ISS Numerické cvičení / Numerical exercise 6 Honza Černocký, FIT VUT Brno, December 14, 2016
|
|
- Ludmila Kučerová
- před 8 lety
- Počet zobrazení:
Transkript
1 ISS Numerické cvičení / Numerical exercise Honza Černocký, FIT VUT Brno, December 14, 01 Číslicové filtry / Digital filters Číslicový filtr je zadaný následujícím schématem / A digital filter is given by its scheme: 1. Najděte jeho diferenční rovnici / Determine its difference equation.. Proveďte Z-transformaci této rovnice / Perform Z-transform of this equation. 3. Najděte přenosovou funkci filtru H(z) = B(z) B(z). / Find the transfer function of the filter H(z) =. A(z) A(z) 4. Napište hodnoty koeficientů b k čitatele a a k jmenovatele / write values of coefficients b k of the numerator and a k of the denominator. 5. Upravte H(z) na tvar vhodný pro hledání kořenů polynomů. / Modify H(z) to allow for finding roots of polynomials.. Najděte kořeny polynomu v čitateli. / Find roots of polynomial in the numerator. 7. Najděte kořeny polynomu ve jmenovateli. / Find roots of polynomial in the denominator. 8. Převeďte H(z) do tvaru obsahujícího nulové body a póly / Convert H(z) to the form including zeros and poles. 9. Zakreslete nuly a póly do komplexní roviny z. Nezapomeňte vyznačit jednotkovou kružnici. / Draw the zeros and poles to complex plane z. Draw also the unit circle. 10. Ověřte stabilitu filtru / Check the stability of the filter. 11. Pro libovolnou normovanou kruhovou frekvenci ω 1 [0, π] graficky vyznačte, jak budete počítat hodnotu frekvenční charakteristiky pro tuto frekvenci. Pomůcka: vycházíme z H(z) přepsané pomocí nul a pólů. Nahradíme z za e jω 1 a uvědomíme si, že bod e jω 1 leží na jednotkové kružnici. Namalujeme vektory z nulových bodů (e jω 1 n i ) jednou barvou a vektory z pólů (e jω 1 p i ) jinou barvou. / Help: we depart from H(z) written with poles and zeros. We substitute z for e jω 1 and remember that point e jω 1 is on the unit circle. We draw vectors from zeros (e jω 1 n i ) with one color and vectors from poles (e jω 1 p i ) with a different color. 1. Určete modul a argument frekvenční charakteristiky filtru na normované kruhové frekvenci ω 1 = 0 rad. / Estimate the magnitude and phase of the frequency response of the filter at normalized angular frequency ω 1 = 0 rad. 13. Dtto pro ω 1 = π rad. / Dtto for ω 1 = π rad. 14. Dtto pro ω 1 = 0.999π rad. Proč ne π? / Dtto for ω 1 = 0.999π rad. Why not π? 15. Zakreslete od ruky celý průběh frekvenční charakteristiky a porovnejte jej s průběhem vypočítaným pomocí Matlabu (ukáže vyučující). / Try to draw the complete frequency response and compare it with the one computed by Matlab (shown by the tutor). 1
2 Náhodné procesy / Random processes Následující příklady doporučuji počítat s podporou nějakého tabulkového procesoru Microsoft Excel, Libre Office Calc, Google Sheets, atd. nebo se podívat do již hotového řešení. / For the following exercise, I recommend to use a spread-sheet foftware Microsoft Excel, Libre Office Calc, Google Sheets, etc., or to consult the solution in: edit?usp=sharing Souborové odhady parametrů / Ensemble estimates of parameters Máme k disposici Ω = 10 realizací náhodného procesu s diskrétním časem. Pro čas n = 5 měly realizace tyto hodnoty ξ ω [n]: / We have Ω = 10 realizations of a random process. For time n = 5, the realizations had the following values ξ ω [n]: // Odhadněte střední hodnotu a[n] pro n = 5 / Estimate the mean value a[n] for n = Odhadněte rozptyl D[n] pro n = 5 / Estimate the dispersion D[n] for n = Odhadněte směrodatnou odchylku σ[n] pro n = 5 / Estimate the standard deviation (root mean square, RMS) σ[n] for for n = Předpokládejte, že je signál stacionární. Odhadněte tytéž parametry pro čas n = 7. / Suppose, that the signal is stationary. Estimate the same parameters for time n = 7. Distribuční funkce / Cummulative probability distribution function 0. Odhadněte distribuční funkci F (x, n) pro n = 5. Doporučený krok na ose x je 0.5. / Estimate the cummulative probability distribution function (CPDF) F (x, n) for n = 5. The recommended step on x axis is Určete pravděpodobnost P {ξ[5].5}. / Determine the probability P {ξ[5].5}. Funkce hustoty rozdělení pravděpodobnosti / Probability density function. Rozdělte osu x na intevaly ( chlívky ), spočítejte a do grafu nakrelete počty hodnot (counts) v jednotlivých chlívcích. Doporučená šířka chlívku je 0.5. / Divide the x axis into intervals, count and plot the counts of the values of ξ[5] falling into these intervals. The recommended width of interval is Odhadněte a nakreslete pravděpodobnosti, že se bude hodnota ξ[5] vyskytovat v daném chlívku. / Estimate and plot probabilities that the value ξ[5] will occur in given interval. 4. Odhadněte a nakrelete funkci hustoty rozdělení pravděpodobnosti p(x, n) pro n = 5. / Estimate and plot probability density function p(x, n) for n = Ověřte numericky, že / Verify numerically that p(x, n)dx = 1.
3 . Numericky spočítejte střední hodnotu podle definičního vztahu / Numerically compute the mean value according to the definition formula a[n] = xp(x, n)dx, 7. Numericky spočítejte rozptyl podle definičního vztahu / Numerically compute the dispersion according to the definition formula D[n] = (x a[n]) p(x, n)dx. Sdružená funkce hustoty rozldělení pravděpodobnosti a korelační koeficient / Joint probability density function and correlation coefficient Na Ω = realizacích byly zjištěny pro n 1 = 5 a n = 10 tyto sdužené výskyty hodnot, tj. že se hodnota ξ[n 1 ] vyskytla v intervalu hodnot x 1 v řádku tabulky a pro stejnou realizaci se vyskytla ξ[n ] v intervalu hodnot x ve sloupci tabulky. Tabulka obsahuje prakticky D histogram. / On Ω = realizations, the following joints counts were found for n 1 = 5 and n = 10. A joint occurrence means that ξ[n 1 ] occurred in interval x 1 in the row of the table and in the same realization, ξ[n ] occurred in interval x in the column of the table. The table actually contains a D histogram. x 1 / x Odhadněte sdružené pravděpodobnosti, že se hodnota ξ[n 1 ] vyskytla v intervalu hodnot x 1 v řádku tabulky a zároveň se vyskytla ξ[n ] v intervalu hodnot x ve sloupci tabulky. / Estimate joint probabilities, that ξ[n 1 ] occurred in interval x 1 in the row of the table and in the same realization, ξ[n ] occurred in interval x in the column of the table. 9. Odhadněte sdruženou funkci hustoty rozdělení pravděpodobnosti p(x 1, x, n 1, n ). / Estimate joint probability density function p(x 1, x, n 1, n ). 30. Ověřte numericky že / Verify numerically that: x 1 x p(x 1, x, n 1, n )dx 1 dx = Odhadněte korelační koeficient R(5, 10) pomocí: / Estimate correlation coefficient R(5, 10) with the help of: R[n 1, n ] = p(x 1, x, n 1, n )x 1 x dx 1 dx x x 1 Časové odhady / Temporal estimates Jedna realizace ergodického náhodného signálu má N = vzorků o hodnotách (pro n = ) / One realization of random signal has values (for n = ): x[n] =
4 3. * Odhadněte jeho střední hodnotu / Estimate its mean value 33. * Odhadněte jeho varianci / Estimate its dispersion 34. * Odhadněte jeho směrodatnou odchylku / Estimate its standard deviation. 35. Proveďte vychýlený odhad jeho korelačních koeficientů / Perform biased estimation of its correlation coefficients. ˆR[k] = 1 N N 1 n=0 x[n]x[n + k] 3. Proveďte nevychýlený odhad jeho korelačních koeficientů. Komentujte spolehlivost tohoto odhadu pro velká k. / Perform unbiased estimation of its correlation coefficients. Comment on the reliability of this estimate for big values of k. ˆR[k] = N 1 1 x[n]x[n + k] N k Spektrální hustota výkonu (PSD) / Power spectral density V tabulce jsou dány koeficienty DFT zadaného signálu x[n] a její moduly / The table gives the DFT coefficients of x[n] and their magnitudes: n=0 k X[k] X[k] j j j j j j Odhadněte spektrální hustotu výkonu pomocí DFT. Nakrelete ji pro použitelné frekvence, tedy normované frekvence od 0 do 1. Na vodorovné ose nechť jsou normované frekvence. / Estimate power spectral density with the help of DFT. Plot it for useable frequencies, i.e. for normalized frequency from 0 to 1. Put normalized frequency on the horizontal axis. G( k N ) = X[k] N 38. Určete, na které normované frekvenci leží maximum spektrální hustoty výkonu. / Determine the normalized frequency of maximum PSD. 39. Ověřte, že frekvence odpovídá zhruba tomu, jak je x[n] periodický. / Verify, that this frequency approximately corresponds to how x[n] is periodic. Průchod náhodného signálu filtrem / Filtering of a random signal 40. Signál x[n] je filtrován filtrem s přenosovou funkcí H(z) = 1 z 1. Určete, zda a jak se změní maximum jeho PSD. / Signal x[n] is filtered by a filter with transfer function H(z) = 1 z 1. Determine, if and how the maximum of its PSD will change. Help: 4
5 ω [rad] 1 e jω 1 e jω j 1 π j 4π j 3 π j 4 5
Náhodné signály. Honza Černocký, ÚPGM
Náhodné signály Honza Černocký, ÚPGM Signály ve škole a v reálném světě Deterministické Rovnice Obrázek Algoritmus Kus kódu } Můžeme vypočítat Málo informace! Náhodné Nevíme přesně Pokaždé jiné Především
ÚPGM FIT VUT Brno,
Náhodné signály Jan Černocký ÚPGM FIT VUT Brno, cernocky@fit.vutbr.cz 1 Náhodné signály deterministické signály (můžeme je zapsat rovnicí) mají jednu zásadní nevýhodu nesou velmi málo informace (např.
Karta předmětu prezenční studium
Karta předmětu prezenční studium Název předmětu: Číslo předmětu: 545-0250 Garantující institut: Garant předmětu: Ekonomická statistika Institut ekonomiky a systémů řízení RNDr. Radmila Sousedíková, Ph.D.
ÚPGM FIT VUT Brno,
Systémy s diskrétním časem Jan Černocký ÚPGM FIT VUT Brno, cernocky@fit.vutbr.cz 1 LTI systémy v tomto kursu budeme pracovat pouze se systémy lineárními a časově invariantními. Úvod k nim jsme viděli již
Uni- and multi-dimensional parametric tests for comparison of sample results
Uni- and multi-dimensional parametric tests for comparison of sample results Jedno- a více-rozměrné parametrické testy k porovnání výsledků Prof. RNDr. Milan Meloun, DrSc. Katedra analytické chemie, Universita
Obrábění robotem se zpětnovazební tuhostí
Obrábění robotem se zpětnovazební tuhostí Odbor mechaniky a mechatroniky ČVUT v Praze, Fakulta strojní Student: Yaron Sela Vedoucí: Prof. Ing. Michael Valášek, DrSc Úvod Motivace Obráběcí stroj a důležitost
Gymnázium, Brno, Slovanské nám. 7, SCHEME OF WORK Mathematics SCHEME OF WORK. cz
SCHEME OF WORK Subject: Mathematics Year: first grade, 1.X School year:../ List of topisc # Topics Time period Introduction, repetition September 1. Number sets October 2. Rigtht-angled triangle October,
MATEMATICKÁ STATISTIKA - XP01MST
MATEMATICKÁ STATISTIKA - XP01MST 1. Úvod. Matematická statistika (statistics) se zabývá vyšetřováním zákonitostí, které v sobě obsahují prvek náhody. Zpracováním hodnot, které jsou výstupem sledovaného
Zápočtová písemka z Matematiky III (BA04) skupina A
skupina A 0 pro x < 1, ae x pro x 1, ), Pravděpodobnost P (X ) a P (X =.). E (X) a E ( X 1). Hustotu transformované náhodné veličiny Y = (X + 1). F(x) = x 3 pro x (0, 9), Hustotu f(x). Pravděpodobnost
Gymnázium, Brno, Slovanské nám. 7 WORKBOOK. Mathematics. Teacher: Student:
WORKBOOK Subject: Teacher: Student: Mathematics.... School year:../ Conic section The conic sections are the nondegenerate curves generated by the intersections of a plane with one or two nappes of a cone.
10. cvičení z PST. 5. prosince T = (n 1) S2 X. (n 1) s2 x σ 2 q χ 2 (n 1) (1 α 2 ). q χ 2 (n 1) 2. 2 x. (n 1) s. x = 1 6. x i = 457.
0 cvičení z PST 5 prosince 208 0 (intervalový odhad pro rozptyl) Soubor (70, 84, 89, 70, 74, 70) je náhodným výběrem z normálního rozdělení N(µ, σ 2 ) Určete oboustranný symetrický 95% interval spolehlivosti
1 LPC. Jan Černocký, FIT VUT Brno, 15. května 2007
CZR - numerické cvičení - zadání a řešení Jan Černocký, FIT VUT Brno, 5. května 007 LPC je dán signál o -ti vzorcích x[0]... x[]: 0, 0.707,, 0.707, 0, -0.707, -, -0.707, 0, 0.707,, 0.707 Příklady. je možné
Lineární a adpativní zpracování dat. 3. Lineární filtrace I: Z-transformace, stabilita
Lineární a adpativní zpracování dat 3. Lineární filtrace I: Z-transformace, stabilita Daniel Schwarz Investice do rozvoje vzdělávání Osnova Opakování: signály, systémy, jejich vlastnosti a popis v časové
Stochastické signály (opáčko)
Stochastické signály (opáčko) Stochastický signál nemůžeme popsat rovnicí, ale pomocí sady parametrů. Hodit se bude statistika a pravděpodobnost (umíte). Tohle je jen miniminiminiopáčko, později probereme
SIGNÁLY A SOUSTAVY, SIGNÁLY A SYSTÉMY
SIGNÁLY A SOUSTAVY, SIGNÁLY A SYSTÉMY TEMATICKÉ OKRUHY Signály se spojitým časem Základní signály se spojitým časem (základní spojité signály) Jednotkový skok σ (t), jednotkový impuls (Diracův impuls)
WORKSHEET 1: LINEAR EQUATION 1
WORKSHEET 1: LINEAR EQUATION 1 1. Write down the arithmetical problem according the dictation: 2. Translate the English words, you can use a dictionary: equations to solve solve inverse operation variable
MKI Funkce f(z) má singularitu v bodě 0. a) Stanovte oblast, ve které konverguje hlavní část Laurentova rozvoje funkce f(z) v bodě 0.
MKI -00 Funkce f(z) má singularitu v bodě 0. a) Stanovte oblast, ve které konverguje hlavní část Laurentova rozvoje funkce f(z) v bodě 0. V jakém rozmezí se může pohybovat poloměr konvergence regulární
Určete zákon rozložení náhodné veličiny, která značí součet ok při hodu a) jednou kostkou, b) dvěma kostkami, c) třemi kostkami.
3.1. 3.2. Třikrát vystřelíme na cíl. Pravděpodobnost zásahu při každém výstřelu je p = 0,7. Určete: a) pravděpodobnostní funkci počtu zásahů při třech nezávislých výsledcích, b) distribuční funkci a její
Základy teorie pravděpodobnosti
Základy teorie pravděpodobnosti Náhodná veličina Roman Biskup (zapálený) statistik ve výslužbě, aktuálně analytik v praxi ;-) roman.biskup(at)email.cz 12. února 2012 Statistika by Birom Základy teorie
Pomůcka pro cvičení: 3. semestr Bc studia
Pomůcka pro cvičení: 3. semestr Bc studia Statistika Základní pojmy balíček: Statistics Pro veškeré výpočty je třeba načíst balíček Statistic. Při řešení můžeme použít proceduru infolevel[statistics]:=1,
Dynamic Signals. Ananda V. Mysore SJSU
Dynamic Signals Ananda V. Mysore SJSU Static vs. Dynamic Signals In principle, all signals are dynamic; they do not have a perfectly constant value over time. Static signals are those for which changes
Vold-Kalmanova řádová filtrace. JiříTůma
Vold-Kalmanova řádová filtrace JiříTůma Obsah Základy Kalmanovy filtrace Základy Vold-Kalmanovy filtrace algoritmus Globální řešení Příklady užití Vold-Kalmanovy řádové filtrace Kalmanův filtr ( n ) Process
KOMPLEXNÍ ČÍSLA INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ. Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky
KOMPLEXNÍ ČÍSLA Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro vyšší gymnázia Autoři projektu Student na prahu 21. století - využití ICT ve vyučování matematiky na gymnáziu INVESTICE
Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz
Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická
Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc.
Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika 010 1.týden (0.09.-4.09. ) Data, typy dat, variabilita, frekvenční analýza
STAVEBNICOVÝ PROGRAM PRO SIMULACI LINEÁRNÍCH ELEKTRONICKÝCH OBVOD
Abstract STAVEBNICOVÝ PROGRAM PRO SIMULACI LINEÁRNÍCH ELEKTRONICKÝCH OBVOD Juraj Valsa Ústav teoretické a experimentální elektrotechniky, Fakulta elektrotechniky a informatiky VUT v The paper describes
UŽITÍ KOHERENČNÍ FUNKCE PRO DISTRIBUOVANOU
UŽITÍ KOHERENČNÍ FUNKCE PRO DISTRIBUOVANOU ANALÝZU VÍCEKANÁLOVÝCH SIGNÁLŮ Robert Háva, Aleš Procházka Vysoká škola chemicko-technologická, Abstrakt Ústav počítačové a řídicí techniky Analýza vícekanálových
Zpracování studie týkající se průzkumu vlastností statistických proměnných a vztahů mezi nimi.
SEMINÁRNÍ PRÁCE Zadání: Data: Statistické metody: Zpracování studie týkající se průzkumu vlastností statistických proměnných a vztahů mezi nimi. Minimálně 6 proměnných o 30 pozorováních (z toho 2 proměnné
Introduction to MS Dynamics NAV
Introduction to MS Dynamics NAV (Item Charges) Ing.J.Skorkovský,CSc. MASARYK UNIVERSITY BRNO, Czech Republic Faculty of economics and business administration Department of corporate economy Item Charges
ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE. Matematika 0A4. Cvičení, letní semestr DOMÁCÍ ÚLOHY. Jan Šafařík
Vysoké učení technické v Brně Stavební fakulta ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE Matematika 0A4 Cvičení, letní semestr DOMÁCÍ ÚLOHY Jan Šafařík Brno c 200 (1) 120 krát jsme házeli hrací kostkou.
Téma 2: Pravděpodobnostní vyjádření náhodných veličin
0.05 0.0 0.05 0.0 0.005 Nominální napětí v pásnici Std Mean 40 60 80 00 0 40 60 Std Téma : Pravděpodobnostní vyjádření náhodných veličin Přednáška z předmětu: Spolehlivost a bezpečnost staveb 4. ročník
Číslicové filtry. Honza Černocký, ÚPGM
Číslicové filtry Honza Černocký, ÚPGM Aliasy Digitální filtry Diskrétní systémy Systémy s diskrétním časem atd. 2 Na co? Úprava signálů Zdůraznění Potlačení Detekce 3 Zdůraznění basy 4 Zdůraznění výšky
Analýza dat na PC I.
CENTRUM BIOSTATISTIKY A ANALÝZ Lékařská a Přírodovědecká fakulta, Masarykova univerzita Analýza dat na PC I. Popisná analýza v programu Statistica IBA výuka Základní popisná statistika Popisná statistika
Laboratorní úloha č. 8: Elektroencefalogram
Laboratorní úloha č. 8: Elektroencefalogram Cíle úlohy: Rozložení elektrod při snímání EEG signálu Filtrace EEG v časové oblasti o Potlačení nf a vf rušení o Alfa aktivita o Artefakty Spektrální a korelační
Uživatelská příručka. Xperia P TV Dock DK21
Uživatelská příručka Xperia P TV Dock DK21 Obsah Úvod...3 Přehled zadní strany stanice TV Dock...3 Začínáme...4 Správce LiveWare...4 Upgradování aplikace Správce LiveWare...4 Použití stanice TV Dock...5
Opakování z předmětu TES
Opakování z předmětu TES A3B35ARI 6..6 Vážení studenti, v následujících měsících budete každý týden z předmětu Automatické řízení dostávat domácí úkol z látky probrané v daném týdnu na přednáškách. Jsme
Náhodné (statistické) chyby přímých měření
Náhodné (statistické) chyby přímých měření Hodnoty náhodných chyb se nedají stanovit předem, ale na základě počtu pravděpodobnosti lze zjistit, která z možných naměřených hodnot je více a která je méně
Výběrové charakteristiky a jejich rozdělení
Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Statistické šetření úplné (vyčerpávající) neúplné (výběrové) U výběrového šetření se snažíme o to, aby výběrový
Náhodné chyby přímých měření
Náhodné chyby přímých měření Hodnoty náhodných chyb se nedají stanovit předem, ale na základě počtu pravděpodobnosti lze zjistit, která z možných naměřených hodnot je více a která je méně pravděpodobná.
Téma 2: Pravděpodobnostní vyjádření náhodných veličin
0.025 0.02 0.015 0.01 0.005 Nominální napětí v pásnici Std Mean 140 160 180 200 220 240 260 Std Téma 2: Pravděpodobnostní vyjádření náhodných veličin Přednáška z předmětu: Pravděpodobnostní posuzování
SIGNÁLY A LINEÁRNÍ SYSTÉMY
SIGNÁLY A LINEÁRNÍ SYSTÉMY prof. Ing. Jiří Holčík, CSc. holcik@iba.muni.cziba.muni.cz II. SIGNÁLY ZÁKLADNÍ POJMY SIGNÁL - DEFINICE SIGNÁL - DEFINICE Signál je jev fyzikální, chemické, biologické, ekonomické
Spektrální analýza a diskrétní Fourierova transformace. Honza Černocký, ÚPGM
Spektrální analýza a diskrétní Fourierova transformace Honza Černocký, ÚPGM Povídání o cosinusovce 2 Argument cosinusovky 0 2p a pak každé 2p perioda 3 Cosinusovka s diskrétním časem Úkol č. 1: vyrobit
6. ZÁKLADY STATIST. ODHADOVÁNÍ. Θ parametrický prostor. Dva základní způsoby odhadu neznámého vektoru parametrů bodový a intervalový.
6. ZÁKLADY STATIST. ODHADOVÁNÍ X={X 1, X 2,..., X n } výběr z rozdělení s F (x, θ), θ={θ 1,..., θ r } - vektor reálných neznámých param. θ Θ R k. Θ parametrický prostor. Dva základní způsoby odhadu neznámého
Angličtina v matematických softwarech 2 Vypracovala: Mgr. Bronislava Kreuzingerová
Angličtina v matematických softwarech 2 Vypracovala: Mgr. Bronislava Kreuzingerová Název školy Název a číslo projektu Název modulu Obchodní akademie a Střední odborné učiliště, Veselí nad Moravou Motivace
Cvičení 3. Přednášející: Mgr. Rudolf B. Blažek, Ph.D. prof. RNDr. Roman Kotecký, DrSc.
Cvičení 3 Přednášející: Mgr. Rudolf B. Blažek, Ph.D. prof. RNDr. Roman Kotecký, DrSc. Katedra počítačových systémů Katedra teoretické informatiky Fakulta informačních technologií České vysoké učení technické
NÁHODNÁ VELIČINA. 3. cvičení
NÁHODNÁ VELIČINA 3. cvičení Náhodná veličina Náhodná veličina funkce, která každému výsledku náhodného pokusu přiřadí reálné číslo. Je to matematický model popisující více či méně dobře realitu, který
Vlastnosti a modelování aditivního
Vlastnosti a modelování aditivního bílého šumu s normálním rozdělením kacmarp@fel.cvut.cz verze: 0090913 1 Bílý šum s normálním rozdělením V této kapitole se budeme zabývat reálným gaussovským šumem n(t),
Náhodné vektory a matice
Náhodné vektory a matice Jiří Militký Katedra textilních materiálů Technická Universita Liberec, Červeně označené slide jsou jen pro doplnění informací a nezkouší se. Symbolika A B Jev jistý S (nastane
4EK211 Základy ekonometrie
4EK211 Základy ekonometrie ZS 2016/17 Cvičení 3: Lineární regresní model LENKA FIŘTOVÁ KATEDRA EKONOMETRIE, FAKULTA INFORMATIKY A STATISTIKY VYSOKÁ ŠKOLA EKONOMICKÁ V PRAZE 1. Seznámení s EViews Upřesnění
Všechno, co jste chtěli vědět z teorie pravděpodobnosti, z teorie informace a
Všechno, co jste chtěli vědět z teorie pravděpodobnosti, z teorie informace a báli jste se zeptat Jedinečnou funkcí statistiky je, že umožňuje vědci číselně vyjádřit nejistotu v jeho závěrech. (G. W. Snedecor)
Semestrální projekt. Vyhodnocení přesnosti sebelokalizace VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ. Fakulta elektrotechniky a komunikačních technologií
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ Fakulta elektrotechniky a komunikačních technologií Semestrální projekt Vyhodnocení přesnosti sebelokalizace Vedoucí práce: Ing. Tomáš Jílek Vypracovali: Michaela Homzová,
CHAIN TRANSMISSIONS AND WHEELS
Second School Year CHAIN TRANSMISSIONS AND WHEELS A. Chain transmissions We can use chain transmissions for the transfer and change of rotation motion and the torsional moment. They transfer forces from
Poznámky k předmětu Aplikovaná statistika, 4. téma
Poznámky k předmětu Aplikovaná statistika, 4. téma 4. Náhodné vektory V praxi se nám může hodit postihnout více vlastností jednoho objektu najednou, např. výšku, váhu a pohlaví člověka; rychlost chemické
LPC. Jan Černocký ÚPGM FIT VUT Brno, cernocky@fit.vutbr.cz. FIT VUT Brno. LPC Jan Černocký, ÚPGM FIT VUT Brno 1/39
LPC Jan Černocký ÚPGM FIT VUT Brno, cernocky@fit.vutbr.cz FIT VUT Brno LPC Jan Černocký, ÚPGM FIT VUT Brno 1/39 Plán signálový model artikulačního traktu. proč lineární predikce. odhad koeficientů filtru
Pracovní text a úkoly ke cvičením MF002
Pracovní text a úkoly ke cvičením MF002 Ondřej Pokora, PřF MU, Brno 11. března 2013 1 Brownův pohyb (Wienerův proces) Základním stavebním kamenem simulací náhodných procesů popsaných pomocí stochastických
Teorie časových řad Test 2 Varianta A HODNOCENÍ (max. 45 bodů z 50 možných)
Teorie časových řad Test 2 Varianta A HODNOCENÍ (max. 45 bodů z 50 možných) 1. SPECIFIKACE (12 bodů): (1) Graf průběhu proměnných (1) Obě řady se chovají stejně, lze předpokládat jejich lineární vztah
SIGNÁLY A LINEÁRNÍ SYSTÉMY
SIGNÁLY A LINEÁRNÍ SYSTÉMY prof. Ing. Jiří Holčík, CSc. holcik@iba.muni.cz II. SIGNÁLY ZÁKLADNÍ POJMY SIGNÁL - DEFINICE SIGNÁL - DEFINICE Signál je jev fyzikální, chemické, biologické, ekonomické či jiné
Odhady Parametrů Lineární Regrese
Odhady Parametrů Lineární Regrese Mgr. Rudolf B. Blažek, Ph.D. prof. RNDr. Roman Kotecký, DrSc. Katedra počítačových systémů Katedra teoretické informatiky Fakulta informačních technologií České vysoké
Univerzita Pardubice Chemicko-technologická fakulta Katedra analytické chemie
Univerzita Pardubice Chemicko-technologická fakulta Katedra analytické chemie 12. licenční studium PYTHAGORAS Statistické zpracování dat 3.3 Tvorba nelineárních regresních modelů v analýze dat Semestrální
Seminář 6 statistické testy
Seminář 6 statistické testy Část I. Volba správného testu Chceme zjistit, zda se středeční a čtvrteční seminární skupiny liší ve výsledcích v 1. průběžné písemce ze statistiky. Chceme zjistit, zda 1. průběžná
Matematika I A ukázkový test 1 pro 2014/2015
Matematika I A ukázkový test 1 pro 2014/2015 1. Je dána soustava rovnic s parametrem a R x y + z = 1 x + y + 3z = 1 (2a 1)x + (a + 1)y + z = 1 a a) Napište Frobeniovu větu (existence i počet řešení). b)
Stavový model a Kalmanův filtr
Stavový model a Kalmanův filtr 2 prosince 23 Stav je veličina, kterou neznáme, ale chtěli bychom znát Dozvídáme se o ní zprostředkovaně prostřednictvím výstupů Příkladem může býapř nějaký zašuměný signál,
Fourierova transformace
Fourierova transformace Jean Baptiste Joseph Fourier (768-83) Jeho obdivovatel (nedatováno) Opáčko harmonických signálů Spojitý harmonický signál ( ) = cos( ω + ϕ ) x t C t C amplituda ω úhlová frekvence
Poznámky k předmětu Aplikovaná statistika, 4. téma
Poznámky k předmětu Aplikovaná statistika, 4. téma 4. Náhodné vektory V praxi se nám může hodit postihnout více vlastností jednoho objektu najednou, např. výšku, váhu a pohlaví člověka; rychlost chemické
Střední hodnota a rozptyl náhodné. kvantilu. Ing. Michael Rost, Ph.D.
Střední hodnota a rozptyl náhodné veličiny, vybraná rozdělení diskrétních a spojitých náhodných veličin, pojem kvantilu Ing. Michael Rost, Ph.D. Príklad Předpokládejme že máme náhodnou veličinu X která
Database systems. Normal forms
Database systems Normal forms An example of a bad model SSN Surnam OfficeNo City Street No ZIP Region President_of_ Region 1001 Novák 238 Liteň Hlavní 10 26727 Středočeský Rath 1001 Novák 238 Bystřice
Testy nezávislosti kardinálních veličin
Testy nezávislosti kardinálních veličin Komentované řešení pomocí programu R Ústav matematiky Fakulta chemicko inženýrská Vysoká škola chemicko-technologická v Praze Načtení vstupních dat Vstupní data
MĚŘENÍ ÚHLOVÝCH KMITŮ ZA ROTACE
26. mezinárodní konference DIAGO 27 TECHNICKÁ DIAGNOSTIKA STROJŮ A VÝROBNÍCH ZAŘÍZENÍ MĚŘENÍ ÚHLOVÝCH KMITŮ ZA ROTACE Jiří TŮMA VŠB Technická Univerzita Ostrava Osnova Motivace Kalibrace měření Princip
Cvičení 9. Posudek únosnosti ohýbaného prutu metodou LHS v programu FREET. Software FREET Simulace metodou LHS
Pravděpodobnostní posuzování konstrukcí 4. ročník bakalářského studia obor Konstrukce staveb Cvičení 9 Posudek únosnosti ohýbaného prutu metodou LHS v programu FREET Software FREET Simulace metodou LHS
Cvičení 3. Posudek únosnosti ohýbaného prutu. Software FREET Simulace metodou Monte Carlo Simulace metodou LHS
Spolehlivost a bezpečnost staveb, 4. ročník bakalářského studia (všechny obory) Cvičení 3 Posudek únosnosti ohýbaného prutu Software FREET Simulace metodou Monte Carlo Simulace metodou LHS Katedra stavební
UNIVERZITA OBRANY Fakulta ekonomiky a managementu. Aplikace STAT1. Výsledek řešení projektu PRO HORR2011 a PRO GRAM2011 3. 11.
UNIVERZITA OBRANY Fakulta ekonomiky a managementu Aplikace STAT1 Výsledek řešení projektu PRO HORR2011 a PRO GRAM2011 Jiří Neubauer, Marek Sedlačík, Oldřich Kříž 3. 11. 2012 Popis a návod k použití aplikace
Charakterizace rozdělení
Charakterizace rozdělení Momenty f(x) f(x) f(x) μ >μ 1 σ 1 σ >σ 1 g 1 g σ μ 1 μ x μ x x N K MK = x f( x) dx 1 M K = x N CK = ( x M ) f( x) dx ( xi M 1 C = 1 K 1) N i= 1 K i K N i= 1 K μ = E ( X ) = xf
1. Náhodný vektor (X, Y ) má diskrétní rozdělení s pravděpodobnostní funkcí p, kde. p(x, y) = a(x + y + 1), x, y {0, 1, 2}.
VIII. Náhodný vektor. Náhodný vektor (X, Y má diskrétní rozdělení s pravděpodobnostní funkcí p, kde p(x, y a(x + y +, x, y {,, }. a Určete číslo a a napište tabulku pravděpodobnostní funkce p. Řešení:
ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE
ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKULTA STAVEBNÍ OBOR GEODÉZIE A KARTOGRAFIE KATEDRA VYŠŠÍ GEODÉZIE název předmětu úloha/zadání název úlohy Základy fyzikální geodézie 3/19 Legendreovy přidružené funkce
Aktivita CLIL Chemie III.
Aktivita CLIL Chemie III. Škola: Gymnázium Bystřice nad Pernštejnem Jméno vyučujícího: Mgr. Marie Dřínovská Název aktivity: Balancing equations vyčíslování chemických rovnic Předmět: Chemie Ročník, třída:
Náhodný vektor a jeho charakteristiky
Náhodný vektor a jeho číselné charakteristiky 1 Náhodný vektor a jeho charakteristiky V následující kapitole budeme věnovat pozornost pouze dvourozměřnému náhodnému vektoru, i když uvedené pojmy a jejich
Praktická statistika. Petr Ponížil Eva Kutálková
Praktická statistika Petr Ponížil Eva Kutálková Zápis výsledků měření Předpokládejme, že známe hodnotu napětí U = 238,9 V i její chybu 3,3 V. Hodnotu veličiny zapíšeme na tolik míst, aby až poslední bylo
Transportation Problem
Transportation Problem ١ C H A P T E R 7 Transportation Problem The transportation problem seeks to minimize the total shipping costs of transporting goods from m origins (each with a supply s i ) to n
E(X) = np D(X) = np(1 p) 1 2p np(1 p) (n + 1)p 1 ˆx (n + 1)p. A 3 (X) =
Základní rozdělení pravděpodobnosti Diskrétní rozdělení pravděpodobnosti. Pojem Náhodná veličina s Binomickým rozdělením Bi(n, p), kde n je přirozené číslo, p je reálné číslo, < p < má pravděpodobnostní
Aplikace matematiky. Dana Lauerová A note to the theory of periodic solutions of a parabolic equation
Aplikace matematiky Dana Lauerová A note to the theory of periodic solutions of a parabolic equation Aplikace matematiky, Vol. 25 (1980), No. 6, 457--460 Persistent URL: http://dml.cz/dmlcz/103885 Terms
, 1. skupina (16:15-17:45) Jméno: se. Postup je třeba odůvodnit (okomentovat) nebo uvést výpočet. Výsledek bez uvedení jakéhokoliv
42206, skupina (6:5-7:45) Jméno: Zápočtový test z PSI Nezapomeňte podepsat VŠECHNY papíry, které odevzdáváte Škrtejte zřetelně a stejně zřetelně pište i věci, které platí Co je škrtnuto, nebude bráno v
Obsah Úvod Kapitola 1 Než začneme Kapitola 2 Práce s hromadnými daty před analýzou
Úvod.................................................................. 11 Kapitola 1 Než začneme.................................................................. 17 1.1 Logika kvantitativního výzkumu...........................................
Me neˇ nezˇ minimum ze statistiky Michaela S ˇ edova KPMS MFF UK Principy medicı ny zalozˇene na du kazech a za klady veˇdecke prˇı pravy 1 / 33
1 / 33 Méně než minimum ze statistiky Michaela Šedová KPMS MFF UK Principy medicíny založené na důkazech a základy vědecké přípravy Příklad Studie syndromu náhodného úmrtí dětí. Dvě skupiny: Děti, které
z Matematické statistiky 1 1 Konvergence posloupnosti náhodných veličin
Příklady k procvičení z Matematické statistiky Poslední úprava. listopadu 207. Konvergence posloupnosti náhodných veličin. Necht X, X 2... jsou nezávislé veličiny s rovnoměrným rozdělením na [0, ]. Definujme
Hi-Res Audio/DNC Headset MDR-NC750
Uživatelská příručka Hi-Res Audio/DNC Headset MDR-NC750 Obsah Začínáme...3 Úvod...3 Přehled... 3 Základy práce...4 Nošení náhlavní soupravy...4 Připojení náhlavní soupravy k vašemu zařízení... 4 Nastavení
ÚKOL 2 1886 22 5,77 5,00 5 2,531,003,056 -,869,113
ÚKOL 2 Jméno a příjmení: UČO: Imatrik. ročník: Úkol 2.1: V souboru EVS99_cvicny.sav zjistěte, zdali rozložení názoru na to, kdo by měl být odpovědný za zajištění bydlení (proměnná q54h), je normální. Řešte
Pravděpodobnost a matematická statistika
Pravděpodobnost a matematická statistika Příklady k přijímacím zkouškám na doktorské studium 1 Popisná statistika Určete aritmetický průměr dat, zadaných tabulkou hodnot x i a četností n i x i 1 2 3 n
X31EO2 - Elektrické obvody 2. Kmitočtové charakteristiky
X3EO - Elektrické obvody Kmitočtové charakteristiky Doc. Ing. Petr Pollák, CSc. Letní semestr 5/6!!! Volné šíření není povoleno!!! Fázory a spektra Fázor harmonického průběhu Û m = U m e jϕ ut) = U m sinωt
A Note on Generation of Sequences of Pseudorandom Numbers with Prescribed Autocorrelation Coefficients
KYBERNETIKA VOLUME 8 (1972), NUMBER 6 A Note on Generation of Sequences of Pseudorandom Numbers with Prescribed Autocorrelation Coefficients JAROSLAV KRAL In many applications (for example if the effect
Lineární a adaptivní zpracování dat. 3. SYSTÉMY a jejich popis ve frekvenční oblasti
Lineární a adaptivní zpracování dat 3. SYSTÉMY a jejich popis ve frekvenční oblasti Daniel Schwarz Osnova Opakování: systémy a jejich popis v časové oblasti Fourierovy řady Frekvenční charakteristika systémů
I. D i s k r é t n í r o z d ě l e n í
6. T y p y r o z d ě l e n í Poznámka: V odst. 5.5-5.10 jsme uvedli příklady náhodných veličin a jejich distribučních funkcí. Poznali jsme, že se od sebe liší svým typem. V příkladech 5.5, 5.6 a 5.8 jsme
Měření dat Filtrace dat, Kalmanův filtr
Měření dat Filtrace dat, Matematické metody pro ITS (11MAMY) Jan Přikryl Ústav aplikované matematiky ČVUT v Praze, Fakulta dopravní 3. přednáška 11MAMY čtvrtek 28. února 2018 verze: 2018-02-28 12:20 Obsah
základní vlastnosti, používané struktury návrhové prostředky MATLAB problém kvantování koeficientů
A0M38SPP - Signálové procesory v praxi - přednáška 4 2 Číslicové filtry typu FIR a IIR definice operace filtrace základní rozdělení FIR, IIR základní vlastnosti, používané struktury filtrů návrhové prostředky
Jiří Neubauer. Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel
Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Výsledky některých náhodných pokusů jsou přímo vyjádřeny číselně (např. při hodu kostkou padne 6). Náhodnou veličinou
Diskretizace. 29. dubna 2015
MSP: Domácí příprava č. 3 Vnitřní a vnější popis diskrétních systémů Dopředná Z-transformace Zpětná Z-transformace Řešení diferenčních rovnic Stabilita diskrétních systémů Spojování systémů Diskretizace
p(x) = P (X = x), x R,
6. T y p y r o z d ě l e n í Poznámka: V odst. 5.5-5.10 jsme uvedli příklady náhodných veličin a jejich distribučních funkcí. Poznali jsme, že se od sebe liší svým typem. V příkladech 5.5, 5.6 a 5.8 jsme
Náhodná veličina a rozdělení pravděpodobnosti
3.2 Náhodná veličina a rozdělení pravděpodobnosti Bůh hraje se světem hru v kostky. Jsou to ale falešné kostky. Naším hlavním úkolem je zjistit, podle jakých pravidel byly označeny, a pak toho využít pro
Parametrické přístupy k filtraci ultrazvukových signálů
České vysoké učení technické v Praze Fakulta elektrotechnická Katedra měření Parametrické přístupy k filtraci ultrazvukových signálů Bakalářská práce Luboš Kocourek 2010 Studijní program: Elektrotechnika