DILATOMETR FUNKČNÍ VZOREK. Prof. Mgr. Jan Toman, DrSc.

Rozměr: px
Začít zobrazení ze stránky:

Download "DILATOMETR FUNKČNÍ VZOREK. Prof. Mgr. Jan Toman, DrSc."

Transkript

1 FUNKČNÍ VZOREK Prof. Mgr. Jan Toman, DrSc. DILATOMETR Součinitel délkové teplotní roztažnosti je tepelně technický parametr, který je důležitý pro aplikace konkrétních výrobků na stavbě [1]. Vypočte se z definičního vztahu: Lt = Lo. ( 1 + α t ) kde Lt je délka vzorku při teplotě t, Lo délka vzorku při teplotě 0, α součinitel délkové teplotní roztažnosti t teplota Často se využívá měření relativního prodloužení: Lt - L 0 ε = = α. t L 0 Protože ale relativní prodloužení se mění s teplotou musí i součinitel délkové teplotní roztažnosti být závislý na teplotě. Uvažuje se proto často průměrná hodnota součinitele délkové teplotní roztažnosti pro teplotní interval 0 až t ε α 0 t = t a pro teplotu t musíme využít diferenciálního vyjádření: d ε α t = d t Snadno lze dokázat, že při zanedbání hodnot nízkých řádů můžeme psát β t = 3 α t kde β t je součinitel objemové teplotní roztažnosti. Konkrétně teplotní závislost součinitele teplotní roztažnosti na teplotě zjistíme tak, že proměříme relativní prodloužení pro určité teploty (nejvhodněji po 100 C až do C) a tyto naměřené hodnoty vyneseme do grafu v závislosti na teplotě. Tuto funkci analyticky vyjádříme a její derivací potom můžeme určit pro každou teplotu hodnotu α t.

2 MĚŘENÍ SE PROVÁDĚLO NA SPECIÁLNÍM DILATOMETRU [2]. Do něho se vloží proměřovaný vzorek, postupně se zvyšuje teplota až do 1000 C a sledují se délkové změny trámečku. Z těchto údajů se potom snadno vypočítá součinitel teplotní roztažnosti. 10 Legenda : T1 Regulační termočlánek T2 Měřící termočlánek 1 Plášť pece s vnitřní izolací 2 Topná spirála 3 Konstrukce pro uložení měřeného vzorku 4 Počítač 5 Prostup v boku pece 6 Keramická přenosová kontaktní tyčinka 7 Proměřovaný vzorek 8 Měřící zařízení 9 Nosná konstrukce 10 Masivní podstavec

3 Fotografie 1. Celkový pohled při měření Fotografie 2. Pohled před vložením do pece

4 Fotografie 3. Detail měřícího zařízení Fotografie 4. Detail uložení měřeného vzorku

5 Protože celková délka, která je snímána se skládá jednak z délky vlastního proměřovaného vzorku a jednak z délky kontaktní tyčinky, je nutno odečíst od celkové délkové změny změnu kontaktní tyčinky. To se umožní provedením kalibrace přístroje. Naměřené hodnoty se zpracovávají graficky. Příklad výsledků měření na materiálu PROMATECT

6 1500 Měření dilatací PROMATECT poprvé (závislost na teplotě) 1000 teplota( C), čas(min), celkové prodl.(0,001mm), reduk. prodl.(0,001mm) teplota ( C) teploota čas celkové prodloužení redukované prodloužení Obr. 1 Měření na nevypáleném vzorku 1,00E-02 Měření dilatací PROMATECT podruhé (v závislosti na teplotě) relativní prodloužení (-) 8,00E-03 6,00E-03 4,00E-03 2,00E-03 0,00E+00-2,00E teplota ( C) celkové relativní prodl. redukované rel.prodl. Obr. 2- Měření na vypáleném vzorku

7 Teplotní dilatace - PROMATECT- poprvé 0,008 0,006 relativní změna délky (-) 0,004 0, ,002-0, ,006-0,008 teplota ( C) Obr.3- Měření při plynulém pomalém ohřevu Dilatace - Promatect-podruhé relativní prodloužení (-) 0,009 0,008 0,007 0,006 0,005 0,004 0,003 0,002 0, , teplota ( C) Obr.4 Měření při plynulém pomalém ohřevu

8 αt jako Z těchto grafů se pak snadno určí součinitel délkové teplotní roztažnosti derivace (tečna) pro každou teplotu t a αot (sečna), jako průměrná hodnota součinitele délkové teplotní roztažnosti pro interval teplot 0 až t C. Tabulka I.Součinitel délkové teplotní roztažnosti α 0 t pro materiál PROMATECT pro teplotní intervaly až C. t 100 C 200 C 300 C 400 C 500 C 600 C 700 C 800 C 900 C 1000 C α 0 t ,42 10,56 2,40 2,15 1,42 2,52 6,29 5,51-4,62-5,40 poprvé α 0 t ,6 6,2 6,4 6,4 7,7 7,3 7,6 7,9 8,0 8,6 podruhé ZÁVĚR Během prováděných měření se ukázalo, že je lepší než zahřívat vzorky postupně po krocích po 100 C, zahřívat pomalou rychlostí plynule. Zpoždění v nárůstu teploty je totiž zanedbatelné, ale grafy jsou monotónnější a výpočet derivací je tudíž přesnější.. Výsledky měření ukázaly, že je třeba proměřit vzorky nejméně 2x, protože při prvém měření dochází k vysušení vzorků a tím ke zkracování. Další zkrácení vyvolá také materiálová strukturální nestabilita. LITERATURA [1] Toman J., Michalko O., Korecký T., : VÝBER NAJVHODNEJŠIEHO MATERIÁLU NA POŽIARNE OBKLADOVÉ DOSKY. In: Stavebné materiály 03/2012 str.50-53, JAGA Groop s.r.o. Bratislava [2] Toman J., Krička A., Trník A. : ZAŘÍZENÍ PRO MĚŘENÍ DÉLKOVÝCH ZMĚN MATERIÁLU PŘI VYSOKÝCH TEPLOTÁCH.In: Užitný vzor č , ÚPV Praha, 2011 PODĚKOVÁNÍ Funkční vzorek byl vytvořen za podpory Výzkumného záměru MŠMT ČR číslo MSM

Vyhodnocení součinitele alfa z dat naměřených v reálných podmínkách při teplotách 80 C a pokojové teplotě.

Vyhodnocení součinitele alfa z dat naměřených v reálných podmínkách při teplotách 80 C a pokojové teplotě. oučinitel odporu Vyhodnocení součinitele alfa z dat naměřených v reálných podmínkách při teplotách 80 C a pokojové teplotě Zadání: Vypočtěte hodnotu součinitele α s platinového odporového teploměru Pt-00

Více

5.0 ZJIŠŤOVÁNÍ FÁZOVÝCH PŘEMĚN

5.0 ZJIŠŤOVÁNÍ FÁZOVÝCH PŘEMĚN 5.0 ZJIŠŤOVÁNÍ FÁZOVÝCH PŘEMĚN Metody zkoumání fázových přeměn v kovech a slitinách jsou založeny na využití změn převážně fyzikálních vlastností, které fázovou přeměnu a s ní spojenou změnu struktury

Více

Měření prostupu tepla

Měření prostupu tepla KATEDRA EXPERIMENTÁLNÍ FYZIKY PŘÍRODOVĚDECKÁ FAKULTA UNIVERZITY PALACKÉHO V OLOMOUCI FYZIKÁLNÍ PRAKTIKUM Z MOLEKULOVÉ FYZIKY A TERMODYNAMIKY Měření prostupu tepla Úvod Prostup tepla je kombinovaný případ

Více

Fyzikální praktikum II

Fyzikální praktikum II Kabinet výuky obecné fyziky, UK MFF Fyzikální praktikum II Úloha č. 9 Název úlohy: Charakteristiky termistoru Jméno: Ondřej Skácel Obor: FOF Datum měření: 16.11.2015 Datum odevzdání:... Připomínky opravujícího:

Více

Střední odborná škola a Střední odborné učiliště, Hustopeče, Masarykovo nám. 1

Střední odborná škola a Střední odborné učiliště, Hustopeče, Masarykovo nám. 1 Číslo projektu Číslo materiálu Název školy CZ.1.07/1.5.00/34.0394 VY_32_INOVACE_15_OC_1.01 Střední odborná škola a Střední odborné učiliště, Hustopeče, Masarykovo nám. 1 Autor Tématický celek Ing. Zdenka

Více

Převodní charakteristiku sensoru popisuje následující vzorec: C(RH)=C 76 * [1 + HK * (RH 76) + K] (1.1)

Převodní charakteristiku sensoru popisuje následující vzorec: C(RH)=C 76 * [1 + HK * (RH 76) + K] (1.1) REALISTICKÉ MĚŘENÍ RELATIVNÍ VLHKOSTI PLYNŮ 1.1 Úvod Kapacitní polymerní sensory relativní vlhkosti jsou principielně teplotně závislé. Kapacita sensoru se mění nejen při změně relativní vlhkosti plynného

Více

Katedra konstrukcí pozemních staveb K124 KP2A, KP2C, KP2E - cvičení 2012/13. Konstrukce pozemních staveb 2. Podklady pro cvičení.

Katedra konstrukcí pozemních staveb K124 KP2A, KP2C, KP2E - cvičení 2012/13. Konstrukce pozemních staveb 2. Podklady pro cvičení. Cíl úlohy Konstrukce pozemních staveb 2 Podklady pro cvičení Úloha 3 Dilatace nosných konstrukcí Návrh nosné konstrukce zadané budovy (úloha 3 má samostatné zadání) se zaměřením na problematiku dilatací

Více

Podklady pro cvičení. Úloha 3

Podklady pro cvičení. Úloha 3 Pozemní stavby A2 Podklady pro cvičení Cíl úlohy Úloha 3 Dilatace nosných konstrukcí Návrh nosné konstrukce zadané budovy (úloha 3 má samostatné zadání) se zaměřením na problematiku dilatací nosných konstrukcí.

Více

f(x) = arccotg x 2 x lim f(x). Určete všechny asymptoty grafu x 2 2 =

f(x) = arccotg x 2 x lim f(x). Určete všechny asymptoty grafu x 2 2 = Řešení vzorové písemky z předmětu MAR Poznámky: Řešení úloh ze vzorové písemky jsou formulována dosti podrobně podobným způsobem jako u řešených příkladů ve skriptech U zkoušky lze jednotlivé kroky postupu

Více

ZAŘÍZENÍ PRO SNÍMÁNÍ TEPLOTNÍHO POLE UVNITŘ MATERIÁLU

ZAŘÍZENÍ PRO SNÍMÁNÍ TEPLOTNÍHO POLE UVNITŘ MATERIÁLU FUNKČNÍ VZOREK: ZAŘÍZENÍ PRO SNÍMÁNÍ TEPLOTNÍHO POLE UVNITŘ MATERIÁLU Předkládané řešení se týká uspořádání měření pro určení teplotního spádu uvnitř materiálu. Cílem je nalézt takové řešení, jak změřit

Více

KOMPENZACE DÉLKOVÝCH ZMĚN POTRUBÍ

KOMPENZACE DÉLKOVÝCH ZMĚN POTRUBÍ KOMPENZACE DÉLKOVÝCH ZMĚN POTRUBÍ Rozdíl teplot při montáži a provozu potrubí způsobuje změnu jeho délky. Potrubí dilatuje, prodlužuje se nebo smršťuje. Provozní teplota potrubí soustav vytápění je vždy

Více

Vliv kapilární vodivosti na tepelně technické vlastnosti stavební konstrukce

Vliv kapilární vodivosti na tepelně technické vlastnosti stavební konstrukce Vliv kapilární vodivosti na tepelně technické vlastnosti stavební konstrukce Článek se zabývá problematikou vlivu kondenzující vodní páry a jejího množství na stavební konstrukce, aplikací na střešní pláště,

Více

4. Stanovení teplotního součinitele odporu kovů

4. Stanovení teplotního součinitele odporu kovů 4. Stanovení teplotního součinitele odporu kovů 4.. Zadání úlohy. Změřte teplotní součinitel odporu mědi v rozmezí 20 80 C. 2. Změřte teplotní součinitel odporu platiny v rozmezí 20 80 C. 3. Vyneste graf

Více

9.2. Zkrácená lineární rovnice s konstantními koeficienty

9.2. Zkrácená lineární rovnice s konstantními koeficienty 9.2. Zkrácená lineární rovnice s konstantními koeficienty Cíle Řešíme-li konkrétní aplikace, které jsou popsány diferenciálními rovnicemi, velmi často zjistíme, že fyzikální nebo další parametry (hmotnost,

Více

Autor: Vladimír Švehla

Autor: Vladimír Švehla Bulletin of Applied Mechanics 1, 55 64 (2005) 55 Využití Castiglianovy věty při výpočtu deformací staticky určité případy zatížení tahem a tlakem Autor: Vladimír Švehla České vysoké učení technické, akulta

Více

Kalibrace odporového teploměru a termočlánku

Kalibrace odporového teploměru a termočlánku Kalibrace odporového teploměru a termočlánku Jakub Michálek 10. dubna 2009 Teorie Pro označení veličin viz text [1] s výjimkou, že teplotní rozdíl značím T, protože značku t už mám vyhrazenu pro čas. Ze

Více

PRAKTIKUM I. Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK. úloha č. XXII. Název: Diferenční skenovací kalorimetrie

PRAKTIKUM I. Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK. úloha č. XXII. Název: Diferenční skenovací kalorimetrie Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK PRAKTIKUM I. úloha č. XXII Název: Diferenční skenovací kalorimetrie Pracoval: Jakub Michálek stud. skup. 15 dne: 15. května 2009 Odevzdal

Více

Požární zkouška v Cardingtonu, ocelobetonová deska

Požární zkouška v Cardingtonu, ocelobetonová deska Požární zkouška v Cardingtonu, ocelobetonová deska Modely chování konstrukcí za vysokých teplot při požáru se opírají o omezené množství experimentů na skutečných objektech. Evropské poznání je založeno

Více

EXPERIMENTÁLNÍ METODY I. 2. Zpracování měření

EXPERIMENTÁLNÍ METODY I. 2. Zpracování měření FSI VUT v Brně, Energetický ústav Odbor termomechanik a technik prostředí prof. Ing. Milan Pavelek, CSc. EXPERIMENTÁLNÍ METODY I OSNOVA. KAPITOLY. Zpracování měření Zpracování výsledků měření (nezávislých

Více

ODPOR TERMISTORU. Pomůcky: Postup: Jaroslav Reichl, 2011

ODPOR TERMISTORU. Pomůcky: Postup: Jaroslav Reichl, 2011 ODPOR TERMISTORU Pomůcky: voltmetr DVP-BTA, ampérmetr DCP-BTA, teplotní čidlo STS-BTA, LabQuest, zdroj napětí, termistor, reostat, horká voda, led (resp. ledová tříšť), svíčka, sirky, program LoggerPro

Více

VYUŽITÍ MULTIFUNKČNÍHO KALIBRÁTORU PRO ZKRÁCENOU ZKOUŠKU PŘEPOČÍTÁVAČE MNOŽSTVÍ PLYNU

VYUŽITÍ MULTIFUNKČNÍHO KALIBRÁTORU PRO ZKRÁCENOU ZKOUŠKU PŘEPOČÍTÁVAČE MNOŽSTVÍ PLYNU VYUŽITÍ MULTIFUNKČNÍHO KALIBRÁTORU PRO ZKRÁCENOU ZKOUŠKU PŘEPOČÍTÁVAČE MNOŽSTVÍ PLYNU potrubí průtokoměr průtok teplota tlak Přepočítávač množství plynu 4. ročník mezinárodní konference 10. a 11. listopadu

Více

d p o r o v t e p l o m ě r, t e r m o č l á n k

d p o r o v t e p l o m ě r, t e r m o č l á n k d p o r o v t e p l o m ě r, t e r m o č l á n k Ú k o l : a) Proveďte kalibraci odporového teploměru, termočlánku a termistoru b) Určete teplotní koeficienty odporového teploměru, konstanty charakterizující

Více

FJFI ČVUT V PRAZE. Úloha 8: Závislost odporu termistoru na teplotě

FJFI ČVUT V PRAZE. Úloha 8: Závislost odporu termistoru na teplotě ZÁKLADY FYZIKÁLNÍCH MĚŘENÍ FJFI ČVUT V PRAZE Datum měření: 29. 4. 2009 Pracovní skupina: 3, středa 5:30 Spolupracovali: Monika Donovalová, Štěpán Novotný Jméno: Jiří Slabý Ročník, kruh:. ročník, 2. kruh

Více

9 OHŘEV NOSNÍKU VYSTAVENÉHO LOKÁLNÍMU POŽÁRU (řešený příklad)

9 OHŘEV NOSNÍKU VYSTAVENÉHO LOKÁLNÍMU POŽÁRU (řešený příklad) 9 OHŘEV NOSNÍKU VYSTAVENÉHO LOKÁLNÍMU POŽÁRU (řešený příklad) Vypočtěte tepelný tok dopadající na strop a nejvyšší teplotu průvlaku z profilu I 3 při lokálním požáru. Výška požárního úseku je 2,8 m, plocha

Více

1. Úvod do problematiky - motivace. 2. Mechanické provedení termostatu

1. Úvod do problematiky - motivace. 2. Mechanické provedení termostatu Vzduchový termostat 1. Úvod do problematiky - motivace Jedním z největších problémů, s kterými je třeba se při přesných měření vypořádat, je vliv teploty na měřenou veličinu či měřený objekt, resp. vliv

Více

MĚŘENÍ Laboratorní cvičení z měření. Měření oteplovací charakteristiky, část 3-3-4

MĚŘENÍ Laboratorní cvičení z měření. Měření oteplovací charakteristiky, část 3-3-4 MĚŘENÍ Laboratorní cvičení z měření Měření oteplovací charakteristiky, část Číslo projektu: Název projektu: Šablona: III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Sada: 20 Číslo materiálu: VY_32_INOVACE_

Více

1. Změřit metodou přímou závislost odporu vlákna žárovky na proudu, který jím protéká. K měření použijte stejnosměrné napětí v rozsahu do 24 V.

1. Změřit metodou přímou závislost odporu vlákna žárovky na proudu, který jím protéká. K měření použijte stejnosměrné napětí v rozsahu do 24 V. 1 Pracovní úkoly 1. Změřit metodou přímou závislost odporu vlákna žárovky na proudu, který jím protéká. K měření použijte stejnosměrné napětí v rozsahu do 24 V. 2. Změřte substituční metodou vnitřní odpor

Více

Měření teplotní roztažnosti

Měření teplotní roztažnosti KATEDRA EXPERIMENTÁLNÍ FYZIKY PŘÍRODOVĚDECKÁ FAKULTA UNIVERZITY PALACKÉHO V OLOMOUCI FYZIKÁLNÍ PRAKTIKUM Z MOLEKULOVÉ FYZIKY A TERMODYNAMIKY Měření teplotní roztažnosti Úvod Zvyšování termodynamické teploty

Více

VYBRANÉ STATĚ Z PROCESNÍHO INŢENÝRSTVÍ cvičení 8

VYBRANÉ STATĚ Z PROCESNÍHO INŢENÝRSTVÍ cvičení 8 UNIVERZITA TOMÁŠE BATI VE ZLÍNĚ FAKULTA APLIKOVANÉ INFORMATIKY VYBRANÉ STATĚ Z PROCESNÍHO INŢENÝRSTVÍ cvičení 8 Hana Charvátová, Dagmar Janáčová Zlín 2013 Tento studijní materiál vznikl za finanční podpory

Více

Předmět: Ročník: Vytvořil: Datum: MATEMATIKA ČTVRTÝ VĚRA JÜTTNEROVÁ Název zpracovaného celku: DERIVACE ZÁKLADNÍ A SLOŽENÉ FUNKCE

Předmět: Ročník: Vytvořil: Datum: MATEMATIKA ČTVRTÝ VĚRA JÜTTNEROVÁ Název zpracovaného celku: DERIVACE ZÁKLADNÍ A SLOŽENÉ FUNKCE Předmět: Ročník: Vtvořil: Datum: MATEMATIKA ČTVRTÝ VĚRA JÜTTNEROVÁ.. Název zpracovaného celku: DERIVACE ZÁKLADNÍ A SLOŽENÉ FUNKCE DIFERENCIÁLNÍ POČET Deinice: Okolí O bodu nazývané poloměr okolí O. LIMITA

Více

FYZIKÁLNÍ PRAKTIKUM Ústav fyziky FEI VUT BRNO

FYZIKÁLNÍ PRAKTIKUM Ústav fyziky FEI VUT BRNO FYZIKÁLNÍ PRAKTIKUM Ústav fyziky FEI VUT BRNO Spolupracoval Příprava Název úlohy Šuranský Radek Opravy Jméno Ročník Škovran Jan Předn. skup. B Měřeno dne 4.03.2002 Učitel Stud. skupina 2 Kód Odevzdáno

Více

VYUŽITÍ MATLABU PRO VÝUKU NUMERICKÉ MATEMATIKY Josef Daněk Centrum aplikované matematiky, Západočeská univerzita v Plzni. Abstrakt

VYUŽITÍ MATLABU PRO VÝUKU NUMERICKÉ MATEMATIKY Josef Daněk Centrum aplikované matematiky, Západočeská univerzita v Plzni. Abstrakt VYUŽITÍ MATLABU PRO VÝUKU NUMERICKÉ MATEMATIKY Josef Daněk Centrum aplikované matematiky, Západočeská univerzita v Plzni Abstrakt Současný trend snižování počtu kontaktních hodin ve výuce nutí vyučující

Více

A:Měření odporových teploměrů v ultratermostatu B:Měření teploty totálním pyrometrem KET/MNV (8. cvičení)

A:Měření odporových teploměrů v ultratermostatu B:Měření teploty totálním pyrometrem KET/MNV (8. cvičení) A:Měření odporových teploměrů v ultratermostatu B:Měření teploty totálním pyrometrem KET/MNV (8. cvičení) Vypracoval : Martin Dlouhý Osobní číslo : A8B268P A:Měření odporových teploměrů v ultratermostatu

Více

6 PROTIPOŽÁRNÍ DESKOVÉ OBKLADY

6 PROTIPOŽÁRNÍ DESKOVÉ OBKLADY 6 PROTIPOŽÁRNÍ DESKOVÉ OBKLADY Ve srovnání s protipožárními nátěry a nástřiky, které slouží především pro zvýšení požární odolnosti nosných, zejména tyčových prvků, mohou být protipožární deskové obklady

Více

Konvexnost, konkávnost

Konvexnost, konkávnost 20. srpna 2007 1. f = x 3 12x 2. f = x 2 e x 3. f = x ln x Příklad 1. Určete intervaly, na kterých je funkce konvexní a konkávní a určete inflexní body f = x 3 12x Příklad 1. f = x 3 12x Řešení: Df = R

Více

1. Změřte závislost indukčnosti cívky na procházejícím proudu pro tyto případy:

1. Změřte závislost indukčnosti cívky na procházejícím proudu pro tyto případy: 1 Pracovní úkoly 1. Změřte závislost indukčnosti cívky na procházejícím proudu pro tyto případy: (a) cívka bez jádra (b) cívka s otevřeným jádrem (c) cívka s uzavřeným jádrem 2. Přímou metodou změřte odpor

Více

Měření teplotní roztažnosti

Měření teplotní roztažnosti KATEDRA EXPERIMENTÁLNÍ FYZIKY PŘÍRODOVĚDECKÁ FAKULTA UNIVERZITY PALACKÉHO V OLOMOUCI FYZIKÁLNÍ PRAKTIKUM Z MOLEKULOVÉ FYZIKY A TERMODYNAMIKY Měření teplotní roztažnosti Úvod Zvyšování termodynamické teploty

Více

Dilatace nosných konstrukcí

Dilatace nosných konstrukcí ČVUT v Praze Fakulta stavební PSA2 - POZEMNÍ STAVBY A2 (do roku 2015 název KP2) Dilatace nosných konstrukcí doc. Ing. Jiří Pazderka, Ph.D. Katedra konstrukcí pozemních staveb Zpracováno v návaznosti na

Více

e, přičemž R Pro termistor, který máte k dispozici, platí rovnice

e, přičemž R Pro termistor, který máte k dispozici, platí rovnice Nakreslete schéma vyhodnocovacího obvodu pro kapacitní senzor. Základní hodnota kapacity senzoru pf se mění maximálně o pf. omu má odpovídat výstupní napěťový rozsah V až V. Pro základní (klidovou) hodnotu

Více

INTEGROVANÁ STŘEDNÍ ŠKOLA TECHNICKÁ BENEŠOV. Černoleská 1997, Benešov. Elektrická měření. Tematický okruh. Měření elektrických veličin.

INTEGROVANÁ STŘEDNÍ ŠKOLA TECHNICKÁ BENEŠOV. Černoleská 1997, Benešov. Elektrická měření. Tematický okruh. Měření elektrických veličin. Číslo projektu CZ.107/1.5.00/34.0425 Název školy INTEGROVANÁ STŘEDNÍ ŠKOLA TECHNICKÁ BENEŠOV Černoleská 1997, 256 01 Benešov Předmět Elektrická měření Tematický okruh Měření elektrických veličin Téma Měření

Více

Střední průmyslová škola elektrotechnická a informačních technologií Brno

Střední průmyslová škola elektrotechnická a informačních technologií Brno Střední průmyslová škola elektrotechnická a informačních technologií Brno Číslo a název projektu: CZ.1.07/1.5.00/34.0521 Investice do vzdělání nesou nejvyšší úrok Autor: Ing. Bohumír Jánoš Tématická sada:

Více

dx se nazývá diferenciál funkce f ( x )

dx se nazývá diferenciál funkce f ( x ) 6 Výklad Definice 6 Nechť je 0 vnitřním bodem definičního oboru D f funkce f ( ) Funkce proměnné d = 0 definovaná vztahem df ( 0) = f ( 0) d se nazývá diferenciál funkce f ( ) v bodě 0, jestliže platí

Více

Měření měrné tepelné kapacity látek kalorimetrem

Měření měrné tepelné kapacity látek kalorimetrem Měření měrné tepelné kapacity látek kalorimetrem Problém A. Změření kapacity kalorimetru (tzv. vodní hodnota) pomocí elektrického ohřevu s měřeným příkonem. B. Změření měrné tepelné kapacity hliníku směšovací

Více

Management rekreace a sportu. 10. Derivace

Management rekreace a sportu. 10. Derivace Derivace Derivace Před mnoha lety se matematici snažily o obecné vyřešení úlohy, jak sestrojit tečnu k dané křivce a také yzici zápolili s problémem určení rychlosti nerovnoměrného pohybu K zásadnímu obratu

Více

Pracovní postup Cemix: Omítky se stěnovým vytápěním

Pracovní postup Cemix: Omítky se stěnovým vytápěním Pracovní postup Cemix: Omítky se stěnovým vytápěním Pracovní postup Cemix: Omítky se stěnovým vytápěním Obsah 1 Použití... 3 2 Varianty vytápění stěn... 3 3 Tepelně technické podmínky... 3 4 Skladba systému...

Více

BEZSTYKOVÁ KOLEJ NA MOSTECH

BEZSTYKOVÁ KOLEJ NA MOSTECH Ústav železničních konstrukcí a staveb 1 BEZSTYKOVÁ KOLEJ NA MOSTECH Otto Plášek Bezstyková kolej na mostech 2 Obsah Vysvětlení rozdílů mezi předpisem SŽDC S3 a ČSN EN 1991-2 Teoretický základ interakce

Více

Termistor. Teorie: Termistor je polovodičová součástka, jejíž odpor závisí na teplotě přibližně podle vzorce

Termistor. Teorie: Termistor je polovodičová součástka, jejíž odpor závisí na teplotě přibližně podle vzorce ermistor Pomůcky: Systém ISES, moduly: teploměr, ohmmetr, termistor, 2 spojovací vodiče, stojan s držáky, azbestová síťka, kádinka, voda, kahan, zápalky, soubor: termistor.imc. Úkoly: ) Proměřit závislost

Více

Stanovení požární odolnosti. Přestup tepla do konstrukce v ČSN EN

Stanovení požární odolnosti. Přestup tepla do konstrukce v ČSN EN Stanovení požární odolnosti NAVRHOVÁNÍ OCELOVÝCH KONSTRUKCÍ NA ÚČINKY POŽÁRU ČSN EN 1993-1-2 Ing. Jiří Jirků Ing. Zdeněk Sokol, Ph.D. Prof. Ing. František Wald, CSc. 1 2 Přestup tepla do konstrukce v ČSN

Více

DIFÚZNÍ MOSTY. g = - δ grad p (2) Doc. Ing. Šárka Šilarová, CSc. Ing. Petr Slanina Stavební fakulta ČVUT v Praze

DIFÚZNÍ MOSTY. g = - δ grad p (2) Doc. Ing. Šárka Šilarová, CSc. Ing. Petr Slanina Stavební fakulta ČVUT v Praze Doc. Ing. Šárka Šilarová, CSc. Ing. Petr Slanina Stavební fakulta ČVUT v Praze DIFÚZNÍ MOSTY ABSTRAKT Při jednoduchém výpočtu zkondenzovaného množství vlhkosti uvnitř střešního pláště podle ČSN EN ISO

Více

ZÁPADOČESKÁ UNIVERZITA V PLZNI FAKULTA STROJNÍ

ZÁPADOČESKÁ UNIVERZITA V PLZNI FAKULTA STROJNÍ ZÁPADOČESKÁ UNIVERZITA V PLZNI FAKULTA STROJNÍ KATEDRA MATERIÁLŮ A STROJÍRENSKÉ METALURGIE 1. semestrální práce: Formovací materiály Školní rok : 2013/2014 Vypracoval : Os. číslo : Radek Veselý S12B0369P

Více

Úloha č.1: Stanovení molární tepelné kapacity plynu za konstantního tlaku

Úloha č.1: Stanovení molární tepelné kapacity plynu za konstantního tlaku Úloha č.1: Stanovení molární tepelné kapacity plynu za konstantního tlaku Teorie První termodynamický zákon je definován du dq dw (1) kde du je totální diferenciál vnitřní energie a dq a dw jsou neúplné

Více

VÝPOČET TEPELNÝCH ZTRÁT

VÝPOČET TEPELNÝCH ZTRÁT VÝPOČET TEPELNÝCH ZTRÁT A. Potřebné údaje pro výpočet tepelných ztrát A.1 Výpočtová vnitřní teplota θ int,i [ C] normová hodnota z tab.3 určená podle typu a účelu místnosti A.2 Výpočtová venkovní teplota

Více

Požární odolnost a pasivní zabezpečení proti požáru

Požární odolnost a pasivní zabezpečení proti požáru 04.09.08, list 1/16 Požární odolnost a pasivní zabezpečení proti Hlavní cíle: snížení rizika destrukce vnitřního vybavení rozvoden, ochrana vnitřních prvků před tepelnou degradací vznikající při. První

Více

CVIČENÍ č. 11 ZTRÁTY PŘI PROUDĚNÍ POTRUBÍM

CVIČENÍ č. 11 ZTRÁTY PŘI PROUDĚNÍ POTRUBÍM CVIČENÍ č. 11 ZTRÁTY PŘI PROUDĚNÍ POTRUBÍM Místní ztráty, Tlakové ztráty Příklad č. 1: Jistá část potrubí rozvodného systému vody se skládá ze dvou paralelně uspořádaných větví. Obě potrubí mají průřez

Více

PRAKTIKUM II Elektřina a magnetismus

PRAKTIKUM II Elektřina a magnetismus Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK PRAKTIKUM II Elektřina a magnetismus Úloha č.: II Název: Měření odporů Pracoval: Pavel Brožek stud. skup. 12 dne 28.11.2008 Odevzdal

Více

INOVACE ODBORNÉHO VZDĚLÁVÁNÍ NA STŘEDNÍCH ŠKOLÁCH ZAMĚŘENÉ NA VYUŽÍVÁNÍ ENERGETICKÝCH ZDROJŮ PRO 21. STOLETÍ A NA JEJICH DOPAD NA ŽIVOTNÍ PROSTŘEDÍ

INOVACE ODBORNÉHO VZDĚLÁVÁNÍ NA STŘEDNÍCH ŠKOLÁCH ZAMĚŘENÉ NA VYUŽÍVÁNÍ ENERGETICKÝCH ZDROJŮ PRO 21. STOLETÍ A NA JEJICH DOPAD NA ŽIVOTNÍ PROSTŘEDÍ INOVACE ODBORNÉHO VZDĚLÁVÁNÍ NA STŘEDNÍCH ŠKOLÁCH ZAMĚŘENÉ NA VYUŽÍVÁNÍ ENERGETICKÝCH ZDROJŮ PRO 21. STOLETÍ A NA JEJICH DOPAD NA ŽIVOTNÍ PROSTŘEDÍ CZ.1.07/1.1.00/08.0010 NUMERICKÉ SIMULACE ING. KATEŘINA

Více

9. T r a n s f o r m a c e n á h o d n é v e l i č i n y

9. T r a n s f o r m a c e n á h o d n é v e l i č i n y 9. T r a n s f o r m a c e n á h o d n é v e l i č i n y Při popisu procesů zpracováváme vstupní údaj, hodnotu x tak, že výstupní hodnota y závisí nějakým způsobem na vstupní, je její funkcí y = f(x).

Více

VYBRANÉ STATĚ Z PROCESNÍHO INŢENÝRSTVÍ cvičení 9

VYBRANÉ STATĚ Z PROCESNÍHO INŢENÝRSTVÍ cvičení 9 UNIVERZITA TOMÁŠE BATI VE ZLÍNĚ FAKULTA APLIKOVANÉ INFORMATIKY VYBRANÉ STATĚ Z PROCESNÍHO INŢENÝRSTVÍ cvičení 9 Nestacionární vedení tepla v rovinné stěně Hana Charvátová, Dagmar Janáčová Zlín 2013 Tento

Více

PF-22. Technická informace. DASFOS Czr, s.r.o. Technologicko-inovační centrum Ostrava. Plastometr typu Gieseler s konstantním krouticím momentem

PF-22. Technická informace. DASFOS Czr, s.r.o. Technologicko-inovační centrum Ostrava. Plastometr typu Gieseler s konstantním krouticím momentem DASFOS Czr, s.r.o. Technologicko-inovační centrum Ostrava Božkova 45/914, 702 00 Ostrava 2-Přívoz Tel: + 420 59 6612092 Fax: + 420 59 6612094, E-mail: dasfos@dasfos.com Web: http://www.dasfos.com Technická

Více

2. MĚŘENÍ TEPLOTY TERMOČLÁNKY

2. MĚŘENÍ TEPLOTY TERMOČLÁNKY 2. MĚŘENÍ TEPLOTY TERMOČLÁNKY Otázky k úloze (domácí příprava): Jaká je teplota kompenzačního spoje ( studeného konce ), na kterou koriguje kompenzační krabice? Dá se to zjistit jednoduchým měřením? Čemu

Více

Dilatometr DF-7 a Automatický lis DL-7

Dilatometr DF-7 a Automatický lis DL-7 DASFOS CZr, s.r.o. Technologicko-inovační centrum Božkova 45, 702 00, Ostrava-Přívoz, Česká republika tel.: +420 596 612 092 fax: +420 596 612 094 e-mail: dasfos@dasfos.com web: http://www.dasfos.com Technická

Více

13.1. Úvod Cílem regresní analýzy je popsat závislost hodnot znaku Y na hodnotách

13.1. Úvod Cílem regresní analýzy je popsat závislost hodnot znaku Y na hodnotách 13 Regrese 13.1. Úvod Cílem regresní analýzy je popsat závislost hodnot znaku Y na hodnotách znaku X. Přitom je třeba vyřešit jednak volbu funkcí k vystižení dané závislosti a dále stanovení konkrétních

Více

SF2 Podklady pro cvičení

SF2 Podklady pro cvičení SF Podklady pro cvičení Úloha 7 D přenos tepla riziko růstu plísní a kondenzace na vnitřním povrchu konstrukce Ing. Kamil Staněk 11/010 kamil.stanek@fsv.cvut.cz 1 D přenos tepla 1.1 Úvodem Dosud jsme se

Více

Otázku, kterými body prochází větev implicitní funkce řeší následující věta.

Otázku, kterými body prochází větev implicitní funkce řeší následující věta. 1 Implicitní funkce Implicitní funkce nejsou funkce ve smyslu definice, že funkce bodu z definičního oboru D přiřadí právě jednu hodnotu z oboru hodnot H. Přesnější termín je funkce zadaná implicitně.

Více

Univerzita obrany. Měření na výměníku tepla K-216. Laboratorní cvičení z předmětu TERMOMECHANIKA. Protokol obsahuje 13 listů. Vypracoval: Vít Havránek

Univerzita obrany. Měření na výměníku tepla K-216. Laboratorní cvičení z předmětu TERMOMECHANIKA. Protokol obsahuje 13 listů. Vypracoval: Vít Havránek Univerzita obrany K-216 Laboratorní cvičení z předmětu TERMOMECHANIKA Měření na výměníku tepla Protokol obsahuje 13 listů Vypracoval: Vít Havránek Studijní skupina: 21-3LRT-C Datum zpracování: 7.5.2011

Více

Dovolené napětí, bezpečnost Zhotoveno ve školním roce: 2011/2012 Jméno zhotovitele: Ing. Iva Procházková

Dovolené napětí, bezpečnost Zhotoveno ve školním roce: 2011/2012 Jméno zhotovitele: Ing. Iva Procházková Název a adresa školy: Střední škola průmyslová a umělecká, Opava, příspěvková organizace, Praskova 399/8, Opava, 74601 Název operačního programu: OP Vzdělávání pro konkurenceschopnost, oblast podpory 1.5

Více

Univerzita Pardubice Fakulta chemicko technologická Katedra analytické chemie Licenční studium Management systému jakosti

Univerzita Pardubice Fakulta chemicko technologická Katedra analytické chemie Licenční studium Management systému jakosti Univerzita Pardubice Fakulta chemicko technologická Katedra analytické chemie Licenční studium Management systému jakosti 3.3 v analýze dat Autor práce: Přednášející: Prof. RNDr. Milan Meloun, DrSc Pro

Více

PRAKTIKUM I. Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK. Název: Teplotní roztažnost pevných látek. stud. skup.

PRAKTIKUM I. Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK. Název: Teplotní roztažnost pevných látek. stud. skup. Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK PRAKTIKUM I. Úloha č. XXIV Název: Teplotní roztažnost pevných látek Pracoval: Lukáš Vejmelka stud. skup. FMUZV (73) dne 27.3.2013 Odevzdal

Více

1. Okalibrujte pomocí bodu tání ledu, bodu varu vody a bodu tuhnutí cínu:

1. Okalibrujte pomocí bodu tání ledu, bodu varu vody a bodu tuhnutí cínu: 1 Pracovní úkoly 1. Okalibrujte pomocí bodu tání ledu, bodu varu vody a bodu tuhnutí cínu: a. platinový odporový teploměr (určete konstanty R 0, A, B) b. termočlánek měď-konstantan (určete konstanty a,

Více

PŘEVISLÉ A USTUPUJÍCÍ KONSTRUKCE

PŘEVISLÉ A USTUPUJÍCÍ KONSTRUKCE PŘEVISLÉ A USTUPUJÍCÍ KONSTRUKCE Vodorovné nosné konstrukce Rozdělení z funkčního hlediska na konstrukce: A/ Stropní rozdělují budovu po výšce, B/ Převislé - římsy, balkony, arkýře, apsidy, pavlače apod.,

Více

133PSBZ Požární spolehlivost betonových a zděných konstrukcí. Přednáška A12. ČVUT v Praze, Fakulta stavební katedra betonových a zděných konstrukcí

133PSBZ Požární spolehlivost betonových a zděných konstrukcí. Přednáška A12. ČVUT v Praze, Fakulta stavební katedra betonových a zděných konstrukcí 133PSBZ Požární spolehlivost betonových a zděných konstrukcí Přednáška A12 ČVUT v Praze, Fakulta stavební katedra betonových a zděných konstrukcí Obsah přednášky Navrhování zděných konstrukcí na účinky

Více

Newtonova metoda. 23. října 2012

Newtonova metoda. 23. října 2012 Hledání kořenů rovnic jedné reálné proměnné Newtonova metoda Michal Čihák 23. října 2012 Newtonova metoda (metoda tečen) využívá myšlenku, že tečna v daném bodě grafu funkce nejlépe aproximuje graf funkce

Více

Stanovení viskozity skla v intervalu 10 2 až 10 5 dpas

Stanovení viskozity skla v intervalu 10 2 až 10 5 dpas Návod na laboratorní práci: Stanovení viskozity skla v intervalu 10 2 až 10 5 dpas Vedoucí práce: Dr.Ing. Martin Míka, Ing. František Lahodný, Ph.D. telefon 220444102 Místo: laboratoře A14 a A15 Úvod Viskozita

Více

6 Měření transformátoru naprázdno

6 Měření transformátoru naprázdno 6 6.1 Zadání úlohy a) změřte charakteristiku naprázdno pro napětí uvedená v tabulce b) změřte převod transformátoru c) vypočtěte poměrný proud naprázdno pro jmenovité napětí transformátoru d) vypočtěte

Více

Derivace funkce. Přednáška MATEMATIKA č Jiří Neubauer

Derivace funkce. Přednáška MATEMATIKA č Jiří Neubauer Přednáška MATEMATIKA č. 9-11 Katedra ekonometrie FEM UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Šotová, J., Doudová, L. Diferenciální počet funkcí jedné proměnné Motivační příklady

Více

TERMOMECHANIKA 15. Základy přenosu tepla

TERMOMECHANIKA 15. Základy přenosu tepla FSI VUT v Brně, Energetický ústav Odbor termomechaniky a techniky prostředí Prof. Ing. Milan Pavelek, CSc. TERMOMECHANIKA 15. Základy přenosu tepla OSNOVA 15. KAPITOLY Tři mechanizmy přenosu tepla Tepelný

Více

Matematický seminář. OVO ŠVP Tématický celek Učivo ŠVP Integrace Mezipředmětové vztahy. jejich soustavy. Spojitost funkce v bodě. Limita funkce v bodě

Matematický seminář. OVO ŠVP Tématický celek Učivo ŠVP Integrace Mezipředmětové vztahy. jejich soustavy. Spojitost funkce v bodě. Limita funkce v bodě Řeší s porozumněním rovnice s parametrem Rovnice, nerovnice a jejich soustavy Řovnice, nerovnice a jejich soustavy Třetí, 24 hodin Zvolí vhodnou metodu řešení rovnice nebo nerovnice Vysvětlí zvolený způsob

Více

PRAKTIKUM I. Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK. Pracoval: Pavel Ševeček stud. skup.: F/F1X/11 dne:

PRAKTIKUM I. Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK. Pracoval: Pavel Ševeček stud. skup.: F/F1X/11 dne: Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK PRAKTIKUM I. Úloha č. VIII Název: Kalibrace odporového teploměru a termočlánku fázové přechody Pracoval: Pavel Ševeček stud. skup.:

Více

SVISLÉ NOSNÉ KONSTRUKCE TEPELNĚ IZOLAČNÍ VLASTNOSTI STĚN

SVISLÉ NOSNÉ KONSTRUKCE TEPELNĚ IZOLAČNÍ VLASTNOSTI STĚN 2.2.2.1 TEPELNĚ IZOLAČNÍ VLASTNOSTI STĚN Základní vlastností stavební konstrukce z hlediska šíření tepla je její tepelný odpor R, na základě něhož se výpočtem stanoví součinitel prostupu tepla U. Čím nižší

Více

Tepelné mosty pro pasivní domy

Tepelné mosty pro pasivní domy Tepelné mosty pro pasivní domy Část: 3 / 5 Publikace byla zpracována za finanční podpory Ministerstva životního prostředí na realizaci projektů NNO z hlavní oblasti Ochrana životního prostředí, udržitelný

Více

ZKUŠEBNÍ ZAŘÍZENÍ PRO HODNOCENÍ SKRÁPĚNÝCH TRUBKOVÝCH SVAZKŮ

ZKUŠEBNÍ ZAŘÍZENÍ PRO HODNOCENÍ SKRÁPĚNÝCH TRUBKOVÝCH SVAZKŮ ZKUŠEBNÍ ZAŘÍZENÍ PRO HODNOCENÍ SKRÁPĚNÝCH TRUBKOVÝCH SVAZKŮ Rok vzniku: 29 Umístěno na: Vysoké učení technické v Brně, Fakulta strojního ženýrství, Technická 2, 616 69 Brno, Hala C3/Energetický ústav

Více

Měření odporu ohmovou metodou

Měření odporu ohmovou metodou ěření odporu ohmovou metodou Teoretický rozbor: ýpočet a S Pro velikost platí: Pro malé odpory: mpérmetr však neměří pouze proud zátěže ale proud, který je dán součtem proudu zátěže a proudu tekoucího

Více

Řešení: Nejdříve musíme určit sílu, kterou působí kladka proti směru pohybu padajícího vědra a napíná tak lano. Moment síly otáčení kladky je:

Řešení: Nejdříve musíme určit sílu, kterou působí kladka proti směru pohybu padajícího vědra a napíná tak lano. Moment síly otáčení kladky je: Přijímací zkouška na navazující magisterské studium - 16 Studijní program Fyzika - všechny obory kromě Učitelství fyziky-matematiky pro střední školy, Varianta A Příklad 1 (5 bodů) Jak dlouho bude padat

Více

ODR metody Runge-Kutta

ODR metody Runge-Kutta ODR metody Runge-Kutta Teorie (velmi stručný výběr z přednášek) Úloha s počátečními podmínkami (Cauchyova) 1 řádu Hledáme aprox řešení Y(x) soustavy obyčejných diferenciálních rovnic 1 řádu kde Y(x) =

Více

PASIVNÍ REKUPERAČNÍ JEDNOTKA ELAIR P

PASIVNÍ REKUPERAČNÍ JEDNOTKA ELAIR P PASIVNÍ REKUPERAČNÍ JEDNOTKA ELAIR P Pasivní rekuperační jednotka Elair P je opláštěný rekuperační výměník se sendvičovou konstrukcí pláště a ventilátory, určený k dopravě vzduchu a rekuperaci (předání

Více

Plánování experimentu

Plánování experimentu SEMESTRÁLNÍ PRÁCE Plánování experimentu 05/06 Ing. Petr Eliáš 1. NÁVRH NOVÉHO VALIVÉHO LOŽISKA 1.1 Zadání Při návrhu nového valivého ložiska se v prvotní fázi uvažovalo pouze o změně designu věnečku (parametr

Více

Tepelné mosty pro pasivní domy

Tepelné mosty pro pasivní domy Tepelné mosty pro pasivní domy Část: 2 / 5 Publikace byla zpracována za finanční podpory Ministerstva životního prostředí na realizaci projektů NNO z hlavní oblasti Ochrana životního prostředí, udržitelný

Více

VYHODNOCENÍ LABORATORNÍCH ZKOUŠEK

VYHODNOCENÍ LABORATORNÍCH ZKOUŠEK VYHODNOCENÍ LABORATORNÍCH ZKOUŠEK Deformace elastomerových ložisek při zatížení Z hodnot naměřených deformací elastomerových ložisek v jednotlivých měřících místech (jednotlivé snímače deformace) byly

Více

MS EXCEL 2010 ÚLOHY. Vytvořte tabulku podle obrázku, která bude provádět základní matematické operace se dvěma zadanými čísly a a b.

MS EXCEL 2010 ÚLOHY. Vytvořte tabulku podle obrázku, která bude provádět základní matematické operace se dvěma zadanými čísly a a b. MS EXCEL 2010 ÚLOHY ÚLOHA Č.1 Vytvořte tabulku podle obrázku, která bude provádět základní matematické operace se dvěma zadanými čísly a a b. Do buněk B2 a B3 očekávám zadání hodnot. Buňky B6:B13 a D6:D13

Více

Základem molekulové fyziky je kinetická teorie látek. Vychází ze tří pouček:

Základem molekulové fyziky je kinetická teorie látek. Vychází ze tří pouček: Molekulová fyzika zkoumá vlastnosti látek na základě jejich vnitřní struktury, pohybu a vzájemného působení částic, ze kterých se látky skládají. Termodynamika se zabývá zákony přeměny různých forem energie

Více

BH059 Tepelná technika budov

BH059 Tepelná technika budov BH059 Tepelná technika budov Ing. Danuše Čuprová, CSc. Ing. Sylva Bantová, Ph.D. Výpočet součinitele prostupu okna Lineární a bodový činitel prostupu tepla Nejnižší vnitřní povrchová teplota konstrukce

Více

MOMENT SETRVAČNOSTI. Obecná část Pomocí Newtonova pohybového zákona síly můžeme odvodit pohybovou rovnici pro rotační pohyb:

MOMENT SETRVAČNOSTI. Obecná část Pomocí Newtonova pohybového zákona síly můžeme odvodit pohybovou rovnici pro rotační pohyb: MOMENT SETRVAČNOST Obecná část Pomocí Newtonova pohybového záona síly můžeme odvodit pohybovou rovnici pro rotační pohyb: dω M = = ε, (1) d t de M je moment vnější síly působící na těleso, ω úhlová rychlost,

Více

NMAF 051, ZS Zkoušková písemná práce 16. ledna 2009

NMAF 051, ZS Zkoušková písemná práce 16. ledna 2009 Jednotlivé kroky při výpočtech stručně, ale co nejpřesněji odůvodněte. Pokud používáte nějaké tvrzení, nezapomeňte ověřit splnění předpokladů. Jméno a příjmení: Skupina: Příklad 3 5 Celkem bodů Bodů 8

Více

Měření kapacity kondenzátoru a indukčnosti cívky. Ověření frekvenční závislosti kapacitance a induktance pomocí TG nebo SC

Měření kapacity kondenzátoru a indukčnosti cívky. Ověření frekvenční závislosti kapacitance a induktance pomocí TG nebo SC Měření kapacity kondenzátoru a indukčnosti cívky. Ověření frekvenční závislosti kapacitance a induktance pomocí TG nebo SC Kondenzátor i cívka kladou střídavému proudu odpor, který nazýváme kapacitance

Více

Test laminátové plovoucí podlahy vyhřívané folií ECOFILM

Test laminátové plovoucí podlahy vyhřívané folií ECOFILM Test laminátové plovoucí podlahy vyhřívané folií ECOFILM 1. Účel Testu: Zjištění dynamiky náběhu teploty povrchu podlahy a teploty bezprostředně na povrchu folie. Změření maximální dosažené teploty na

Více

Fyzikální praktikum 1

Fyzikální praktikum 1 Fyzikální praktikum 1 FJFI ČVUT v Praze Úloha: č. 5 - Kalibrace teploměru, skupenské teplo Jméno: Ondřej Finke Datum měření: 6.10.2014 Kruh: FE Skupina: 4 Klasifikace: 1. Pracovní úkoly 1.1 - Kalibrace

Více

MĚŘENÍ EMISÍ A VÝPOČET TEPELNÉHO VÝMĚNÍKU

MĚŘENÍ EMISÍ A VÝPOČET TEPELNÉHO VÝMĚNÍKU MĚŘENÍ EMISÍ A VÝPOČET TEPELNÉHO VÝMĚNÍKU. Cíl práce: Roštový kotel o jmenovitém výkonu 00 kw, vybavený automatickým podáváním paliva, je určen pro spalování dřevní štěpky. Teplo z topného okruhu je předáváno

Více

9.5. Soustavy diferenciálních rovnic

9.5. Soustavy diferenciálních rovnic Cíle Budeme se nyní zabývat úlohami, v nichž je cílem najít dvojici funkcí y(x), z(x), pro které jsou zadány dvě lineární rovnice prvního řádu, obsahující tyto funkce a jejich derivace. Výklad Omezíme-li

Více

Výpočty součinitele prostupu tepla jednotlivých variant

Výpočty součinitele prostupu tepla jednotlivých variant Výpočty součinitele prostupu tepla jednotlivých variant HODNOTY PRO VÝPOČET VARIANTY Č. 1 U g Izolační dvojsklo nepokovené 4-6-4, plněné vzduchem 3,3 U w Vypočítaný součinitel prostupu tepla [W/(m2.K)]

Více

Spotřeba paliva a její měření je jedna z nejdůležitějších užitných vlastností vozidla. Měřit a uvádět spotřebu paliva je možno několika způsoby.

Spotřeba paliva a její měření je jedna z nejdůležitějších užitných vlastností vozidla. Měřit a uvádět spotřebu paliva je možno několika způsoby. S Spotřeba paliva Spotřeba paliva a její měření je jedna z nejdůležitějších užitných vlastností vozidla. ěřit a uvádět spotřebu paliva je možno několika způsoby. S.1 Spotřeba a měrná spotřeba Spotřeba

Více