Symetrizace 1f a 3f spotřebičů Symetrizace 1f a 3f spotřebičů
|
|
- Přemysl Šmíd
- před 6 lety
- Počet zobrazení:
Transkript
1 Symetrizace 1f a 3f spotřebičů Symetrizace 1f a 3f spotřebičů V mnoha průmyslových aplikacích se setkáváme s velkými zařízeními připojenými na síť elektrické energie. Tyto spotřebiče by měly být symetrické, neboť přenos výkonu v tomto stavu způsobuje nejnižší činné ztráty. Proto provádíme tzv. symetrizaci spotřebiče, t.j. naším cílem je vytvořit celek, který bude zatěžovat všechny fáze rovnoměrně; samozřejmým požadavkem je, aby se procesem symetrizace nezvýšil dosavadní činný výkon spotřebiče. To, jak uvidíme dále, se nám podaří vhodnou kombinací indukčnosti a kapacity, které připojíme mezi jednotlivé fáze našeho spotřebiče. Symetrizace se může provádět nejen u stávajících 3f zařízení, ale i u 1f zařízení, které je nutno napájet třemi fázemi. To se využívá hlavně pro napájení energetických zařízení velkých výkonů - nad 500 kw. Začneme však nejprve reálnou admitancí, například G = 5 S: Z ní uděláme symetrickou 3-fázovou reálnou zátěž takto: Odvození: Uvažme zapojení obvodových prvků, označení a orientaci obvodových veličin podle schematu:
2 Mezi uzly 2 a 3 nechť je zapojena reálná zátěž o vodivosti G (S). Požadujeme, aby po připojení admitancí Y12 (S) a Y13 (S) byla zátěž reálná a symetrická; dalším požadavkem je, aby činný výkon odebíraný zátěží zůstal nezměněn, matematizujme tyto požadavky: # zachování činného výkonu: Y12 a Y13 jsou ryze imaginární, # výsledné zapojení neodebírá jalový výkon: Y12 = -Y13; položme Y12 = j.y, Y13 = -j.y, # symetrie odebíraných proudů: I1 = k.u1, I2 = k.u2, I3 = k.u3. Zaveďme označení fázových napětí v elektroenergetice obvyklým způsobem: U1 = U, U2 = U.a2, U3 = U.a, kde je operátor otočení v komplexní rovině o proti směru hodinových ručiček, přestože to řešení nevyžaduje, je výhodné položit, což jistě můžeme, znamená to jen volbu počátku měření času při přechodu od fázorů do časové oblasti. S uvážením těchto podmínek platí: I1 = I12 + I13 = j.y.(u1 - U2) - j.y.(u1 - U3) = j.y.u.(1 - a2) - j.y.u.(1 - a) = k.u1 = k.u I2 = I23 - I12 = G.(U2 - U3) - j.y.(u1 - U2) = G.U.(a2 - a) - j.y.u.(1 - a) = k.u2 = k.u.a2 I3 = -I23 - I13 = -G.(U2 - U3) - (-j.y).(u1 - U3) = -G.U.(a2 - a) + j.y.u.(1 - a) = k.u3 = k.u.a U, a, G jsou zadané veličiny, Y, k neznámé. Máme tedy 3 rovnice pro 2 neznámé, rovnice jsou ovšem lineárně závislé: součet levých stran je nulový na první pohled a pro součet pravých stran platí: k.u.(1 + a2 + a) = 0, neboť platí 1 + a2 + a = 0. Řešení soustavy je ve formě notebooku, výsledkem je: k = G a Y = -G /.
3 Vidíme, že úloha je splněna: proudy jsou G násobkem příslušných fázových napětí, navíc -podle předpokladu-. Celkový činný výkon je: P = Re{U.G.U} + Re{a2.U. (a2.u.g)* } = U2.G.(1 + a2.(a2)* + a.a*) = U2.G.(1 + a2 2 + a 2) = U2.G.(1 + a 4 + a 2) = U2.G.( ) = 3.U2.G Činný výkon původního zapojení před připojením symetrizačních členů byl: P = G.(.U)2 = 3.U2.G. Konec odvození. Stačí tedy zapojit mezi uzly 1-3 ideální kapacitu o velikosti admitance 5 / S (Siemens) a mezi uzly 1-2 ideální indukčnost o velikosti admitance 5 / S, a dostaneme z jednofázového spotřebiče trojfázový symetrický spotřebič. Nyní se však podívejme na obecnou 3f nesymetrickou zátěž. Zesymetrizujeme ji obdobným postupem jako u jedné reálné admitance (viz výše), a to tak, že postupně budeme aplikovat stejný postup symetrizace pro jednotlivé větve zvlášť. Využijeme skutečnosti, že paralelní spojení trojfázových symetrických reálných zátěží se chová jako symetrická reálná trojfázová zátěž. Navíc označení fází čísly 1,2,3 je libovolné při zachování jejich sledu, můžeme tedy při myšleném přečíslování fází postupovat u každé mezifázové zátěže obdobně, jak je uvedeno výše. Vše si nejlépe vysvětlíme na příkladu. Máme takový případ: Nejprve dosáhneme reálné zátěže mezi jednotlivými uzly, t.j. mezi uzly 1 a 2 připojíme admitanci 4j S, mezi uzly 2 a 3 admitanci -2j S a mezi uzly 3 a 1 admitanci -6j S. Vše přehledně zapíšeme do tabulky. větev 1-2 větev 2-3 větev 3-1 4j -2j -6j vykompenzováno Nyní je obvod vykompenzován, ale ještě ne zesymetrizován:
4 Postupme dále. Tento vykompenzovaný obvod považujeme za paralelní spojení třech jednoduchých jednofázových spotřebičů (jsou ale pokaždé mezi dvěma různými uzly), a s těmito oddělenými jednoduchými admitancemi provedeme symetrizaci, jako na začátku, každou admitanci zesymetrizujeme zvlášť. Pokud provádíme symetrizaci spotřebiče mezi uzly 1-2, pak mezi uzly 2-3 bude kapacita o velikosti admitance 3 / a mezi uzly 3-1 bude indukčnost o velikosti admitance 3 /. Pro symetrizaci spotřebiče, který je zapojen mezi uzly 3-1, platí analogický postup. Zkráceně řečeno, schema natáčíme vždy tak, aby se admitance G kryla s požadovanou admitancí z paralelní kombinace, kterou právě symetrizujeme, a zbývající větve dopočítáme podle schematu. Natočení totiž nemění sled fází. Pokračujeme dále v tabulce: větev 1-2 větev 2-3 větev 3-1 4j -2j -6j vykompenzováno -1j/ 1j/ příspěvky větví ze schematu 3j/ -3j/ příspěvky větví ze schematu 5j / -5j/ příspěvky větví ze schematu j (4 +4/ ) j (-2-2/ ) j (-6 +2/ ) suma sloupců V tabulce je důležitý poslední řádek, který je součtem všech příspěvků v dané větvi. Tyto hodnoty nám určují typ prvku a jeho velikost, který připojíme paralelně k odpovídající větvi. Jelikož uvažujeme obvod s jednou frekvencí napětí a proudů, je možno vždy nahradit paralelní kombinaci indukčnosti a kapacity jedním prvkem, indukčností či kapacitou podle výsledného znaménka admitance. Upozorněme, že velikosti admitancí jsou funkcemi frekvence, pro obecný obvod s obecným napájením tato náhrada možná není. Například k větvi mezi uzly 3-1 připojíme kondenzátor o velikosti admitance j(4 +4/ Výsledkem je tedy schema: ) S (kondenzátor, protože výraz je kladný).
5 Symetrizace byla provedena. Výsledné zařízení odebírá reálný výkon ze sítě. Z libovolné admitance lze tedy vytvořit symetrickou zátěž. V praxi se ale s explicitním vyjádřením admitance příliš často nesetkáváme. Daleko častější je způsob zadání například: Pro získání explicitního vyjádření, na které jsme zvyklí, použijeme následující vzorec, který je ilustrován výpočetem:
6 Dostali jsme explicitní vyjádření admitance. S těmito hodnotami dále nakládáme, jako v předchozím příkladě.
2.6. Vedení pro střídavý proud
2.6. Vedení pro střídavý proud Při výpočtu krátkých vedení počítáme většinou buď jen s činným odporem vedení (nn) nebo u vn s činným a induktivním odporem. 2.6.1. Krátká jednofázová vedení nn U krátkých
Fázorové diagramy pro ideální rezistor, skutečná cívka, ideální cívka, skutečný kondenzátor, ideální kondenzátor.
FREKVENČNĚ ZÁVISLÉ OBVODY Základní pojmy: IMPEDANCE Z (Ω)- charakterizuje vlastnosti prvku pro střídavý proud. Impedance je základní vlastností, kterou potřebujeme znát pro analýzu střídavých elektrických
Zadané hodnoty: R L L = 0,1 H. U = 24 V f = 50 Hz
. STŘÍDAVÉ JEDNOFÁOVÉ OBVODY Příklad.: V elektrickém obvodě sestávajícím ze sériové kombinace rezistoru reálné cívky a kondenzátoru vypočítejte požadované veličiny určete také charakter obvodu a nakreslete
METODICKÝ LIST Z ELEKTROENERGETIKY PRO 3. ROČNÍK řešené příklady
STŘEDNÍ PRŮMYSLOVÁ ŠKOLA ELEKTROTECHNICKÁ BRNO,KOUNICOVA16 METODICKÝ LIST Z ELEKTROENERGETIKY PRO 3. ROČNÍK řešené příklady Třída : K4 Název tématu : Metodický list z elektroenergetiky řešené příklady
Fyzika I. Obvody. Petr Sadovský. ÚFYZ FEKT VUT v Brně. Fyzika I. p. 1/36
Fyzika I. p. 1/36 Fyzika I. Obvody Petr Sadovský petrsad@feec.vutbr.cz ÚFYZ FEKT VUT v Brně Zdroj napětí Fyzika I. p. 2/36 Zdroj proudu Fyzika I. p. 3/36 Fyzika I. p. 4/36 Zdrojová a spotřebičová orientace
Kirchhoffovy zákony. Kirchhoffovy zákony
Kirchhoffovy zákony 1. Kirchhoffův zákon zákon o zachování elektrických nábojů uzel, větev obvodu... Algebraický součet všech proudů v uzlu se rovná nule Kirchhoffovy zákony 2. Kirchhoffův zákon zákon
Ekvivalence obvodových prvků. sériové řazení společný proud napětí na jednotlivých rezistorech se sčítá
neboli sériové a paralelní řazení prvků Rezistor Ekvivalence obvodových prvků sériové řazení společný proud napětí na jednotlivých rezistorech se sčítá Paralelní řazení společné napětí proudy jednotlivými
2. STŘÍDAVÉ JEDNOFÁZOVÉ OBVODY
2. STŘÍDAVÉ JEDNOFÁZOVÉ OBVODY Příklad 2.1: V obvodě sestávajícím ze sériové kombinace rezistoru reálné cívky a kondenzátoru vypočítejte požadované veličiny určete také charakter obvodu a nakreslete fázorový
C L ~ 5. ZDROJE A ŠÍŘENÍ HARMONICKÝCH. 5.1 Vznik neharmonického napětí. Vznik harmonického signálu Oscilátor příklad jednoduchého LC obvodu:
5. ZDROJE A ŠÍŘENÍ HARMONICKÝCH 5.1 Vznik neharmonického napětí Vznik harmonického signálu Oscilátor příklad jednoduchého LC obvodu: C L ~ Přístrojová technika: generátory Příčiny neharmonického napětí
Určeno pro posluchače bakalářských studijních programů FS
rčeno pro posluchače bakalářských studijních programů FS 3. STŘÍDAVÉ JEDNOFÁOVÉ OBVODY Příklad 3.: V obvodě sestávajícím ze sériové kombinace rezistoru, reálné cívky a kondenzátoru vypočítejte požadované
Symetrické stavy v trojfázové soustavě
Pro obvod na obrázku Symetrické stavy v trojfázové soustavě a) sestavte admitanční matici obvodu b) stanovte viděnou impedanci v uzlu 3 a meziuzlovou viděnou impedanci mezi uzly 1 a 2 a c) stanovte zdánlivý
ZÁKLADY ELEKTROTECHNIKY pro OPT
ZÁKLADY ELEKTROTECHNIKY pro OPT Přednáška Rozsah předmětu: 24+24 z, zk 1 Literatura: [1] Uhlíř a kol.: Elektrické obvody a elektronika, FS ČVUT, 2007 [2] Pokorný a kol.: Elektrotechnika I., TF ČZU, 2003
Maticí typu (m, n), kde m, n jsou přirozená čísla, se rozumí soubor mn veličin a jk zapsaných do m řádků a n sloupců tvaru:
3 Maticový počet 3.1 Zavedení pojmu matice Maticí typu (m, n, kde m, n jsou přirozená čísla, se rozumí soubor mn veličin a jk zapsaných do m řádků a n sloupců tvaru: a 11 a 12... a 1k... a 1n a 21 a 22...
Základní vztahy v elektrických
Základní vztahy v elektrických obvodech Ing. Martin Černík, Ph.D. Projekt ESF CZ.1.07/2.2.00/28.0050 Modernizace didaktických metod a inovace. Klasifikace elektrických obvodů analogové číslicové lineární
ANALYTICKÁ GEOMETRIE V ROVINĚ
ANALYTICKÁ GEOMETRIE V ROVINĚ Analytická geometrie vyšetřuje geometrické objekty (body, přímky, kuželosečky apod.) analytickými metodami. Podle prostoru, ve kterém pracujeme, můžeme analytickou geometrii
Identifikátor materiálu: VY_32_INOVACE_355
Identifikátor materiálu: VY_32_INOVACE_355 Anotace Autor Jazyk Očekávaný výstup Výuková prezentace.na jednotlivých snímcích jsou postupně odkrývány informace, které žák zapisuje či zakresluje do sešitu.
12. Elektrotechnika 1 Stejnosměrné obvody Kirchhoffovy zákony
. Elektrotechnika Stejnosměrné obvody Kirchhoffovy zákony . Elektrotechnika Kirchhoffovy zákony Při řešení elektrických obvodů, tedy různě propojených sítí tvořených zdroji, odpory (kapacitami a indukčnostmi)
9 Kolmost vektorových podprostorů
9 Kolmost vektorových podprostorů Od kolmosti dvou vektorů nyní přejdeme ke kolmosti dvou vektorových podprostorů. Budeme se zabývat otázkou, kdy jsou dva vektorové podprostory na sebe kolmé a jak to poznáme.
U1, U2 vnější napětí dvojbranu I1, I2 vnější proudy dvojbranu
DVOJBRANY Definice a rozdělení dvojbranů Dvojbran libovolný obvod, který je s jinými částmi obvodu spojen dvěma páry svorek (vstupní a výstupní svorky). K analýze chování obvodu postačí popsat daný dvojbran
A B C. 3-F TRAFO dává z každé fáze stejný výkon, takže každá cívka je dimenzovaná na P sv = 630/3 = 210 kva = VA
3-f transformátor 630 kva s převodem U1 = 22 kv, U2 = 400/231V je ve spojení / Y, vypočítejte svorkové proudy I1 a I2 a pak napětí a proudy cívek primáru a sekundáru, napište ve fázorovém tvaru I. K.z.
Cvičení 11. B1B14ZEL1 / Základy elektrotechnického inženýrství
Cvičení 11 B1B14ZEL1 / Základy elektrotechnického inženýrství Obsah cvičení 1) Výpočet proudů v obvodu Metodou postupného zjednodušování Pomocí Kirchhoffových zákonů Metodou smyčkových proudů 2) Nezatížený
3. Kmitočtové charakteristiky
3. Kmitočtové charakteristiky Po základním seznámení s programem ATP a jeho preprocesorem ATPDraw následuje využití jednotlivých prvků v jednoduchých obvodech. Jednotlivé příklady obvodů jsou uzpůsobeny
Obvodové prvky a jejich
Obvodové prvky a jejich parametry Ing. Martin Černík, Ph.D. Projekt ESF CZ.1.07/2.2.00/28.0050 Modernizace didaktických metod a inovace. Elektrický obvod Uspořádaný systém elektrických prvků a vodičů sloužící
Necht tedy máme přirozená čísla n, k pod pojmem systém lineárních rovnic rozumíme rovnice ve tvaru
2. Systémy lineárních rovnic V této kapitole se budeme zabývat soustavami lineárních rovnic s koeficienty z pole reálných případně komplexních čísel. Uvádíme podmínku pro existenci řešení systému lineárních
Výpočet napětí malé elektrické sítě
AB5EN - Výpočet úbytků napětí MUN a metodou postupného zjednodušování Výpočet napětí malé elektrické sítě Elektrická stejnosměrná soustava je zobrazená na obr.. Vypočítejte napětí v uzlech, a a uzlový
Transformátor trojfázový
Transformátor trojfázový distribuční transformátory přenášejí elektricky výkon ve všech 3 fázích v praxi lze použít: a) 3 jednofázové transformátory větší spotřeba materiálu v záloze stačí jeden transformátor
20ZEKT: přednáška č. 3
0ZEKT: přednáška č. 3 Stacionární ustálený stav Sériové a paralelní řazení odporů Metoda postupného zjednodušování Dělič napětí Dělič proudu Metoda superpozice Transfigurace trojúhelník/hvězda Metoda uzlových
Soustavy se spínanými kapacitory - SC. 1. Základní princip:
Obvody S - popis 1 Soustavy se spínanými kapacitory - S 1. Základní princip: Simulace rezistoru přepínaným kapacitorem viz známý obrázek! (a rovnice) Modifikace základního spínaného obvodu: Obr. 2.1: Zapojení
I. STEJNOSMĚ RNÉ OBVODY
Řešené příklady s komentářem Ing. Vítězslav Stýskala, leden 000 Katedra obecné elektrotechniky FEI, VŠB-Technická univerzita Ostrava stýskala, 000 Určeno pro posluchače bakalářských studijních programů
1.1 Shrnutí základních poznatků
1.1 Shrnutí základních poznatků Pojmem nádoba obvykle označujeme součásti strojů a zařízení, které jsou svým tvarem a charakterem namáhání shodné s dutými tělesy zatíženými vnitřním, popř. i vnějším tlakem.sohledemnatopovažujemezanádobyrůznápotrubíakotlovátělesa,alenapř.i
Vstupní signál protne zvolenou úroveň. Na základě získaných údajů se dá spočítat perioda signálu a kmitočet. Obrázek č.2
2. Vzorkovací metoda Určení kmitočtu z vzorkovaného průběhu. Tato metoda založena na pozorování vstupního signálu pomocí osciloskopu a nastavení určité úrovně, pro zjednodušování považujeme úroveň nastavenou
Elektronika ve fyzikálním experimentu
Elektronika ve fyzikálním experimentu Josef Lazar Ústav přístrojové techniky, AV ČR, v.v.i. E-mail: joe@isibrno.cz www: http://www.isibrno.cz/~joe/elektronika/ Elektrický obvod Analogie s kapalinou Základními
V následujícím obvodě určete metodou postupného zjednodušování hodnoty zadaných proudů, napětí a výkonů. Zadáno: U Z = 30 V R 6 = 30 Ω R 3 = 40 Ω R 3
. STEJNOSMĚNÉ OBVODY Příklad.: V následujícím obvodě určete metodou postupného zjednodušování hodnoty zadaných proudů, napětí a výkonů. Z 5 5 4 4 6 Schéma. Z = 0 V = 0 Ω = 40 Ω = 40 Ω 4 = 60 Ω 5 = 90 Ω
Základy elektrotechniky
Základy elektrotechniky 5. přednáška Elektrický výkon a energie 1 Základní pojmy Okamžitá hodnota výkonu je deinována: p = u.i [W; V, A] spotřebičová orientace - napětí i proud na impedanci Z mají souhlasný
TRANSFORMÁTORY Ing. Eva Navrátilová
STŘEDNÍ ŠOLA, HAVÍŘOV-ŠUMBAR, SÝOROVA 1/613 příspěvková organizace TRANSFORMÁTORY Ing. Eva Navrátilová - 1 - Transformátor jednofázový = netočivý elektrický stroj, který využívá elektromagnetickou indukci
Matematika Kvadratická rovnice. Kvadratická rovnice je matematický zápis, který můžeme (za pomoci ekvivalentních úprav) upravit na tvar
Kvadratická rovnice Kvadratická rovnice je matematický zápis, který můžeme (za pomoci ekvivalentních úprav) upravit na tvar ax 2 + bx + c = 0. x neznámá; v kvadratické rovnici se vyskytuje umocněná na
Vektory a matice. Obsah. Aplikovaná matematika I. Carl Friedrich Gauss. Základní pojmy a operace
Vektory a matice Aplikovaná matematika I Dana Říhová Mendelu Brno Obsah 1 Vektory Základní pojmy a operace Lineární závislost a nezávislost vektorů 2 Matice Základní pojmy, druhy matic Operace s maticemi
(Cramerovo pravidlo, determinanty, inverzní matice)
KMA/MAT1 Přednáška a cvičení, Lineární algebra 2 Řešení soustav lineárních rovnic se čtvercovou maticí soustavy (Cramerovo pravidlo, determinanty, inverzní matice) 16 a 21 října 2014 V dnešní přednášce
vyjádřete ve tvaru lineární kombinace čtverců (lineární kombinace druhých mocnin). Rozhodněte o definitnosti kvadratické formy κ(x).
Řešené příklady z lineární algebry - část 6 Typové příklady s řešením Příklad 6.: Kvadratickou formu κ(x) = x x 6x 6x x + 8x x 8x x vyjádřete ve tvaru lineární kombinace čtverců (lineární kombinace druhých
Měření hodinového úhlu transformátoru (Distribuce elektrické energie - BDEE)
FAKULTA ELEKTROTECHNIKY A KOMUNIKAČNÍCH TECHNOLOGIÍ VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ Měření hodinového úhlu transformátoru (Distribuce elektrické energie - BDEE) Autoři textu: Ing. Michal Ptáček Ing. Marek
Přijímací zkouška na navazující magisterské studium Studijní program Fyzika obor Učitelství fyziky matematiky pro střední školy
Přijímací zkouška na navazující magisterské studium 013 Studijní program Fyzika obor Učitelství fyziky matematiky pro střední školy Studijní program Učitelství pro základní školy - obor Učitelství fyziky
Vektorové podprostory, lineární nezávislost, báze, dimenze a souřadnice
Vektorové podprostory, lineární nezávislost, báze, dimenze a souřadnice Vektorové podprostory K množina reálných nebo komplexních čísel, U vektorový prostor nad K. Lineární kombinace vektorů u 1, u 2,...,u
1 Zdroj napětí náhradní obvod
1 Zdroj napětí náhradní obvod Příklad 1. Zdroj napětí má na svorkách naprázdno napětí 6 V. Při zatížení odporem 30 Ω klesne napětí na 5,7 V. Co vše můžete o tomto zdroji říci za předpokladu, že je v celém
Nerovnice a nerovnice v součinovém nebo v podílovém tvaru
Variace 1 Nerovnice a nerovnice v součinovém nebo v podílovém tvaru Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz
1 Řešení soustav lineárních rovnic
1 Řešení soustav lineárních rovnic 1.1 Lineární rovnice Lineární rovnicí o n neznámých x 1,x 2,..., x n s reálnými koeficienty rozumíme rovnici ve tvaru a 1 x 1 + a 2 x 2 +... + a n x n = b, (1) kde koeficienty
Rezonanční obvod jako zdroj volné energie
1 Rezonanční obvod jako zdroj volné energie Ing. Ladislav Kopecký, 2002 Úvod Dlouho mi vrtalo hlavou, proč Tesla pro svůj vynález přístroje pro bezdrátový přenos energie použil název zesilující vysílač
6 Algebra blokových schémat
6 Algebra blokových schémat Operátorovým přenosem jsme doposud popisovali chování jednotlivých dynamických členů. Nic nám však nebrání, abychom přenosem popsali dynamické vlastnosti složitějších obvodů,
Řešení elektrických sítí pomocí Kirchhoffových zákonů
4.2.8 Řešení elektrických sítí pomocí Kirchhoffových zákonů Předpoklady: 427 Pedagogická poznámka: Hodina obsahuje čtyři obvody. Fyzikálně mezi nimi není velký rozdíl, druhé dva jsou však podstatně obtížnější
1.1. Základní pojmy 1.2. Jednoduché obvody se střídavým proudem
Praktické příklady z Elektrotechniky. Střídavé obvody.. Základní pojmy.. Jednoduché obvody se střídavým proudem Příklad : Stanovte napětí na ideálním kondenzátoru s kapacitou 0 µf, kterým prochází proud
TEORIE ELEKTRICKÝCH OBVODŮ
TEORIE ELEKTRICKÝCH OBVODŮ zabývá se analýzou a syntézou vyšetřovaných soustav ZÁKLADNÍ POJMY soustava elektrické zařízení, složená z jednotlivých prvků, vzájemně mezi sebou propojených tak, aby jimi mohl
CVIČENÍ 4 Doc.Ing.Kateřina Hyniová, CSc. Katedra číslicového návrhu Fakulta informačních technologií České vysoké učení technické v Praze 4.
CVIČENÍ POZNÁMKY. CVIČENÍ. Vazby mezi systémy. Bloková schémata.vazby mezi systémy a) paralelní vazba b) sériová vazba c) zpětná (antiparalelní) vazba. Vnější popis složitých systémů a) metoda postupného
M - Příprava na 1. zápočtový test - třída 3SA
M - Příprava na 1. zápočtový test - třída 3SA Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. VARIACE 1 Tento
0.1 Úvod do lineární algebry
Matematika KMI/PMATE 1 01 Úvod do lineární algebry 011 Lineární rovnice o 2 neznámých Definice 011 Lineární rovnice o dvou neznámých x, y je rovnice, která může být vyjádřena ve tvaru ax + by = c, kde
Určeno pro posluchače všech bakalářských studijních programů FS
rčeno pro posluchače všech bakalářských studijních programů FS. STEJNOSMĚNÉ OBVODY pravil ng. Vítězslav Stýskala, Ph D. září 005 Příklad. (výpočet obvodových veličin metodou postupného zjednodušováni a
2. Určete jádro KerL zobrazení L, tj. nalezněte alespoň jednu jeho bázi a určete jeho dimenzi.
Řešené příklady z lineární algebry - část 3 Typové příklady s řešením Příklad 3.1: Zobrazení L: P 3 R 23 je zobrazení z prostoru P 3 všech polynomů do stupně 3 (včetně nulového polynomu) do prostoru R
Matematika (CŽV Kadaň) aneb Úvod do lineární algebry Matice a soustavy rovnic
Přednáška třetí (a pravděpodobně i čtvrtá) aneb Úvod do lineární algebry Matice a soustavy rovnic Lineární rovnice o 2 neznámých Lineární rovnice o 2 neznámých Lineární rovnice o dvou neznámých x, y je
STŘÍDAVÝ ELEKTRICKÝ PROUD Trojfázová soustava TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY.
STŘÍDAVÝ ELEKTRICKÝ PROUD Trojfázová soustava TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY. Vznik trojfázového napětí Průběh naznačený na obrázku je jednofázový,
M - Příprava na pololetní písemku č. 1
M - Příprava na pololetní písemku č. 1 Určeno pro třídy 3SA, 3SB. VARIACE 1 Tento dokument byl kompletně vytvořen, sestaven a vytištěn v programu dosystem - EduBase. Více informací o programu naleznete
IB112 Základy matematiky
IB112 Základy matematiky Řešení soustavy lineárních rovnic, matice, vektory Jan Strejček IB112 Základy matematiky: Řešení soustavy lineárních rovnic, matice, vektory 2/53 Obsah Soustava lineárních rovnic
6 Samodružné body a směry afinity
6 Samodružné body a směry afinity Samodružnými body a směry zobrazení rozumíme body a směry, které se v zobrazují samy na sebe. Například otočení R(S má jediný samodružný bod, střed S, anemá žádný samodružný
LABORATORNÍ CVIČENÍ Elektrotechnika a elektronika
VUT FSI BRNO ÚVSSaR, ODBOR ELEKTROTECHNIKY JMÉNO: ŠKOLNÍ ROK: 2010/2011 PŘEDNÁŠKOVÁ SKUPINA: 1E/95 LABORATORNÍ CVIČENÍ Elektrotechnika a elektronika ROČNÍK: 1. KROUŽEK: 2EL SEMESTR: LETNÍ UČITEL: Ing.
FYZIKA II. Petr Praus 9. Přednáška Elektromagnetická indukce (pokračování) Elektromagnetické kmity a střídavé proudy
FYZIKA II Petr Praus 9. Přednáška Elektromagnetická indukce (pokračování) Elektromagnetické kmity a střídavé proudy Osnova přednášky Energie magnetického pole v cívce Vzájemná indukčnost Kvazistacionární
Příklad. Řešte v : takže rovnice v zadání má v tomto případě jedno řešení. Pro má rovnice tvar
Řešte v : má rovnice tvar takže rovnice v zadání má v tomto případě jedno řešení. Pro má rovnice tvar takže rovnice v zadání má v tomto případě opět jedno řešení. Sjednocením obou případů dostaneme úplné
10. DETERMINANTY " # $!
10. DETERMINANTY $ V této kapitole zavedeme determinanty čtvercových matic libovolného rozměru nad pevným tělesem, řekneme si jejich základní vlastnosti a naučíme se je vypočítat včetně příkladů jejich
Signál v čase a jeho spektrum
Signál v čase a jeho spektrum Signály v časovém průběhu (tak jak je vidíme na osciloskopu) můžeme dělit na periodické a neperiodické. V obou případech je lze popsat spektrálně určit jaké kmitočty v sobě
7. Důležité pojmy ve vektorových prostorech
7. Důležité pojmy ve vektorových prostorech Definice: Nechť Vje vektorový prostor a množina vektorů {v 1, v 2,, v n } je podmnožinou V. Pak součet skalárních násobků těchto vektorů, tj. a 1 v 1 + a 2 v
Manuální, technická a elektrozručnost
Manuální, technická a elektrozručnost Realizace praktických úloh zaměřených na dovednosti v oblastech: Vybavení elektrolaboratoře Schématické značky, základy pájení Fyzikální principy činnosti základních
VÝUKOVÝ MATERIÁL. Pro vzdělanější Šluknovsko. 32 Inovace a zkvalitnění výuky prostřednictvím ICT. 0210 Bc. David Pietschmann.
VÝUKOVÝ MATERIÁL Identifikační údaje školy Číslo projektu Název projektu Číslo a název šablony Autor Tematická oblast Číslo a název materiálu Anotace Vyšší odborná škola a Střední škola, Varnsdorf, příspěvková
1 Vektorové prostory.
1 Vektorové prostory DefiniceMnožinu V, jejíž prvky budeme označovat a, b, c, z, budeme nazývat vektorovým prostorem právě tehdy, když budou splněny následující podmínky: 1 Je dáno zobrazení V V V, které
Czech Technical University in Prague Faculty of Electrical Engineering. Fakulta elektrotechnická. České vysoké učení technické v Praze.
Nejprve několik fyzikálních analogií úvodem Rezonance Rezonance je fyzikálním jevem, kdy má systém tendenci kmitat s velkou amplitudou na určité frekvenci, kdy malá budící síla může vyvolat vibrace s velkou
Ing. Ladislav Musil ČVUT FEL v Praze, Katedra Elektroenergetiky, Technická 2, 166 27 Praha 6 Tel.: +420 224 35 3941 E-mail: musill@fel.cvut.
E L E K T R O E N E R G E T I K A 003 VÝPOČET SCOTTOVA ZAPOJENÍ TRANSFORMÁTORU POMOCÍ PROGRAMU MATHEMATICA A WEBMATHEMATICA Ing. Ladislav Prskavec ČVUT FEL v Praze, Katedra Elektroenergetiky, Technická,
Řešení elektrických sítí pomocí Kirchhoffových zákonů
4.2.19 Řešení elektrických sítí pomocí Kirchhoffových zákonů Předpoklady: 4218 Pedagogická poznámka: Hodina obsahuje čtyři obvody. Fyzikálně mezi nimi není velký rozdíl, druhé dva jsou však podstatně obtížnější
1. Zadání. 2. Teorie úlohy ID: 78 357. Jméno: Jan Švec. Předmět: Elektromagnetické vlny, antény a vedení. Číslo úlohy: 7. Měřeno dne: 30.3.
Předmět: Elektromagnetické vlny, antény a vedení Úloha: Symetrizační obvody Jméno: Jan Švec Měřeno dne: 3.3.29 Odevzdáno dne: 6.3.29 ID: 78 357 Číslo úlohy: 7 Klasifikace: 1. Zadání 1. Změřte kmitočtovou
Lineární algebra Operace s vektory a maticemi
Lineární algebra Operace s vektory a maticemi Robert Mařík 26. září 2008 Obsah Operace s řádkovými vektory..................... 3 Operace se sloupcovými vektory................... 12 Matice..................................
1 Soustavy lineárních rovnic
1 Soustavy lineárních rovnic 1.1 Základní pojmy Budeme uvažovat soustavu m lineárních rovnic o n neznámých s koeficienty z tělesa T (potom hovoříme o soustavě m lineárních rovnic o n neznámých nad tělesem
Základy matematiky pro FEK
Základy matematiky pro FEK 2. přednáška Blanka Šedivá KMA zimní semestr 2016/2017 Blanka Šedivá (KMA) Základy matematiky pro FEK zimní semestr 2016/2017 1 / 20 Co nás dneska čeká... Závislé a nezávislé
Úlohy klauzurní části školního kola kategorie B
65. ročník matematické olympiády Úlohy klauzurní části školního kola kategorie B 1. Kolika způsoby je možno vyplnit čtvercovou tabulku 3 3 čísly,, 3, 3, 3, 4, 4, 4, 4 tak, aby součet čísel v každém čtverci
Pomocný text. Polynomy
Pomocný text Polynomy Tato série bude o polynomech a to zejména o polynomech jedné proměnné (pokud nebude uvedeno explicitně, že jde o polynom více proměnných). Formálně je někdy polynom jedné proměnné
a počtem sloupců druhé matice. Spočítejme součin A.B. Označme matici A.B = M, pro její prvky platí:
Řešené příklady z lineární algebry - část 1 Typové příklady s řešením Příklady jsou určeny především k zopakování látky před zkouškou, jsou proto řešeny se znalostmi učiva celého semestru. Tento fakt se
KOMPLEXNÍ ČÍSLA INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ
KOMPLEXNÍ ČÍSLA Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro vyšší gymnázia Autoři projektu Student na prahu 21. století - využití ICT ve vyučování matematiky na gymnáziu INVESTICE
1 Měření paralelní kompenzace v zapojení do trojúhelníku a do hvězdy pro symetrické a nesymetrické zátěže
1 Měření paralelní kompenzace v zapoení do troúhelníku a do hvězdy pro symetrické a nesymetrické zátěže íle úlohy: Trofázová paralelní kompenzace e v praxi honě využívaná. Úloha studenty seznámí s vlivem
2. Měření parametrů symetrických vedení
. ěření parametrů symetrických vedení. Úvod V praxi používáme jak nesymetrická vedení (koaxiální kabel, mikropáskové vedení) tak vedení symetrická (dvouvodičové vedení). Aby platila klasická teorie vedení,
Řešení slovních úloh pomocí lineárních rovnic
Řešení slovních úloh pomocí lineárních rovnic Řešení slovních úloh představuje spojení tří, dnes bohužel nelehkých, úloh porozumění čtenému textu (pochopení zadání), jeho matematizaci (převedení na rovnici)
Transformátory. Teorie - přehled
Transformátory Teorie - přehled Transformátory...... jsou elektrické stroje, které mění napětí při přenosu elektrické energie při stejné frekvenci. Používají se především při rozvodu elektrické energie.
FYZIKA II. Petr Praus 10. Přednáška Elektromagnetické kmity a střídavé proudy (pokračování)
FYZIKA II Petr Praus 10. Přednáška Elektromagnetické kmity a střídavé proudy (pokračování) Osnova přednášky činitel jakosti, vektorové diagramy v komplexní rovině Sériový RLC obvod - fázový posuv, rezonance
OHYB (Napjatost) M A M + qc a + b + c ) M A = 2M qc a + b + c )
3.3 Řešené příklady Příklad 1: Pro nosník na obrázku vyšetřete a zakreslete reakce, T (x) a M(x). Dále určete M max a proveďte dimenzování pro zadaný průřez. Dáno: a = 0.5 m, b = 0.3 m, c = 0.4 m, d =
Lineární funkce, rovnice a nerovnice 3 Soustavy lineárních rovnic
Lineární funkce, rovnice a nerovnice Soustavy lineárních rovnic motivace Využívají se napřklad při analytickém vyšetřování vzájemné polohy dvou přímek v rovině a prostoru. Při řešení některých slovních
12. Determinanty. 12. Determinanty p. 1/25
12. Determinanty 12. Determinanty p. 1/25 12. Determinanty p. 2/25 Determinanty 1. Induktivní definice determinantu 2. Determinant a antisymetrické formy 3. Výpočet hodnoty determinantu 4. Determinant
Základy elektrotechniky
Základy elektrotechniky Přednáška Transformátory deální transformátor r 0; 0 bez rozptylu mag. toků 0, Φ Φmax. sinωt ndukované napětí: u i N d N dt... cos t max imax N..f. 4,44..f.N d ui N i 4,44. max.f.n
2.4. Výpočty vedení obecně
2.4. Výpočty vedení obecně Při výpočtech silových vedení elektřiny neuvažujeme vždy všechny parametry vedení. Výpočty se dají zjednodušit tím, že se některé parametry v daném případě se zanedbatelným vlivem
X31EO2 - Elektrické obvody 2. Kmitočtové charakteristiky
X3EO - Elektrické obvody Kmitočtové charakteristiky Doc. Ing. Petr Pollák, CSc. Letní semestr 5/6!!! Volné šíření není povoleno!!! Fázory a spektra Fázor harmonického průběhu Û m = U m e jϕ ut) = U m sinωt
10. Soustavy lineárních rovnic, determinanty, Cramerovo pravidlo
0. Soustavy lineárních rovnic, determinanty, Cramerovo pravidlo (PEF PaA) Petr Gurka aktualizováno 9. prosince 202 Obsah Základní pojmy. Motivace.................................2 Aritmetický vektorový
fakulty MENDELU v Brně (LDF) s ohledem na disciplíny společného základu http://akademie.ldf.mendelu.cz/cz (reg. č. CZ.1.07/2.2.00/28.
Základy lineárního programování Vyšší matematika, Inženýrská matematika LDF MENDELU Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem
Soustavy lineárních diferenciálních rovnic I. řádu s konstantními koeficienty
Soustavy lineárních diferenciálních rovnic I řádu s konstantními koeficienty Definice a) Soustava tvaru x = ax + a y + az + f() t y = ax + a y + az + f () t z = a x + a y + a z + f () t se nazývá soustava
6. Lineární (ne)rovnice s odmocninou
@06 6. Lineární (ne)rovnice s odmocninou rovnice Když se řekne s odmocninou, znamená to, že zadaná rovnice obsahuje neznámou pod odmocninou. není (ne)rovnice s odmocninou neznámá x není pod odmocninou
3.5 Ověření frekvenční závislosti kapacitance a induktance
3.5 Ověření frekvenční závislosti kapacitance a induktance Online: http://www.sclpx.eu/lab3r.php?exp=10 I tento experiment patří mezi další původní experimenty autora práce. Stejně jako v předešlém experimentu
Harmonický průběh napětí a proudu v obvodu
Harmonický průběh napětí a proudu v obvodu Ing. Martin Černík, Ph.D. Projekt ESF CZ.1.07/2.2.00/28.0050 Modernizace didaktických metod a inovace. Veličiny elektrických obvodů napětí u(t) okamžitá hodnota,
0.1 Úvod do lineární algebry
Matematika KMI/PMATE 1 01 Úvod do lineární algebry 011 Vektory Definice 011 Vektorem aritmetického prostorur n budeme rozumět uspořádanou n-tici reálných čísel x 1, x 2,, x n Definice 012 Definice sčítání
Příklad 1. Řešení 1a Máme vyšetřit lichost či sudost funkce ŘEŠENÉ PŘÍKLADY Z M1A ČÁST 3
Příklad 1 Zjistěte, zda jsou dané funkce sudé nebo liché, případně ani sudé ani liché: a) =ln b) = c) = d) =4 +1 e) =sin cos f) =sin3+ cos+ Poznámka Všechny tyto úlohy řešíme tak, že argument funkce nahradíme