9.2. Zkrácená lineární rovnice s konstantními koeficienty
|
|
- Vlastimil Staněk
- před 6 lety
- Počet zobrazení:
Transkript
1 9.2. Zkrácená lineární rovnice s konstantními koeficienty Cíle Řešíme-li konkrétní aplikace, které jsou popsány diferenciálními rovnicemi, velmi často zjistíme, že fyzikální nebo další parametry (hmotnost, hustota, frekvence, elektrický odpor aj.), které obvykle vystupují jako koeficienty rovnice, jsou konstantami. Takovéto úlohy tvoří základní skupinu mezi lineárními rovnicemi a budeme se jimi proto zabývat podrobně. V neposlední řadě je důvodem také možnost získat jejich řešení analytickými metodami, což v případě obecnějších typů rovnic není obvykle dosažitelné. Výklad Zaměříme se na zkrácené rovnice druhého řádu s konstantními koeficienty, jejichž obecný tvar je a 2 y (x) + a 1 y (x) + a 0 y(x) = 0, kde a 0, a 1, a 2 jsou reálné koeficienty. Ukážeme nejprve zásadní skutečnost, že existují řešení této rovnice ve tvaru y(x) = e rx, kde r je zatím nespecifikovaná konstanta. Snadno určíme derivace y (x) = re rx, y (x) = r 2 e rx, které dosadíme do původní rovnice. Po vydělení výrazem e rx dostáváme a 2 r 2 + a 1 r + a 0 = 0, což je kvadratická rovnice pro neznámou r. Tento výsledek znamená, že funkce y(x) = e rx bude řešením diferenciální rovnice právě tehdy, když r bude řešením příslušné algebraické rovnice
2 Definice Kvadratickou rovnici a 2 r 2 + a 1 r + a 0 = 0 nazýváme charakteristickou rovnicí diferenciální rovnice a 2 y (x) + a 1 y (x) + a 0 y(x) = 0. Výklad Jak vidíme, je charakteristická rovnice kvadratickou rovnicí, která může mít reálné či komplexní kořeny, v prvním případě i násobné. Půjde nyní o to, ukázat, jak lze s pomocí těchto kořenů najít fundamentální systém řešení (a tedy i obecné řešení) diferenciální rovnice druhého řádu. Klíčové tvrzení obsahuje následující věta. Věta Mějme lineární diferenciální rovnici druhého řádu s konstantními koeficienty a 2 y (x) + a 1 y (x) + a 0 y(x) = 0, s charakteristickou rovnicí a 2 r 2 + a 1 r + a 0 = 0. (a) Má-li charakteristická rovnice dva různé reálné kořeny r 1, r 2, má diferenciální rovnice fundamentální systém y 1 = e r1x, y 2 = e r2x a její obecné řešení je y = C 1 e r1x + C 2 e r2x, C 1, C 2 R. (b) Má-li charakteristická rovnice dvojnásobný reálný kořen r, má diferenciální rovnice fundamentální systém y 1 = e rx, y 2 = xe rx a její obecné řešení je y = C 1 e rx + C 2 xe rx = e rx (C 1 + C 2 x), C 1, C 2 R. (c) Má-li charakteristická rovnice komplexní kořeny r 1,2 = α ± iβ, má diferenciální rovnice fundamentální systém y 1 = e αx cosβx, y 2 = e αx sin βx a její obecné řešení je y = C 1 e αx cosβx + C 2 e αx sin βx, C 1, C 2 R
3 Důkaz: Dokazování je postaveno na ověření lineární nezávislosti příslušné dvojice řešení. (a) Dosazením snadno ověříme, že funkce y 1 = e r 1x, y 2 = e r 2x vyhovují diferenciální rovnici. Například pro y 1 = e r 1x je y 1 = r 1e r 1x, y 1 = r2 1 er 1x a platí tedy a 2 r 2 1 er 1x + a 1 r 1 e r 1x + a 0 e r 1x = ( a 2 r a 1r 1 + a 0 ) e r 1 x = 0, nebot výraz v závorce je nulový, protože r 1 je kořenem charakteristické rovnice. Lineární nezávislost dokážeme pomocí wronskianu: y 1 y 2 e r 1x e r 2x W(x) = = = (r y 1 y 2 r 1 e r 1x r 2 e r 2x 2 r 1 )e (r 2 r 1 )x. Protože kořeny r 1 a r 2 jsou různé, je W(x) 0, což jsme měli dokázat. (b) Pro funkci y 1 = e rx je ověření toho, že se jedná o řešení, stejné jako v případě (a). Pro druhou funkci y 2 = xe rx po dosazení do rovnice dostáváme ( a 2 2re rx + r 2 xe rx) +a 1 (e rx + rxe rx ) +a 0 xe rx = }{{}}{{} y 2 y 2 = ( a 2 r 2 + a 1 r + a 0 ) xe rx + (2a 2 r + a 1 ) e rx = 0. Protože je r = r 1,2 = a 1 /2a 2 dvojnásobný kořen, jsou nulové výrazy v obou posledních závorkách. Ukažme ještě, že řešení jsou lineárně nezávislá: e rx xe rx W(x) = = e 2rx 0. re rx e rx + rxe rx (c) V tomto případě by měly představovat fundamentální řešení funkce y 1 = e (α+iβ)x = e αx e iβx, y 2 = e (α iβ)x = e αx e iβx, jak se můžeme opět přesvědčit dosazením. Jelikož chceme mít řešení tvořeno reálnými výrazy, použijeme k další úpravě tzv. Eulerovy vzorce e ±iβx = cosβx ± i sin βx
4 Po jejich použití vypadá dvojice řešení takto: y 1 = e αx cosβx + ie αx sin βx, y 2 = e αx cosβx ie αx sin βx. Řešením diferenciální rovnice musí být také každá lineární kombinace těchto funkcí, například dvojice ỹ 1 = 1 2 (y 1 + y 2 ) = e αx cosβx, ỹ 2 = 1 2i (y 1 y 2 ) = e αx sin βx uvedená ve tvrzení věty. Také pro ni je wronskián nenulový: W(x) = e αx cosβx e αx sin βx αe αx cosβx βe αx sin βx αe αx sin βx + βe αx cosβx = βe 2αx 0. Řešení ỹ 1, ỹ 2 jsou tudíž lineárně nezávislá a tvoří fundamentální systém. Poznámka Uvedená věta zaručuje, že řešení nalezená v souladu s ní budou vždy lineárně nezávislá, není tedy třeba pro jednotlivé aplikace zkoumat, zda je příslušný wronskian nenulový. Řešené úlohy Následující trojice příkladů ilustruje praktické použití jednotlivých variant dokázané věty. Příklad Najděte obecné řešení rovnice y y 2y = 0. Řešení: Charakteristická rovnice r 2 r 2 = 0 má kořeny r 1 = 2, r 2 = 1. Fundamentální systém tvoří funkce y 1 = e 2x, y 2 = e x, obecné řešení má tvar y(x) = C 1 e 2x + C 2 e x
5 Příklad Najděte obecné řešení rovnice y 4y + 4y = 0. Řešení: Charakteristická rovnice r 2 4r + 4 = 0 má dvojnásobný kořen r = 2. Fundamentální systém tvoří funkce y 1 = e 2x, y 2 = xe 2x, obecné řešení napíšeme například ve tvaru y(x) = C 1 e 2x + C 2 xe 2x. Příklad Najděte obecné řešení rovnice y 6y + 13y = 0. Řešení: Charakteristická rovnice r 2 6r + 13 = 0 má komplexně sdružené kořeny r 1,2 = 3 ±2i. Fundamentální systém v reálném oboru budou podle tvrzení (c) předchozí věty tvořit funkce y 1 = e 3x cos 2x, y 2 = e 3x sin 2x, obecné řešení zapíšeme ve tvaru y(x) = C 1 e 3x cos 2x + C 2 e 3x sin 2x. Výklad Je-li jeden z kořenů charakteristické rovnice roven nule, odpovídá mu ve fundamentálním systému funkce e 0x = 1. Speciálně pro rovnici y = 0 dostáváme fundamentální systém y 1 = 1, y 2 = x a tedy obecné řešení y = C 1 +C 2 x. Výsledek je stejný, jaký bychom obdrželi postupnou dvojí integrací původní rovnice. Jiný zvláštní případ nastane, má-li charakteristická rovnice pouze ryze imaginární kořeny ± iβ. Pak pro α = 0 figurují ve fundamentálním systému pouze goniometrické funkce, jak ukazuje druhý z následujících řešených příkladů. Řešené úlohy Příklad Najděte řešení počáteční úlohy 5y y = 0, y(5) = 4, y (5) = 1. Řešení: Charakteristická rovnice 5r 2 r = 0 má kořeny r 1 = 1 5, r 2 = 0. Fundamentální systém tentokrát tvoří funkce y 1 = e x 5, y 2 = 1, obecné řešení má
6 tvar y(x) = C 1 e x 5 + C2. Výpočet konstant pro počáteční podmínky: y(5) = = C 1 e + C 2, y = 1C 5 1e x 5... y (5) = = 1C 5 1e. Odtud C 1 = 5, C e 2 = 1 a tedy y p (x) = 5e x Na obr vidíme část grafu této funkce, kde je vedle bodu [5, 4], odpovídajícího podobně jako u rovnic prvního řádu podmínce pro funkční hodnotu y(5) = 4 také část tečny v tomto bodě. Ta má směrnici rovnu jedné, a proto svírá s osou x úhel π/4. Znázorňuje druhou počáteční podmínku y (5) = y x Obr Graf řešení počáteční úlohy z příkladu
7 Příklad Najděte obecné řešení rovnice y + 9y = 0. Řešení: Charakteristická rovnice r = 0 má kořeny r 1 = 3i, r 2 = 3i. Fundamentální systém tvoří dvojice y 1 = cos 3x, y 2 = sin 3x, obecné řešení je jejich lineární kombinací: y(x) = C 1 cos 3x + C 2 sin 3x. Kontrolní otázky Otázka 1. Objasněte pojem,,charakteristická rovnice. Otázka 2. Popište tvar obecného řešení LDR 2. řádu s konstantními koeficienty, má-li její charakteristická rovnice a) různé reálné nenulové kořeny, b) různé reálné kořeny, z nichž jeden je nulový, c) dvojnásobný nenulový reálný kořen. Otázka 3. Popište formu obecného řešení v případě, že charakteristická rovnice má a) komplexní kořeny α ± βi, α 0, b) komplexní kořeny ±βi. Úlohy k samostatnému řešení 1. Vypočtěte wronskian fundamentálního systému řešení z příkladu Najděte obecná řešení rovnic s konstantními koeficienty: a) 4y y = 0, b) y + 7y + 10y = 0, c) 4y + y = 0, d) y + 8y + 25y = Řešte počáteční úlohy: a) y y 12y = 0, y(0) = 5, y (0) = 1,
8 b) y + y = 0, y(π) = y (π) = 2, c) y + 4y = 0, y(0) = 0, y (0) = 12. Výsledky úloh k samostatnému řešení 1. W = a) y = C 1 e x 2 + C 2 e x 2, b) y = C 1 e 2x + C 2 e 5x, c) y = C 1 cos x + C 2 2 sin x, 2 d) y = e 4x (C 1 cos 3x + C 2 sin 3x). 3. a) y = 2e 4x + 3e 3x, b) y = 2 cosx 2 sin x, c) y = 3e 4x
9 Kontrolní test Úloha 1. Jsou dány funkce y 1 (x) = e 2x, y 2 (x) = e 2x. Wronskian této dvojice je a) 4, b) 4, c) 0, d) 2e 4x. Úloha 2. Jsou dány funkce y 1 = sin x, y 2 = sin 2 x, y 3 = 1 cos 2x. Které z následujících tvrzení platí pro dvojice z nich utvořené? a) funkce y 1, y 2 jsou lineárně závislé, b) funkce y 1, y 3 jsou lineárně závislé, c) funkce y 2, y 3 jsou lineárně závislé, d) všechny dvojice jsou lineárně nezávislé. Úloha 3. Rozhodněte, která z funkcí a) d) je řešením diferenciální rovnice y + 4y + 5y = 0. a) y = e 2x (C 1 cosx + C 2 sin x), b) y = e x (C 1 cos 2x + C 2 sin 2x), c) y = e 2x (C 1 cosx + C 2 sin x), d) y = e x (C 1 cos 2x + C 2 sin 2x). Úloha 4. Funkce y(x) je řešením rovnice 6y 5y 6y = 0. Vyberte počáteční podmínky, které splňuje v bodě x = 0. a) y(0) = 2, y (0) = 0, b) y(0) = 0, y (0) = 2, c) y(0) = 2, y (0) = 1, d) y(0) = 1, 4 4 y (0) = 2. Úloha 5. Rozhodněte, která z funkcí a) d) je řešením počáteční úlohy y + 7y + 12y = 0, y(0) = 5, y (0) =
10 a) y = 18e 3x + 23e 4x, b) y = 23e 4x 18e 3x, c) y = 23e 3x 18e 4x, d) y = 23e 3x 18e 4x. Úloha 6. Která z dvojic a) d) tvoří fundamentální systém řešení diferenciální rovnice y 10y + 25y = 0? a) y 1 = e 5x, y 2 = e 5x, b) y 1 = e 5x, y 2 = e 5x, c) y 1 = e 5x, y 2 = xe 5x, d) y 1 = e 5x, y 2 = xe 5x. Úloha 7. Určete, který z uvedených výsledků je obecným řešením diferenciální rovnice 9y + 4y = 0: a) y = C 1 cos 2x + C 3 2 sin 2x, 3 b) y = C 1 e 2 3 x + C 2 e 2 3 x, c) y = C 1 cos 3x + C 2 2 sin 3x, 2 d) y = C 1 + C 2 e 4 9 x. Úloha 8. Určete, který z uvedených výsledků je obecným řešením diferenciální rovnice y 16y + 68y = 0: a) y = C 1 e 8x cos 2x + C 2 e 8x sin 2x, b) y = e 8x (C 1 cos 2x + C 2 sin 2x), c) y = e 2x (C 1 cos 8x + C 2 sin 8x), d) y = C 1 e 2x cos 8x + C 2 e 2x sin 8x
11 Úloha 9. Určete, který z uvedených výsledků je obecným řešením diferenciální rovnice y + 4y = 0: a) y = C 1 e 2x + C 2 e 2x, b) y = C 1 cos 2x + C 2 sin 2x, c) y = C 1 + C 2 e 4x, d) y = C 1 + C 2 e 4x. Úloha 10. Určete, který z uvedených výsledků je řešením počáteční úlohy y = 0, y( 1) = 3, y ( 1) = 2: a) y = 2x 5, b) y = 2x + 5, c) y = x + 4, d) y = 2 x. Výsledky testu Číslo úlohy Správná odpověd b) c) c) d) d) c) a) b) d) b)
8.3). S ohledem na jednoduchost a názornost je výhodné seznámit se s touto Základní pojmy a vztahy. Definice
9. Lineární diferenciální rovnice 2. řádu Cíle Diferenciální rovnice, v nichž hledaná funkce vystupuje ve druhé či vyšší derivaci, nazýváme diferenciálními rovnicemi druhého a vyššího řádu. Analogicky
pouze u některých typů rovnic a v tomto textu se jím nebudeme až na
Matematika II 7.1. Zavedení diferenciálních rovnic Definice 7.1.1. Rovnice tvaru F(y (n), y (n 1),, y, y, x) = 0 se nazývá diferenciální rovnice n-tého řádu pro funkci y = y(x). Speciálně je F(y, y, x)
9.3. Úplná lineární rovnice s konstantními koeficienty
Úplná lineární rovnice s konstantními koeficienty Cíle Nyní přejdeme k řešení úplné lineární rovnice druhého řádu. I v tomto případě si nejprve ujasníme, v jakém tvaru můžeme očekávat řešení, poté se zaměříme
9.5. Soustavy diferenciálních rovnic
Cíle Budeme se nyní zabývat úlohami, v nichž je cílem najít dvojici funkcí y(x), z(x), pro které jsou zadány dvě lineární rovnice prvního řádu, obsahující tyto funkce a jejich derivace. Výklad Omezíme-li
LDF MENDELU. Simona Fišnarová (MENDELU) LDR druhého řádu VMAT, IMT 1 / 22
Lineární diferenciální rovnice druhého řádu Vyšší matematika, Inženýrská matematika LDF MENDELU Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF)
9.4. Rovnice se speciální pravou stranou
Cíle V řadě případů lze poměrně pracný výpočet metodou variace konstant nahradit jednodušším postupem, kterému je věnována tato kapitola. Výklad Při pozorném studiu předchozího textu pozornějšího studenta
4. OBYČEJNÉ DIFERENCIÁLNÍ ROVNICE
FBI VŠB-TUO 28. března 2014 4.1. Základní pojmy Definice 4.1. Rovnice tvaru F (x, y, y, y,..., y (n) ) = 0 se nazývá obyčejná diferenciální rovnice n-tého řádu a vyjadřuje vztah mezi neznámou funkcí y
Diferenciální rovnice 3
Diferenciální rovnice 3 Lineární diferenciální rovnice n-tého řádu Lineární diferenciální rovnice (dále jen LDR) n-tého řádu je rovnice tvaru + + + + = kde = je hledaná funkce, pravá strana a koeficienty
rovnic), Definice y + p(x)y = q(x), Je-li q(x) = 0 na M, nazývá se y + p(x)y =
Cíle Přehled základních typů diferenciálních rovnic prvního řádu zakončíme pojednáním o lineárních rovnicích, které patří v praktických úlohách k nejfrekventovanějším. Ukážeme například, že jejich řešení
Nejdřív spočítáme jeden příklad na variaci konstant pro lineární diferenciální rovnici 2. řádu s kostantními koeficienty. y + y = 4 sin t.
1 Variace konstanty Nejdřív spočítáme jeden příklad na variaci konstant pro lineární diferenciální rovnici 2. řádu s kostantními koeficienty. Příklad 1 Najděte obecné řešení rovnice: y + y = 4 sin t. Co
Soustavy lineárních diferenciálních rovnic I. řádu s konstantními koeficienty
Soustavy lineárních diferenciálních rovnic I řádu s konstantními koeficienty Definice a) Soustava tvaru x = ax + a y + az + f() t y = ax + a y + az + f () t z = a x + a y + a z + f () t se nazývá soustava
Věta 12.3 : Věta 12.4 (princip superpozice) : [MA1-18:P12.7] rovnice typu y (n) + p n 1 (x)y (n 1) p 1 (x)y + p 0 (x)y = q(x) (6)
1. Lineární diferenciální rovnice řádu n [MA1-18:P1.7] rovnice typu y n) + p n 1 )y n 1) +... + p 1 )y + p 0 )y = q) 6) počáteční podmínky: y 0 ) = y 0 y 0 ) = y 1 y n 1) 0 ) = y n 1. 7) Věta 1.3 : Necht
7.3. Diferenciální rovnice II. řádu
Diferenciální rovnice 7 Diferenciální rovnice II řádu Ve stručném přehledu se budeme zabývat výhradně řešením lineárních diferenciálních rovnic II řádu s konstantními koeficienty Obecný tvar: ay + ay +
Kapitola 11: Lineární diferenciální rovnice 1/15
Kapitola 11: Lineární diferenciální rovnice 1/15 Lineární diferenciální rovnice 2. řádu Definice: Lineární diferenciální rovnice 2-tého řádu je rovnice tvaru kde: y C 2 (I) je hledaná funkce a 0 (x)y +
Matematika 2 LS 2012/13. Prezentace vznikla na základě učebního textu, jehož autorem je doc. RNDr. Mirko Rokyta, CSc. J. Stebel Matematika 2
Matematika 2 13. přednáška Obyčejné diferenciální rovnice Jan Stebel Fakulta mechatroniky, informatiky a mezioborových studíı Technická univerzita v Liberci jan.stebel@tul.cz http://bacula.nti.tul.cz/~jan.stebel
Obyčejné diferenciální rovnice
Obyčejné diferenciální rovnice Petra Schreiberová, Petr Volný Katedra matematiky a deskriptivní geometrie, FS Katedra matematiky, FAST Vysoká škola báňská Technická Univerzita Ostrava Ostrava 2019 OBSAH
INŽENÝRSKÁ MATEMATIKA DIFERENCIÁLNÍ ROVNICE 2
INŽENÝRSKÁ MATEMATIKA DIFERENCIÁLNÍ ROVNICE 2 Robert Mařík 5. října 2009 c Robert Mařík, 2009 Obsah 1 LDR druhého řádu 4 2 Homogenní LDR, lineární nezávislost a wronskián 9 3 Homogenní LDR s konstantními
13. Kvadratické rovnice 2 body
13. Kvadratické rovnice 2 body 13.1. Rovnice x 2 + 2x + 2 m = 0 (s neznámou x) má dva různé reálné kořeny, které jsou oba menší než tři, právě a) m (1, 17), b) m = 2, c) m = 2 m = 5, d) m 2, 5, e) m >
5.3. Implicitní funkce a její derivace
Výklad Podívejme se na následující problém. Uvažujme množinu M bodů [x,y] R 2, které splňují rovnici F(x, y) = 0, M = {[x,y] D F F(x,y) = 0}, kde z = F(x,y) je nějaká funkce dvou proměnných. Je-li F(x,y)
Q(y) dy = P(x) dx + C.
Cíle Naše nejbližší cíle spočívají v odpovědích na základní otázky, které si klademe v souvislosti s diferenciálními rovnicemi: 1. Má rovnice řešení? 2. Kolik je řešení a jakého jsou typu? 3. Jak se tato
Diferenciální rovnice
Obyčejné diferenciální rovnice - studijní text pro cvičení v předmětu Matematika - 2. Studijní materiál byl připraven pracovníky katedry E. Novákovou, M. Hyánkovou a L. Průchou za podpory grantu IG ČVUT
VZOROVÝ TEST PRO 3. ROČNÍK (3. A, 5. C)
VZOROVÝ TEST PRO 3. ROČNÍK (3. A, 5. C) max. 3 body 1 Zjistěte, zda vektor u je lineární kombinací vektorů a, b, je-li u = ( 8; 4; 3), a = ( 1; 2; 3), b = (2; 0; 1). Pokud ano, zapište tuto lineární kombinaci.
LINEÁRNÍ ROVNICE S ABSOLUTNÍ HODNOTOU
LINEÁRNÍ ROVNICE S ABSOLUTNÍ HODNOTOU LINEÁRNÍ ROVNICE S ABSOLUTNÍ HODNOTOU je lineární rovnice, ve které se vyskytuje jeden nebo více výrazů v absolutní hodnotě. ABSOLUTNÍ HODNOTA x reálného čísla x je
y = 1 x (y2 y), dy dx = 1 x (y2 y) dy y 2 = dx dy y 2 y y(y 4) = A y + B 5 = A(y 1) + By, tj. A = 1, B = 1. dy y 1
ODR - řešené příkla 20 5 ANALYTICKÉ A NUMERICKÉ METODY ŘEŠENÍ ODR A. Analtické meto řešení Vzorové příkla: 5.. Příklad. Řešte diferenciální rovnici = 2. Řešení: Přepišme danou rovnici na tvar = (2 ), což
Učební texty k státní bakalářské zkoušce Matematika Diferenciální rovnice. študenti MFF 15. augusta 2008
Učební texty k státní bakalářské zkoušce Matematika Diferenciální rovnice študenti MFF 15. augusta 2008 1 7 Diferenciální rovnice Požadavky Soustavy lineárních diferenciálních rovnic prvního řádu lineární
1 Mnohočleny a algebraické rovnice
1 Mnohočleny a algebraické rovnice 1.1 Pojem mnohočlenu (polynomu) Připomeňme, že výrazům typu a 2 x 2 + a 1 x + a 0 říkáme kvadratický trojčlen, když a 2 0. Číslům a 0, a 1, a 2 říkáme koeficienty a písmenem
1 Mnohočleny a algebraické rovnice
1 Mnohočleny a algebraické rovnice 1.1 Pojem mnohočlenu (polynomu) Připomeňme, že výrazům typu a 2 x 2 + a 1 x + a 0 říkáme kvadratický trojčlen, když a 2 0. Číslům a 0, a 1, a 2 říkáme koeficienty a písmenem
Soustavy lineárních rovnic
Soustavy lineárních rovnic V této kapitole se budeme zabývat soustavami lineárních diferenciálních rovnic y = a (x)y + a (x)y + + a n (x)y n + f (x) y = a (x)y + a (x)y + + a n (x)y n + f (x). y n = a
f( x) x x 4.3. Asymptoty funkce Definice lim f( x) =, lim f( x) =, Jestliže nastane alespoň jeden z případů
3 Výklad Definice 3 Jestliže nastane alespoň jeden z případů lim =, lim =, + + lim =, lim =, kde ( D ), pak říkáme, že přímka = je asymptotou funkce f() v bodě f Jestliže lim ( k q) =, resp lim ( k q)
1 1 x 2. Jedná se o diferenciální rovnici se separovanými proměnnými, která má smysl pro x ±1 a
. Řešené úlohy Příklad. (separace proměnných). Řešte počáteční úlohu y 2 + yy ( 2 ) = 0, y(0) = 2. Řešení. Rovnici přepíšeme do tvaru y 2 = yy ( 2 ) y = y2 y 2. Jedná se o diferenciální rovnici se separovanými
ANALYTICKÁ GEOMETRIE V ROVINĚ
ANALYTICKÁ GEOMETRIE V ROVINĚ Analytická geometrie vyšetřuje geometrické objekty (body, přímky, kuželosečky apod.) analytickými metodami. Podle prostoru, ve kterém pracujeme, můžeme analytickou geometrii
8.1. Separovatelné rovnice
8. Metody řešení diferenciálních rovnic 1. řádu Cíle V předchozí kapitole jsme poznali separovaný tvar diferenciální rovnice, který bezprostředně umožňuje nalézt řešení integrací. Eistuje široká skupina
Obyčejné diferenciální rovnice
1 Obyčejné diferenciální rovnice Příklad 0.1 (Motivační). Rychlost chladnutí hmotného bodu je přímo úměrná rozdílu jeho teploty minus teploty okolí. Předpokládejme teplotu bodu 30 o C v čase t = 0 a čase
Cvičení z Lineární algebry 1
Cvičení z Lineární algebry Michael Krbek podzim 2003 2392003 Hodina Jsou dána komplexní čísla z = +2 i a w = 2 i Vyjádřete c algebraickém tvaru (z + w) 3,, (zw), z w 2 Řešte v komplexním oboru rovnice
Obsah. Metodický list Metodický list Metodický list Metodický list
METODICKÉ LISTY Z MATEMATIKY pro gymnázia a základní vzdělávání Jaroslav Švrček a kolektiv Rámcový vzdělávací program pro gymnázia Vzdělávací oblast: Matematika a její aplikace Tematický okruh: Závislosti
6. Lineární ODR n-tého řádu
6. Lineární ODR n-tého řádu A. Obecná homogenní LODRn V předcházející kapitole jsme diferenciální rovnici (libovolného řádu) nazvali lineární, je-li tato rovnice lineární vzhledem ke hledané funkci y a
Obyčejnými diferenciálními rovnicemi (ODR) budeme nazývat rovnice, ve kterých
Obyčejné diferenciální rovnice Obyčejnými diferenciálními rovnicemi (ODR) budeme nazývat rovnice, ve kterých se vyskytují derivace neznámé funkce jedné reálné proměnné. Příklad. Bud dána funkce f : R R.
Diferenciální počet 1 1. f(x) = ln arcsin 1 + x 1 x. 1 x 1 a x 1 0. f(x) = (cos x) cosh x + 3x. x 0 je derivace funkce f(x) v bodě x0.
Nalezněte definiční obor funkce Diferenciální počet f = ln arcsin + Definiční obor funkce f je určen vztahy Z těchto nerovností plyne < + ln arcsin + je tedy D f =, Určete definiční obor funkce arcsin
4C. Polynomy a racionální lomené funkce. Patří mezi tzv. algebraické funkce, ke kterým patří také funkce s odmocninami. Polynomy
4C. Polynomy a racionální lomené funkce Polynomy a racionální funkce mají zvláštní význam zejména v numerické a aplikované matematice. Patří mezi tzv. algebraické funkce, ke kterým patří také funkce s
f(x) = arccotg x 2 x lim f(x). Určete všechny asymptoty grafu x 2 2 =
Řešení vzorové písemky z předmětu MAR Poznámky: Řešení úloh ze vzorové písemky jsou formulována dosti podrobně podobným způsobem jako u řešených příkladů ve skriptech U zkoušky lze jednotlivé kroky postupu
Diferenciální rovnice II
Diferenciální rovnice II Cílem tohoto kurzu je ukázat si různé příklady použití počítačového algebraického systému Maple při řešení obyčejných diferenciálních rovnic. řádu a soustav obyčejných diferenciálních
KOMPLEXNÍ ČÍSLA INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ
KOMPLEXNÍ ČÍSLA Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro vyšší gymnázia Autoři projektu Student na prahu 21. století - využití ICT ve vyučování matematiky na gymnáziu INVESTICE
Projekt OPVK - CZ.1.07/1.1.00/ Matematika pro všechny. Univerzita Palackého v Olomouci
Projekt OPVK - CZ.1.07/1.1.00/26.0047 Matematika pro všechny Univerzita Palackého v Olomouci Tematický okruh: Závislosti a funkční vztahy Gradovaný řetězec úloh Téma: graf funkce, derivace funkce a její
Sbírka příkladů z matematické analýzy II. Petr Tomiczek
Sbírka příkladů z matematické analýzy II Petr Tomiczek Obsah Diferenciální rovnice. řádu 3. Separace proměnných......................... 3. Přechod k separaci.......................... 4.3 Variace konstant...........................
1. Několik základních pojmů ze středoškolské matematiky. Na začátku si připomeneme následující pojmy:
Opakování středoškolské matematiky Slovo úvodem: Tato pomůcka je určena zejména těm studentům presenčního i kombinovaného studia na VŠFS, kteří na středních školách neprošli dostatečnou průpravou z matematiky
8.4. Shrnutí ke kapitolám 7 a 8
8.4. Shrnutí ke kapitolám 7 a 8 Shrnutí lekce Úvodní 7. kapitola přinesla informace o druzích řešení diferenciálních rovnic prvního řádu a stručné teoretické poznatky o podmínkách existence a jednoznačnosti
označme j = (0, 1) a nazvěme tuto dvojici imaginární jednotkou. Potom libovolnou (x, y) = (x, 0) + (0, y) = (x, 0) + (0, 1)(y, 0) = x + jy,
Komplexní čísla Množinu všech uspořádaných dvojic (x, y) reálných čísel x, y nazýváme množinou komplexních čísel C, jestliže pro každé dvě takové dvojice (x, y ), (x 2, y 2 ) je definována rovnost, sčítání
Lingebraické kapitolky - Analytická geometrie
Lingebraické kapitolky - Analytická geometrie Jaroslav Horáček KAM MFF UK 2013 Co je to vektor? Šipička na tabuli? Ehm? Množina orientovaných úseček majících stejný směr. Prvek vektorového prostoru. V
Praha & EU: investujeme do vaší budoucnosti. Daniel Turzík, Miroslava Dubcová,
E-sbírka příkladů Seminář z matematiky Evropský sociální fond Praha & EU: investujeme do vaší budoucnosti Daniel Turzík, Miroslava Dubcová, Pavla Pavlíková Obsah 1 Úpravy výrazů................................................................
Lineární algebra : Metrická geometrie
Lineární algebra : Metrická geometrie (16. přednáška) František Štampach, Karel Klouda LS 2013/2014 vytvořeno: 6. května 2014, 10:42 1 2 Úvod Zatím jsme se lineární geometrii věnovali v kapitole o lineárních
M - Kvadratické rovnice a kvadratické nerovnice
M - Kvadratické rovnice a kvadratické nerovnice Určeno jako učební tet pro studenty dálkového studia. VARIACE 1 Tento dokument byl kompletně vytvořen, sestaven a vytištěn v programu dosystem - EduBase.
příkladů do cvičení. V textu se objeví i pár detailů, které jsem nestihl (na které jsem zapomněl) a(b u) = (ab) u, u + ( u) = 0 = ( u) + u.
Několik řešených příkladů do Matematiky Vektory V tomto textu je spočteno několik ukázkových příkladů které vám snad pomohou při řešení příkladů do cvičení. V textu se objeví i pár detailů které jsem nestihl
4.3.3 Základní goniometrické vzorce I
4.. Základní goniometrické vzorce I Předpoklady: 40 Dva vzorce, oba známe už z prváku. Pro každé R platí: + =. Důkaz: Použijeme definici obou funkcí v jednotkové kružnici: T sin() T 0 - cos() S 0 R - Obě
8.2. Exaktní rovnice. F(x, y) x. dy. df = dx + y. Nyní budeme hledat odpověd na otázku, zda a jak lze od této diferenciální formule
Cíle Ve výkladu o funkcích dvou proměnných jsme se seznámili také s jejich diferenciálem prvního řádu, který je pro funkci F(x, y) vyjádřen výrazem df dx + dy. Nyní budeme hledat odpověd na otázku, zda
5. cvičení z Matematiky 2
5. cvičení z Matematiky 2 21.-25. března 2016 5.1 Nalezněte úhel, který v bodě 1, 0, 0 svírají grafy funkcí fx, y ln x 2 + y 2 a gx, y sinxy. Úhel, který svírají grafy funkcí je dán jako úhel mezi jednotlivými
M - Příprava na 3. čtvrtletní písemnou práci
M - Příprava na 3. čtvrtletní písemnou práci Určeno pro třídu ODK VARIACE 1 Tento dokument byl kompletně vytvořen, sestaven a vytištěn v programu dosystem - EduBase. Více informací o programu naleznete
9. T r a n s f o r m a c e n á h o d n é v e l i č i n y
9. T r a n s f o r m a c e n á h o d n é v e l i č i n y Při popisu procesů zpracováváme vstupní údaj, hodnotu x tak, že výstupní hodnota y závisí nějakým způsobem na vstupní, je její funkcí y = f(x).
Definice Tečna paraboly je přímka, která má s parabolou jediný společný bod,
5.4 Parabola Parabola je křivka, která vznikne řezem rotační kuželové plochy rovinou, jestliže odchylka roviny řezu od osy kuželové plochy je stejná jako odchylka povrchových přímek plochy a rovina řezu
Příklad. Řešte v : takže rovnice v zadání má v tomto případě jedno řešení. Pro má rovnice tvar
Řešte v : má rovnice tvar takže rovnice v zadání má v tomto případě jedno řešení. Pro má rovnice tvar takže rovnice v zadání má v tomto případě opět jedno řešení. Sjednocením obou případů dostaneme úplné
Obecná rovnice kvadratické funkce : y = ax 2 + bx + c Pokud není uvedeno jinak, tak definičním oborem řešených funkcí je množina reálných čísel.
5. Funkce 9. ročník 5. Funkce ZOPAKUJTE SI : 8. ROČNÍK KAPITOLA. Funkce. 5.. Kvadratická funkce Obecná rovnice kvadratické funkce : y = ax + bx + c Pokud není uvedeno jinak, tak definičním oborem řešených
Řešíme tedy soustavu dvou rovnic o dvou neznámých. 2a + b = 3, 6a + b = 27,
Přijímací řízení 2015/16 Přírodovědecká fakulta Ostravská univerzita v Ostravě Navazující magisterské studium, obor Aplikovaná matematika (1. červen 2016) Příklad 1 Určete taková a, b R, aby funkce f()
9.7. Vybrané aplikace
Cíle V rámci témat zaměřených na lineární diferenciální rovnice a soustavy druhého řádu (kapitoly 9.1 až 9.6) jsme dosud neuváděli žádné aplikace. Je jim společně věnována tato závěrečné kapitola, v níž
VZOROVÝ TEST PRO 2. ROČNÍK (2. A, 4. C)
VZOROVÝ TEST PRO. ROČNÍK (. A, 4. C) max. body 1 Vypočtěte danou goniometrickou rovnici a výsledek uveďte ve stupních a radiánech. cos x + sin x = 1 4 V záznamovém archu uveďte celý postup řešení. Řešte
Lineární rovnice prvního řádu. Máme řešit nehomogenní lineární diferenciální rovnici prvního řádu. Funkce h(t) = 2
Cvičení Lineární rovnice prvního řádu. Najděte řešení Cauchyovy úlohy x + x tg t = cos t, které vyhovuje podmínce xπ =. Máme nehomogenní lineární diferenciální rovnici prvního řádu. Funkce ht = tg t a
Necht tedy máme přirozená čísla n, k pod pojmem systém lineárních rovnic rozumíme rovnice ve tvaru
2. Systémy lineárních rovnic V této kapitole se budeme zabývat soustavami lineárních rovnic s koeficienty z pole reálných případně komplexních čísel. Uvádíme podmínku pro existenci řešení systému lineárních
Těleso racionálních funkcí
Těleso racionálních funkcí Poznámka. V minulém semestru jsme libovolnému oboru integrity sestrojili podílové těleso. Pro libovolné těleso R je okruh polynomů R[x] oborem integrity, máme tedy podílové těleso
Extrémy funkce dvou proměnných
Extrémy funkce dvou proměnných 1. Stanovte rozměry pravoúhlé vodní nádrže o objemu 32 m 3 tak, aby dno a stěny měly nejmenší povrch. Označme rozměry pravoúhlé nádrže x, y, z (viz obr.). ak objem této nádrže
Goniometrické a hyperbolické funkce
Kapitola 5 Goniometrické a hyperbolické funkce V této kapitole budou uvedeny základní poznatky týkající se goniometrických funkcí - sinus, kosinus, tangens, kotangens a hyperbolických funkcí - sinus hyperbolický,
Základy matematiky pracovní listy
Dagmar Dlouhá, Michaela Tužilová Katedra matematiky a deskriptivní geometrie VŠB - Technická univerzita Ostrava Úvod Pracovní listy jsou určeny pro předmět Základy matematiky vyučovaný Katedrou matematiky
Funkce komplexní proměnné a integrální transformace
Funkce komplexní proměnné a integrální transformace Fourierovy řady I. Marek Lampart Text byl vytvořen v rámci realizace projektu Matematika pro inženýry 21. století (reg. č. CZ.1.07/2.2.00/07.0332), na
z = a bi. z + v = (a + bi) + (c + di) = (a + c) + (b + d)i. z v = (a + bi) (c + di) = (a c) + (b d)i. z v = (a + bi) (c + di) = (ac bd) + (bc + ad)i.
KOMLEXNÍ ČÍSLA C = {a + bi; a, b R}, kde i 2 = 1 Číslo komplexně sdružené k z = a + bi je číslo z = a bi. Operace s komplexními čísly: z = a + bi, kde a, b R v = c + di, kde c, d R Sčítání Odčítání Násobení
Konvexnost, konkávnost
20. srpna 2007 1. f = x 3 12x 2. f = x 2 e x 3. f = x ln x Příklad 1. Určete intervaly, na kterých je funkce konvexní a konkávní a určete inflexní body f = x 3 12x Příklad 1. f = x 3 12x Řešení: Df = R
4.3.4 Základní goniometrické vzorce I
.. Základní goniometrické vzorce I Předpoklady: 0 Dva vzorce, oba známe už z prváku. Pro každé R platí: + =. Důkaz: Použijeme definici obou funkcí v jednotkové kružnici: T sin() T 0 - cos() S 0 R - Obě
Vybrané kapitoly z matematiky
Vybrané kapitoly z matematiky VŠB-TU Ostrava 2017-2018 Vybrané kapitoly z matematiky 2017-2018 1 / 19 Základní informace předmět: 714-0513, 5 kreditů přednáší: Radek Kučera kontakt: radek.kucera@vsb.cz,
9 Kolmost vektorových podprostorů
9 Kolmost vektorových podprostorů Od kolmosti dvou vektorů nyní přejdeme ke kolmosti dvou vektorových podprostorů. Budeme se zabývat otázkou, kdy jsou dva vektorové podprostory na sebe kolmé a jak to poznáme.
MATEMATIKA III. Olga Majlingová. Učební text pro prezenční studium. Předběžná verze
Fakulta strojního inženýrství Univerzity J. E. Purkyně v Ústí nad Labem Pasteurova 7 Tel.: 475 285 511 400 96 Ústí nad Labem Fax: 475 285 566 Internet: www.ujep.cz E-mail: kontakt@ujep.cz MATEMATIKA III
16. Goniometrické rovnice
@198 16. Goniometrické rovnice Definice: Goniometrická rovnice je taková rovnice, ve které proměnná (neznámá) vystupuje pouze v goniometrických funkcích. Řešit goniometrické rovnice znamená nalézt všechny
VEKTORY. Obrázek 1: Jediný vektor. Souřadnice vektoru jsou jeho průměty do souřadných os x a y u dvojrozměrného vektoru, AB = B A
VEKTORY Vektorem se rozumí množina všech orientovaných úseček, které mají stejnou velikost, směr a orientaci, což vidíme na obr. 1. Jedna konkrétní orientovaná úsečka se nazývá umístění vektoru na obr.
dx se nazývá diferenciál funkce f ( x )
6 Výklad Definice 6 Nechť je 0 vnitřním bodem definičního oboru D f funkce f ( ) Funkce proměnné d = 0 definovaná vztahem df ( 0) = f ( 0) d se nazývá diferenciál funkce f ( ) v bodě 0, jestliže platí
Derivace funkcí více proměnných
Derivace funkcí více proměnných Pro studenty FP TUL Martina Šimůnková 16. května 019 1. Derivace podle vektoru jako funkce vektoru. Pro pevně zvolenou funkci f : R d R n a bod a R d budeme zkoumat zobrazení,
Derivace goniometrických funkcí
Derivace goniometrických funkcí Shrnutí Jakub Michálek, Tomáš Kučera Odvodí se základní vztahy pro derivace funkcí sinus a cosinus za pomoci věty o třech itách, odvodí se také několik typických it pomocí
Polynomy. Mgr. Veronika Švandová a Mgr. Zdeněk Kříž, Ph. D. 1.1 Teorie Zavedení polynomů Operace s polynomy...
Polynomy Obsah Mgr. Veronika Švandová a Mgr. Zdeněk Kříž, Ph. D. 1 Základní vlastnosti polynomů 2 1.1 Teorie........................................... 2 1.1.1 Zavedení polynomů................................
0.1 Úvod do lineární algebry
Matematika KMI/PMATE 1 01 Úvod do lineární algebry 011 Vektory Definice 011 Vektorem aritmetického prostorur n budeme rozumět uspořádanou n-tici reálných čísel x 1, x 2,, x n Definice 012 Definice sčítání
6 Skalární součin. u v = (u 1 v 1 ) 2 +(u 2 v 2 ) 2 +(u 3 v 3 ) 2
6 Skalární součin Skalární součin 1 je operace, která dvěma vektorům (je to tedy binární operace) přiřazuje skalár (v našem případě jde o reálné číslo, obecně se jedná o prvek nějakého tělesa T ). Dovoluje
1 Diference a diferenční rovnice
1 Diference a diferenční rovnice Nechť je dána ekvidistantní síť uzlů x 0, x 1,..., x n tj. h R, h > 0 takové, že x i = x 0 + ih, i = 0, 1,..., n. Číslo h se nazývá krok. Někdy můžeme uvažovat i nekonečnou
Diferenciální rovnice
Diferenciální rovnice Průvodce studiem Touto kapitolou se náplň základního kurzu bakalářské matematiky uzavírá. Je tomu tak mimo jiné proto, že jsou zde souhrnně využívány poznatky získané studiem předchozích
1 Řešení soustav lineárních rovnic
1 Řešení soustav lineárních rovnic 1.1 Lineární rovnice Lineární rovnicí o n neznámých x 1,x 2,..., x n s reálnými koeficienty rozumíme rovnici ve tvaru a 1 x 1 + a 2 x 2 +... + a n x n = b, (1) kde koeficienty
1 Polynomiální interpolace
Polynomiální interpolace. Metoda neurčitých koeficientů Příklad.. Nalezněte polynom p co nejmenšího stupně, pro který platí p() = 0, p(2) =, p( ) = 6. Řešení. Polynom hledáme metodou neurčitých koeficientů,
Derivace funkce. Přednáška MATEMATIKA č Jiří Neubauer
Přednáška MATEMATIKA č. 9-11 Katedra ekonometrie FEM UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Šotová, J., Doudová, L. Diferenciální počet funkcí jedné proměnné Motivační příklady
(4x) 5 + 7y = 14, (2y) 5 (3x) 7 = 74,
1. V oboru celých čísel řešte soustavu rovnic (4x) 5 + 7y = 14, (2y) 5 (3x) 7 = 74, kde (n) k značí násobek čísla k nejbližší číslu n. (P. Černek) Řešení. Z první rovnice dané soustavy plyne, že číslo
2 Fyzikální aplikace. Předpokládejme, že f (x 0 ) existuje. Je-li f (x 0 ) vlastní, pak rovnice tečny ke grafu funkce f v bodě [x 0, f(x 0 )] je
Derivace funkce a jej geometrický význam Je dána funkce f) 3 6 + 9 + a naším úkolem je určit směrnici tečny v bodě [; f)] Pro libovolné lze směrnici sečny danou body [; f)] a [; f)] spočítat jako f) f)
1 Modelování systémů 2. řádu
OBSAH Obsah 1 Modelování systémů 2. řádu 1 2 Řešení diferenciální rovnice 3 3 Ukázka řešení č. 1 9 4 Ukázka řešení č. 2 11 5 Ukázka řešení č. 3 12 6 Ukázka řešení č. 4 14 7 Ukázka řešení č. 5 16 8 Ukázka
Monotonie a lokální extrémy. Konvexnost, konkávnost a inflexní body. 266 I. Diferenciální počet funkcí jedné proměnné
66 I. Diferenciální počet funkcí jedné proměnné I. 5. Vyšetřování průběhu funkce Monotonie a lokální etrémy Důsledek. Nechť má funkce f) konečnou derivaci na intervalu I. Je-li f ) > 0 pro každé I, pak
M - Příprava na 4. čtvrtletku - třídy 1P, 1VK.
M - Příprava na 4. čtvrtletku - třídy 1P, 1VK. Učebnice určená pro přípravu na 4. čtvrtletní písemnou práci. Obsahuje učivo března až června. VARIACE 1 Tento dokument byl kompletně vytvořen, sestaven a
Diferenciální rovnice 1
Diferenciální rovnice 1 Základní pojmy Diferenciální rovnice n-tého řádu v implicitním tvaru je obecně rovnice ve tvaru,,,, = Řád diferenciální rovnice odpovídá nejvyššímu stupni derivace v rovnici použitému.
l, l 2, l 3, l 4, ω 21 = konst. Proved te kinematické řešení zadaného čtyřkloubového mechanismu, tj. analyticky
Kinematické řešení čtyřkloubového mechanismu Dáno: Cíl: l, l, l 3, l, ω 1 konst Proved te kinematické řešení zadaného čtyřkloubového mechanismu, tj analyticky určete úhlovou rychlost ω 1 a úhlové zrychlení
INŽENÝRSKÁ MATEMATIKA DIFERENCIÁLNÍ ROVNICE
INŽENÝRSKÁ MATEMATIKA DIFERENCIÁLNÍ ROVNICE Robert Mařík Ústav matematiky, LDF, MZLU 5. patro, budova B marik@mendelu.cz www.mendelu.cz/user/marik c Robert Mařík, 2009 Obsah 1 Diferenciální rovnice úvod
Univerzita Karlova v Praze Pedagogická fakulta
Univerzita Karlova v Praze Pedagogická fakulta SEMINÁRNÍ PRÁCE Z METOD ŘEŠENÍ 1 TEORIE ČÍSEL 000/001 Cifrik, M-ZT Příklad ze zadávacích listů 10 101 Dokažte, že číslo 101 +10 je dělitelné číslem 51 Důkaz:
6 Samodružné body a směry afinity
6 Samodružné body a směry afinity Samodružnými body a směry zobrazení rozumíme body a směry, které se v zobrazují samy na sebe. Například otočení R(S má jediný samodružný bod, střed S, anemá žádný samodružný
Příklady pro předmět Aplikovaná matematika (AMA) část 1
Příklady pro předmět plikovaná matematika (M) část 1 1. Lokální extrémy funkcí dvou a tří proměnných Nalezněte lokální extrémy funkcí: (a) f 1 : f 1 (x, y) = x 3 3x + y 2 + 2y (b) f 2 : f 2 (x, y) = 1