Odhad frekvencí a tvarů vlastního kmitání nelineárních úloh

Rozměr: px
Začít zobrazení ze stránky:

Download "Odhad frekvencí a tvarů vlastního kmitání nelineárních úloh"

Transkript

1 Konference ANSYS 29 Odhad frekvencí a tvarů vlastního kmitání nelineárních úloh A. Nevařil Vysoké učení technické v Brně, Fakulta stavební, ÚSM, Veveří 95, 62 Brno Abstract: Natural frequencies and modes are an important feature used in determination of dynamic response of many structures. Some structural systems exhibit geometric or material nonlinear behavior, parts of the system are in contact or their final state is dependent on their initial stress state. Modal properties of these systems are in relation with their deflection and stress state. The paper presents a procedure leading to the evaluation of natural frequencies and modes of such systems using the ANSYS programme. Furher is examined a posibility of numeric verification of modal properties determined from the linearized dependence near the proposed state. The methodology is based upon the analyses of structural response to suitably selected timevarying actuating force. The paper describes the parameters of the actuating fiction and its selection in dependence on the searched natural frequencies and modes. Keywords: natural frequencies, modes, nonlinear behavior, verification, time domain, guyed mast. 1. Úvod Frekvence a vlastní tvary kmitů jsou významnou charakteristikou využívanou při určování dynamické odezvy mnoha konstrukcí. Některé konstrukční systémy vykazují geometricky nebo materiálově nelineární odezvu (Leamy, Gotlieb, 21), kontakt částí konstrukce, případně je jejich výsledný stav výrazně závislý na jejich počáteční napjatosti. U těchto systémů jsou modální vlastnosti vázány na deformační a napjatostní stav konstrukce (Kwan, 2). Otázka nalezení frekvencí a tvarů vlastního kmitání je tedy do značné míry komplikovaná a zpravidla není možné využití standardních postupů a nástrojů programových systémů jako je např. ANSYS. 2. Postup určení modálních vlastností Pohybová rovnice diskretizovaného matematického modelu konstrukce s vlivem útlumu je v maticovém zápisu MKP popsána vztahem (Bathe, 1996) ( ) M u& + Cu& + K u = F t. (1) Vlastní tlumené kmitání konstrukce je možné matematicky popsat jako harmonické kmity nebuzené soustavy (1), tj. M u& + Cu& + K u =. (2)

2 TechSoft Engineering & SVS FEM U většiny stavebních konstrukcí je velikost útlumu malá, v tomto případě je možné vliv tlumení na vlastní frekvence a tvary kmitání konstrukce zanedbat. Za předpokladu, že netlumená soustava kmitá harmonicky s vlastní frekvencí ω ve vlastním tvaru ϕ, lze úlohu upravit na zobecněný problém vlastních čísel symetrického svazku K, M 2 ( M + K) ϕ = ω. (3) Rovnice (3) je splněna netriviálně, pouze pokud 2 det( ω M + K) =. (4) Problém (3), resp. (4), je možné řešit celou řadou metod. V současné době je tato úloha řešena v programovém prostředí ANSYS např. Lanczosovou metodou, Householderovou metodou a dalšími, viz. (ANSYS User s Manual, 25). 3. Geometricky nelineární problém Pozornost bude dále zaměřena na geometricky nelineární úlohu, která je v metodě konečných prvků s Lagrangeovskou formulací charakterizována závislostí matice tuhosti konstrukce K na poli neznámých uzlových přemístění u. Geometricky nelineární chování se projevuje např. u kotevních lan stožárů, nosných a závěsných lan mostů atd. Byla zkoumána úloha nalezení vlastních frekvencí a tvarů kmitu vysokého kotveného stožáru (Kanický, Wasgestián, 1971). Jednalo se o 294 m vysoký anténní stožár kotvený lany ve čtyřech výškových úrovních. Těleso stožáru bylo kotveno do tří směrů, kdy dvě nižší a dvě vyšší úrovně kotvení mají vždy v daném směru společný kotevní blok. Dřík byl tvořen ocelovou troubou o průměru 2,1 m a v patě byl kloubově uložen. U kotvených stožárů existuje významná vazba mezi předpětím a vlastními frekvencemi a tvary kmitů konstrukce. Následující graf prezentuje změnu nejnižší vlastní frekvence kmitání f 1 typického lanového prvku (Irvine, 1992) v závislosti na úrovni jeho předpínací síly T. 3,5 3 2,5 f 1 [Hz] 2 1, T [kn] Graf 1

3 Konference ANSYS 29 Protože je třeba zahrnout do matice tuhosti K konstrukce jak vliv předpětí kotevních lan, tak vliv jejich velkých přemístění musí modální analýza vycházet z napjatostního a deformačního stavu konstrukce po nelineární statické analýze. Odpovídající příkazová sekvence jazyka APDL je zachycena v Tab. 1. finish /solu antype,static,new nlgeom,on sstif,on nsubst,1,1,1 neqit,1 ematwrite,yes solve finish /solu Tab. 1 antype,modal upcoord,1,on pstres,on modopt,lanb,35, mxpand,35,,,yes, psolve,triang psolve,eiglanb expass,on psolve,eigexp finish Ve frekvenčním pásmu až 2 Hz bylo nalezeno 176 vlastních frekvencí s příslušnými tvary kmitání. Velký počet tvarů kmitání přísluší vlastním tvarům kmitání lan. Dvě z vypočtených vlastních frekvencí s odpovídajícími tvary kmitání jsou prezentovány na Obr. 1 a 2. Obr. 1 Obr Ověření frekvencí a tvarů vlastního kmitání K ověření vlastních frekvencí získaných z modální analýzy na přetvořeném modelu konstrukce je možné využít analýzy odezvy modelu konstrukce na buzení pseudoharmonickými silami s proměnou frekvencí. F(t) = A sin (ω t 2 ) (5) Dřík stožáru byl zatížen silou, event. silami, dle vztahu (5). Byla analyzována odezva modelu stožáru v časové oblasti na toto zatížení, viz také (Nevařil, 28). Přibližnou hodnotu vlastní frekvence kmitání lze určit na základě kmitání s rezonančním charakterem v oblasti buzení

4 TechSoft Engineering & SVS FEM blízkému některé vlastní frekvenci kmitání stožáru. Pole přemístění modelu v čase, kdy dochází k maximální výchylce, má stejný charakter jako pořadnice příslušného vlastního tvaru kmitání získané modální analýzou modelu stožáru. Odezvu modelu na buzení silou dle (5) významně ovlivňuje několik faktorů. Je to zejména působiště budící síly, velikost její amplitudy A, zvolený časový krok t a délka analyzovaného časového úseku. Poloha budící síly (nebo více budících sil) je závislá na pořadnicích vlastního tvaru kmitání, jehož příslušnou frekvenci je třeba při analýze zachytit. Zpravidla je třeba budící síly umísťovat do míst maximálních pořadnic jednotlivých kmiten daného vlastního tvaru kmitání. Volba parametrů budící síly F(t) a velikosti časového kroku t je závislá zejména na dvou faktorech, a to maximální hledané frekvenci f max a minimálním rozdílu mezi jednotlivými vlastními frekvencemi min f. Při výpočtu vhodné velikosti parametrů ω a t se uplatňují následující předpoklady: - hledané frekvence mohou být malé, tj. obvykle velké množství frekvencí leží pod hranicí 1 Hz, - dvě po sobě následující frekvence f i, f i+1 leží zpravidla velmi blízko sebe. Nejmenší rozdíl mezi vlastními frekvencemi kmitání lze zapsat vztahem ω = 2π (f i+1 f i ). (6) Pro volbu parametrů ve vztahu (5) je výhodné, aby: - konstrukce byla buzena na úhlových frekvencích ω i, ω i+1, - na každý kmit připadalo alespoň 2 bodů na křivce odezvy konstrukce, - oblast mezi frekvencemi ω i, ω i+1 byla proladěna dostatečně jemně, tj. předpokládá se alespoň 1 kmitů mezi ω i a ω i+1. Velikost amplitudy A budící síly je možné orientačně stanovit na základě statické analýzy účinku síly o velikosti A. Velikost amplitudy A budící síly neovlivňuje významně charakter odezvy modelu konstrukce, pokud není natolik velká, aby byla schopna výrazně ovlivnit napjatost, a tedy i geometrickou tuhost konstrukce. Amplituda budící síly totiž ovlivňuje velikost maximálních přemístění při kmitání konstrukce, což může ovlivňovat i napjatost konstrukce, a tedy i určované frekvence kmitání. Na základě výše stanovených pravidel byly určeny parametry buzení např. pro f i =,58 Hz, f i+1 =,62 Hz následujícími hodnotami (předpokládejme, že f max = f i+1 ): T i = 1/f i = 1,72 s T i+1 = 1/f i+1 = 1,61 s, ω i = 2π f i = 3,64 rad s -1 ω i+1 = 2π f i+1 = 3,9 rad s -1, t < min( T i /2; T i+1 /2) t =,8 s, ω = 2π (,62,58) =,26 rad s -1,

5 Konference ANSYS 29 ω,26 ω = = =,1625 rad s -2. t 1 2,8 2 Délka časového úseku nutná pro analýzu může být odhadnuta na T = ω i+1 /ω = 3,9/,1625 = 24 s. Výše uvedené principy byly použity pro sestavení makra v jazyce APDL, viz Tab. 2, které posloužilo (s různými modifikacemi parametrů) k získání odezev zobrazených v Grafech 2 a 3. /solu antype,trans,new! Vliv vlastní tíhy autot,on nlgeo,on ssti,on timint,off kbc, acel,,,9.81 time,1e-6 deltim,.35e-6,.1e-6,1e-6, solve! Statický účinek síly *afun,rad dtime=.1 Tab. 2 deltim,.2,.1,.2,off *do,i,.4,.6,dtime time,i sila=1*sin(.1625*i*i) f,981,fy,sila solve *enddo! Odezva na měnící se sílu dtime=.8 timint,on *do,i,.2,24,dtime time,i sila=1*sin(.1625*i*i) f,981,fy,sila solve *enddo,8,8,6,6,4,4,2,2 u y [m ] u y [m ] -,2 -,2 -,4 -,4 -,6 -,6 -, , Graf 2 Graf 3 V Grafech 2 a 3 je prezentována odezva konstrukce na budící síly o velikosti (7) a (8) umístěné na dřík stožáru ve smyslu 4. vlastního ohybového tvaru kmitání ve směru kolmém k lanové osnově. Velikost odezvy na buzení silami dle (8) je 1 zvětšena a obě odezvy jsou ve stejném

6 TechSoft Engineering & SVS FEM místě na dříku vyneseny v uvedených grafech. V Grafu 2 je zobrazena odezva přibližně v polovině nejnižšího pole dříku, v Grafu 3 ve vrcholu stožáru. F(t) = 1 sin (,3927 t 2 ) (7) F(t) = 1 sin (,3927 t 2 ) (8) Detailní zobrazení odezvy v časovém pásmu od 4 do 8 sekund je uvedeno v Grafu 4. Je patrná změna frekvence kmitání způsobená právě změnou velikosti přemístění, tj. vlivem geometrické nelinearity úlohy. Obdobně je možné v Grafu 5 sledovat opětovný přechod kmitání na frekvenci kmitání shodnou s úlohou buzenou dle (8), tj. vliv velkých přemístění již v této frekvenční oblasti není pro tuto úlohu významný.,8,25,6,2,15,4,1,2,5 -,2 -,5 -,1 -,4 -,15 -,6 -,2 -,8 -, Graf 4 Graf 5 V čase, kde dochází k významnému nárůstu amplitud jednotlivých kmitů, se frekvence buzení zřejmě blíží některé vlastní frekvenci kmitání stožáru. Na základě periody těchto kmitů lze odhadnout patřičnou vlastní frekvenci kmitání konstrukce. Přemístění dříku stožáru spolu s detaily jednotlivých oblastí rezonančního kmitání jsou zobrazena na následujících Grafech 6 až 9. Grafy jsou následovány Obr. 3 až 6 zobrazujícími pole celkového přemístění dříku stožáru, v čase, kdy tato veličina nabývá maximální hodnoty v dané oblasti rezonančního kmitání a tvaru vlastního kmitání dříku získaného z modální analýzy.,15,8,1,6,4,5,2 -,5 -,2 -,4 -,1 -,6 -,15 -, ,43 43,63 43,83 44,3 44,23 44,43 44,63 44,83 45,3 45,23 45,43 Graf 6 Graf 7

7 Konference ANSYS 29 Obr. 3 f,495 Hz Obr. 4 Pro kmitání s frekvencí f =,5 Hz je zobrazen v Grafu 7 jeden kmit z Grafu 6 odezvy mezi první a druhou nejnižší úrovní kotvení ve směru kolmém k lanové osnově. Obdobný princip je použit i v případě kmitání s frekvencí 1,93 Hz.,6,15,4,1,2,5 -,2 -,5 -,4 -,1 -,6 -, , , , , , ,45 Graf 8 Graf 9 Obr. 5 f 1,887 Hz Obr. 6

8 TechSoft Engineering & SVS FEM 5. Závěr V příspěvku je popsán postup vedoucí k nalezení frekvencí a tvarů vlastního kmitání nelineárních úloh programovým systémem ANSYS. Dále je zkoumána možnost numerického ověření modálních vlastností konstrukce určených linearizací nelineární závislosti v okolí návrhového stavu. Metodika je založena na rozboru odezvy konstrukce v čase na vhodně zvolené silové buzení. Je podán popis parametrů budící funkce a jejich volby v závislosti na hledaných frekvencích vlastního kmitání a nalezení tvarů kmitu. Ověření vlastních frekvencí kmitání buzením stožáru časově proměnným zatížením potvrdilo zvolené vlastní frekvence a tvary kmitání získané z modální analýzy. Shoda ve vlastních tvarech kmitání je velmi dobrá. Odchylky ve frekvencích kmitání jsou způsobeny zejména hustým spektrem vlastních frekvencí kmitání, kdy dochází k rychlé změně frekvence kmitání z jedné vlastní frekvence na frekvenci druhou. Reference 1. ANSYS User s Manual, Revision 1., SAS IP, Inc., Bathe J. K., Finite Element Procedures Englewood Cliffs, USA, Prentice Hall Irvine M. H., Cable Structures, New York, USA, Dover Publications, Inc., p. ISBN Kanický V., Wasgestián I., Výzkumná zpráva č. 494/71, TV Střední Slovensko (Suchá hora), TV Východní Slovensko (Dubník) ÚTAM Brno, Kwan A. S. K., A simple technique for calculating natural frequencies of geometrically nonlinear prestressed cable structures, Computers and Structures, 2, No. 74, pp Leamy M. J., Gotlieb O., Nonlinear Dynamics of a Taut String with Material Nonlinearities, Journal of Vibration and Acoustics, 21, No. 123, pp Nevařil A., Dynamika kotvených stožárů, Příloha Konstrukce, 28, č. 2, s. XXI XXVI. ISSN Poděkování Tento výsledek byl získán za finančního přispění MŠMT ČR, v rámci řešení vědeckovýzkumného záměru MSM Progresivní spolehlivé a trvanlivé nosné stavební konstrukce.

Aleš NEVAŘIL 1 ÚČINEK PŖETRŅENÍ LANA KOTVENÉHO STOŅÁRU THE EFFECT OF CABLE FAILURE ON THE GUYED MAST

Aleš NEVAŘIL 1 ÚČINEK PŖETRŅENÍ LANA KOTVENÉHO STOŅÁRU THE EFFECT OF CABLE FAILURE ON THE GUYED MAST Aleš NEVAŘIL 1 ÚČINEK PŖETRŅENÍ LANA KOTVENÉHO STOŅÁRU THE EFFECT OF CABLE FAILURE ON THE GUYED MAST Abstract The paper deals with the phenomena causing failures of anchoring cables of guyed masts and

Více

Výpočet vlastních frekvencí a tvarů kmitů lopaty oběžného kola Kaplanovy turbíny ve vodě

Výpočet vlastních frekvencí a tvarů kmitů lopaty oběžného kola Kaplanovy turbíny ve vodě Výpočet vlastních frekvencí a tvarů kmitů lopaty oběžného kola Kaplanovy turbíny ve vodě ANOTACE Varner M., Kanický V., Salajka V. Uvádí se výsledky studie vlivu vodního prostředí na vlastní frekvence

Více

NELINEÁRNÍ ODEZVA ŽELEZOBETONOVÉ RÁMOVÉ KONSTRUKCE NA SEIZMICKÉ ZATÍŽENÍ

NELINEÁRNÍ ODEZVA ŽELEZOBETONOVÉ RÁMOVÉ KONSTRUKCE NA SEIZMICKÉ ZATÍŽENÍ NELINEÁRNÍ ODEZVA ŽELEZOBETONOVÉ RÁMOVÉ KONSTRUKCE NA SEIZMICKÉ ZATÍŽENÍ Karel Pohl 1 Abstract The objective of this paper describe a non-linear analysis of reinforced concrete frame structures and assignment

Více

Téma: Dynamiky - Základní vztahy kmitání

Téma: Dynamiky - Základní vztahy kmitání Počítačová podpora statických výpočtů Téma: Dynamiky - Základní vztahy kmitání 1) Vlastnosti materiálů při dynamickém namáháni ) Základní vztahy teorie kmitání s jedním stupněm volnosti Katedra konstrukcí

Více

KMS cvičení 6. Ondřej Marek

KMS cvičení 6. Ondřej Marek KMS cvičení 6 Ondřej Marek NETLUMENÝ ODDAJNÝ SYSTÉM S DOF analytické řešení k k Systém se stupni volnosti popisují pohybové rovnice: x m m x m x + k + k x k x = m x k x + k x = k x m x k x x m k x x m

Více

MODIFIKOVANÝ KLIKOVÝ MECHANISMUS

MODIFIKOVANÝ KLIKOVÝ MECHANISMUS MODIFIKOVANÝ KLIKOVÝ MECHANISMUS Michal HAJŽMAN Tento materiál je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky. Vyšetřování pohybu vybraných mechanismů v systému ADAMS

Více

Výpočet kmitání oběžného kola Francisovy turbíny vynuceného tlakovými pulzacemi ve vodním prostředí

Výpočet kmitání oběžného kola Francisovy turbíny vynuceného tlakovými pulzacemi ve vodním prostředí Výpočet kmitání oběžného kola Francisovy turbíny vynuceného tlakovými pulzacemi ve vodním prostředí Analysis of vibrations of Francis turbine runner due to water pressure pulsations Vlastislav Salajka

Více

Z. Čada, P. Hradil, V. Kanický, V. Salajka

Z. Čada, P. Hradil, V. Kanický, V. Salajka Konference ANSYS 2009 Vliv modelování založení konstrukce a modelování styků mezi panely mnohopodlažního panelového domu na jeho dynamickou odezvu při seizmické události Analysis of influences of the method

Více

Téma 13, Úvod do dynamiky stavebních konstrukcí dynamiky

Téma 13, Úvod do dynamiky stavebních konstrukcí dynamiky Statika staveních konstrukcí II., 3.ročník akalářského studia Téma 3, Úvod do dynamiky staveních konstrukcí dynamiky Úvod Vlastní kmitání Vynucené kmitání Tlumené kmitání Podmínky dynamické rovnováhy konstrukcí

Více

KMITÁNÍ PRUŽINY. Pomůcky: Postup: Jaroslav Reichl, LabQuest, sonda siloměr, těleso kmitající na pružině

KMITÁNÍ PRUŽINY. Pomůcky: Postup: Jaroslav Reichl, LabQuest, sonda siloměr, těleso kmitající na pružině KMITÁNÍ PRUŽINY Pomůcky: LabQuest, sonda siloměr, těleso kmitající na pružině Postup: Těleso zavěsíme na pružinu a tu zavěsíme na pevně upevněný siloměr (viz obr. ). Sondu připojíme k LabQuestu a nastavíme

Více

Numerické modelování interakce proudění a pružného tělesa v lidském vokálním traktu

Numerické modelování interakce proudění a pružného tělesa v lidském vokálním traktu Numerické modelování interakce proudění a pružného tělesa v lidském vokálním traktu Vedoucí práce: doc. Ing. Petr Šidlof, Ph.D. Bc. Petra Tisovská 22. května 2018 Studentská 2 461 17 Liberec 2 petra.tisovska@tul.cz

Více

Návod k použití programu pro výpočet dynamické odezvy spojitého nosníku

Návod k použití programu pro výpočet dynamické odezvy spojitého nosníku Návod k použití programu pro výpočet dynamické odezvy spojitého nosníku Obsah. Úvod.... Popis řešené problematiky..... Konstrukce... 3. Výpočet... 3.. Prohlížení výsledků... 4 4. Dodatky... 6 4.. Newmarkova

Více

Stabilita v procesním průmyslu

Stabilita v procesním průmyslu Konference ANSYS 2009 Stabilita v procesním průmyslu Tomáš Létal VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STROJNÍHO INŽENÝRSTVÍ ÚSTAV PROCESNÍHO A EKOLOGICKÉHO INŽENÝRSTVÍ, Adresa: Technická 2896/2, 616 69

Více

Náhradní ohybová tuhost nosníku

Náhradní ohybová tuhost nosníku Náhradní ohybová tuhost nosníku Autoři: Doc. Ing. Jiří PODEŠVA, Ph.D., Katedra mechaniky, Fakulta strojní, VŠB - Technická univerzita Ostrava, e-mail: jiri.podesva@vsb.cz Anotace: Výpočty ocelových výztuží

Více

III. MKP vlastní kmitání

III. MKP vlastní kmitání Jiří Máca - katedra mechaniky - B325 - tel. 2 2435 4500 maca@fsv.cvut.cz III. MKP vlastní kmitání 1. Rovnice vlastního kmitání 2. Rayleighova Ritzova metoda 3. Jacobiho metoda 4. Metoda inverzních iterací

Více

1. Řešená konstrukce Statické řešení Výpočet průhybové čáry Dynamika Vlastní netlumené kmitání...

1. Řešená konstrukce Statické řešení Výpočet průhybové čáry Dynamika Vlastní netlumené kmitání... . Řešená konstrukce.... Statické řešení.... Výpočet průhybové čáry... 5. Dynamika.... Vlastní netlumené kmitání..... Jacobiho metoda rovinné rotace... 4.. Popis algoritmu... 4. Vynucené kmitání... 5 4.

Více

Stroboskopické metody vibrační diagnostiky

Stroboskopické metody vibrační diagnostiky Inovovaná přednáška/seminář studijního programu Strojní inženýrství Stroboskopické metody vibrační diagnostiky Zpracoval: Pracoviště: Pavel Němeček Katedra vozidel a motorů, Fakulta strojní, TU v Liberci

Více

Realizace omezovače kmitání na lávce v areálu Škody Auto Mladá Boleslav

Realizace omezovače kmitání na lávce v areálu Škody Auto Mladá Boleslav Realizace omezovače kmitání na lávce v areálu Škody Auto Mladá Boleslav Realization of tuned mass damper in pedestrian bridge in Škoda Auto Mladá Boleslav Petr Hradil 1, Vlastislav Salajka 2, Jiří Kala

Více

Téma: Dynamika - Úvod do stavební dynamiky

Téma: Dynamika - Úvod do stavební dynamiky Počítačová podpora statických výpočtů Téma: Dynamika - Úvod do stavební dynamiky 1) Úlohy stavební dynamiky 2) Základní pojmy z fyziky 3) Základní zákony mechaniky 4) Základní dynamická zatížení Katedra

Více

MODÁLNÍ ANALÝZA ZVEDACÍ PLOŠINY S NELINEÁRNÍ VAZBOU

MODÁLNÍ ANALÝZA ZVEDACÍ PLOŠINY S NELINEÁRNÍ VAZBOU MODÁLNÍ ANALÝZA ZVEDACÍ PLOŠINY S NELINEÁRNÍ VAZBOU Autoři: Ing. Jan SZWEDA, Ph.D., Katedra mechaniky, Fakulta strojní, VŠB-Technická univerzita Ostrava, e-mail: jan.szweda@vsb.cz Ing. Zdeněk PORUBA, Ph.D.,

Více

Nelineární problémy a MKP

Nelineární problémy a MKP Nelineární problémy a MKP Základní druhy nelinearit v mechanice tuhých těles: 1. materiálová (plasticita, viskoelasticita, viskoplasticita,...) 2. geometrická (velké posuvy a natočení, stabilita konstrukcí)

Více

I. část - úvod. Iva Petríková

I. část - úvod. Iva Petríková Kmitání mechanických soustav I. část - úvod Iva Petríková Katedra mechaniky, pružnosti a pevnosti Osah Úvod, základní pojmy Počet stupňů volnosti Příklady kmitavého pohyu Periodický pohy Harmonický pohy,

Více

Parametrická studie vlivu vzájemného spojení vrstev vozovky

Parametrická studie vlivu vzájemného spojení vrstev vozovky Konference ANSYS 2009 Parametrická studie vlivu vzájemného spojení vrstev vozovky M. Štěpánek a J. Pěnčík VUT v Brně, Fakulta stavební, Ústav stavební mechaniky Abstract: The testing of a cyclic-load performance

Více

GE - Vyšší kvalita výuky CZ.1.07/1.5.00/

GE - Vyšší kvalita výuky CZ.1.07/1.5.00/ Gymnázium, Brno, Elgartova 3 GE - Vyšší kvalita výuky CZ.1.07/1.5.00/34.0925 IV/2 Inovace a zkvalitnění výuky směřující k rozvoji matematické gramotnosti žáků středních škol Téma : Diferenciální a integrální

Více

Laboratorní úloha č. 4 - Kmity II

Laboratorní úloha č. 4 - Kmity II Laboratorní úloha č. 4 - Kmity II Úkoly měření: 1. Seznámení s měřením na přenosném dataloggeru LabQuest 2 základní specifikace přístroje, způsob zapojení přístroje, záznam dat a práce se senzory, vyhodnocování

Více

DYNAMICKÝ EXPERIMENT NA SADĚ DŘEVĚNÝCH KONZOLOVÝCH NOSNÍKŮ

DYNAMICKÝ EXPERIMENT NA SADĚ DŘEVĚNÝCH KONZOLOVÝCH NOSNÍKŮ International Conference 7 Years of FCE STU, December 4-5, 28 Bratislava, Slovakia DYNAMICKÝ EXPERIMENT NA SADĚ DŘEVĚNÝCH KONZOLOVÝCH NOSNÍKŮ D. Lehký a P. Frantík 2 Abstract Proposed paper describes results

Více

Porovnání vypočtených a naměřených vlastních frekvencí kolesového rypadla SchRs 1320

Porovnání vypočtených a naměřených vlastních frekvencí kolesového rypadla SchRs 1320 Konference ANSYS 2009 Porovnání vypočtených a naměřených vlastních frekvencí kolesového rypadla SchRs 1320 Jakub Gottvald Ústav aplikované mechaniky Brno, s.r.o., Veveří 95, 611 00, Brno, gottvaldj@gmail.com

Více

Harmonické oscilátory

Harmonické oscilátory Harmonické oscilátory Jakub Kákona, kaklik@mlab.cz Abstrakt Tato úloha se zabývá měřením rezonančních vlastností mechanických tlumených i netlumených oscilátorů. 1 Úvod 1. Změřte tuhost pružiny statickou

Více

Numerické řešení proudění stupněm experimentální vzduchové turbíny a budících sil na lopatky

Numerické řešení proudění stupněm experimentální vzduchové turbíny a budících sil na lopatky Konference ANSYS 2009 Numerické řešení proudění stupněm experimentální vzduchové turbíny a budících sil na lopatky J. Štěch Západočeská univerzita v Plzni, Katedra energetických strojů a zařízení jstech@kke.zcu.cz

Více

Obsah. Kmitavý pohyb. 2 Kinematika kmitavého pohybu 2. 4 Dynamika kmitavého pohybu 7. 5 Přeměny energie v mechanickém oscilátoru 9

Obsah. Kmitavý pohyb. 2 Kinematika kmitavého pohybu 2. 4 Dynamika kmitavého pohybu 7. 5 Přeměny energie v mechanickém oscilátoru 9 Obsah 1 Kmitavý pohyb 1 Kinematika kmitavého pohybu 3 Skládání kmitů 6 4 Dynamika kmitavého pohybu 7 5 Přeměny energie v mechanickém oscilátoru 9 6 Nucené kmity. Rezonance 10 1 Kmitavý pohyb Typy pohybů

Více

ANALÝZA NAPĚTÍ A DEFORMACÍ PRŮTOČNÉ ČOČKY KLAPKOVÉHO RYCHLOUZÁVĚRU DN5400 A POROVNÁNÍ HODNOCENÍ ÚNAVOVÉ ŽIVOTNOSTI DLE NOREM ČSN EN 13445-3 A ASME

ANALÝZA NAPĚTÍ A DEFORMACÍ PRŮTOČNÉ ČOČKY KLAPKOVÉHO RYCHLOUZÁVĚRU DN5400 A POROVNÁNÍ HODNOCENÍ ÚNAVOVÉ ŽIVOTNOSTI DLE NOREM ČSN EN 13445-3 A ASME 1. Úvod ANALÝZA NAPĚTÍ A DEFORMACÍ PRŮTOČNÉ ČOČKY KLAPKOVÉHO RYCHLOUZÁVĚRU DN5400 A POROVNÁNÍ HODNOCENÍ ÚNAVOVÉ ŽIVOTNOSTI DLE NOREM ČSN EN 13445-3 A ASME Michal Feilhauer, Miroslav Varner V článku se

Více

(test version, not revised) 9. prosince 2009

(test version, not revised) 9. prosince 2009 Mechanické kmitání (test version, not revised) Petr Pošta pposta@karlin.mff.cuni.cz 9. prosince 2009 Obsah Kmitavý pohyb Kinematika kmitavého pohybu Skládání kmitů Dynamika kmitavého pohybu Přeměny energie

Více

CFD simulace teplotně-hydraulické charakteristiky na modelu palivové tyči v oblasti distanční mřížky

CFD simulace teplotně-hydraulické charakteristiky na modelu palivové tyči v oblasti distanční mřížky Konference ANSYS 011 CFD simulace teplotně-hydraulické charakteristiky na modelu palivové tyči v oblasti distanční mřížky D. Lávička Západočeská univerzita v Plzni, Katedra energetických strojů a zařízení,

Více

Ing. Václav Losík. Dynamický výpočet otočného sloupového jeřábu OS 5/5 MD TECHNICKÁ ZPRÁVA

Ing. Václav Losík. Dynamický výpočet otočného sloupového jeřábu OS 5/5 MD TECHNICKÁ ZPRÁVA Ing. Václav Losík Dynamický výpočet otočného sloupového jeřábu OS 5/5 MD TECHNICKÁ ZPRÁVA Obr. 0 Ocelový otočný sloupový jeřáb OS 5/5 MD I. Popis objektu a úlohy Jedná se o ocelový otočný sloupový jeřáb

Více

Testovací příklady MEC2

Testovací příklady MEC2 Testovací příklady MEC2 1. Určete, jak velká práce se vykoná při stlačení pružiny nárazníku železničního vagónu o w = 5 mm, když na její stlačení o w =15 mm 1 je zapotřebí síla F = 3 kn. 2. Jaké musí být

Více

MECHANICKÉ KMITÁNÍ. Mgr. Jan Ptáčník - GJVJ - Fyzika - 3.A

MECHANICKÉ KMITÁNÍ. Mgr. Jan Ptáčník - GJVJ - Fyzika - 3.A MECHANICKÉ KMITÁNÍ Mgr. Jan Ptáčník - GJVJ - Fyzika - 3.A Kinematika kmitavého pohybu Mechanický oscilátor - volně kmitající zařízení Rovnovážná poloha Výchylka Kinematika kmitavého pohybu Veličiny charakterizující

Více

Příklady kmitavých pohybů. Mechanické kmitání (oscilace)

Příklady kmitavých pohybů. Mechanické kmitání (oscilace) Mechanické kmitání (oscilace) pohyb, při kterém se těleso střídavě vychyluje v různých směrech od rovnovážné polohy př. kyvadlo Příklady kmitavých pohybů kyvadlo v pendlovkách struna hudebního nástroje

Více

OTÁZKY K PROCVIČOVÁNÍ PRUŽNOST A PLASTICITA II - DD6

OTÁZKY K PROCVIČOVÁNÍ PRUŽNOST A PLASTICITA II - DD6 OTÁZKY K PROCVIČOVÁNÍ PRUŽNOST A PLASTICITA II - DD6 POSUZOVÁNÍ KONSTRUKCÍ PODLE EUROKÓDŮ 1. Jaké mezní stavy rozlišujeme při posuzování konstrukcí podle EN? 2. Jaké problémy řeší mezní stav únosnosti

Více

2010 FUNKČNÍ VZOREK. Obrázek 1 Budič vibrací s napěťovým zesilovačem

2010 FUNKČNÍ VZOREK. Obrázek 1 Budič vibrací s napěťovým zesilovačem Název funkčního vzorku v originále Electrodynamic vibration exciter Název funkčního vzorku česky (anglicky) Elektrodynamický budič vibrací Autoři Ing. Aleš Prokop Doc. Ing. Pavel Novotný, Ph.D. Id. číslo

Více

Sborník vědeckých prací Vysoké školy báňské - Technické univerzity Ostrava číslo 1, rok 2008, ročník VIII, řada stavební článek č.

Sborník vědeckých prací Vysoké školy báňské - Technické univerzity Ostrava číslo 1, rok 2008, ročník VIII, řada stavební článek č. Sborník vědeckých prací Vysoké školy báňské - Technické univerzity Ostrava číslo 1, rok 28, ročník VIII, řada stavební článek č. 22 Roman MAREK 1, Eva HRUBEŠOVÁ 2, Robert KOŘÍNEK 3, Martin STOLÁRIK 4 VLIV

Více

Rezonanční jevy na LC oscilátoru a závaží na pružině

Rezonanční jevy na LC oscilátoru a závaží na pružině Rezonanční jevy na LC oscilátoru a závaží na pružině M. Stejskal, K. Záhorová*, J. Řehák** Gymnázium Emila Holuba, Gymnázium J.K.Tyla*, SPŠ Hronov** Abstrakt Zkoumali jsme rezonanční frekvenci závaží na

Více

Numerická simulace proudění stupněm s vyrovnávacími štěrbinami

Numerická simulace proudění stupněm s vyrovnávacími štěrbinami Konference ANSYS 2011 Numerická simulace proudění stupněm s vyrovnávacími štěrbinami Bartoloměj Rudas, Zdeněk Šimka, Petr Milčák, Ladislav Tajč, Michal Hoznedl ŠKODA POWER, A Doosan Copany bartolomej.rudas@doosan.com

Více

Úvod do analytické mechaniky

Úvod do analytické mechaniky Úvod do analytické mechaniky Vektorová mechanika, která je někdy nazývána jako Newtonova, vychází bezprostředně z principů, které jsou vyjádřeny vztahy mezi vektorovými veličinami. V tomto případě např.

Více

obhajoba diplomové práce

obhajoba diplomové práce České vysoké učení technické v Praze, Fakulta strojní, Ústav mechaniky, biomechaniky a mechatroniky obhajoba diplomové práce v Praze, srpen 2014 autor: vedoucí: Ing. Pavel Steinbauer, Ph.D. Modální zkouška

Více

Analýza seizmické odezvy vysoké panelové budovy

Analýza seizmické odezvy vysoké panelové budovy Analýza seizmické odezvy vysoké panelové budovy Seismic response analysis of a high panel building structure Petr Hradil 1, Viktor Kanický 2, Vlastislav Salajka 3 Abstrakt Článek pojednává o způsobu získání

Více

Diskrétní řešení vzpěru prutu

Diskrétní řešení vzpěru prutu 1 z 5 Diskrétní řešení vzpěru prutu Discrete solution of beam buckling Petr Frantík Abstract Here is described discrete method for solution of beam buckling. The beam is divided into a number of tough

Více

PARAMETRIZACE DYNAMICKÉHO ZATÍŽENÍ OBĚŽNÝCH KOL RADIÁLNÍCH KOMPRESORŮ. OTO ŠTĚPÁNÍK*, KIRILL SOLODYANKIN, JIŘÍ BĚHAL ČKD KOMPRESORY, a.s.

PARAMETRIZACE DYNAMICKÉHO ZATÍŽENÍ OBĚŽNÝCH KOL RADIÁLNÍCH KOMPRESORŮ. OTO ŠTĚPÁNÍK*, KIRILL SOLODYANKIN, JIŘÍ BĚHAL ČKD KOMPRESORY, a.s. PARAMETRIZACE DYNAMICKÉHO ZATÍŽENÍ OBĚŽNÝCH KOL RADIÁLNÍCH KOMPRESORŮ OTO ŠTĚPÁNÍK*, KIRILL SOLODYANKIN, JIŘÍ BĚHAL ČKD KOMPRESORY, a.s. Abstract: The article is focused on dynamic loading of radial compressor

Více

Mechanické kmitání (oscilace)

Mechanické kmitání (oscilace) Mechanické kmitání (oscilace) pohyb, při kterém se těleso střídavě vychyluje v různých směrech od rovnovážné polohy př. kyvadlo Příklady kmitavých pohybů kyvadlo v pendlovkách struna hudebního nástroje

Více

Odpružená sedačka. Petr Školník, Michal Menkina. TECHNICKÁ UNIVERZITA V LIBERCI Fakulta mechatroniky, informatiky a mezioborových studií

Odpružená sedačka. Petr Školník, Michal Menkina. TECHNICKÁ UNIVERZITA V LIBERCI Fakulta mechatroniky, informatiky a mezioborových studií Petr Školník, Michal Menkina TECHNICKÁ UNIVERZITA V LIBERCI Fakulta mechatroniky, informatiky a mezioborových studií Tento materiál vznikl v rámci projektu ESF CZ.1.07/2.2.00/07.0247, který je spolufinancován

Více

Sborník vědeckých prací Vysoké školy báňské - Technické univerzity Ostrava číslo 1, rok 2009, ročník IX, řada stavební článek č.3

Sborník vědeckých prací Vysoké školy báňské - Technické univerzity Ostrava číslo 1, rok 2009, ročník IX, řada stavební článek č.3 Sborník vědeckých prací Vysoké školy báňské - Technické univerzity Ostrava číslo 1, rok 2009, ročník IX, řada stavební článek č.3 David SEKANINA 1, Radim ČAJKA 2 INTERAKCE PŘEDPJATÝCH PODLAH A PODLOŽÍ

Více

Tuhost mechanických částí. Předepnuté a nepředepnuté spojení. Celková tuhosti kinematické vazby motor-šroub-suport.

Tuhost mechanických částí. Předepnuté a nepředepnuté spojení. Celková tuhosti kinematické vazby motor-šroub-suport. Tuhost mechanických částí. Předepnuté a nepředepnuté spojení. Celková tuhosti kinematické vazby motor-šroub-suport. R. Mendřický, M. Lachman Elektrické pohony a servomechanismy 31.10.2014 Obsah prezentace

Více

Necht na hmotný bod působí pouze pružinová síla F 1 = ky, k > 0. Podle druhého Newtonova zákona je pohyb bodu popsán diferenciální rovnicí

Necht na hmotný bod působí pouze pružinová síla F 1 = ky, k > 0. Podle druhého Newtonova zákona je pohyb bodu popsán diferenciální rovnicí Počáteční problémy pro ODR2 1 Lineární oscilátor. Počáteční problémy pro ODR2 Uvažujme hmotný bod o hmotnosti m, na který působí síly F 1, F 2, F 3. Síla F 1 je přitom úměrná výchylce y z rovnovážné polohy

Více

Simulace oteplení typového trakčního odpojovače pro různé provozní stavy

Simulace oteplení typového trakčního odpojovače pro různé provozní stavy Konference ANSYS 2009 Simulace oteplení typového trakčního odpojovače pro různé provozní stavy Regina Holčáková, Martin Marek VŠB-TUO, FEI, Katedra elektrických strojů a přístrojů Abstract: Paper focuses

Více

NESTABILITY VYBRANÝCH SYSTÉMŮ. Úvod. Vzpěr prutu. Petr Frantík 1

NESTABILITY VYBRANÝCH SYSTÉMŮ. Úvod. Vzpěr prutu. Petr Frantík 1 NESTABILITY VYBRANÝCH SYSTÉMŮ Petr Frantík 1 Úvod Úloha pokritického vzpěru přímého prutu je řešena dynamickou metodou. Prut se statickým zatížením je modelován jako nelineární disipativní dynamický systém.

Více

5 Analýza konstrukce a navrhování pomocí zkoušek

5 Analýza konstrukce a navrhování pomocí zkoušek 5 Analýza konstrukce a navrhování pomocí zkoušek 5.1 Analýza konstrukce 5.1.1 Modelování konstrukce V článku 5.1 jsou uvedeny zásady a aplikační pravidla potřebná pro stanovení výpočetních modelů, které

Více

ω=2π/t, ω=2πf (rad/s) y=y m sin ωt okamžitá výchylka vliv má počáteční fáze ϕ 0

ω=2π/t, ω=2πf (rad/s) y=y m sin ωt okamžitá výchylka vliv má počáteční fáze ϕ 0 Kmity základní popis kmitání je periodický pohyb, při kterém těleso pravidelně prochází rovnovážnou polohou mechanický oscilátor zařízení vykonávající kmity Základní veličiny Perioda T [s], frekvence f=1/t

Více

PRAVDĚPODOBNOSTNÍ PŘÍSTUP ÚPRAVY SPEKTER ODEZVY SEIZMICKÉHO DĚJE THE PROBABILISTIC APPROACH OF SEISMIC RESPONSE SPECTRA MODIFICATION

PRAVDĚPODOBNOSTNÍ PŘÍSTUP ÚPRAVY SPEKTER ODEZVY SEIZMICKÉHO DĚJE THE PROBABILISTIC APPROACH OF SEISMIC RESPONSE SPECTRA MODIFICATION PRAVDĚPODOBNOSTNÍ PŘÍSTUP ÚPRAVY SPEKTER ODEZVY SEIZMICKÉHO DĚJE THE PROBABILISTIC APPROACH OF SEISMIC RESPONSE SPECTRA MODIFICATION Zdeněk Čada 1, Vlastislav Salajka 2, Petr Hradil 3 Abstrakt Příspěvek

Více

Diferenciální rovnice

Diferenciální rovnice Diferenciální rovnice Průvodce studiem Touto kapitolou se náplň základního kurzu bakalářské matematiky uzavírá. Je tomu tak mimo jiné proto, že jsou zde souhrnně využívány poznatky získané studiem předchozích

Více

Elektromechanický oscilátor

Elektromechanický oscilátor - 1 - Elektromechanický oscilátor Ing. Ladislav Kopecký, 2002 V tomto článku si ukážeme jeden ze způsobů, jak využít silové účinky cívky s feromagnetickým jádrem v rezonanci. I člověk, který neoplývá technickou

Více

Analýza dynamické charakteristiky zkratové spouště jističe nn

Analýza dynamické charakteristiky zkratové spouště jističe nn Konference ANSYS 2009 Analýza dynamické charakteristiky zkratové spouště jističe nn Ing. Petr Kačor, Ph.D., Ing. Martin Marek, Ph.D. VŠB-TU Ostrava, Fakulta elektrotechniky a informatiky, Katedra elektrických

Více

Selected article from Tento dokument byl publikován ve sborníku

Selected article from Tento dokument byl publikován ve sborníku Selected article from Tento dokument byl publikován ve sborníku Nové metody a postupy v oblasti přístrojové techniky, automatického řízení a informatiky 2018 New Methods and Practices in the Instrumentation,

Více

METODIKA VÝPOČTU NÁHRADNÍ TUHOSTI NOSNÍKU.

METODIKA VÝPOČTU NÁHRADNÍ TUHOSTI NOSNÍKU. METODIKA VÝPOČTU NÁHRADNÍ TUHOSTI NOSNÍKU. THE METHODOLOGY OF THE BEAM STIFFNESS SUBSTITUTION CALCULATION. Jiří Podešva 1 Abstract The calculation of the horizontal mine opening steel support can be performed

Více

MECHANICKÉ KMITÁNÍ POJMY K ZOPAKOVÁNÍ. Testové úlohy varianta A

MECHANICKÉ KMITÁNÍ POJMY K ZOPAKOVÁNÍ. Testové úlohy varianta A Škola: Autor: DUM: Vzdělávací obor: Tematický okruh: Téma: Masarykovo gymnázium Vsetín Mgr. Jitka Novosadová MGV_F_SS_3S3_D19_Z_OPAK_KV_Mechanicke_kmitani_T Člověk a příroda Fyzika Mechanické kmitání Opakování

Více

Fyzikální praktikum I

Fyzikální praktikum I Kabinet výuky obecné fyziky, UK MFF Fyzikální praktikum I Úloha č. II Název úlohy: Studium harmonických kmitů mechanického oscilátoru Jméno: Ondřej Skácel Obor: FOF Datum měření: 2.3.2015 Datum odevzdání:...

Více

POŽÁRNÍ ODOLNOST DŘEVOBETONOVÉHO STROPU

POŽÁRNÍ ODOLNOST DŘEVOBETONOVÉHO STROPU Energeticky efektivní budovy 2015 sympozium Společnosti pro techniku prostředí 15. října 2015, Buštěhrad POŽÁRNÍ ODOLNOST DŘEVOBETONOVÉHO STROPU Eva Caldová 1), František Wald 1),2) 1) Univerzitní centrum

Více

Stavební fakulta Katedra mechaniky. Jaroslav Kruis, Petr Štemberk

Stavební fakulta Katedra mechaniky. Jaroslav Kruis, Petr Štemberk České vysoké učení technické v Praze Stavební fakulta Katedra mechaniky Fuzzy množiny, fuzzy čísla a jejich aplikace v inženýrství Jaroslav Kruis, Petr Štemberk Obsah Nejistoty Teorie pravděpodobnosti

Více

technické v Brně, Veveří 95, Brno,

technické v Brně, Veveří 95, Brno, Sborník vědeckých prací Vysoké školy báňské - Technické univerzity Ostrava číslo 2, rok 2009, ročník IX, řada stavební článek č. 3 Zdeněk ČADA 1, Vlastislav SALAJKA 2, Viktor KANICKÝ 3 ODEZVA STAVEBNÍCH

Více

Analýza lineárních regulačních systémů v časové doméně. V Modelice (ale i v Simulinku) máme blok TransfeFunction

Analýza lineárních regulačních systémů v časové doméně. V Modelice (ale i v Simulinku) máme blok TransfeFunction Analýza lineárních regulačních systémů v časové doméně V Modelice (ale i v Simulinku) máme blok TransfeFunction Studijní materiály http://physiome.cz/atlas/sim/regulacesys/ Khoo: Physiological Control

Více

STUDENT CAR. Dílčí výpočtová zpráva. Univerzita Pardubice Dopravní fakulta Jana Pernera. Září 2008

STUDENT CAR. Dílčí výpočtová zpráva. Univerzita Pardubice Dopravní fakulta Jana Pernera. Září 2008 STUDENT CAR Dílčí výpočtová zpráva Září 2008 Copyright 2008, Univerzita Pardubice, STUDENT CAR Dílčí výpočtová zpráva Projekt : Student Car, FDJP Univerzita Pardubice - VŠB Ostrava Datum : Září 2008 Vypracoval

Více

Ing. Jaromír Kejval, Ph.D.

Ing. Jaromír Kejval, Ph.D. Výzkum a vývoj v automobilovém průmyslu 2011 Numerické simulace a zkušebnictví ve vývojovém cyklu automobilu Lázně Bělohrad, 10.11.2011 Únavové vibrační zkoušky ve SWELL Ing. Jaromír Kejval, Ph.D. SPEKTRUM

Více

Experimentální realizace Buquoyovy úlohy

Experimentální realizace Buquoyovy úlohy Experimentální realizace Buquoyovy úlohy ČENĚK KODEJŠKA, JAN ŘÍHA Přírodovědecká fakulta Univerzity Palackého, Olomouc Abstrakt Tato práce se zabývá experimentální realizací Buquoyovy úlohy. Jedná se o

Více

Globální matice konstrukce

Globální matice konstrukce Globální matice konstrukce Z matic tuhosti a hmotnosti jednotlivých prvků lze sestavit globální matici tuhosti a globální matici hmotnosti konstrukce, které se využijí v řešení základní rovnice MKP: [m]{

Více

Rovnice rovnováhy: ++ =0 x : =0 y : =0 =0,83

Rovnice rovnováhy: ++ =0 x : =0 y : =0 =0,83 Vypočítejte moment síly P = 4500 N k osám x, y, z, je-li a = 0,25 m, b = 0, 03 m, R = 0,06 m, β = 60. Nositelka síly P svírá s tečnou ke kružnici o poloměru R úhel α = 20.. α β P y Uvolnění: # y β! x Rovnice

Více

České vysoké učení technické v Praze, Fakulta stavební. Projekt: Využití pokročilého modelování konstrukcí v magisterském studiu

České vysoké učení technické v Praze, Fakulta stavební. Projekt: Využití pokročilého modelování konstrukcí v magisterském studiu České vysoké učení technické v Praze, Fakulta stavební Rozvojové projekty Ministerstva školství, mládeže a tělovýchovy ČR Rozvojové projekty mladých týmů RPMT 2014 Projekt: Využití pokročilého modelování

Více

Spolehlivost a bezpečnost staveb zkušební otázky verze 2010

Spolehlivost a bezpečnost staveb zkušební otázky verze 2010 1 Jaká máme zatížení? 2 Co je charakteristická hodnota zatížení? 3 Jaké jsou reprezentativní hodnoty proměnných zatížení? 4 Jak stanovíme návrhové hodnoty zatížení? 5 Jaké jsou základní kombinace zatížení

Více

Cvičení 9 (Výpočet teplotního pole a teplotních napětí - Workbench)

Cvičení 9 (Výpočet teplotního pole a teplotních napětí - Workbench) VŠB Technická univerzita Ostrava Fakulta strojní Katedra pružnosti a pevnosti (339) Pružnost a pevnost v energetice (Návody do cvičení) Cvičení 9 (Výpočet teplotního pole a teplotních napětí - Workbench)

Více

Laboratorní úloha č. 3 - Kmity I

Laboratorní úloha č. 3 - Kmity I Laboratorní úloha č. 3 - Kmity I Úkoly měření: 1. Seznámení se s měřením na osciloskopu nastavení a měření základních veličin ve fyzice (frekvence, perioda, amplituda, harmonické, neharmonické kmity).

Více

Zadání semestrální práce z předmětu Mechanika 2

Zadání semestrální práce z předmětu Mechanika 2 Zadání semestrální práce z předmětu Mechanika 2 Jméno: VITALI DZIAMIDAU Číslo zadání: 7 U zobrazeného mechanismu definujte rozměry, hmotnosti a silové účinky a postupně proveďte: 1. kinematickou analýzu

Více

Lineární stabilita a teorie II. řádu

Lineární stabilita a teorie II. řádu Lineární stabilita a teorie II. řádu Sestavení podmínek rovnováhy na deformované konstrukci Konstrukce s a bez počáteční imperfekce Výpočet s malými vs. s velkými deformacemi ANKC-C 1 Zatěžovacídráhy [Šejnoha,

Více

POSUDEK PRAVDĚPODOBNOSTI PORUCHY OCELOVÉ NOSNÉ SOUSTAVY S PŘIHLÉDNUTÍM K MONTÁŽNÍM TOLERANCÍM

POSUDEK PRAVDĚPODOBNOSTI PORUCHY OCELOVÉ NOSNÉ SOUSTAVY S PŘIHLÉDNUTÍM K MONTÁŽNÍM TOLERANCÍM I. ročník celostátní konference SPOLEHLIVOST ONSTRUCÍ Téma: Rozvoj koncepcí posudku spolehlivosti stavebních konstrukcí 5..000 Dům techniky Ostrava ISBN 80-0-0- POSUDE PRAVDĚPODOBNOSTI PORUCHY OCELOVÉ

Více

1. CO JE TO PŘÍMÁ/NEPŘÍMÁ ÚLOHA DYNAMIKY? CO VYJADŘUJÍ POHYBOVÉ ROVNICE? JAKÝ JE ROZDÍL MEZI DYNAMICKOU ANALÝZOU/SYNTÉZOU?

1. CO JE TO PŘÍMÁ/NEPŘÍMÁ ÚLOHA DYNAMIKY? CO VYJADŘUJÍ POHYBOVÉ ROVNICE? JAKÝ JE ROZDÍL MEZI DYNAMICKOU ANALÝZOU/SYNTÉZOU? Zkouška Dynamika výrobních strojů 10/11 ZKOUŠKA DYNAMIKA VÝROBNÍCH STROJŮ -10/11 TEST 10 OTÁZEK Z NÁSLEDUJÍCÍCH OKRUHŮ 1. CO JE TO PŘÍMÁ/NEPŘÍMÁ ÚLOHA DYNAMIKY? CO VYJADŘUJÍ POHYBOVÉ ROVNICE? JAKÝ JE ROZDÍL

Více

CAD/CAE. Fyzikální model. (fyzikální podstata problémů, počáteční a okrajové podmínky, materiálové modely)

CAD/CAE. Fyzikální model. (fyzikální podstata problémů, počáteční a okrajové podmínky, materiálové modely) CAD/CAE ÚNOD: Jan Tippner, Václav Sebera, Miroslav Trcala, Eva Troppová. Fyzikální model (fyzikální podstata problémů, počáteční a okrajové podmínky, materiálové modely) Podpořeno projektem Průřezová inovace

Více

VŠB Technická univerzita Ostrava Fakulta strojní Katedra pružnosti a pevnosti (339) Metoda konečných prvků MKP I (Návody do cvičení)

VŠB Technická univerzita Ostrava Fakulta strojní Katedra pružnosti a pevnosti (339) Metoda konečných prvků MKP I (Návody do cvičení) VŠB Technická univerzita Ostrava Fakulta strojní Katedra pružnosti a pevnosti (339) Metoda konečných prvků MKP I (Návody do cvičení) Autoři: Martin Fusek, Radim Halama, Jaroslav Rojíček Verze: 0 Ostrava

Více

pracovní list studenta Kmitání Studium kmitavého pohybu a určení setrvačné hmotnosti tělesa

pracovní list studenta Kmitání Studium kmitavého pohybu a určení setrvačné hmotnosti tělesa pracovní list studenta Kmitání Studium kmitavého pohybu a určení setrvačné hmotnosti tělesa Výstup RVP: Klíčová slova: Eva Bochníčková žák měří vybrané veličiny vhodnými metodami, zpracuje získaná data

Více

Optimalizace talířové pružiny turbodmychadla

Optimalizace talířové pružiny turbodmychadla Konference ANSYS 2011 Optimalizace talířové pružiny turbodmychadla Radek Jandora Honeywell, spol. s r.o. HTS CZ o.z., Tuřanka 100/1387, 627 00 Brno, radek.jandora@honeywell.com Abstract: Po testech životnosti

Více

VÝPOČET DYNAMICKÝCH VLASTNOSTÍ KOLESOVÉHO RYPADLA SchRs 1320/4x30. COMPUTATION OF DYNAMIC CHARACTERISTIC OF THE BUCKET WHEEL EXCAVATOR SchRs 1320/4x30

VÝPOČET DYNAMICKÝCH VLASTNOSTÍ KOLESOVÉHO RYPADLA SchRs 1320/4x30. COMPUTATION OF DYNAMIC CHARACTERISTIC OF THE BUCKET WHEEL EXCAVATOR SchRs 1320/4x30 VÝPOČET DYNAMICKÝCH VLASTNOSTÍ KOLESOVÉHO RYPADLA SchRs 130/x30 COMPUTATION OF DYNAMIC CHARACTERISTIC OF THE BUCKET WHEEL EXCAVATOR SchRs 130/x30 Autor: Ing. Jakub GOTTVALD, Ústav aplikované mechaniky

Více

ACOUSTIC EMISSION SIGNAL USED FOR EVALUATION OF FAILURES FROM SCRATCH INDENTATION

ACOUSTIC EMISSION SIGNAL USED FOR EVALUATION OF FAILURES FROM SCRATCH INDENTATION AKUSTICKÁ EMISE VYUŽÍVANÁ PŘI HODNOCENÍ PORUŠENÍ Z VRYPOVÉ INDENTACE ACOUSTIC EMISSION SIGNAL USED FOR EVALUATION OF FAILURES FROM SCRATCH INDENTATION Petr Jiřík, Ivo Štěpánek Západočeská univerzita v

Více

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA STAVEBNÍ ÚSTAV STAVEBNÍ MECHANIKY FACULTY OF CIVIL ENGINEERING INSTITUTE OF STRUCTURAL MECHANICS ANALÝZA PŮSOBENÍ VĚTRU NA STAVEBNÍ KONSTRUKCI

Více

Vývojové služby pro automobilový průmysl

Vývojové služby pro automobilový průmysl Vývojové služby pro automobilový průmysl SPEKTRUM SLUŽEB Design a předvývoj Vývojová konstrukce Technologické Numerické simulace Lisovací nástroje centrum Prototypy Zkušebnictví 2 CAE NUMERICKÉ SIMULACE

Více

CW01 - Teorie měření a regulace

CW01 - Teorie měření a regulace Ústav technologie, mechanizace a řízení staveb CW01 - Teorie měření a regulace ZS 2010/2011 SPEC. 2.p 2010 - Ing. Václav Rada, CSc. Ústav technologie, mechanizace a řízení staveb Teorie měření a regulace

Více

OTÁZKY KE STÁTNÍ ZÁVĚREČNÉ ZKOUŠCE (NAVAZUJÍCÍ STUDIUM) OBOR 3901T APLIKOVANÁ MECHANIKA. Teorie pružnosti

OTÁZKY KE STÁTNÍ ZÁVĚREČNÉ ZKOUŠCE (NAVAZUJÍCÍ STUDIUM) OBOR 3901T APLIKOVANÁ MECHANIKA. Teorie pružnosti OTÁZKY KE STÁTNÍ ZÁVĚREČNÉ ZKOUŠCE (NAVAZUJÍCÍ STUDIUM) OBOR 3901T003-00 APLIKOVANÁ MECHANIKA Teorie pružnosti 1. Geometrie polohových změn a deformace tělesa. Tenzor přetvoření Green-Lagrangeův, Cauchyho.

Více

Parametrická studie změny napětí v pánevní kosti po implantaci cerkvikokapitální endoprotézy

Parametrická studie změny napětí v pánevní kosti po implantaci cerkvikokapitální endoprotézy Parametrická studie změny napětí v pánevní kosti po implantaci cerkvikokapitální endoprotézy Daniel Kytýř, Jitka Jírová, Michal Micka Ústav teoretické a aplikované mechaniky Akademie věd České republiky

Více

þÿ E x p e r i m e n t á l n í my e n í a n u m e r þÿ m o d e l d y n a m i c k ý c h ú i n ko v i b r a

þÿ E x p e r i m e n t á l n í my e n í a n u m e r þÿ m o d e l d y n a m i c k ý c h ú i n ko v i b r a DSpace VSB-TUO http://www.dspace.vsb.cz OpenAIRE þÿx a d a s t a v e b n í. 2 0 1 1, r o. 1 1 / C i v i l E n g i n e e r i n g þÿ E x p e r i m e n t á l n í my e n í a n u m e r þÿ m o d e l d y n a

Více

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STROJNÍHO INŽENÝRSTVÍ

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STROJNÍHO INŽENÝRSTVÍ VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STROJNÍHO INŽENÝRSTVÍ ÚSTAV MECHANIKY TĚLES, MECHATRONIKY A BIOMECHANIKY Komentovaný metodický list č. 1/4 Vytvořil: Ing. Oldřich Ševeček & Ing. Tomáš Profant, Ph.D.

Více

Mechanické kmitání a vlnění

Mechanické kmitání a vlnění Mechanické kmitání a vlnění Pohyb tělesa, který se v určitém časovém intervalu pravidelně opakuje periodický pohyb S kmitavým pohybem se setkáváme např.: Zařízení, které volně kmitá, nazýváme mechanický

Více

Numerická simulace sdílení tepla v kanálu mezikruhového průřezu

Numerická simulace sdílení tepla v kanálu mezikruhového průřezu Konference ANSYS 2009 Numerická simulace sdílení tepla v kanálu mezikruhového průřezu Petr Kovařík Západočeská univerzita v Plzni, Univerzitní 22, 306 14 Plzeň, kovarikp@ntc.zcu.cz Abstract: The paper

Více

VLIV STÁLÉHO PŘEVODU NA ÚROVEŇ VIBRACÍ A HLUKU PŘEVODOVKY ŠKODA

VLIV STÁLÉHO PŘEVODU NA ÚROVEŇ VIBRACÍ A HLUKU PŘEVODOVKY ŠKODA XXXIV. mezinárodní konference kateder a pracovišť spalovacích motorů českých a slovenských vysokých škol VLIV STÁLÉHO PŘEVODU NA ÚROVEŇ VIBRACÍ A HLUKU PŘEVODOVKY ŠKODA Elias TOMEH 1 Abstract: The effect

Více

Michal Vaverka: Přehled řešených projektů

Michal Vaverka: Přehled řešených projektů 15. seminář ÚK Michal Vaverka: Přehled řešených projektů FSI VUT v Brně Ústav konstruování Technická 2896/2 616 69 Brno Česká republika http://uk.fme.vutbr.cz/ e-mail: vaverka@fme.vutbr.cz 21.dubna.2006

Více

Martin NESLÁDEK. 14. listopadu 2017

Martin NESLÁDEK. 14. listopadu 2017 Martin NESLÁDEK Faculty of mechanical engineering, CTU in Prague 14. listopadu 2017 1 / 22 Poznámky k úlohám řešeným MKP Na přesnost simulace pomocí MKP a prostorové rozlišení výsledků má vliv především:

Více

Rotující soustavy, měření kritických otáček, typické projevy dynamiky rotorů.

Rotující soustavy, měření kritických otáček, typické projevy dynamiky rotorů. Rotující soustavy, měření kritických otáček, typické projevy dynamiky rotorů www.kme.zcu.cz/kmet/exm 1 Obsah prezentace 1. Rotující soustavy 2. Základní model rotoru Lavalův rotor 3. Nevyváženost rotoru

Více