Téma 13, Úvod do dynamiky stavebních konstrukcí dynamiky

Rozměr: px
Začít zobrazení ze stránky:

Download "Téma 13, Úvod do dynamiky stavebních konstrukcí dynamiky"

Transkript

1 Statika staveních konstrukcí II., 3.ročník akalářského studia Téma 3, Úvod do dynamiky staveních konstrukcí dynamiky Úvod Vlastní kmitání Vynucené kmitání Tlumené kmitání Podmínky dynamické rovnováhy konstrukcí Katedra stavení mechaniky Fakulta stavení, VŠB - Technická univerzita Ostrava

2 Statika a dynamika Ve statice se předpokládá, že zatížení konstrukce se s časem: nemění mění se velmi pomalu Rovnováha je zajištěna mezi vnitřními a vnějšími silami Při větší rychlosti změn zatížení v čase se musí počítat s pohyovou energií, která je při pomalém zatížení nepodstatná V rovnicích rovnováhy kromě vnějších a vnitřních sil vystupují ještě síly setrvačné a tlumící a sestavují se rovnice pohyové (dynamické rovnováhy)

3 Dynamická zatížení Za dynamické zatížení považujeme ta, u kterých se mění dostatečně rychle alespoň jedna z následujících charakteristik: velikost směr půsoení smysl půsoení poloha půsoiště 3

4 Dynamická zatížení, rozdělení Účinky pohyujících se zatížení Účinky rotujících strojů a strojů generujících rázy Účinky větru Účinky zemětřesení (seizmicita) Nárazy pohyujících se těles Účinky výuchu 4

5 Dynamika Je část mechaniky, která zkoumá a aplikuje zákony pro pohy hmotných ojektů v čase a v prostoru za účinku sil Newton formuloval tři základní principy: Princip setrvačnosti Princip síly Princip akce a reakce 5

6 Dynamika D Alamertův princip Setrvačná sílu F in =ma je v každém okamžiku v rovnováze se silou zrychlující F. Platí: F F in Platí i pro soustavu hmotných odů. Setrvačné síly soustavy hmotných odů vytvářejí s vnějšími silami rovnovážnou soustavu F i F in, i Vektorový součet všech vnějších sil půsoících na soustavu hmotných odů a setrvačných sil je rovnováze. 6

7 Přímočaré kmitání vlastní Vychýlením hmotného odu o hmotnosti m z rovnovážné polohy vznikne v péru síla F p =ky=cy, kde C je tuhost (pérová konstanta) Proti pohyu hmotného odu půsoí setrvačná síla F in =ma Z rovnováhy sil vyplývá: F p +F in =, respektive Cy+ma= d y dt d y je dt C m Protože a y 7

8 Přímočaré kmitání vlastní, pokračování Rovnici lze d y m Cy upravit na tvar: dt d y C y, kde je tzv. kruhová frekvence dt m Jde o diferenciální rovnici řádu, lineární a homogenní. Řešením je rovnice harmonického kmitání: y C cost C sin t 8

9 pro t Přímočaré kmitání vlastní, pokračování Integrační konstanty C a C se v rovnici určí z počátečních podmínek: Pro t rychlost kmitání je je y() dy dt C je y, dy dt C sin s t C C Rovnici lze také vyjádřit ve tvaru y y C cos t C cost C sin t y Acos( t ), kde A C C A je amplituda (maximální výchylka) a fázový posun pro t= y y 9

10 Přímočaré kmitání vlastní, pokračování Pro dráhu kmitavého pohyu je Pro rychlost kmitání pak platí: Pro zrychlení je kde ) sin( ) cos( : lze také upravit Rovnici ) cos( ) sin( ) cos( t A t A y t A y t A y t A y

11 Přímočaré kmitání vlastní, pokračování Ve vzorcích pro výpočet výchylky (posunutí), rychlosti a zrychlení kmitání je: kruhová frekvence, úhel v radiánech za jednotku času f vlastní frekvence, počet kmitů za sec [Hz] T doa periody (perioda), doa jednoho kmitu Platí: π f T ω f,, T f ω T Tzv. kruhová frekvence C / m je v daném případě funkcí pérové konstanty C a hmotnosti m. Není funkcí amplitudy.

12 Přímočaré kmitání vlastní, pokračování Pokud hmota na pružině ude uvedena do pohyu, ude kmitat. Neude-li docházet ke ztrátám energie, pak tento pohy se ude opakovat v pravidelných intervalech periodách T hovoříme o periodickém pohyu. Tento pohy je vyjádřitelný goniometrickou funkcí a nazýváme jej jednoduchý harmonický pohy neo prostě harmonický. Hmota m na pružině s pérovou konstantou C ude mít vlastní frekvenci a vlastní tvar kmitání. Vlastní frekvence a vlastní tvar kmitání jsou charakteristické pro každou soustavu.

13 Vynucené kmitání způsoené náhlým zatížením harmonicky proměnnou silou Na hmotný od na pružině ude půsoit harmonicky proměnná síla P: Pohyová rovnice je diferenciální rovnicí. řádu, nehomogenní: d y m Cy Psint dt Partikulární řešení : y( Asint, kde A je výchylka závislá na velikosti síly y ( ma sint CAsint A A cost, P C m y ( P m m A sint Po dosazení do diferenciální rovnice Psint P, m( ) je A( C m ) kde C m P 3

14 Vynucené kmitání způsoené náhlým zatížením harmonicky proměnnou silou Ve výrazu kruhová frekvence vlastního kmitání kruhová frekvence vynuceného kmitání Výchylka vyvolána statickou silou P Po dosazení A A Výchylka při dynamickém zatížení není stejná zatížení statickém. P m( ) A st je m m( ) A je : A st st P C P m jako při 4

15 y( což Pro t tedy a Vynucené kmitání způsoené náhlým zatížením harmonicky proměnnou silou Oecným řešením rovnice pro netlumené Asint A je součet partikulárního řešení a zkrácené homogenní rovnice. Pro rychlost kmitání Rozkmit :soustava A po dosazení A sin( t je v klidu a začne půsoit proměnná síla Psint. y( je : A ), y ( A cost dy( ) je y( ) a a také d( A f A f A(sint sin vynucené oecného integrálu A cos( t A f f kmitání ). je : 5

16 Vynucené kmitání způsoené náhlým zatížením harmonicky proměnnou silou f=n=3n =3s - f =n =s - Výsledné kmitání je dáno součtem ada) a ad). Vlastní část kmitání vlivem útlumu s časem zaniká, po delším půsoení vynucené síly zůstává jen ustálené vynucené kmitání. 6

17 Vynucené kmitání, resonance Pro f=f o, respektive = je frekvence síly v resonanci s vlastní frekvencí soustavy. Pro vynucené kmitání je amplituda P A a po dosazení je m( ) y( Ast A( sin ωt sin P( t cosω t sin m ( t cosω t sin, lim P(sin ωt sin m( ) P ( t cosω t sin C kde A st P C 7

18 Vynucené kmitání netlumené, resonance V rovnici Ast y( ( t cosω t sin, roste t s časem neomezeně. Zvětšení aplitudy závisí jen na počtu kmitů. Po k kmitech vzroste výchylka na kπ násoek statické výchylky A st. 8

19 Útlum U netlumeného kmitání rozkmitaná soustava kmitá se stejnou amplitudou neomezeně dlouho Pohyu však vždy rání menší neo větší rzdící síla způsoující útlum Příčiny útlumu jsou uvnitř i vně konstrukce a jsou různé (tření, odpor prostředí, deformace, porušení atd.) Matematické vyjádření útlumu je otížné a v jednotlivých případech zcela odlišné Předpoklady se zjednodušují, často se volí smykové tření látek tuhých a viskosita (tření kapalné), i když nemusí přesně odpovídat realitě 9

20 Útlum při vlastním kmitání Při viskosním tření je útlum úměrný rychlosti kmitání. Rovnice rovnováhy je: d y( m dt kde je koeficient vyjádřující tlumicí sílu při C f C m je dy( d( kg sec Cy( útlumu je kruhová frekvence útlumu n C - frekvence (kmitoče, jednotkové rychlosti. útlumu

21 Útlum při vlastním kmitání, pokračování Diferenciální lineární rovnici. řádu, homogenní d y( dy( m C Cy(, dt d( vyhovuje řešení : Po úpravě Řešením je : Je li ) ) 3) je,, α,, y( e t C m pak je útlum kritický pak je útlum nadkritický pak je útlum podkritický

22 Vlastní kmitání, kritický útlum V daném případě je kruhová frekvence vlastního kmitání a útlumu shodná: a když řešením diferenciální y( y() C e integrační C a t a C te t dy(t dt konstanty C ) rovnice po úpravách je : y() e t (, a C C C yly yly určeny pro t.

23 Vlastní kmitání, kritický útlum Průěh výchylky vlastního kmitání při kritickém útlumu jako funkce n t je zřejmý z or. Při tomto útlumu nenastane periodický pohy. Útlum aperiodický. v( v() n t y( y() n t f t t 3

24 a Vlastní kmitání, nadkritický útlum V daném případě je kruhová frekvence vlastního kmitání menší než kruhová frekvence útlumu: Integrační a řešením diferenciální y( C e pro rychlost kmitání y( ) C t C e t konstanty C C a, je dy( ) dt, t se určí pro t rovnice po úpravách je : dy( dt a C C e C te C C C t z rovnic : y() C y() 4

25 Vlastní kmitání, nadkritický útlum Průěh výchylky vlastního kmitání při nadkritickém útlumu jako funkce n t je zřejmý z or. Při tomto útlumu nenastane periodický pohy. Útlum aperiodický v( y( v() y() n t f t t 5

26 Vlastní kmitání, podkritický útlum Průěh výchylky vlastního kmitání při podkritickém útlumu jako funkce n t je zřejmý z or. Při tomto útlumu nastane periodický pohy s proměnnou amplitudou. v( y( v() y() n t f t t 6

27 Průěh výchylky vlastního kmitání při útlumu způsoeném smykovým třením Průěh výchylky vlastního kmitání. Při tomto útlumu nastane periodický pohy s proměnnou amplitudou. Vlivem tření se nedostane hmotný od do své výchozí polohy v odě s, ale do polohy s. v( y( v() y() n t f t t 7

28 Útlum při vynuceném kmitání Půsoí-li na hmotný od m zavěšeny na nehmotné pružině proměnná harmonická síla, má pohyová rovnice tvar: d y( dy( m m Cy( Psint dt dt Jde o nelineární diferenciální rovnici. řádu. V této rovnici představuje. člen sílu danou hmotností a zrychlením hmotného odu,. člen sílu při viskosním tření, 3. člen pružnou sílu vyvolanou výchylkou v pružině 4. člen (pravá strana) harmonicky proměnnou sílu 8

29 Útlum při vynuceném kmitání, příklad tlumeného kmitání vyvolaného náhlým zatížením harmonicky proměnnou silou 9

30 Útlum při vynuceném kmitání, rozkmitání s útlumem při resonanci 3

31 Stupně volnosti Stupněm volnosti v dynamice rozumíme počet nezávislých veličin, který je nutný, ay yla určena okamžitá poloha a tvar uvažované soustavy. Hmotný od zavěšený na nehmotné pružině má jeden stupeň volnosti. Hmotnosti m a tuhosti C (pérové konstantě) odpovídá jedna frekvence vlastního kmitání a tvar vlastního kmitání. 3

32 . stupně volnosti Dvě hmoty na nehmotných perech mají dva stupně volnosti. U takové soustavy může nastat jednoduchý harmonický pohy při dvou vlastních frekvencích. f f 3

33 . stupně volnosti Soustava tvořící dvě hmoty na nehmotném nosníku má dva stupně volnosti. V určitém okamžiku je v odě výchylka v ( a v odě výchylka v ( 33

34 Podmínky dynamické rovnováhy konstrukcí V současné doě se úlohy dynamiky staveních konstrukcí řeší zpravidla při aplikaci MKP. Podmínka dynamické rovnováhy se v maticovém tvaru vyjadřuje následovně: Mu Cu u u u K M C F Ku F, je vektor uzlových deformačních parametů konstrukce je vektor rychlosí uzlových deformací je vektor zrychlení je matice tuhosti kde je matice hmotnosti konstrukce je matice útlumu konstruce uzlových deformací je vektor zatížení (může jít o oecně proměnné zatížení v čase) 34

35 Podmínky dynamické rovnováhy konstrukcí Mu Cu Ku F, Řešením rovnice pro dané počáteční podmínky je přemístění uzlů v závislosti na čase u u( Dále se určí rychlosti a zrychlení uzlů, složky napětí v prvcích, vnitřní síly, reakce atd. K základním úlohám dynamiky patří: a) výpočet vlastních frekvencí a vlastních tvarů kmitů konstrukce, řeší se z rovnice Mu Ku, ) odezva konstrukce na harmonické zatížení, c) odezva konstrukce na oecné časově proměnné zatížení. 35

36 Použitá a doporučená literatura [] Koloušek V., Dynamika staveních konstrukcí, SNTL Praha 954 [] Teplý, B., Šmiřák, S., Pružnost a plasticita II, Nakladatelství VUT Brno 993 [3] Kolář, V., Němec, I., Kanický V., FEM Principy a praxe metody konečných prvků Computer Press, 997 [4] Pirner, M., a kol., Dynamika staveních konstrukcí, Technický průvodce, SNTL Praha

I. část - úvod. Iva Petríková

I. část - úvod. Iva Petríková Kmitání mechanických soustav I. část - úvod Iva Petríková Katedra mechaniky, pružnosti a pevnosti Osah Úvod, základní pojmy Počet stupňů volnosti Příklady kmitavého pohyu Periodický pohy Harmonický pohy,

Více

Téma: Dynamiky - Základní vztahy kmitání

Téma: Dynamiky - Základní vztahy kmitání Počítačová podpora statických výpočtů Téma: Dynamiky - Základní vztahy kmitání 1) Vlastnosti materiálů při dynamickém namáháni ) Základní vztahy teorie kmitání s jedním stupněm volnosti Katedra konstrukcí

Více

Téma: Dynamika - Úvod do stavební dynamiky

Téma: Dynamika - Úvod do stavební dynamiky Počítačová podpora statických výpočtů Téma: Dynamika - Úvod do stavební dynamiky 1) Úlohy stavební dynamiky 2) Základní pojmy z fyziky 3) Základní zákony mechaniky 4) Základní dynamická zatížení Katedra

Více

MECHANICKÉ KMITÁNÍ. Mgr. Jan Ptáčník - GJVJ - Fyzika - 3.A

MECHANICKÉ KMITÁNÍ. Mgr. Jan Ptáčník - GJVJ - Fyzika - 3.A MECHANICKÉ KMITÁNÍ Mgr. Jan Ptáčník - GJVJ - Fyzika - 3.A Kinematika kmitavého pohybu Mechanický oscilátor - volně kmitající zařízení Rovnovážná poloha Výchylka Kinematika kmitavého pohybu Veličiny charakterizující

Více

9.7. Vybrané aplikace

9.7. Vybrané aplikace Cíle V rámci témat zaměřených na lineární diferenciální rovnice a soustavy druhého řádu (kapitoly 9.1 až 9.6) jsme dosud neuváděli žádné aplikace. Je jim společně věnována tato závěrečné kapitola, v níž

Více

Obsah. Kmitavý pohyb. 2 Kinematika kmitavého pohybu 2. 4 Dynamika kmitavého pohybu 7. 5 Přeměny energie v mechanickém oscilátoru 9

Obsah. Kmitavý pohyb. 2 Kinematika kmitavého pohybu 2. 4 Dynamika kmitavého pohybu 7. 5 Přeměny energie v mechanickém oscilátoru 9 Obsah 1 Kmitavý pohyb 1 Kinematika kmitavého pohybu 3 Skládání kmitů 6 4 Dynamika kmitavého pohybu 7 5 Přeměny energie v mechanickém oscilátoru 9 6 Nucené kmity. Rezonance 10 1 Kmitavý pohyb Typy pohybů

Více

(test version, not revised) 9. prosince 2009

(test version, not revised) 9. prosince 2009 Mechanické kmitání (test version, not revised) Petr Pošta pposta@karlin.mff.cuni.cz 9. prosince 2009 Obsah Kmitavý pohyb Kinematika kmitavého pohybu Skládání kmitů Dynamika kmitavého pohybu Přeměny energie

Více

3.1. Newtonovy zákony jsou základní zákony klasické (Newtonovy) mechaniky

3.1. Newtonovy zákony jsou základní zákony klasické (Newtonovy) mechaniky 3. ZÁKLADY DYNAMIKY Dynamika zkoumá příčinné souvislosti pohybu a je tedy zdůvodněním zákonů kinematiky. K pojmům používaným v kinematice zavádí pojem hmoty a síly. Statický výpočet Dynamický výpočet -

Více

Testovací příklady MEC2

Testovací příklady MEC2 Testovací příklady MEC2 1. Určete, jak velká práce se vykoná při stlačení pružiny nárazníku železničního vagónu o w = 5 mm, když na její stlačení o w =15 mm 1 je zapotřebí síla F = 3 kn. 2. Jaké musí být

Více

Necht na hmotný bod působí pouze pružinová síla F 1 = ky, k > 0. Podle druhého Newtonova zákona je pohyb bodu popsán diferenciální rovnicí

Necht na hmotný bod působí pouze pružinová síla F 1 = ky, k > 0. Podle druhého Newtonova zákona je pohyb bodu popsán diferenciální rovnicí Počáteční problémy pro ODR2 1 Lineární oscilátor. Počáteční problémy pro ODR2 Uvažujme hmotný bod o hmotnosti m, na který působí síly F 1, F 2, F 3. Síla F 1 je přitom úměrná výchylce y z rovnovážné polohy

Více

Úvod do analytické mechaniky

Úvod do analytické mechaniky Úvod do analytické mechaniky Vektorová mechanika, která je někdy nazývána jako Newtonova, vychází bezprostředně z principů, které jsou vyjádřeny vztahy mezi vektorovými veličinami. V tomto případě např.

Více

KMS cvičení 6. Ondřej Marek

KMS cvičení 6. Ondřej Marek KMS cvičení 6 Ondřej Marek NETLUMENÝ ODDAJNÝ SYSTÉM S DOF analytické řešení k k Systém se stupni volnosti popisují pohybové rovnice: x m m x m x + k + k x k x = m x k x + k x = k x m x k x x m k x x m

Více

Laboratorní úloha č. 4 - Kmity II

Laboratorní úloha č. 4 - Kmity II Laboratorní úloha č. 4 - Kmity II Úkoly měření: 1. Seznámení s měřením na přenosném dataloggeru LabQuest 2 základní specifikace přístroje, způsob zapojení přístroje, záznam dat a práce se senzory, vyhodnocování

Více

Experimentální dynamika (motivace, poslání, cíle)

Experimentální dynamika (motivace, poslání, cíle) Experimentální dynamika (motivace, poslání, cíle) www.kme.zcu.cz/kmet/exm 1 Obsah prezentace 1. Motivace, poslání, cíle 2. Dynamické modely v mechanice 3. Vibrace přehled, proč a jak měřit 4. Frekvenční

Více

Příklady kmitavých pohybů. Mechanické kmitání (oscilace)

Příklady kmitavých pohybů. Mechanické kmitání (oscilace) Mechanické kmitání (oscilace) pohyb, při kterém se těleso střídavě vychyluje v různých směrech od rovnovážné polohy př. kyvadlo Příklady kmitavých pohybů kyvadlo v pendlovkách struna hudebního nástroje

Více

Mechanické kmitání (oscilace)

Mechanické kmitání (oscilace) Mechanické kmitání (oscilace) pohyb, při kterém se těleso střídavě vychyluje v různých směrech od rovnovážné polohy př. kyvadlo Příklady kmitavých pohybů kyvadlo v pendlovkách struna hudebního nástroje

Více

MECHANICKÉ KMITÁNÍ POJMY K ZOPAKOVÁNÍ. Testové úlohy varianta A

MECHANICKÉ KMITÁNÍ POJMY K ZOPAKOVÁNÍ. Testové úlohy varianta A Škola: Autor: DUM: Vzdělávací obor: Tematický okruh: Téma: Masarykovo gymnázium Vsetín Mgr. Jitka Novosadová MGV_F_SS_3S3_D19_Z_OPAK_KV_Mechanicke_kmitani_T Člověk a příroda Fyzika Mechanické kmitání Opakování

Více

1 Rozdělení mechaniky a její náplň

1 Rozdělení mechaniky a její náplň 1 Rozdělení mechaniky a její náplň Mechanika je nauka o rovnováze a pohybu hmotných útvarů pohybujících se rychlostí podstatně menší, než je rychlost světla (v c). Vlastnosti skutečných hmotných útvarů

Více

Mechanické kmitání a vlnění

Mechanické kmitání a vlnění Mechanické kmitání a vlnění Pohyb tělesa, který se v určitém časovém intervalu pravidelně opakuje periodický pohyb S kmitavým pohybem se setkáváme např.: Zařízení, které volně kmitá, nazýváme mechanický

Více

Laboratorní úloha č. 3 - Kmity I

Laboratorní úloha č. 3 - Kmity I Laboratorní úloha č. 3 - Kmity I Úkoly měření: 1. Seznámení se s měřením na osciloskopu nastavení a měření základních veličin ve fyzice (frekvence, perioda, amplituda, harmonické, neharmonické kmity).

Více

Harmonický pohyb tělesa na pružině

Harmonický pohyb tělesa na pružině EVROPSKÝ SOCIÁLNÍ FOND Harmonický pohyb tělesa na pružině PRAHA & EU INVESTUJEME DO VAŠÍ BUDOUCNOSTI České vysoké učení technické v Praze, Fakulta stavební, Katedra matematiky Posílení vazby teoretických

Více

B. MECHANICKÉ KMITÁNÍ A VLNĚNÍ

B. MECHANICKÉ KMITÁNÍ A VLNĚNÍ B. MECHANICKÉ KMITÁNÍ A VLNĚNÍ I. MECHANICKÉ KMITÁNÍ 8.1 Kmitavý pohyb a) mechanické kmitání (kmitavý pohyb) pohyb, při kterém kmitající těleso zůstává stále v okolí určitého bodu tzv. rovnovážné polohy

Více

ω=2π/t, ω=2πf (rad/s) y=y m sin ωt okamžitá výchylka vliv má počáteční fáze ϕ 0

ω=2π/t, ω=2πf (rad/s) y=y m sin ωt okamžitá výchylka vliv má počáteční fáze ϕ 0 Kmity základní popis kmitání je periodický pohyb, při kterém těleso pravidelně prochází rovnovážnou polohou mechanický oscilátor zařízení vykonávající kmity Základní veličiny Perioda T [s], frekvence f=1/t

Více

KMITÁNÍ PRUŽINY. Pomůcky: Postup: Jaroslav Reichl, LabQuest, sonda siloměr, těleso kmitající na pružině

KMITÁNÍ PRUŽINY. Pomůcky: Postup: Jaroslav Reichl, LabQuest, sonda siloměr, těleso kmitající na pružině KMITÁNÍ PRUŽINY Pomůcky: LabQuest, sonda siloměr, těleso kmitající na pružině Postup: Těleso zavěsíme na pružinu a tu zavěsíme na pevně upevněný siloměr (viz obr. ). Sondu připojíme k LabQuestu a nastavíme

Více

1.7.4. Skládání kmitů

1.7.4. Skládání kmitů .7.4. Skládání kmitů. Umět vysvětlit pojem superpozice.. Umět rozdělit různé typy skládání kmitů podle směru a frekvence. 3. Umět určit amplitudu a fázi výsledného kmitu. 4. Vysvětlit pojem fázor. 5. Znát

Více

Funkce komplexní proměnné a integrální transformace

Funkce komplexní proměnné a integrální transformace Funkce komplexní proměnné a integrální transformace Fourierovy řady I. Marek Lampart Text byl vytvořen v rámci realizace projektu Matematika pro inženýry 21. století (reg. č. CZ.1.07/2.2.00/07.0332), na

Více

Stavební fakulta Katedra mechaniky. Jaroslav Kruis, Petr Štemberk

Stavební fakulta Katedra mechaniky. Jaroslav Kruis, Petr Štemberk České vysoké učení technické v Praze Stavební fakulta Katedra mechaniky Fuzzy množiny, fuzzy čísla a jejich aplikace v inženýrství Jaroslav Kruis, Petr Štemberk Obsah Nejistoty Teorie pravděpodobnosti

Více

5. Stanovení tíhového zrychlení reverzním kyvadlem a studium gravitačního pole

5. Stanovení tíhového zrychlení reverzním kyvadlem a studium gravitačního pole 5. Stanovení tíhového zrychlení reverzním kyvadlem a studium gravitačního pole 5.1. Zadání úlohy 1. Určete velikost tíhového zrychlení pro Prahu reverzním kyvadlem.. Stanovte chybu měření tíhového zrychlení.

Více

1. Řešená konstrukce Statické řešení Výpočet průhybové čáry Dynamika Vlastní netlumené kmitání...

1. Řešená konstrukce Statické řešení Výpočet průhybové čáry Dynamika Vlastní netlumené kmitání... . Řešená konstrukce.... Statické řešení.... Výpočet průhybové čáry... 5. Dynamika.... Vlastní netlumené kmitání..... Jacobiho metoda rovinné rotace... 4.. Popis algoritmu... 4. Vynucené kmitání... 5 4.

Více

1.8. Mechanické vlnění

1.8. Mechanické vlnění 1.8. Mechanické vlnění 1. Umět vysvětlit princip vlnivého pohybu.. Umět srovnat a zároveň vysvětlit rozdíl mezi periodickým kmitavým pohybem jednoho bodu s periodickým vlnivým pohybem bodové řady. 3. Znát

Více

Přednáška 1 Obecná deformační metoda, podstata DM

Přednáška 1 Obecná deformační metoda, podstata DM Statika stavebních konstrukcí II., 3.ročník bakalářského studia Přednáška 1 Obecná deformační metoda, podstata DM Základní informace o výuce předmětu SSK II Metody řešení staticky neurčitých konstrukcí

Více

Přechodné děje 2. řádu v časové oblasti

Přechodné děje 2. řádu v časové oblasti Přechodné děje 2. řádu v časové oblasti EO2 Přednáška 8 Pavel Máša - Přechodné děje 2. řádu ÚVODEM Na předchozích přednáškách jsme se seznámili s obecným postupem řešení přechodných dějů, jmenovitě pak

Více

Kontraktantní/dilatantní

Kontraktantní/dilatantní Kontraktantní/dilatantní plasticita - úhel dilatance směr přírůstku plastické deformace Na základě experimentálního měření dospěl St. Venant k závěru, že směry hlavních napětí jsou totožné se směry přírůstku

Více

25.z-6.tr ZS 2015/2016

25.z-6.tr ZS 2015/2016 Ústav technologie, mechanizace a řízení staveb Teorie měření a regulace Typové členy 2 25.z-6.tr ZS 2015/2016 2015 - Ing. Václav Rada, CSc. TEORIE ŘÍZENÍ třetí část tématu předmětu pokračuje. A oblastí

Více

Dynamika soustav hmotných bodů

Dynamika soustav hmotných bodů Dynamika soustav hmotných bodů Mechanický model, jehož pohyb je charakterizován pohybem dvou nebo více bodů, nazýváme soustavu hmotných bodů. Pro každý hmotný bod můžeme napsat pohybovou rovnici. Tedy

Více

8.6 Dynamika kmitavého pohybu, pružinový oscilátor

8.6 Dynamika kmitavého pohybu, pružinový oscilátor 8.6 Dynamika kmitavého pohybu, pružinový oscilátor a) dynamika zkoumá příčiny pohybu b) velikost síly vyvolávající harmonický kmitavý pohyb F = ma = mω 2 y pohybová rovnice (II. N. z. a = ω 2 y m sin ωt

Více

Průhyb ocelového nosníku. Nezatížený a rovnoměrně zatížený nosník

Průhyb ocelového nosníku. Nezatížený a rovnoměrně zatížený nosník EVROPSKÝ SOCIÁLNÍ FOND Průhyb ocelového nosníku. Nezatížený a rovnoměrně zatížený nosník PRAHA & EU INVESTUJEME DO VAŠÍ BUDOUCNOSTI České vysoké učení technické v Praze, Fakulta stavební, Katedra matematiky

Více

BIOMECHANIKA DYNAMIKA NEWTONOVY POHYBOVÉ ZÁKONY, VNITŘNÍ A VNĚJŠÍ SÍLY ČASOVÝ A DRÁHOVÝ ÚČINEK SÍLY

BIOMECHANIKA DYNAMIKA NEWTONOVY POHYBOVÉ ZÁKONY, VNITŘNÍ A VNĚJŠÍ SÍLY ČASOVÝ A DRÁHOVÝ ÚČINEK SÍLY BIOMECHANIKA DYNAMIKA NEWTONOVY POHYBOVÉ ZÁKONY, VNITŘNÍ A VNĚJŠÍ SÍLY ČASOVÝ A DRÁHOVÝ ÚČINEK SÍLY ROTAČNÍ POHYB TĚLESA, MOMENT SÍLY, MOMENT SETRVAČNOSTI DYNAMIKA Na rozdíl od kinematiky, která se zabývala

Více

Odpružená sedačka. Petr Školník, Michal Menkina. TECHNICKÁ UNIVERZITA V LIBERCI Fakulta mechatroniky, informatiky a mezioborových studií

Odpružená sedačka. Petr Školník, Michal Menkina. TECHNICKÁ UNIVERZITA V LIBERCI Fakulta mechatroniky, informatiky a mezioborových studií Petr Školník, Michal Menkina TECHNICKÁ UNIVERZITA V LIBERCI Fakulta mechatroniky, informatiky a mezioborových studií Tento materiál vznikl v rámci projektu ESF CZ.1.07/2.2.00/07.0247, který je spolufinancován

Více

b) Křehká pevnost 2. Podmínka max τ v Heigově diagramu a) Křehké pevnosti

b) Křehká pevnost 2. Podmínka max τ v Heigově diagramu a) Křehké pevnosti 1. Podmínka max τ a MOS v Mohrově rovině a) Plasticity ϭ K = ϭ 1 + ϭ 3 b) Křehké pevnosti (ϭ 1 κ R * ϭ 3 ) = ϭ Rt Ϭ red = max (ϭ 1, ϭ 1 - κ R * ϭ 3 ) MOS : max (ϭ 1, ϭ 1 - κ R * ϭ 3 ) = ϭ Rt a) Plasticita

Více

1. Tlumení stavebních konstrukcí 2. Volné tlumené kmitání 3. Vynucené netlumené kmitání 4. Soustavy s konečným počtem stupňů volnosti 5.

1. Tlumení stavebních konstrukcí 2. Volné tlumené kmitání 3. Vynucené netlumené kmitání 4. Soustavy s konečným počtem stupňů volnosti 5. Jiří Máca - katedra mechaniky - B35 - tel. 435 45 maca@fsv.cvt.cz 1. Tlmení stavebních konstrkcí. Volné tlmené kmitání 3. Vyncené netlmené kmitání 4. Sostavy s konečným počtem stpňů volnosti 5. Příklady

Více

BIOMECHANIKA KINEMATIKA

BIOMECHANIKA KINEMATIKA BIOMECHANIKA KINEMATIKA MECHANIKA Mechanika je nejstarším oborem fyziky (z řeckého méchané stroj). Byla původně vědou, která se zabývala konstrukcí strojů a jejich činností. Mechanika studuje zákonitosti

Více

Nelineární problémy a MKP

Nelineární problémy a MKP Nelineární problémy a MKP Základní druhy nelinearit v mechanice tuhých těles: 1. materiálová (plasticita, viskoelasticita, viskoplasticita,...) 2. geometrická (velké posuvy a natočení, stabilita konstrukcí)

Více

OTÁZKY K PROCVIČOVÁNÍ PRUŽNOST A PLASTICITA II - DD6

OTÁZKY K PROCVIČOVÁNÍ PRUŽNOST A PLASTICITA II - DD6 OTÁZKY K PROCVIČOVÁNÍ PRUŽNOST A PLASTICITA II - DD6 POSUZOVÁNÍ KONSTRUKCÍ PODLE EUROKÓDŮ 1. Jaké mezní stavy rozlišujeme při posuzování konstrukcí podle EN? 2. Jaké problémy řeší mezní stav únosnosti

Více

Ing. Václav Losík. Dynamický výpočet otočného sloupového jeřábu OS 5/5 MD TECHNICKÁ ZPRÁVA

Ing. Václav Losík. Dynamický výpočet otočného sloupového jeřábu OS 5/5 MD TECHNICKÁ ZPRÁVA Ing. Václav Losík Dynamický výpočet otočného sloupového jeřábu OS 5/5 MD TECHNICKÁ ZPRÁVA Obr. 0 Ocelový otočný sloupový jeřáb OS 5/5 MD I. Popis objektu a úlohy Jedná se o ocelový otočný sloupový jeřáb

Více

Téma 12, modely podloží

Téma 12, modely podloží Téma 1, modely podloží Statika stavebních konstrukcí II., 3.ročník bakalářského studia Úvod Winklerův model podloží Pasternakův model podloží Pružný poloprostor Nosník na pružném Winklerově podloží, řešení

Více

Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/ Vlnění

Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/ Vlnění Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/03.0009 Vlnění Vhodíme-li na klidnou vodní hladinu kámen, hladina se jeho dopadem rozkmitá a z místa rozruchu se začnou

Více

1 Modelování systémů 2. řádu

1 Modelování systémů 2. řádu OBSAH Obsah 1 Modelování systémů 2. řádu 1 2 Řešení diferenciální rovnice 3 3 Ukázka řešení č. 1 9 4 Ukázka řešení č. 2 11 5 Ukázka řešení č. 3 12 6 Ukázka řešení č. 4 14 7 Ukázka řešení č. 5 16 8 Ukázka

Více

Harmonické oscilátory

Harmonické oscilátory Harmonické oscilátory Jakub Kákona, kaklik@mlab.cz Abstrakt Tato úloha se zabývá měřením rezonančních vlastností mechanických tlumených i netlumených oscilátorů. 1 Úvod 1. Změřte tuhost pružiny statickou

Více

Pružnost a plasticita II CD03

Pružnost a plasticita II CD03 Pružnost a plasticita II CD3 uděk Brdečko VUT v Brně, Fakulta stavební, Ústav stavební mechanik tel: 5447368 email: brdecko.l @ fce.vutbr.cz http://www.fce.vutbr.cz/stm/brdecko.l/html/distcz.htm Obsah

Více

Hmotný bod - model (modelové těleso), který je na dané rozlišovací úrovni přiřazen reálnému objektu (součástce, části stroje);

Hmotný bod - model (modelové těleso), který je na dané rozlišovací úrovni přiřazen reálnému objektu (součástce, části stroje); Newtonovy pohybové zákony: Hmotný bod - model (modelové těleso), který je na dané rozlišovací úrovni přiřazen reálnému objektu (součástce, části stroje); předpokládáme soustředění hmoty tělesa a všech

Více

Dynamika. Dynamis = řecké slovo síla

Dynamika. Dynamis = řecké slovo síla Dynamika Dynamis = řecké slovo síla Dynamika Dynamika zkoumá příčiny pohybu těles Nejdůležitější pojmem dynamiky je síla Základem dynamiky jsou tři Newtonovy pohybové zákony Síla se projevuje vždy při

Více

KMS cvičení 5. Ondřej Marek

KMS cvičení 5. Ondřej Marek KMS cvičení 5 Ondřej Marek Ondřej Marek KMS 5 KINEMAICKÉ BUZENÍ ABSOLUNÍ SOUŘADNICE Pohybová rovnice: mx + b x x + k x x = mx + bx + kx = bx + kx Partikulární řešení: x = X e iωt x = iωx e iωt k m b x(t)

Více

Nejprve si připomeňme z geometrie pojem orientovaného úhlu a jeho velikosti.

Nejprve si připomeňme z geometrie pojem orientovaného úhlu a jeho velikosti. U. 4. Goniometrie Nejprve si připomeňme z geometrie pojem orientovaného úhlu a jeho velikosti. 4.. Orientovaný úhel a jeho velikost. Orientovaným úhlem v rovině rozumíme uspořádanou dvojici polopřímek

Více

FAKULTA STAVEBNÍ. Telefon: WWW:

FAKULTA STAVEBNÍ. Telefon: WWW: VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA FAKULTA STAVEBNÍ ZÁKLADY METODY KONEČNÝCH PRVKŮ Jiří Brožovský Kancelář: LP H 406/3 Telefon: 597 321 321 E-mail: jiri.brozovsky@vsb.cz WWW: http://fast10.vsb.cz/brozovsky/

Více

DUM označení: VY_32_INOVACE_... Jméno autora výukového materiálu: Ing. Jitka Machková Škola: Základní škola a mateřská škola Josefa Kubálka Všenory

DUM označení: VY_32_INOVACE_... Jméno autora výukového materiálu: Ing. Jitka Machková Škola: Základní škola a mateřská škola Josefa Kubálka Všenory DUM označení: VY_32_INOVACE_... Jméno autora výukového materiálu: Ing. Jitka Machková Škola: Základní škola a mateřská škola Josefa Kubálka Všenory Karla Majera 370, 252 31 Všenory. Datum (období) vytvoření:

Více

FYZIKA II. Petr Praus 9. Přednáška Elektromagnetická indukce (pokračování) Elektromagnetické kmity a střídavé proudy

FYZIKA II. Petr Praus 9. Přednáška Elektromagnetická indukce (pokračování) Elektromagnetické kmity a střídavé proudy FYZIKA II Petr Praus 9. Přednáška Elektromagnetická indukce (pokračování) Elektromagnetické kmity a střídavé proudy Osnova přednášky Energie magnetického pole v cívce Vzájemná indukčnost Kvazistacionární

Více

PRAKTIKUM I. Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK. Pracoval: Pavel Ševeček stud. skup.: F/F1X/11 dne:

PRAKTIKUM I. Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK. Pracoval: Pavel Ševeček stud. skup.: F/F1X/11 dne: Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK PRAKTIKUM I. Úloha č. VII Název: Studium kmitů vázaných oscilátorů Pracoval: Pavel Ševeček stud. skup.: F/F1X/11 dne: 27. 2. 2012 Odevzdal

Více

Nauka o Kmitání Přednáška č. 4

Nauka o Kmitání Přednáška č. 4 Nauka o Kmitání Přednáška č. 4 Odezva lineárního systému na obecnou periodickou budící funkci Ing. Antonín Skarolek, Ph.D. Katedra mechaniky, pružnosti a pevnosti Technická Univerzita v Liberci 213 Ustálená

Více

Tuhost mechanických částí. Předepnuté a nepředepnuté spojení. Celková tuhosti kinematické vazby motor-šroub-suport.

Tuhost mechanických částí. Předepnuté a nepředepnuté spojení. Celková tuhosti kinematické vazby motor-šroub-suport. Tuhost mechanických částí. Předepnuté a nepředepnuté spojení. Celková tuhosti kinematické vazby motor-šroub-suport. R. Mendřický, M. Lachman Elektrické pohony a servomechanismy 31.10.2014 Obsah prezentace

Více

Fyzikální praktikum 1

Fyzikální praktikum 1 Fyzikální praktikum 1 FJFI ČVUT v Praze Úloha: #10 Lineární harmonický oscilátor a Pohlovo kyvadlo Jméno: Ondřej Finke Datum měření: 10.11.2014 Kruh: FE Skupina: 4 Klasifikace: 1. Pracovní úkoly (a) Změřte

Více

TENSOR NAPĚTÍ A DEFORMACE. Obrázek 1: Volba souřadnicového systému

TENSOR NAPĚTÍ A DEFORMACE. Obrázek 1: Volba souřadnicového systému TENSOR NAPĚTÍ A DEFORMACE Obrázek 1: Volba souřadnicového systému Pole posunutí, deformace, napětí v materiálovém bodě {u} = { u v w } T (1) Obecně 9 složek pole napětí lze uspořádat do matice [3x3] -

Více

Rovnice rovnováhy: ++ =0 x : =0 y : =0 =0,83

Rovnice rovnováhy: ++ =0 x : =0 y : =0 =0,83 Vypočítejte moment síly P = 4500 N k osám x, y, z, je-li a = 0,25 m, b = 0, 03 m, R = 0,06 m, β = 60. Nositelka síly P svírá s tečnou ke kružnici o poloměru R úhel α = 20.. α β P y Uvolnění: # y β! x Rovnice

Více

Fyzikální praktikum FJFI ČVUT v Praze. Úloha č. 10 : Harmonické oscilace, Pohlovo torzní kyvadlo

Fyzikální praktikum FJFI ČVUT v Praze. Úloha č. 10 : Harmonické oscilace, Pohlovo torzní kyvadlo Fyzikální praktikum FJFI ČVUT v Praze Úloha č. 10 : Harmonické oscilace, Pohlovo torzní kyvadlo Jméno: Ondřej Ticháček Pracovní skupina: 6 Kruh: ZS 6 Datum měření: 9.11.2012 Klasifikace: Část I Lineární

Více

Rezonanční jevy na LC oscilátoru a závaží na pružině

Rezonanční jevy na LC oscilátoru a závaží na pružině Rezonanční jevy na LC oscilátoru a závaží na pružině M. Stejskal, K. Záhorová*, J. Řehák** Gymnázium Emila Holuba, Gymnázium J.K.Tyla*, SPŠ Hronov** Abstrakt Zkoumali jsme rezonanční frekvenci závaží na

Více

MODIFIKOVANÝ KLIKOVÝ MECHANISMUS

MODIFIKOVANÝ KLIKOVÝ MECHANISMUS MODIFIKOVANÝ KLIKOVÝ MECHANISMUS Michal HAJŽMAN Tento materiál je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky. Vyšetřování pohybu vybraných mechanismů v systému ADAMS

Více

ÚVOD DO MODELOVÁNÍ V MECHANICE DYNAMIKA ROTUJÍCÍCH SYSTÉMŮ

ÚVOD DO MODELOVÁNÍ V MECHANICE DYNAMIKA ROTUJÍCÍCH SYSTÉMŮ ÚVOD DO MODELOVÁNÍ V MECHANICE Přednáška č. 3 DYNAMIKA ROTUJÍCÍCH SYSTÉMŮ Prof. Ing. Vladimír Zeman, DrSc. OBSAH 1. Úvod. Základní výpočtový model v rotujícím prostoru 3. Základní výpočtový model rotoru

Více

9.5. Soustavy diferenciálních rovnic

9.5. Soustavy diferenciálních rovnic Cíle Budeme se nyní zabývat úlohami, v nichž je cílem najít dvojici funkcí y(x), z(x), pro které jsou zadány dvě lineární rovnice prvního řádu, obsahující tyto funkce a jejich derivace. Výklad Omezíme-li

Více

Fyzika - Kvinta, 1. ročník

Fyzika - Kvinta, 1. ročník - Fyzika Výchovné a vzdělávací strategie Kompetence k řešení problémů Kompetence komunikativní Kompetence sociální a personální Kompetence občanská Kompetence k podnikavosti Kompetence k učení Učivo fyzikální

Více

Fyzika - Sexta, 2. ročník

Fyzika - Sexta, 2. ročník - Sexta, 2. ročník Fyzika Výchovné a vzdělávací strategie Kompetence komunikativní Kompetence k řešení problémů Kompetence sociální a personální Kompetence občanská Kompetence k podnikavosti Kompetence

Více

Zadání semestrální práce z předmětu Mechanika 2

Zadání semestrální práce z předmětu Mechanika 2 Zadání semestrální práce z předmětu Mechanika 2 Jméno: VITALI DZIAMIDAU Číslo zadání: 7 U zobrazeného mechanismu definujte rozměry, hmotnosti a silové účinky a postupně proveďte: 1. kinematickou analýzu

Více

Rozdíly mezi MKP a MHP, oblasti jejich využití.

Rozdíly mezi MKP a MHP, oblasti jejich využití. Rozdíly mezi, oblasti jejich využití. Obě metody jsou vhodné pro určitou oblast problémů. základě MKP vyžaduje rozdělení těles na vhodný počet prvků, jejichž analýza je poměrně snadná a pro většinu částí

Více

ÚVOD DO MODELOVÁNÍ V MECHANICE DYNAMIKA NEROTUJÍCÍCH SYSTÉMŮ

ÚVOD DO MODELOVÁNÍ V MECHANICE DYNAMIKA NEROTUJÍCÍCH SYSTÉMŮ ÚVOD DO MODELOVÁNÍ V MECHANICE Přednáška č. 2 DYNAMIKA NEROTUJÍCÍCH SYSTÉMŮ Prof. Ing. Vladimír Zeman, DrSc. DYNAMIKA vyšetřuje pohyb hmotných útvarů vyvolaný silami Pohyb = proces změny fyzikálních veličin

Více

6. Viskoelasticita materiálů

6. Viskoelasticita materiálů 6. Viskoelasticita materiálů Viskoelasticita materiálů souvisí se schopností materiálů tlumit mechanické vibrace. Uvažujme harmonické dynamické namáhání (tzn. střídavě v tahu a tlaku) materiálu v oblasti

Více

Dynamické chyby interpolace. Chyby při lineární a kruhové interpolaci.

Dynamické chyby interpolace. Chyby při lineární a kruhové interpolaci. Dynamické chyby interpolace. Chyby při lineární a kruhové interpolaci. 10.12.2014 Obsah prezentace Chyby interpolace Chyby při lineární interpolaci Vlivem nestejných polohových zesílení interpolujících

Více

III. MKP vlastní kmitání

III. MKP vlastní kmitání Jiří Máca - katedra mechaniky - B325 - tel. 2 2435 4500 maca@fsv.cvut.cz III. MKP vlastní kmitání 1. Rovnice vlastního kmitání 2. Rayleighova Ritzova metoda 3. Jacobiho metoda 4. Metoda inverzních iterací

Více

Kmitání systému s 1 stupněm volnosti, Vlastní a vynucené tlumené kmitání

Kmitání systému s 1 stupněm volnosti, Vlastní a vynucené tlumené kmitání Kitání systéu s 1 stupně volnosti, Vlastní a vynuené tluené kitání 1 Vlastní tluené kitání Pohybová rovnie wɺɺ ɺ ( t ) + w( t ) + k w( t ) = Tluíí síla F d (t) F součinitel lineárního viskózního tluení

Více

NOSNÍK NA PRUŽNÉM PODLOŽÍ (WINKLEROVSKÉM)

NOSNÍK NA PRUŽNÉM PODLOŽÍ (WINKLEROVSKÉM) NOSNÍK NA PRUŽNÉ PODLOŽÍ (WINKLEROVSKÉ) Uvažujeme spojitý nosník na pružných podporách. Pružná podpora - odpor je úměrný zatlačení. Pružné podpory velmi blízko sebe - jejich účinek lze nahradit spojitou

Více

Mechanika úvodní přednáška

Mechanika úvodní přednáška Mechanika úvodní přednáška Petr Šidlof TECHNICKÁ UNIVERZITA V LIBERCI Fakulta mechatroniky, informatiky a mezioborových studií Tento materiál vznikl v rámci projektu ESF CZ.1.07/2.2.00/07.0247, který je

Více

Matematickým modelem soustavy je známá rovnice (1)

Matematickým modelem soustavy je známá rovnice (1) 1. Lineární dynamické systémy 1.1 Rezonanční charakteristiky lineárních systémů s jedním stupněm volnosti Závislost amplitudy vynucených kmitů na frekvenci nazýváme amplitudo-frekvenční charakteristikou.

Více

Diferenciální rovnice

Diferenciální rovnice Diferenciální rovnice Průvodce studiem Touto kapitolou se náplň základního kurzu bakalářské matematiky uzavírá. Je tomu tak mimo jiné proto, že jsou zde souhrnně využívány poznatky získané studiem předchozích

Více

Matematika 2 LS 2012/13. Prezentace vznikla na základě učebního textu, jehož autorem je doc. RNDr. Mirko Rokyta, CSc. J. Stebel Matematika 2

Matematika 2 LS 2012/13. Prezentace vznikla na základě učebního textu, jehož autorem je doc. RNDr. Mirko Rokyta, CSc. J. Stebel Matematika 2 Matematika 2 13. přednáška Obyčejné diferenciální rovnice Jan Stebel Fakulta mechatroniky, informatiky a mezioborových studíı Technická univerzita v Liberci jan.stebel@tul.cz http://bacula.nti.tul.cz/~jan.stebel

Více

Fyzika II, FMMI. 1. Elektrostatické pole

Fyzika II, FMMI. 1. Elektrostatické pole Fyzika II, FMMI 1. Elektrostatické pole 1.1 Jaká je velikost celkového náboje (kladného i záporného), který je obsažen v 5 kg železa? Předpokládejme, že by se tento náboj rovnoměrně rozmístil do dvou malých

Více

Fyzikální praktikum FJFI ČVUT v Praze

Fyzikální praktikum FJFI ČVUT v Praze Fyzikální praktikum FJFI ČVUT v Praze Úloha 4: Cavendishův experiment Datum měření: 3. 1. 015 Skupina: 8, čtvrtek 7:30 Vypracoval: Tadeáš Kmenta Klasifikace: 1 Zadání 1. DÚ: V přípravě odvoďte vztah pro

Více

I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í

I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í DYNAMIKA SÍLA 1. Úvod dynamos (dynamis) = síla; dynamika vysvětluje, proč se objekty pohybují, vysvětluje změny pohybu. Nepopisuje pohyb, jak to dělá... síly mohou měnit pohybový stav těles nebo mohou

Více

Mechanické kmitání a vlnění, Pohlovo kyvadlo

Mechanické kmitání a vlnění, Pohlovo kyvadlo Fyzikální praktikum FJFI ČVUT v Praze Mechanické kmitání a vlnění, Pohlovo kyvadlo Číslo úlohy: 10 Jméno: Vojtěch HORNÝ Spolupracoval: Jaroslav Zeman Datum : 26. 10. 2009 Číslo kroužku: pondělí 13:30 Číslo

Více

Mechanické kmitání - určení tíhového zrychlení kyvadlem

Mechanické kmitání - určení tíhového zrychlení kyvadlem I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY Laboratorní práce č. 9 Mechanické kmitání - určení

Více

Tlumené a vynucené kmity

Tlumené a vynucené kmity Tlumené a vynucené kmity Katedra fyziky FEL ČVUT Evropský sociální fond Praha & U: Е Investujeme do vaší budoucnosti Problémová úloha 1: Laplaceova transformace Pomocí Laplaceovy transformace vlastností

Více

3. AMPLITUDOVĚ MODULOVANÉ SIGNÁLY

3. AMPLITUDOVĚ MODULOVANÉ SIGNÁLY 3. AMPLITUDOVĚ MODULOVANÉ SIGNÁLY Modulací nazýváme proces při kterém je jedním signálem přetvář en jiný signál za účelem př enosu informace. Př i amplitudové modulaci dochází k ovlivňování amplitudy nosného

Více

Dimenzování pohonů. Parametry a vztahy používané při návrhu servopohonů.

Dimenzování pohonů. Parametry a vztahy používané při návrhu servopohonů. Dimenzování pohonů. Parametry a vztahy používané při návrhu servopohonů. M. Lachman, R. Mendřický - Elektrické pohony a servomechanismy 13.4.2015 Požadavky na pohon Dostatečný moment v celém rozsahu rychlostí

Více

3.1.5 Složené kmitání

3.1.5 Složené kmitání 315 Složené kmitání Předpoklady: 3104 Pokus: Dvě pružiny zavěsíme vedle sebe, na obě dáme závaží Spodní konce obou pružin spojíme gumovým vláknem (velmi pružným, aby ho bylo možno prodloužit malou silou)

Více

KMS cvičení 9. Ondřej Marek

KMS cvičení 9. Ondřej Marek KMS cvičení 9 Ondřej Marek SYSTÉM S n DOF ŘEŠENÍ V MODÁLNÍCH SOUŘADNICÍCH Pohybové rovnice lineárního systému: U je modální matice, vlastní vektory u 1, u 2,..., u n jsou sloupce v matici U x - vektor

Více

Fyzikální praktikum I

Fyzikální praktikum I Kabinet výuky obecné fyziky, UK MFF Fyzikální praktikum I Úloha č. II Název úlohy: Studium harmonických kmitů mechanického oscilátoru Jméno: Ondřej Skácel Obor: FOF Datum měření: 2.3.2015 Datum odevzdání:...

Více

Měření tíhového zrychlení matematickým a reverzním kyvadlem

Měření tíhového zrychlení matematickým a reverzním kyvadlem Úloha č. 3 Měření tíhového zrychlení matematickým a reverzním kyvadlem Úkoly měření: 1. Určete tíhové zrychlení pomocí reverzního a matematického kyvadla. Pro stanovení tíhového zrychlení, viz bod 1, měřte

Více

Numerické modelování interakce proudění a pružného tělesa v lidském vokálním traktu

Numerické modelování interakce proudění a pružného tělesa v lidském vokálním traktu Numerické modelování interakce proudění a pružného tělesa v lidském vokálním traktu Vedoucí práce: doc. Ing. Petr Šidlof, Ph.D. Bc. Petra Tisovská 22. května 2018 Studentská 2 461 17 Liberec 2 petra.tisovska@tul.cz

Více

Připnutí LC větví FKZ k přípojnici 27 kv trakční napájecí stanice

Připnutí LC větví FKZ k přípojnici 27 kv trakční napájecí stanice Vědeckotechnický sborník ČD č. /006 Doc. Ing. Karel Hlava, Sc. Ing. adovan Doleček, Ph.D. Připnutí větví FKZ k přípojnici 7 kv trakční napájecí stanice Klíčová slova: trakční proudová soustava 5 kv, 50

Více

Fyzikální vzdělávání. 1. ročník. Učební obor: Kuchař číšník Kadeřník. Implementace ICT do výuky č. CZ.1.07/1.1.02/ GG OP VK

Fyzikální vzdělávání. 1. ročník. Učební obor: Kuchař číšník Kadeřník. Implementace ICT do výuky č. CZ.1.07/1.1.02/ GG OP VK Fyzikální vzdělávání 1. ročník Učební obor: Kuchař číšník Kadeřník 1 1 Mechanika 1.1 Pohyby přímočaré, pohyb rovnoměrný po kružnici 1.2 Newtonovy pohybové zákony, síly v přírodě, gravitace 1.3 Mechanická

Více

Nelineární úlohy při výpočtu konstrukcí s využitím MKP

Nelineární úlohy při výpočtu konstrukcí s využitím MKP Nelineární úlohy při výpočtu konstrukcí s využitím MKP Obsah přednášky Lineární a nelineární úlohy Typy nelinearit (geometrická, materiálová, kontakt,..) Příklady nelineárních problémů Teorie kontaktu,

Více

ZATÍŽENÍ KŘÍDLA - I. Rozdělení zatížení. Aerodynamické zatížení vztlakových ploch

ZATÍŽENÍ KŘÍDLA - I. Rozdělení zatížení. Aerodynamické zatížení vztlakových ploch ZATÍŽENÍ KŘÍDLA - I Rozdělení zatížení - Letová a pozemní letová = aerodyn.síly, hmotové síly (tíha + setrvačné síly), tah pohon. jednotky + speciální zatížení (střet s ptákem, pozemní = aerodyn. síly,

Více

11. přednáška 10. prosince Kapitola 3. Úvod do teorie diferenciálních rovnic. Obyčejná diferenciální rovnice řádu n (ODR řádu n) je vztah

11. přednáška 10. prosince Kapitola 3. Úvod do teorie diferenciálních rovnic. Obyčejná diferenciální rovnice řádu n (ODR řádu n) je vztah 11. přednáška 10. prosince 2007 Kapitola 3. Úvod do teorie diferenciálních rovnic. Obyčejná diferenciální rovnice řádu n (ODR řádu n) je vztah F (x, y, y, y,..., y (n) ) = 0 mezi argumentem x funkce jedné

Více