.6 a 5.8 jsme

Více

Statistika a spolehlivost v lékařství Charakteristiky spolehlivosti prvků I

Statistika a spolehlivost v lékařství Charakteristiky spolehlivosti prvků I Statistika a spolehlivost v lékařství Charakteristiky spolehlivosti prvků I Příklad Tahová síla papíru používaného pro výrobu potravinových sáčků je důležitá charakteristika kvality. Je známo, že síla

Více

Diferenciální rovnice a jejich aplikace. (Brkos 2011) Diferenciální rovnice a jejich aplikace 1 / 36

Diferenciální rovnice a jejich aplikace. (Brkos 2011) Diferenciální rovnice a jejich aplikace 1 / 36 Diferenciální rovnice a jejich aplikace Zdeněk Kadeřábek (Brkos 2011) Diferenciální rovnice a jejich aplikace 1 / 36 Obsah 1 Co to je derivace? 2 Diferenciální rovnice 3 Systémy diferenciálních rovnic

Více

Interpolace, ortogonální polynomy, Gaussova kvadratura

Interpolace, ortogonální polynomy, Gaussova kvadratura Interpolace, ortogonální polynomy, Gaussova kvadratura Petr Tichý 20. listopadu 2013 1 Úloha Lagrangeovy interpolace Dán omezený uzavřený interval [a, b] a v něm n + 1 různých bodů x 0, x 1,..., x n. Nechť

Více

Kapitola 8: Dvojný integrál 1/26

Kapitola 8: Dvojný integrál 1/26 Kapitola 8: vojný integrál 1/26 vojný integrál - osnova kapitoly 2/26 dvojný integrál přes obdélník definice výpočet (Fubiniova věta pro obdélník) dvojný integrál přes standardní množinu definice výpočet

Více

1/15. Kapitola 12: Soustavy diferenciálních rovnic 1. řádu

1/15. Kapitola 12: Soustavy diferenciálních rovnic 1. řádu 1/15 Kapitola 12: Soustavy diferenciálních rovnic 1. řádu 2/15 Vsuvka: Vlastní čísla matic Definice: Bud A čtvercová matice a vektor h 0 splňující rovnici A h = λ h pro nějaké číslo λ R. Potom λ nazýváme

Více

Modely CARMA. 22. listopadu Matematicko fyzikální fakulta Univerzity Karlovy v Praze. Modely CARMA. Úvod. CARMA proces. Definice CARMA procesu

Modely CARMA. 22. listopadu Matematicko fyzikální fakulta Univerzity Karlovy v Praze. Modely CARMA. Úvod. CARMA proces. Definice CARMA procesu Matematicko fyzikální fakulta Univerzity Karlovy v Praze ÚTIA AV ČR 22. listopadu 2010 u Obsah Definice u u u Motivace Známe. Umíme používat, odhadovat jejich koeficienty atd. Co když ale data nemají konstantní

Více

MATEMATICKÁ STATISTIKA - XP01MST

MATEMATICKÁ STATISTIKA - XP01MST MATEMATICKÁ STATISTIKA - XP01MST 1. Úvod. Matematická statistika (statistics) se zabývá vyšetřováním zákonitostí, které v sobě obsahují prvek náhody. Zpracováním hodnot, které jsou výstupem sledovaného

Více

Katedra matematiky Fakulta aplikovaných věd Západočeská Univerzita v Plzni. Matematické Modelování

Katedra matematiky Fakulta aplikovaných věd Západočeská Univerzita v Plzni. Matematické Modelování Katedra matematiky Fakulta aplikovaných věd Západočeská Univerzita v Plzni Semestrální práce z předmětu Matematické Modelování Radek Slíva student 3. ročníku FAV obor MA A02019 12. července 2005 Obsah

Více

LWS při heteroskedasticitě

LWS při heteroskedasticitě Stochastické modelování v ekonomii a financích Petr Jonáš 7. prosince 2009 Obsah 1 2 3 4 5 47 1 Předpoklad 1: Y i = X i β 0 + e i i = 1,..., n. (X i, e i) je posloupnost nezávislých nestejně rozdělených

Více

Rovnovážné modely v teorii portfolia

Rovnovážné modely v teorii portfolia 3. září 2013, Podlesí Obsah Portfolio a jeho charakteristiky Definice portfolia Výnosnost a riziko aktiv Výnosnost a riziko portfolia Klasická teorie portfolia Markowitzův model Tobinův model CAPM - model

Více

Přijímací zkouška na navazující magisterské studium 2014

Přijímací zkouška na navazující magisterské studium 2014 Přijímací zkouška na navazující magisterské studium 24 Příklad (25 bodů) Spočtěte Studijní program: Studijní obor: Matematika Finanční a pojistná matematika Varianta A M x 2 dxdy, kde M = {(x, y) R 2 ;

Více

4. Aplikace matematiky v ekonomii

4. Aplikace matematiky v ekonomii 4. Aplikace matematiky v ekonomii 1 Lineární algebra Soustavy 1) Na základě statistických údajů se zjistilo, že závislost množství statku z poptávaného v průběhu jednoho týdne lze popsat vztahem q d =

Více

1.1 Existence a jednoznačnost řešení. Příklad 1.1: [M2-P1] diferenciální rovnice (DR) řádu n: speciálně nás budou zajímat rovnice typu

1.1 Existence a jednoznačnost řešení. Příklad 1.1: [M2-P1] diferenciální rovnice (DR) řádu n: speciálně nás budou zajímat rovnice typu [M2-P1] KAPITOLA 1: Diferenciální rovnice 1. řádu diferenciální rovnice (DR) řádu n: speciálně nás budou zajímat rovnice typu G(x, y, y, y,..., y (n) ) = 0 y (n) = F (x, y, y,..., y (n 1) ) Příklad 1.1:

Více

Matematika III 10. týden Číselné charakteristiky střední hodnota, rozptyl, kovariance, korelace

Matematika III 10. týden Číselné charakteristiky střední hodnota, rozptyl, kovariance, korelace Matematika III 10. týden Číselné charakteristiky střední hodnota, rozptyl, kovariance, korelace Jan Slovák Masarykova univerzita Fakulta informatiky 28. 11 2. 12. 2016 Obsah přednášky 1 Literatura 2 Střední

Více

PRAVDĚPODOBNOST A STATISTIKA

PRAVDĚPODOBNOST A STATISTIKA PRAVDĚPODOBNOST A STATISTIKA Náhodný výběr Nechť X je náhodná proměnná, která má distribuční funkci F(x, ϑ). Předpokládejme, že známe tvar distribuční funkce (víme jaké má rozdělení) a neznáme parametr

Více

Pojistná matematika. Úmrtnostní tabulky, komutační čísla a jejich použití. Silvie Kafková

Pojistná matematika. Úmrtnostní tabulky, komutační čísla a jejich použití. Silvie Kafková Úmrtnostní tabulky, komutační čísla a jejich použití 2015 Osnova 1 Délka života 2 Intenzita úmrtnosti 3 Úmrtnostní Tabulky 4 Komutační čísla Obsah 1 Délka života 2 Intenzita úmrtnosti 3 Úmrtnostní Tabulky

Více

Numerická řešení stochastické diferenciální rovnice

Numerická řešení stochastické diferenciální rovnice Univerzita Karlova v Praze Matematicko-fyzikální fakulta BAKALÁŘKÁ PRÁCE Štěpán Masák Numerická řešení stochastické diferenciální rovnice Katedra pravděpodobnosti a matematické statistiky Vedoucí bakalářské

Více

12. Křivkové integrály

12. Křivkové integrály 12 Křivkové integrály Definice 121 Jednoduchou po částech hladkou křivkou v prostoru R n rozumíme množinu bodů [x 1,, x n ], které jsou dány parametrickými rovnicemi x 1 = ϕ 1 t), x 2 = ϕ 2 t), x n = ϕ

Více

9. Vícerozměrná integrace

9. Vícerozměrná integrace 9. Vícerozměrná integrace Aplikovaná matematika II, NMAF072 M. Rokyta, KMA MFF UK LS 2016/17 9.1 Elementy teorie míry Poznámka Na R n definujeme systém tzv. měřitelných množin, M n, který má následující

Více

Kapitola 10: Diferenciální rovnice 1/14

Kapitola 10: Diferenciální rovnice 1/14 Kapitola 10: Diferenciální rovnice 1/14 Co je to diferenciální rovnice? Definice: Diferenciální rovnice je vztah mezi hledanou funkcí y(x), jejími derivacemi y (x), y (x), y (x),... a nezávisle proměnnou

Více

Testování statistických hypotéz

Testování statistických hypotéz Testování statistických hypotéz 1 Testování statistických hypotéz 1 Statistická hypotéza a její test V praxi jsme nuceni rozhodnout, zda nějaké tvrzeni o parametrech náhodných veličin nebo o veličině samotné

Více

10. cvičení z PST. 5. prosince T = (n 1) S2 X. (n 1) s2 x σ 2 q χ 2 (n 1) (1 α 2 ). q χ 2 (n 1) 2. 2 x. (n 1) s. x = 1 6. x i = 457.

10. cvičení z PST. 5. prosince T = (n 1) S2 X. (n 1) s2 x σ 2 q χ 2 (n 1) (1 α 2 ). q χ 2 (n 1) 2. 2 x. (n 1) s. x = 1 6. x i = 457. 0 cvičení z PST 5 prosince 208 0 (intervalový odhad pro rozptyl) Soubor (70, 84, 89, 70, 74, 70) je náhodným výběrem z normálního rozdělení N(µ, σ 2 ) Určete oboustranný symetrický 95% interval spolehlivosti

Více

9. T r a n s f o r m a c e n á h o d n é v e l i č i n y

9. T r a n s f o r m a c e n á h o d n é v e l i č i n y 9. T r a n s f o r m a c e n á h o d n é v e l i č i n y Při popisu procesů zpracováváme vstupní údaj, hodnotu x tak, že výstupní hodnota y závisí nějakým způsobem na vstupní, je její funkcí y = f(x).

Více

Definice 1.1. Nechť je M množina. Funkci ρ : M M R nazveme metrikou, jestliže má následující vlastnosti:

Definice 1.1. Nechť je M množina. Funkci ρ : M M R nazveme metrikou, jestliže má následující vlastnosti: Přednáška 1. Definice 1.1. Nechť je množina. Funkci ρ : R nazveme metrikou, jestliže má následující vlastnosti: (1 pro každé x je ρ(x, x = 0; (2 pro každé x, y, x y, je ρ(x, y = ρ(y, x > 0; (3 pro každé

Více

Učební texty k státní bakalářské zkoušce Matematika Diferenciální rovnice. študenti MFF 15. augusta 2008

Učební texty k státní bakalářské zkoušce Matematika Diferenciální rovnice. študenti MFF 15. augusta 2008 Učební texty k státní bakalářské zkoušce Matematika Diferenciální rovnice študenti MFF 15. augusta 2008 1 7 Diferenciální rovnice Požadavky Soustavy lineárních diferenciálních rovnic prvního řádu lineární

Více

Definice 7.1 Nechť je dán pravděpodobnostní prostor (Ω, A, P). Zobrazení. nebo ekvivalentně

Definice 7.1 Nechť je dán pravděpodobnostní prostor (Ω, A, P). Zobrazení. nebo ekvivalentně 7 Náhodný vektor Nezávislost náhodných veličin Definice 7 Nechť je dán pravděpodobnostní prostor (Ω, A, P) Zobrazení X : Ω R n, které je A-měřitelné, se nazývá (n-rozměrný) náhodný vektor Měřitelností

Více

Pravděpodobnost a statistika

Pravděpodobnost a statistika Pravděpodobnost a statistika Normální rozdělení a centrální limitní věta Vilém Vychodil KMI/PRAS, Přednáška 9 Vytvořeno v rámci projektu 2963/2011 FRVŠ V. Vychodil (KMI/PRAS, Přednáška 9) Normální rozdělení

Více

VYBRANÁ ROZDĚLENÍ. SPOJITÉ NÁH. VELIČINY Martina Litschmannová

VYBRANÁ ROZDĚLENÍ. SPOJITÉ NÁH. VELIČINY Martina Litschmannová VYBRANÁ ROZDĚLENÍ SPOJITÉ NÁH. VELIČINY Martina Litschmannová Opakování hustota pravděpodobnosti f(x) Funkce f(x) je hustotou pravděpodobností (na intervalu a x b), jestliže splňuje následující podmínky:

Více

Apriorní rozdělení. Jan Kracík.

Apriorní rozdělení. Jan Kracík. Apriorní rozdělení Jan Kracík jan.kracik@vsb.cz Apriorní rozdělení Apriorní rozdělení (spolu s modelem) reprezentuje informaci o neznámém parametru θ, která je dostupná předem, tj. bez informace z dat.

Více

AVDAT Náhodný vektor, mnohorozměrné rozdělení

AVDAT Náhodný vektor, mnohorozměrné rozdělení AVDAT Náhodný vektor, mnohorozměrné rozdělení Josef Tvrdík Katedra informatiky Přírodovědecká fakulta Ostravská univerzita Opakování, náhodná veličina, rozdělení Náhodná veličina zobrazuje elementární

Více

22 Základní vlastnosti distribucí

22 Základní vlastnosti distribucí M. Rokyta, MFF UK: Aplikovaná matematika IV kap. 22: Základní vlastnosti distribucí 5 22 Základní vlastnosti distribucí 22.1 Temperované distribuce Definice. O funkci ϕ C (R m ) řekneme, že je rychle klesající

Více

Náhodná veličina. Michal Fusek. 10. přednáška z ESMAT. Ústav matematiky FEKT VUT, Michal Fusek

Náhodná veličina. Michal Fusek. 10. přednáška z ESMAT. Ústav matematiky FEKT VUT, Michal Fusek Náhodná veličina Michal Fusek Ústav matematiky FEKT VUT, fusekmi@feec.vutbr.cz 10. přednáška z ESMAT Michal Fusek (fusekmi@feec.vutbr.cz) 1 / 71 Obsah 1 Náhodná veličina 2 Diskrétní náhodná veličina 3

Více

Odhad parametrů N(µ, σ 2 )

Odhad parametrů N(µ, σ 2 ) Odhad parametrů N(µ, σ 2 ) Mějme statistický soubor x 1, x 2,, x n modelovaný jako realizaci náhodného výběru z normálního rozdělení N(µ, σ 2 ) s neznámými parametry µ a σ. Jaký je maximální věrohodný

Více

Minikurz aplikované statistiky. Minikurz aplikované statistiky p.1

Minikurz aplikované statistiky. Minikurz aplikované statistiky p.1 Minikurz aplikované statistiky Marie Šimečková, Petr Šimeček Minikurz aplikované statistiky p.1 Program kurzu základy statistiky a pravděpodobnosti regrese (klasická, robustní, s náhodnými efekty, ev.

Více

9. Vícerozměrná integrace

9. Vícerozměrná integrace 9. Vícerozměrná integrace Tomáš Salač Ú UK, FF UK LS 2017/18 Tomáš Salač ( Ú UK, FF UK ) 9. Vícerozměrná integrace LS 2017/18 1 / 29 9.1 Elementy teorie míry Poznámka Na R n definujeme systém tzv. měřitelných

Více

Statistika II. Jiří Neubauer

Statistika II. Jiří Neubauer Statistika II Katedra ekonometrie FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Zaměříme se především na popis dvourozměrných náhodných veličin (vektorů). Definice Nechť X a Y jsou

Více

Jiří Neubauer. Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel

Jiří Neubauer. Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Výsledky některých náhodných pokusů jsou přímo vyjádřeny číselně (např. při hodu kostkou padne 6). Náhodnou veličinou

Více

Základy teorie pravděpodobnosti

Základy teorie pravděpodobnosti Základy teorie pravděpodobnosti Náhodná veličina Roman Biskup (zapálený) statistik ve výslužbě, aktuálně analytik v praxi ;-) roman.biskup(at)email.cz 12. února 2012 Statistika by Birom Základy teorie

Více

Řešení. Označme po řadě F (z) Odtud plyne, že

Řešení. Označme po řadě F (z) Odtud plyne, že Úloha Nechť ~ R(, ) a Y = Jinak řečeno, Y je odmocnina čísla vybraného zcela náhodně z intervalu (, ) Popište rozdělení veličiny Y a určete jeho modus, medián, střední hodnotu a rozptyl Řešení Označme

Více

jevu, čas vyjmutí ze sledování byl T j, T j < X j a T j je náhodná veličina.

jevu, čas vyjmutí ze sledování byl T j, T j < X j a T j je náhodná veličina. Parametrické metody odhadů z neúplných výběrů 2 1 Metoda maximální věrohodnosti pro cenzorované výběry 11 Náhodné cenzorování Při sledování složitých reálných systémů často nemáme možnost uspořádat experiment

Více

Inverzní Laplaceova transformace

Inverzní Laplaceova transformace Inverzní Laplaceova transformace Modelování systémů a procesů (MSP) Bohumil Kovář, Jan Přikryl, Miroslav Vlček Ústav aplikované matematiky ČVUT v Praze, Fakulta dopravní 6. přednáška MSP čtvrtek 30. března

Více

Fakt. Každou soustavu n lineárních ODR řádů n i lze eliminací převést ekvivalentně na jednu lineární ODR

Fakt. Každou soustavu n lineárních ODR řádů n i lze eliminací převést ekvivalentně na jednu lineární ODR DEN: ODR teoreticky: soustavy rovnic Soustava lineárních ODR 1 řádu s konstantními koeficienty je soustava ve tvaru y 1 = a 11 y 1 + a 12 y 2 + + a 1n y n + b 1 (x) y 2 = a 21 y 1 + a 22 y 2 + + a 2n y

Více

Učební texty k státní bakalářské zkoušce Matematika Skalární součin. študenti MFF 15. augusta 2008

Učební texty k státní bakalářské zkoušce Matematika Skalární součin. študenti MFF 15. augusta 2008 Učební texty k státní bakalářské zkoušce Matematika Skalární součin študenti MFF 15. augusta 2008 1 10 Skalární součin Požadavky Vlastnosti v reálném i komplexním případě Norma Cauchy-Schwarzova nerovnost

Více

Kristýna Kuncová. Matematika B3

Kristýna Kuncová. Matematika B3 (7) Křivky a křivkový integrál Kristýna Kuncová Matematika B3 Kristýna Kuncová (7) Křivky a křivkový integrál 1 / 39 y Kristýna Kuncová (7) Křivky a křivkový integrál 2 / 39 y Kristýna Kuncová (7) Křivky

Více

n = 2 Sdružená distribuční funkce (joint d.f.) n. vektoru F (x, y) = P (X x, Y y)

n = 2 Sdružená distribuční funkce (joint d.f.) n. vektoru F (x, y) = P (X x, Y y) 5. NÁHODNÝ VEKTOR 5.1. Rozdělení náhodného vektoru Náhodný vektor X = (X 1, X 2,..., X n ) T n-rozměrný vektor, složky X i, i = 1,..., n náhodné veličiny. Vícerozměrná (n-rozměrná) náhodná veličina n =

Více

Radek Hendrych. Stochastické modelování v ekonomii a financích. 18. října 2010

Radek Hendrych. Stochastické modelování v ekonomii a financích. 18. října 2010 Sochasické modelování v ekonomii a financích 18. října 21 Program 1 2 3 4 Úroková míra R, T ) Uvažujme bezrizikový bezkuponový dluhopis s mauriou T a nominální hodnoou 1 $, jeho cenu v čase budeme nadále

Více

7. Analýza rozptylu.

7. Analýza rozptylu. 7. Analýza rozptylu. Uvedeme obecnou ideu, která je založena na minimalizaci chyby metodou nejmenších čtverců. Nejdříve uvedeme několik základních tvrzení. Uvažujeme náhodný vektor Y = (Y, Y,..., Y n a

Více

PRAVDĚPODOBNOST A STATISTIKA

PRAVDĚPODOBNOST A STATISTIKA PRAVDĚPODOBNOST A STATISTIKA Náhodná proměnná Náhodná veličina slouží k popisu výsledku pokusu. Před provedením pokusu jeho výsledek a tedy ani sledovanou hodnotu neznáme. Přesto bychom chtěli tento pokus

Více

9. T r a n s f o r m a c e n á h o d n é v e l i č i n y

9. T r a n s f o r m a c e n á h o d n é v e l i č i n y 9. T r a n s f o r m a c e n á h o d n é v e l i č i n Při popisu procesů zpracováváme vstupní údaj, hodnotu x tak, že výstupní hodnota závisí nějakým způsobem na vstupní, je její funkcí = f(x). Pokud

Více

8. Normální rozdělení

8. Normální rozdělení 8. Normální rozdělení 8.. Definice: Normální (Gaussovo) rozdělení N(µ, 2 ) s parametry µ a > 0 je rozdělení určené hustotou ( ) f(x) = (x µ) 2 e 2 2, x (, ). Rozdělení N(0; ) s parametry µ = 0 a = se nazývá

Více

Financial calculus Chapter 6 Bigger models

Financial calculus Chapter 6 Bigger models Financial calculus Chapter 6 Bigger models Tomáš Hanzák Katedra pravděpodobnosti a matematické statistiky MFF UK Praha Seminář Stochastické modelování v ekonomii a financích 1.11. 2010 Tomáš Hanzák Financial

Více

Časové řady, typy trendových funkcí a odhady trendů

Časové řady, typy trendových funkcí a odhady trendů Časové řady, typy trendových funkcí a odhady trendů Jiří Neubauer Katedra ekonometrie FVL UO Brno kancelář 69a, tel 973 442029 email:jirineubauer@unobcz Jiří Neubauer (Katedra ekonometrie UO Brno) Časové

Více

MATEMATICKÁ STATISTIKA. Katedra matematiky a didaktiky matematiky Technická univerzita v Liberci

MATEMATICKÁ STATISTIKA.   Katedra matematiky a didaktiky matematiky Technická univerzita v Liberci MATEMATICKÁ STATISTIKA Dana Černá http://www.fp.tul.cz/kmd/ Katedra matematiky a didaktiky matematiky Technická univerzita v Liberci Matematická statistika Matematická statistika se zabývá matematickým

Více

Časové řady, typy trendových funkcí a odhady trendů

Časové řady, typy trendových funkcí a odhady trendů Statistika II Katedra ekonometrie FVL UO Brno kancelář 69a, tel 973 442029 email:jirineubauer@unobcz Stochastický proces Posloupnost náhodných veličin {Y t, t = 0, ±1, ±2 } se nazývá stochastický proces

Více

Matematika 2 LS 2012/13. Prezentace vznikla na základě učebního textu, jehož autorem je doc. RNDr. Mirko Rokyta, CSc. J. Stebel Matematika 2

Matematika 2 LS 2012/13. Prezentace vznikla na základě učebního textu, jehož autorem je doc. RNDr. Mirko Rokyta, CSc. J. Stebel Matematika 2 Matematika 2 13. přednáška Obyčejné diferenciální rovnice Jan Stebel Fakulta mechatroniky, informatiky a mezioborových studíı Technická univerzita v Liberci jan.stebel@tul.cz http://bacula.nti.tul.cz/~jan.stebel

Více

z Matematické statistiky 1 1 Konvergence posloupnosti náhodných veličin

z Matematické statistiky 1 1 Konvergence posloupnosti náhodných veličin Příklady k procvičení z Matematické statistiky Poslední úprava. listopadu 207. Konvergence posloupnosti náhodných veličin. Necht X, X 2... jsou nezávislé veličiny s rovnoměrným rozdělením na [0, ]. Definujme

Více

Pravděpodobnost a statistika

Pravděpodobnost a statistika Pravděpodobnost a statistika Bodové odhady a intervaly spolehlivosti Vilém Vychodil KMI/PRAS, Přednáška 10 Vytvořeno v rámci projektu 963/011 FRVŠ V. Vychodil (KMI/PRAS, Přednáška 10) Bodové odhady a intervaly

Více

Vlastnosti odhadů ukazatelů způsobilosti

Vlastnosti odhadů ukazatelů způsobilosti Vlastnosti odhadů ukazatelů způsobilosti Jiří Michálek CQR při Ústavu teorie informace a automatizace AV ČR v Praze Úvod Ve výzkumné zprávě č 06 Odhady koeficientů způsobilosti a jejich vlastnosti viz

Více

Pravděpodobnost a statistika (BI-PST) Cvičení č. 4

Pravděpodobnost a statistika (BI-PST) Cvičení č. 4 Pravděpodobnost a statistika (BI-PST) Cvičení č. 4 J. Hrabáková, I. Petr, F. Štampach, D. Vašata Katedra aplikované matematiky Fakulta informačních technologií České vysoké učení technické v Praze ZS 2014/2015

Více

Mgr. Rudolf Blažek, Ph.D. prof. RNDr. Roman Kotecký Dr.Sc.

Mgr. Rudolf Blažek, Ph.D. prof. RNDr. Roman Kotecký Dr.Sc. Náhodné veličiny III Mgr. Rudolf Blažek, Ph.D. prof. RNDr. Roman Kotecký Dr.Sc. Katedra teoretické informatiky Fakulta informačních technologií České vysoké učení technické v Praze c Rudolf Blažek, Roman

Více

Odhad parametrů N(µ, σ 2 )

Odhad parametrů N(µ, σ 2 ) Odhad parametrů N(µ, σ 2 ) Mějme statistický soubor x 1, x 2,, x n modelovaný jako realizaci náhodného výběru z normálního rozdělení N(µ, σ 2 ) s neznámými parametry µ a σ. Jaký je maximální věrohodný

Více

Derivace funkce. Přednáška MATEMATIKA č Jiří Neubauer

Derivace funkce. Přednáška MATEMATIKA č Jiří Neubauer Přednáška MATEMATIKA č. 9-11 Katedra ekonometrie FEM UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Šotová, J., Doudová, L. Diferenciální počet funkcí jedné proměnné Motivační příklady

Více

8.1. Definice: Normální (Gaussovo) rozdělení N(µ, σ 2 ) s parametry µ a. ( ) ϕ(x) = 1. označovat písmenem U. Její hustota je pak.

8.1. Definice: Normální (Gaussovo) rozdělení N(µ, σ 2 ) s parametry µ a. ( ) ϕ(x) = 1. označovat písmenem U. Její hustota je pak. 8. Normální rozdělení 8.. Definice: Normální (Gaussovo) rozdělení N(µ, ) s parametry µ a > 0 je rozdělení určené hustotou ( ) f(x) = (x µ) e, x (, ). Rozdělení N(0; ) s parametry µ = 0 a = se nazývá normované

Více

AVDAT Mnohorozměrné metody, metody klasifikace

AVDAT Mnohorozměrné metody, metody klasifikace AVDAT Mnohorozměrné metody, metody klasifikace Josef Tvrdík Katedra informatiky Přírodovědecká fakulta Ostravská univerzita Mnohorozměrné metody Regrese jedna náhodná veličina je vysvětlována pomocí jiných

Více

Úvodní informace. 17. února 2018

Úvodní informace. 17. února 2018 Úvodní informace Funkce více proměnných Přednáška první 17. února 2018 Obsah 1 Úvodní informace. 2 Funkce více proměnných Definiční obor Limita a spojitost Derivace, diferencovatelnost, diferenciál Úvodní

Více

MATEMATICKÁ STATISTIKA

MATEMATICKÁ STATISTIKA MATEMATICKÁ STATISTIKA 1. Úvod. Matematická statistika se zabývá vyšetřováním zákonitostí, které v sobě obsahují prvek náhody. Zpracováním hodnot, které jsou výstupem sledovaného procesu, se snažíme popsat

Více

Pravděpodobnost a aplikovaná statistika

Pravděpodobnost a aplikovaná statistika Pravděpodobnost a aplikovaná statistika MGR. JANA SEKNIČKOVÁ, PH.D. 2. KAPITOLA PODMÍNĚNÁ PRAVDĚPODOBNOST 3. KAPITOLA NÁHODNÁ VELIČINA 9.11.2017 Opakování Uveďte příklad aplikace geometrické definice pravděpodobnosti

Více

Zápo tová písemná práce. 1 z p edm tu 01RMF varianta A

Zápo tová písemná práce. 1 z p edm tu 01RMF varianta A Zápo tová písemná práce. 1 z p edm tu 1MF varianta A tvrtek 19. listopadu 215, 13:215:2 ➊ (5 bod ) Nech f (x), g(x) L 1 () a f (x) dx = A, x f (x) dx = µ, Vypo ítejte, emu se rovná z( f g)(z) dz. g(x)

Více

Numerické řešení diferenciálních rovnic

Numerické řešení diferenciálních rovnic Numerické řešení diferenciálních rovnic Omezení: obyčejné (nikoli parciální) diferenciální rovnice, Cauchyho počáteční úloha, pouze jedna diferenciální rovnice 1. řádu 1/1 Numerické řešení diferenciálních

Více

Úvod do analýzy časových řad

Úvod do analýzy časových řad Přednáška STATISTIKA II - EKONOMETRIE Katedra ekonometrie FEM UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Posloupnost náhodných veličin {Y t, t = 0, ±1, ±2... } se nazývá stochastický

Více

Bayesovské metody. Mnohorozměrná analýza dat

Bayesovské metody. Mnohorozměrná analýza dat Mnohorozměrná analýza dat Podmíněná pravděpodobnost Definice: Uvažujme náhodné jevy A a B takové, že P(B) > 0. Podmíněnou pravěpodobností jevu A za podmínky, že nastal jev B, nazýváme podíl P(A B) P(A

Více

Spojité deterministické modely I 1. cvičná písemka

Spojité deterministické modely I 1. cvičná písemka Spojité deterministické modely I 1. cvičná písemka I. část 1.ajděteoecnéřešenírovnice tx xttg x t. 2.Rozhodnětezdapočátečníúloha x t 3 x xjejednoznačněřešitelná.odpověď zdůvodněte. 3. ajděte první tři

Více

Od Náhodné Procházky Ke Spojitým Modelům. Silvie Kafková. 1.prosince 2014, FIMA

Od Náhodné Procházky Ke Spojitým Modelům. Silvie Kafková. 1.prosince 2014, FIMA Od Náhodné Procházky Ke Spojitým Modelům Silvie Kafková 1.prosince 2014, FIMA Obsah 1 Motivace 2 3 Aplikace náhodné procházky 4 Jednoduchý model ceny akcie Motivace Obsah 1 Motivace 2 3 Aplikace náhodné

Více

18 Fourierovy řady Úvod, základní pojmy

18 Fourierovy řady Úvod, základní pojmy M. Rokyta, MFF UK: Aplikovaná matematika III kap. 18: Fourierovy řady 7 18 Fourierovy řady 18.1 Úvod, základní pojmy Otázka J. Fouriera: Lze každou periodickou funkci napsat jako součet nějakých "elementárních"

Více

Greenova funkce pro dvoubodové okrajové úlohy pro obyčejné diferenciální rovnice

Greenova funkce pro dvoubodové okrajové úlohy pro obyčejné diferenciální rovnice Greenova funkce pro dvoubodové okrajové úlohy pro obyčejné diferenciální rovnice Jan Tomeček Tento stručný text si klade za cíl co nejrychlejší uvedení do teorie Greenových funkcí pro obyčejné diferenciální

Více

Matematika 4 FSV UK, LS Miroslav Zelený

Matematika 4 FSV UK, LS Miroslav Zelený Matematika 4 FSV UK, LS 2017-18 Miroslav Zelený 13. Diferenční rovnice 14. Diferenciální rovnice se separovanými prom. 15. Lineární diferenciální rovnice prvního řádu 16. Lineární diferenciální rovnice

Více

12 Obyčejné diferenciální rovnice a jejich soustavy

12 Obyčejné diferenciální rovnice a jejich soustavy 12 Obyčejné diferenciální rovnice a jejich soustavy 121 Úvod - opakování Opakování z 1 ročníku (z kapitoly 5) Definice 121 Rovnice se separovanými proměnnými je rovnice tvaru Návod k řešení: Pokud g(c)

Více

Variační počet 2. Prof. RNDr. Olga Krupková, DrSc. Autorizovaný zápis přednášek (letní semestr 2004/2005) Zapsal Jan Šustek

Variační počet 2. Prof. RNDr. Olga Krupková, DrSc. Autorizovaný zápis přednášek (letní semestr 2004/2005) Zapsal Jan Šustek Prof. RNDr. Olga Krupková, DrSc. Autorizovaný zápis přednášek (letní semestr 2004/2005) Zapsal Jan Šustek Obsah Seznam použitých symbolů a konvencí.............................................. 2 0. Opakování.........................................................................

Více

15. T e s t o v á n í h y p o t é z

15. T e s t o v á n í h y p o t é z 15. T e s t o v á n í h y p o t é z Na základě hodnot náhodného výběru činíme rozhodnutí o platnosti hypotézy o hodnotách parametrů rozdělení nebo o jeho vlastnostech. Rozeznáváme dva základní typy testů:

Více

Změna hodnoty pozice v důsledku změn tržních cen.

Změna hodnoty pozice v důsledku změn tržních cen. Tržní riziko Změna hodnoty pozice v důsledku změn tržních cen. Akciové riziko Měnové riziko Komoditní riziko Úrokové riziko Odvozená rizika... riz. volatility, riz. korelace Pozice (saldo hodnoty očekávaných

Více

Matematické modelování elmg. polí 3. kap.: Elmg. vlnění

Matematické modelování elmg. polí 3. kap.: Elmg. vlnění Matematické modelování elmg. polí 3. kap.: Elmg. vlnění Dalibor Lukáš Katedra aplikované matematiky FEI VŠB Technická univerzita Ostrava email: dalibor.lukas@vsb.cz http://www.am.vsb.cz/lukas/ Text byl

Více

5. B o d o v é o d h a d y p a r a m e t r ů

5. B o d o v é o d h a d y p a r a m e t r ů 5. B o d o v é o d h a d y p a r a m e t r ů Na základě hodnot náhodného výběru z rozdělení určitého typu odhadujeme parametry tohoto rozdělení, tak aby co nejlépe odpovídaly hodnotám výběru. Formulujme

Více

PRIMITIVNÍ FUNKCE. Primitivní funkce primitivní funkce. geometrický popis integrály 1 integrály 2 spojité funkce konstrukce prim.

PRIMITIVNÍ FUNKCE. Primitivní funkce primitivní funkce. geometrický popis integrály 1 integrály 2 spojité funkce konstrukce prim. PRIMITIVNÍ FUNKCE V předchozích částech byly zkoumány derivace funkcí a hlavním tématem byly funkce, které derivace mají. V této kapitole se budou zkoumat funkce, které naopak jsou derivacemi jiných funkcí

Více

11. přednáška 10. prosince Kapitola 3. Úvod do teorie diferenciálních rovnic. Obyčejná diferenciální rovnice řádu n (ODR řádu n) je vztah

11. přednáška 10. prosince Kapitola 3. Úvod do teorie diferenciálních rovnic. Obyčejná diferenciální rovnice řádu n (ODR řádu n) je vztah 11. přednáška 10. prosince 2007 Kapitola 3. Úvod do teorie diferenciálních rovnic. Obyčejná diferenciální rovnice řádu n (ODR řádu n) je vztah F (x, y, y, y,..., y (n) ) = 0 mezi argumentem x funkce jedné

Více

MATEMATIKA III. Olga Majlingová. Učební text pro prezenční studium. Předběžná verze

MATEMATIKA III. Olga Majlingová. Učební text pro prezenční studium. Předběžná verze Fakulta strojního inženýrství Univerzity J. E. Purkyně v Ústí nad Labem Pasteurova 7 Tel.: 475 285 511 400 96 Ústí nad Labem Fax: 475 285 566 Internet: www.ujep.cz E-mail: kontakt@ujep.cz MATEMATIKA III

Více