4EK211 Základy ekonometrie
|
|
- Jozef Hruška
- před 8 lety
- Počet zobrazení:
Transkript
1 4EK211 Základy ekonometrie Logistická křivka Umělé proměnné Cvičení 11 Zuzana Dlouhá
2 Logistická křivka log-lineární model patří mezi poptávkové funkce, ty dělíme na: a) klasické D = f (příjem, cenový index, ) b) po předmětech dlouhodobé spotřeby (PDS) závisí na čase, příp. příjmu apod. dynamický model analýzy poptávky logistická křivka Předměty dlouhodobé spotřeby vybavenost PDS roste s růstem reálných příjmů nákupy PDS hrazeny zejm. z úspor nasycenost PDS časem dosáhne hladiny, kdy se poptávka omezí na nahrazení opotřebovaných exemplářů zajímáme se o: současnou vybavenost PDS kolik se v současnosti používá dlouhodobý trend 2
3 Logistická křivka úroveň vybavenosti se asymptoticky blíží k horní hranici tzv. hladině nasycení (resp. saturace) po jejím dosažení již poptávka nereaguje na změny absolutní vybavenost měřená celkovým počtem PDS v používání relativní vybavenost množství PDS připadající na 100 (1000, ) obyvatel či domácností čistá poptávka nákupy, které zvyšují vybavenost tj. nákupy na tzv. první vybavení renovační poptávka nákupy PDS za účelem nahrazení vyřazených PDS z používání nezvyšují vybavenost zajišťují prostou reprodukci 3
4 Logistická křivka postup logistický růstový model čas jediná vysvětlující proměnná abstrahujeme od čisté poptávky na druhé a další vybavení výrobek je nově uveden na trh může si jej koupit potenciální domácnost poptávka po výrobku rychle akceleruje s rostoucí informovaností o výrobku roste i vybavenost výrobkem pokles nákupů většina domácností již výrobek má objevuje se renovační poptávka tzv. brzdící faktor tempo růstu vybavenosti v sobě nese zárodek zániku 4
5 V(t) v % Logistická křivka postup vybavenost v čase t = V(t) extrémní hodnoty vybavenosti: nula hladina saturace S (každá domácnost výrobek vlastní) dána apriori (známá) odhad metoda vyrovnání tempa přírůstků (Hotelling, 1927) S V(t) = domácnosti, které ještě PDS nejsou vybaveny tj. okruh potenciálních zákazníků Vt(a=5) Vt(a=10) 5
6 Logistická křivka - postup tvar: S V(t ) 1 e a bt u funkce nelineární ve třech parametrech: S, a, b lze zlinearizovat přes semilogaritmickou transformaci po substituci odhadujeme MNČ tvar: y* = a bt + u, kde y* = ln ((S/V(t))-1) logit limv(t ) S t inflexní bod: t* = a/b, V(t) = S/2 a úrovňová konstanta ovlivňující výchozí úroveň V(t) b vyjadřuje rychlost nasycování trhu dv(t)/dt změna relativní vybavenosti na přírůstku času (tj. dt) v důsledku čisté poptávky po PDS řešení přes Bernoulliho diferenciální rovnice 6
7 Logistická křivka příklad Soubor: CV11_PR1.xls Data: t = čas (10 pozorování) V(t) = % vybavenost domácností PDS (v tis. domácností) Zadání: Z expertní analýzy víme, že hodnota S je 100. Určete explicitní tvar křivky V(t). Určete inflexní bod t*, (dobu, kdy je trh nasycen z 50-ti % hodnoty S). 7
8 Logistická křivka příklad Soubor: CV11_PR2.xls Data: t = čas (24 pozorování) V(t) = počet internetových domén na trhu Zadání: Z expertní analýzy víme, že hodnota S je Určete explicitní tvar křivky V(t). Určete inflexní bod t*, (dobu, kdy je trh nasycen z 50-ti % hodnoty S). 8
9 Umělé proměnné dummy / booleovské proměnné nabývají hodnot 0, 1 (případně větší interval) tzv. kvalitativní proměnné tj. neměřitelné nemohou být v modelu samy model by byl jako celek statisticky nevýznamný jde o doplněk ke kvantitativním veličinám zpřesňují model růst vícenásobného koeficientu determinace R 2 pokles nevysvětleného rozptylu RSS vyjadřují přítomnost či nepřítomnost dané vlastnosti přítomnost obvykle 1 zbytek obvykle 0 např. žena 1, muž 0 např. vzdělání základní 0, střední 1, vysokoškolské 2 apod. 9
10 Umělé proměnné základní funkce: sezónnost v EViews se vyskytnou v nabídce speciálních proměnných, jen pokud jsou data měsíční či čtvrtletní rozlišení v modelech se vyskytne problém se silnou multikolinearitou řeší se tak, že použijeme o jednu proměnnou méně, než kolik máme kategorií cíl: vyvarovat se perfektní multikolinearity do modelu zahrneme o jednu dummy proměnnou méně než je počet sledovaných vlastností zbylá dummy proměnná tvoří základ, ke kterému ostatní vlastnosti porovnáváme dvě pohlaví jedna dummy tři stupně vzdělání dvě dummy pozor na interpretaci závisí na přiřazení hodnot umělé proměnné 10
11 Umělé proměnné příklad rozlišovací funkce Soubor: CV11_PR3.xls Data: y = plat učitelů (tis. USD) x = roky praxe m = pohlaví (1 = muž, 0 = žena) Zadání: Odhadněte model závislosti y na x a m a interpretujte získané výsledky. y i = β 0 + β 1 x i + β 2 m i + u i, i = 1, 2,...,15 11
12 Umělé proměnné příklad rozlišovací funkce Soubor: CV11_PR4.xls Data: y = výdaje na cestování (tis. USD) x = výše příjmu (tis. USD) D 2 = dosažené vzdělání (1 = středoškolské, 0 = jiné) D 3 = dosažené vzdělání (1 = vysokoškolské, 0 = jiné) Zadání: Odhadněte model závislosti y na x, D 2 a D 3 a interpretujte získané výsledky. y i = β 0 + β 1 x i + β 2 D 2i + β 3 D 3i + u i, i = 1, 2,...,15 12
13 Umělé proměnné příklad sezónnost Soubor: CV11_PR5.xls Data: t = čas R = příjmy státního rozpočtu (v mld. Kč) Zadání: Odhadněte model závislosti R na t. Pokuste se zachytit v modelu vliv posledního čtvrtletí v daném roce (tj. zapojit čtvrtý kvartál do modelu). R t = β 0 + β 1 t t + u t, t = 1, 2,...,16 13
14 Umělé proměnné příklad sezónnost Soubor: CV11_PR6.xls Data: pocet_domu = počet nově započatých staveb domů v USA (v tis.) urok_mira = úroková míra (v %) Zadání: Odhadněte model závislosti pocet_domu na urok_mira + zohledněte sezónní vliv v modelu. Predikujte pocet_domu v roce pocet_domu t = β 0 + β 1 urok_mira t + β 2 Q 2t + β 3 Q 3t + β 3 Q 4t + u t, t = 1, 2,...,40 14
4EK211 Základy ekonometrie
4EK211 Základy ekonometrie LS 2014/15 Cvičení 11: Speciální případy použití MNČ LENKA FIŘTOVÁ KATEDRA EKONOMETRIE, FAKULTA INFORMATIKY A STATISTIKY VYSOKÁ ŠKOLA EKONOMICKÁ V PRAZE 2. Nelineární funkce
4EK211 Základy ekonometrie
4EK Základy ekonometrie Odhad klasického lineárního regresního modelu II Cvičení 3 Zuzana Dlouhá Klasický lineární regresní model - zadání příkladu Soubor: CV3_PR.xls Data: y = maloobchodní obrat potřeb
APLIKACE DYNAMICKÝCH MODELŮ V ANALÝZE POPTÁVKY. LOGISTICKÝ RŮSTOVÝ MODEL. PRUŽNOST NABÍDKY A POPTÁVKY.
APLIKACE DYNAMICKÝCH MODELŮ V ANALÝZE POPTÁVKY. LOGITICKÝ RŮTOVÝ MODEL. PRUŽNOT NABÍDKY A POPTÁVKY. Následující text se věnuje modelům poptávky po předmětech dlouhodobé spotřeby. Na tyto modely bychom
TECHNIKA UMĚLÝCH PROMĚNNÝCH V PRŮŘEZOVÉ ANALÝZE A V MODELECH ČASOVÝCH ŘAD
TECHNIKA UMĚLÝCH PROMĚNNÝCH V PRŮŘEZOVÉ ANALÝZE A V MODELECH ČASOVÝCH ŘAD Umělé (dummy) proměnné se používají, pokud chceme do modelu zahrnout proměnné, které mají kvalitativní či diskrétní charakter,
4EK211 Základy ekonometrie
4EK11 Základy ekonometrie Autokorelace Cvičení 5 Zuzana Dlouhá Gauss-Markovy předpoklady Náhodná složka: Gauss-Markovy předpoklady 1. E(u) = náhodné vlivy se vzájemně vynulují. E(uu T ) = σ I n konečný
4EK211 Základy ekonometrie
4EK211 Základy ekonometrie ZS 2014/15 Cvičení 5: Vícenásobná regrese, multikolinearita LENKA FIŘTOVÁ KATEDRA EKONOMETRIE, FAKULTA INFORMATIKY A STATISTIKY VYSOKÁ ŠKOLA EKONOMICKÁ V PRAZE 1. Jednoduchá
4EK211 Základy ekonometrie
4EK211 Základy ekonometrie Predikce Multikolinearita Cvičení 4 Zuzana Dlouhá Aplikace EM predikce obecně ekonomické prognózování, předpověď, předvídání hlavním cílem je odhad hodnot vysvětlované proměnné
4EK211 Základy ekonometrie
4EK211 Základy ekonometrie Predikce Multikolinearita Cvičení 4 Zuzana Dlouhá Aplikace EM predikce obecně ekonomické prognózování, předpověď, předvídání hlavním cílem je odhad hodnot vysvětlované proměnné
4EK211 Základy ekonometrie
4EK211 Základy ekonometrie ZS 2016/17 Cvičení 5: Vícenásobná regrese LENKA FIŘTOVÁ KATEDRA EKONOMETRIE, FAKULTA INFORMATIKY A STATISTIKY VYSOKÁ ŠKOLA EKONOMICKÁ V PRAZE 1. Jednoduchá regrese opakování
4EK211 Základy ekonometrie
4EK211 Základy ekonometrie ZS 2014/15 Cvičení 6: Dummy proměnné, multikolinearita LENKA FIŘTOVÁ KATEDRA EKONOMETRIE, FAKULTA INFORMATIKY A STATISTIKY VYSOKÁ ŠKOLA EKONOMICKÁ V PRAZE 1. Pokračování z minula:
4EK211 Základy ekonometrie
4EK211 Základy ekonometrie ZS 2015/16 Cvičení 6: Multikolinearita, umělé proměnné LENKA FIŘTOVÁ KATEDRA EKONOMETRIE, FAKULTA INFORMATIKY A STATISTIKY VYSOKÁ ŠKOLA EKONOMICKÁ V PRAZE Otevřete si data z
Tomáš Karel LS 2012/2013
Tomáš Karel LS 2012/2013 Doplňkový materiál ke cvičení z předmětu 4ST201. Na případné faktické chb v této presentaci mě prosím upozorněte. Děkuji. Tto slid berte pouze jako doplňkový materiál není v nich
4EK211 Základy ekonometrie
4EK211 Základy ekonometrie ZS 2016/17 Cvičení 3: Lineární regresní model LENKA FIŘTOVÁ KATEDRA EKONOMETRIE, FAKULTA INFORMATIKY A STATISTIKY VYSOKÁ ŠKOLA EKONOMICKÁ V PRAZE 1. Seznámení s EViews Upřesnění
4EK211 Základy ekonometrie
4EK211 Základy ekonometrie ZS 2015/16 Cvičení 7: Časově řady, autokorelace LENKA FIŘTOVÁ KATEDRA EKONOMETRIE, FAKULTA INFORMATIKY A STATISTIKY VYSOKÁ ŠKOLA EKONOMICKÁ V PRAZE 1. Časové řady Data: HDP.wf1
Regresní a korelační analýza
Přednáška STATISTIKA II - EKONOMETRIE Katedra ekonometrie FEM UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Regresní analýza Cíl regresní analýzy: stanovení formy (trendu, tvaru, průběhu)
Analýza časových řad. John Watters: Jak se stát milionářem.
5.2 Analýza časových řad Nechal jsem si udělat prognózu růstu své firmy od třech nezávislých odborníků. Jejich analýzy se shodovaly snad pouze v jediném - nekřesťanské ceně, kterou jsem za ně zaplatil.
Závislost obsahu lipoproteinu v krevním séru na třech faktorech ( Lineární regresní modely )
Úloha M608 Závislost obsahu lipoproteinu v krevním séru na třech faktorech ( Lineární regresní modely ) Zadání : Při kvantitativní analýze lidského krevního séra ovlivňují hodnotu obsahu vysokohustotního
4EK211 Základy ekonometrie
4EK211 Základy ekonometrie LS 2014/15 Cvičení 10: Heteroskedasticita LENKA FIŘTOVÁ KATEDRA EKONOMETRIE, FAKULTA INFORMATIKY A STATISTIKY VYSOKÁ ŠKOLA EKONOMICKÁ V PRAZE 1. Heteroskedasticita - teorie Druhý
5EN306 Aplikované kvantitativní metody I
5EN306 Aplikované kvantitativní metody I Přednáška 5 Zuzana Dlouhá Předmět a struktura kurzu 1. Úvod: struktura empirických výzkumů 2. Tvorba ekonomických modelů: teorie 3. Data: zdroje a typy dat, význam
4EK211 Základy ekonometrie
4EK211 Základy ekonometrie LS 2014/15 Cvičení 7: Autokorelace LENKA FIŘTOVÁ KATEDRA EKONOMETRIE, FAKULTA INFORMATIKY A STATISTIKY VYSOKÁ ŠKOLA EKONOMICKÁ V PRAZE 1. Autokorelace - teorie Zopakujte si G-M
4EK201 Matematické modelování. 11. Ekonometrie
4EK201 Matematické modelování 11. Ekonometrie 11. Ekonometrie Ekonometrie Interdisciplinární vědní disciplína Zkoumá vztahy mezi ekonomickými veličinami Mikroekonomickými i makroekonomickými Ekonomie ekonomické
Korelační a regresní analýza
Korelační a regresní analýza Analýza závislosti v normálním rozdělení Pearsonův (výběrový) korelační koeficient: r = s XY s X s Y, kde s XY = 1 n (x n 1 i=0 i x )(y i y ), s X (s Y ) je výběrová směrodatná
4EK211 Základy ekonometrie
4EK211 Základy ekonometrie ZS 2014/15 Cvičení 6: Dummy proměnné, úvod do časových řad LENKA FIŘTOVÁ KATEDRA EKONOMETRIE, FAKULTA INFORMATIKY A STATISTIKY VYSOKÁ ŠKOLA EKONOMICKÁ V PRAZE 1. Multikolinearita
4EK211 Základy ekonometrie
4EK211 Základy ekonometrie LS 2014/15 Cvičení 4: Statistické vlastnosti MNČ LENKA FIŘTOVÁ KATEDRA EKONOMETRIE, FAKULTA INFORMATIKY A STATISTIKY VYSOKÁ ŠKOLA EKONOMICKÁ V PRAZE Upřesnění k pojmům a značení
Cvičení 9 dekompozice časových řad a ARMA procesy
Cvičení 9 dekompozice časových řad a ARMA procesy Příklad 1: Dekompozice časové řady Soubor 18AEK-cv09.xls obsahuje dvě časové řady (X a Y) se 72 pozorováními. Použijte časovou řadu Y. a) Pokuste se na
EKONOMETRIE 7. přednáška Fáze ekonometrické analýzy
EKONOMETRIE 7. přednáška Fáze ekonometrické analýzy Ekonometrická analýza proces, skládající se z následujících fází: a) specifikace b) kvantifikace c) verifikace d) aplikace Postupné zpřesňování jednotlivých
4EK211 Základy ekonometrie
4EK211 Základy ekonometre Specální případy použtí MNČ Cvčení 8 Zuzana Dlouhá Specální případy použtí MNČ cvčení 1 7 = ekonometrcký model, který byl lneární v proměnných v parametrech MNČ můžeme použít,
MODELY ROZDĚLENÝCH ZPOŽDĚNÍ. FRIEDMANOVA SPOTŘEBNÍ FUNKCE A PERMANENTNÍ DŮCHOD.
MODELY ROZDĚLENÝCH ZPOŽDĚNÍ. FRIEDMANOVA SPOTŘEBNÍ FUNKCE A PERMANENTNÍ DŮCHOD. V tomto textu bude nejprve vysvětleno, co jsou to modely rozdělených zpoždění a jak se dělí. Pak se zaměříme na Friedmanovu
Testování hypotéz o parametrech regresního modelu
Testování hypotéz o parametrech regresního modelu Ekonometrie Jiří Neubauer Katedra kvantitativních metod FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Jiří Neubauer (Katedra UO
4EK211 Základy ekonometrie
4EK211 Základy ekonometre Specální případy použtí MNČ Cvčení 9 Zuzana Dlouhá Specální případy použtí MNČ cvčení 1 8 = ekonometrcký model, který byl lneární v proměnných v parametrech MNČ můžeme použít,
Měření závislosti statistických dat
5.1 Měření závislosti statistických dat Každý pořádný astronom je schopen vám předpovědět, kde se bude nacházet daná hvězda půl hodiny před půlnocí. Ne každý je však téhož schopen předpovědět v případě
4EK211 Základy ekonometrie
4EK211 Základy ekonometrie Úvod do předmětu obecné informace Základní pojmy ze statistiky / ekonometrie Úvod do programu EViews, Gretl Některé užitečné funkce v MS Excel Cvičení 1 Zuzana Dlouhá Úvod do
4EK211 Základy ekonometrie
4EK211 Základ ekonometrie Odhad klasického lineárního regresního modelu I Cvičení 2 Zuzana Dlouhá Metodologický postup tvor EM 1. Specifikace modelu určení proměnných určení vzájemných vaze mezi proměnnými
Testování hypotéz o parametrech regresního modelu
Statistika II Katedra ekonometrie FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Lineární regresní model kde Y = Xβ + e, y 1 e 1 β y 2 Y =., e = e 2 x 11 x 1 1k., X =....... β 2,
Cvičení č. 4, 5 MAE 1. Pokud vycházíme ze speciální formy produkční funkce, můžeme rovnici pro tempo růstu potenciální produktu vyjádřit následovně
Ekonomický růst Pokud vycházíme ze speciální formy produkční funkce, můžeme rovnici pro tempo růstu potenciální produktu vyjádřit následovně ΔY/Y = (1 α) x ΔL/L + α x ΔK/K + ΔA/A, kde ΔY/Y.. tempo růstu
1 Tyto materiály byly vytvořeny za pomoci grantu FRVŠ číslo 1145/2004.
Prostá regresní a korelační analýza 1 1 Tyto materiály byly vytvořeny za pomoci grantu FRVŠ číslo 1145/2004. Problematika závislosti V podstatě lze rozlišovat mezi závislostí nepodstatnou, čili náhodnou
Mikroekonomie Nabídka, poptávka
Téma cvičení č. 2: Mikroekonomie Nabídka, poptávka Ing. Jaroslav ŠETEK, Ph.D. Katedra ekonomiky, JČU Podstatné z minulého cvičení Matematický pojmový aparát v Mikroekonomii Důležité minulé cvičení kontrolní
Ekonomický a ekonometrický model. Předpoklady, formulace EKO modelu a očekávání o chování proměnných
Exogenní (γ) Simultánní dynamický model Tento model zkoumá vzájemné závislosti vývoje tempa růstu/poklesu HDP, míry nezaměstnanosti a míry inflace v České republice v závislosti na indexu spotřebitelských
Ekonometrie. Jiří Neubauer
Úvod do analýzy časových řad Ekonometrie Jiří Neubauer Katedra ekonometrie FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Jiří Neubauer (Katedra ekonometrie UO Brno) Úvod do analýzy
Časové řady, typy trendových funkcí a odhady trendů
Časové řady, typy trendových funkcí a odhady trendů Jiří Neubauer Katedra ekonometrie FVL UO Brno kancelář 69a, tel 973 442029 email:jirineubauer@unobcz Jiří Neubauer (Katedra ekonometrie UO Brno) Časové
KGG/STG Statistika pro geografy. Mgr. David Fiedor 4. května 2015
KGG/STG Statistika pro geografy 11. Analýza časových řad Mgr. David Fiedor 4. května 2015 Motivace Úvod chceme získat představu o charakteru procesu, která časová řada reprezentuje Jaké jevy lze znázornit
časovém horizontu na rozdíl od experimentu lépe odhalit chybné poznání reality.
Modelování dynamických systémů Matematické modelování dynamických systémů se využívá v různých oborech přírodních, technických, ekonomických a sociálních věd. Použití matematického modelu umožňuje popsat
Cvičící Kuba Kubina Kubinčák Body u závěrečného testu
1. Příklad U 12 studentů jsme sledovali počet dosažených bodů na závěrečném testu (od 0 do 60). Vždy 4 z těchto studentů chodili k jednomu ze 3 cvičících panu Kubovi, panu Kubinovi, nebo panu Kubinčákovi.
4EK211 Základy ekonometrie
4EK211 Základy ekonometrie ZS 2015/16 Cvičení 2: Metoda nejmenších čtverců LENKA FIŘTOVÁ KATEDRA EKONOMETRIE, FAKULTA INFORMATIKY A STATISTIKY VYSOKÁ ŠKOLA EKONOMICKÁ V PRAZE 1. Doplnění a opakování z
Časové řady, typy trendových funkcí a odhady trendů
Statistika II Katedra ekonometrie FVL UO Brno kancelář 69a, tel 973 442029 email:jirineubauer@unobcz Stochastický proces Posloupnost náhodných veličin {Y t, t = 0, ±1, ±2 } se nazývá stochastický proces
Funkce jedné proměnné
Funkce jedné proměnné Příklad - V následujících příkladech v případě a) pro funkce dané rovnicí zjistěte zda jsou rostoucí klesající nebo konstantní vypočítejte průsečíky grafu s osami souřadnic a graf
Zápočtové úkoly Statistika II PAEK, LS 2014 2015
Zápočtové úkoly Statistika II PAEK, LS 2014 2015 Pokyny Každý student odevzdává domácí úkol sám za sebe. Odevzdání proběhne přes systém moodle v předmětu Statistika II PaEK (ESE74E) přes odkaz Zápočtový
Kvízové otázky Obecná ekonomie I. Teorie firmy
1. Firmy působí: a) na trhu výrobních faktorů b) na trhu statků a služeb c) na žádném z těchto trhů d) na obou těchto trzích Kvízové otázky Obecná ekonomie I. Teorie firmy 2. Firma na trhu statků a služeb
Tomáš Karel LS 2012/2013
Tomáš Karel LS 2012/2013 Doplňkový materiál ke cvičení z předmětu 4ST201. Na případné faktické chyby v této presentaci mě prosím upozorněte. Děkuji. Tyto slidy berte pouze jako doplňkový materiál není
5EN306 Aplikované kvantitativní metody I
5EN306 Aplikované kvantitativní metody I Přednáška 10 Zuzana Dlouhá Předmět a struktura kurzu 1. Úvod: struktura empirických výzkumů 2. Tvorba ekonomických modelů: teorie 3. Data: zdroje a typy dat, význam
INDUKTIVNÍ STATISTIKA
10. SEMINÁŘ INDUKTIVNÍ STATISTIKA 3. HODNOCENÍ ZÁVISLOSTÍ HODNOCENÍ ZÁVISLOSTÍ KVALITATIVNÍ VELIČINY - Vychází se z kombinační (kontingenční) tabulky, která je výsledkem třídění druhého stupně KVANTITATIVNÍ
Regresní analýza 1. Regresní analýza
Regresní analýza 1 1 Regresní funkce Regresní analýza Důležitou statistickou úlohou je hledání a zkoumání závislostí proměnných, jejichž hodnoty získáme při realizaci experimentů Vzhledem k jejich náhodnému
Makroekonomie I. Co je podstatné z Mikroekonomie - co již známe obecně. Nabídka a poptávka mikroekonomické kategorie
Model AS - AD Makroekonomie I Ing. Jaroslav ŠETEK, Ph.D. Katedra ekonomiky Osnova: Agregátní poptávka a agregátní nabídka : Agregátní poptávka a její změny Agregátní nabídka krátkodobá a dlouhodobá Rovnováha
Základy ekonomie II. Téma č. 3: Modely ekonomické rovnováhy Petr Musil
Základy ekonomie II Téma č. 3: Modely ekonomické rovnováhy Petr Musil Struktura Opakování: ekonomická rovnováha Klasický model ekonomické rovnováhy: trh kapitálu trh práce důsledky v modelu AS-AD Keynesiánský
Cíl: analýza modelu makroekonomické rovnováhy s pohyblivou cenovou hladinou
Vysoká škola finanční a správní, o. p. s. Akademický rok 2005/06, letní semestr Kombinované studium Předmět: Makroekonomie (Bc.) Metodický list č. 2 5) Makroekonomická rovnováha (model AD AS) 6) Ekonomický
Mikroekonomie. Nabídka, poptávka. = c + d.q. P s. Nabídka, poptávka. Téma cvičení č. 2: Téma. Nabídka (supply) S. Obecná rovnice nabídky
Téma cvičení č. 2: Mikroekonomie Nabídka, poptávka Ing. Jaroslav ŠETEK, Ph.D. Katedra ekonomiky, JČU Téma Nabídka, poptávka Nabídka (supply) S Nabídka představuje objem zboží, které jsou výrobci ochotni
V praxi pracujeme s daty nominálními (nabývají pouze dvou hodnot), kategoriálními (nabývají více
9 Vícerozměrná data a jejich zpracování 9.1 Vícerozměrná data a vícerozměrná rozdělení Při zpracování vícerozměrných dat, hledáme souvislosti mezi dvěmi, případně více náhodnými veličinami. V praxi pracujeme
0 z 25 b. Ekonomia: 0 z 25 b.
Ekonomia: 1. Roste-li mzdová sazba,: nabízené množství práce se nemění nabízené množství práce může růst i klesat nabízené množství práce roste nabízené množství práce klesá Zvýšení peněžní zásoby vede
Umělé (dummy) proměnné v ekonometrickém modelu
Umělé (dummy) proměnné v ekonometrickém modelu V ekonometrických modelech se často mezi vysvětlujícími proměnnými vyskytují veličiny, které nelze číselně vyjádřit měřením. Přítomnost těchto veličin je
MĚŘENÍ A PŘEDPOVÍDÁNÍ POPTÁVKY TRHU
MĚŘENÍ A PŘEDPOVÍDÁNÍ POPTÁVKY TRHU Co budeme řešit?? 1. Jaké jsou hlavní koncepce měření a předpovídání poptávky? 2. Jak lze odhadnou současnou poptávku? 3. Jak lze předpovědět budoucí poptávku? 1.Hlavní
6. Lineární regresní modely
6. Lineární regresní modely 6.1 Jednoduchá regrese a validace 6.2 Testy hypotéz v lineární regresi 6.3 Kritika dat v regresním tripletu 6.4 Multikolinearita a polynomy 6.5 Kritika modelu v regresním tripletu
Statistika II. Jiří Neubauer
Statistika II Katedra ekonometrie FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Časová řada konečná posloupnost reálných hodnot určitého sledovaného ukazatele měřeného v určitých
i R = i N π Makroekonomie I i R. reálná úroková míra i N. nominální úroková míra π. míra inflace Téma cvičení
Téma cvičení Makroekonomie I Nominální a reálná úroková míra Otevřená ekonomika Ing. Jaroslav ŠETEK, Ph.D. Katedra ekonomiky Nominální a reálná úroková míra Zahrnutí míry inflace v rámci peněžního trhu
Dynamické metody pro predikci rizika
Dynamické metody pro predikci rizika 1 Úvod do analýzy časových řad Časová řada konečná posloupnost reálných hodnot určitého sledovaného ukazatele měřeného v určitých časových intervalech okamžikové např
ÚVOD. Nyní opuštění předpokladů Zkoumání vývoje potenciálního produktu. Cíl: Ujasnit si pojmy před představením různých teorií k ekonomickému růstu
HOSPODÁŘSKÝ RŮST ÚVOD V předchozích částech: Kolísání skutečného produktu kolem potenciálního produktu Neexistence technologického pokroku Stály počet obyvatel Fixní zásoba kapitálu Nyní opuštění předpokladů
6. Lineární regresní modely
6. Lineární regresní modely 6.1 Jednoduchá regrese a validace 6.2 Testy hypotéz v lineární regresi 6.3 Kritika dat v regresním tripletu 6.4 Multikolinearita a polynomy 6.5 Kritika modelu v regresním tripletu
Statistika I (KMI/PSTAT)
Statistika I (KMI/PSTAT) Cvičení první aneb Sumační symbolika, úvod do popisné statistiky Statistika I (KMI/PSTAT) 1 / 15 Obsah hodiny Po dnešní hodině byste měli být schopni: správně používat sumační
Ekonomické předstihové ukazatele: nástroj krátkodobé predikce
Ekonomické předstihové ukazatele: nástroj krátkodobé predikce Vojtěch Benda ČNB, Sekce měnová a statistiky email: vojtech.benda@cnb.cz Ekonomické předstihové ukazatele (LEI) kritéria výběru Opora v ekonomické
1 Odvození poptávkové křivky
Odvození poptávkové křivky Optimalizační chování domácností (maximalizace užitku) vzhledem k rozpočtovému omezení. Nejprve odvodíme deterministický model, který potom rozšíříme o stochastické prvky. Odvozené
UNIVERZITA PARDUBICE Fakulta chemicko-technologická Katedra analytické chemie Nám. Čs. Legií 565, Pardubice
UNIVERZITA PARDUBICE Fakulta chemicko-technologická Katedra analytické chemie Nám. Čs. Legií 565, 532 10 Pardubice 10. licenční studium chemometrie STATISTICKÉ ZPRACOVÁNÍ DAT Semestrální práce KALIBRACE
AVDAT Klasický lineární model, metoda nejmenších
AVDAT Klasický lineární model, metoda nejmenších čtverců Josef Tvrdík Katedra informatiky Přírodovědecká fakulta Ostravská univerzita Lineární model y i = β 0 + β 1 x i1 + + β k x ik + ε i (1) kde y i
odpovídá jedna a jen jedna hodnota jiných
8. Regresní a korelační analýza Problém: hledání, zkoumání a hodnocení souvislostí, závislostí mezi dvěma a více statistickými znaky (veličinami). Typy závislostí: pevné a volné Pevná závislost každé hodnotě
Teorie časových řad Test 2 Varianta A HODNOCENÍ (max. 45 bodů z 50 možných)
Teorie časových řad Test 2 Varianta A HODNOCENÍ (max. 45 bodů z 50 možných) 1. SPECIFIKACE (12 bodů): (1) Graf průběhu proměnných (1) Obě řady se chovají stejně, lze předpokládat jejich lineární vztah
5EN306 Aplikované kvantitativní metody I
5EN306 Aplikované kvantitativní metody I Přednáška 3 Zuzana Dlouhá Předmět a struktura kurzu 1. Úvod: struktura empirických výzkumů 2. Tvorba ekonomických modelů: teorie 3. Data: zdroje a typy dat, význam
Téma č. 2: Rovnovážný výstup hospodářství
Základy ekonomie II Téma č. 2: Rovnovážný výstup hospodářství Petr Musil Struktura Pojetí ekonomické rovnováhy Agregátní poptávka, agregátní nabídka Rovnovážný výstup v dlouhém období Rovnovážný výstup
MATEMATIKA III V PŘÍKLADECH
VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA FAKULTA STROJNÍ MATEMATIKA III V PŘÍKLADECH Cvičení 10 Mgr. Petr Otipka Ostrava 01 Mgr. Petr Otipka Vysoká škola báňská Technická univerzita Ostrava ISBN
1) Úvod do makroekonomie, makroekonomické identity, hrubý domácí produkt. 2) Celkové výdaje, rovnovážný produkt (model 45 ), rovnováha v modelu AD AS
Makroekonomie (Bc) LS 2005/06 Podkladové materiály na cvičení 1) Úvod do makroekonomie, makroekonomické identity, hrubý domácí produkt 2) Celkové výdaje, rovnovážný produkt (model 45 ), rovnováha v modelu
Cíl: seznámení s pojetím peněz v ekonomické teorii a s fungováním trhu peněz. Peníze jako prostředek směny, zúčtovací jednotka a uchovatel hodnoty.
Vysoká škola finanční a správní, o. p. s. Akademický rok 2007/08, letní semestr Kombinované studium Předmět: Makroekonomie (Bc.) Metodický list č. 3 7) Peníze a trh peněz 8) Otevřená ekonomika 9) Hospodářské
Základy ekonometrie. XI. Vektorové autoregresní modely. Základy ekonometrie (ZAEK) XI. VAR modely Podzim / 28
Základy ekonometrie XI. Vektorové autoregresní modely Základy ekonometrie (ZAEK) XI. VAR modely Podzim 2015 1 / 28 Obsah tématu 1 Prognózování s VAR modely 2 Vektorové modely korekce chyb (VECM) 3 Impulzní
Stanovení manganu a míry přesnosti kalibrace ( Lineární kalibrace )
Příklad č. 1 Stanovení manganu a míry přesnosti kalibrace ( Lineární kalibrace ) Zadání : Stanovení manganu ve vodách se provádí oxidací jodistanem v kyselém prostředí až na manganistan. (1) Sestrojte
18AEK Aplikovaná ekonometrie a teorie časových řad. Řešení domácích úkolů č. 1 a 2 příklad 1
18AEK Aplikovaná ekonometrie a teorie časových řad Řešení domácích úkolů č. 1 a 2 příklad 1 Obecné pravidlo pro všechny testy Je stanovena nulová hypotéza: H 0 Je stanovena alternativní hypotéza: H A Je
9b. Agregátní poptávka I: slide 0
9b. Agregátní poptávka I: (odvození ISLM modelu) slide 0 Obsahem přednášky je Křivka IS a její vztah ke keynesiánskému kříži modelu zapůjčitelných fondů Křivka LM a její vztah k teorii preference likvidity
Úloha 1: Lineární kalibrace
Úloha 1: Lineární kalibrace U pacientů s podezřením na rakovinu prostaty byl metodou GC/MS měřen obsah sarkosinu v moči. Pro kvantitativní stanovení bylo nutné změřit řadu kalibračních roztoků o různé
METODY ODHADU REDUKOVANÉHO A STRUKTURNÍHO TVARU MODELŮ SIMULTÁNNÍCH ROVNIC.
METODY ODHADU REDUKOVANÉHO A STRUKTURNÍHO TVARU MODELŮ SIMULTÁNNÍCH ROVNIC. ZÁKLADNÍ HARRODŮV-DOMARŮV MODEL RŮSTU A JEHO VERZE VE FORMĚ MULTIPLIKÁTOR AKCELERÁTOR. Parametry modelu simultánních rovnic ve
předmětu MAKROEKONOMIE
Metodický list pro první soustředění kombinovaného studia předmětu Přednášející: doc. Ing. Božena Kadeřábková, CSc. Úvod do makroekonomie a hrubý domácí produkt, model 45 1. Úvod do makroekonomie, pojem
ROVNOVÁHA. 5. Jak by se změnila účinnost fiskální politiky, pokud by spotřeba kromě důchodu závisela i na úrokové sazbě?
ROVNOVÁHA Zadání 1. Použijte neoklasickou teorii rozdělování k předpovědi efektu následujících událostí na reálnou mzdu a reálnou cenu kapitálu: a) Vlna imigrace zvýší množství pracovníků v zemi. b) Zemětřesení
Univerzita Pardubice Fakulta chemicko technologická Katedra analytické chemie Licenční studium Management systému jakosti
Univerzita Pardubice Fakulta chemicko technologická Katedra analytické chemie Licenční studium Management systému jakosti 3.3 v analýze dat Autor práce: Přednášející: Prof. RNDr. Milan Meloun, DrSc Pro
Makroekonomie I. Opakování. Řešení. Příklad. Řešení. Příklad Příklady k zápočtu. Ing. Jaroslav ŠETEK, Ph.D.
Opakování Makroekonomie I y k zápočtu Ing. Jaroslav ŠETEK, Ph.D. Katedra ekonomiky Co je znázorněno? 1). 2).. 1) Růst AD 2) Inflace tažená AD Náklady cyklické nezaměstnanosti v podobě odchylky skutečně
Mikroekonomie I. Trh výrobních faktorů ekonomický koloběh. Křivka nabídky (S) Přednáška 3. Podstatné z minulé přednášky. Zákon rostoucí nabídky
Trh výrobních faktorů ekonomický koloběh Mikroekonomie I 3. přednáška Poptávka substituční a důchodový efekt, konkurence, elasticita poptávky Přednáška 3. Křivka nabídky (S) Poptávka substituční a důchodový
Písemná práce k modulu Statistika
The Nottingham Trent University B.I.B.S., a. s. Brno BA (Hons) in Business Management Písemná práce k modulu Statistika Číslo zadání: 144 Autor: Zdeněk Fekar Ročník: II., 2005/2006 1 Prohlašuji, že jsem
Makroekonomie I. Dvousektorová ekonomika. Téma. Opakování. Praktický příklad. Řešení. Řešení Dvousektorová ekonomika opakování Inflace
Téma Makroekonomie I Dvousektorová ekonomika opakování Inflace Ing. Jaroslav ŠETEK, Ph.D. Katedra ekonomiky Opakování Dvousektorová ekonomika Praktický příklad Dvousektorová ekonomika je charakterizována
8 ANALÝZA ČASOVÝCH ŘAD SEZÓNNÍ SLOŽKA
8 ANALÝZA ČASOVÝCH ŘAD SEZÓNNÍ SLOŽKA RYCHLÝ NÁHLED KAPITOLY Následující kapitolou pokračujeme v tématu analýza časových řad a blíže se budeme zabývat problematikou jich pravidelné kolísavost, která je
ANALÝZA DAT V R 3. POPISNÉ STATISTIKY, NÁHODNÁ VELIČINA. Mgr. Markéta Pavlíková Katedra pravděpodobnosti a matematické statistiky MFF UK
ANALÝZA DAT V R 3. POPISNÉ STATISTIKY, NÁHODNÁ VELIČINA Mgr. Markéta Pavlíková Katedra pravděpodobnosti a matematické statistiky MFF UK www.biostatisticka.cz POPISNÉ STATISTIKY - OPAKOVÁNÍ jedna kvalitativní
PR5 Poptávka na trhu výrobků a služeb
PR5 Poptávka na trhu výrobků a služeb 5.1. Rovnováha spotřebitele 5.2. Indiferenční analýza od kardinalismu k ordinalismu 5.3. Poptávka, poptávané množství a jejich změny 5.4. Pružnost tržní poptávky Poptávka
Inflace. Jak lze měřit míru inflace Příčiny inflace Nepříznivé dopady inflace Míra inflace a míra nezaměstnanosti Vývoj inflace v ČR
Inflace Jak lze měřit míru inflace Příčiny inflace Nepříznivé dopady inflace Míra inflace a míra nezaměstnanosti Vývoj inflace v ČR Co je to inflace? Inflace není v původním význam růst cen. Inflace je
Tomáš Karel LS 2012/2013
Tomáš Karel LS 2012/2013 Doplňkový materiál ke cvičení z předmětu 4ST201. Na případné faktické chyby v této presentaci mě prosím upozorněte. Děkuji. Tyto slidy berte pouze jako doplňkový materiál není
Úvodem Dříve les než stromy 3 Operace s maticemi
Obsah 1 Úvodem 13 2 Dříve les než stromy 17 2.1 Nejednoznačnost terminologie 17 2.2 Volba metody analýzy dat 23 2.3 Přehled vybraných vícerozměrných metod 25 2.3.1 Metoda hlavních komponent 26 2.3.2 Faktorová
Účinek změny autonomních výdajů (tedy i G) na Y (= posun křivky IS): Y = γ A
Vysoká škola finanční a správní, o. p. s. Akademický rok 2005/06, letní semestr Kombinované studium Předmět: Makroekonomie (Mgr.) Metodický list č. 2 3) Fiskální a monetární politika v modelu IS-LM 4)
Statistické metody v marketingu. Ing. Michael Rost, Ph.D.
Statistické metody v marketingu Ing. Michael Rost, Ph.D. Jihočeská univerzita v Českých Budějovicích Úvodem Modelování vztahů mezi vysvětlující a vysvětlovanou (závisle) proměnnou patří mezi základní aktivity,
Sever Jih Západ Plechovka Točené Sever Jih Západ Součty Plechovka Točené Součty
Neparametrické testy (motto: Hypotézy jsou lešením, které se staví před budovu a pak se strhává, je-li budova postavena. Jsou nutné pro vědeckou práci, avšak skutečný vědec nepokládá hypotézy za předmětnou