MOŽNOSTI MODELOVÁNÍ SYNCHRONNÍCH GENERÁTORŮ PRO DISPEČERSKÉ TRENAŽÉRY
|
|
- Vlasta Mašková
- před 8 lety
- Počet zobrazení:
Transkript
1 MOŽNOSTI MODELOVÁNÍ SYNCHRONNÍCH GENERÁTORŮ PRO DISPEČERSKÉ TRENAŽÉRY Petr Neuman ČEPS, a.s., Praha Abstrakt Základním předpokladem při vývoji dynamkých modelů pro dispečerské treninkové simulátory (DTS) je výpočetní simulace v reálném čase. Druhým důležitým požadavkem je naopak dostatečná přesnost ustálených a přechodových dějů. Vzhledem k tu je při modelování a simulaci potřebná inženýrská intue a zkušenosti. Pro ilustraci je uvedeoy několik příkladů realizace submodelů synchronních generátorů pro jednotlivé typy dispečerských trenažérů. Úvod Prvním požadavkem při vývoji všech dynamkých modelů pro použití v dispečerských tréninkových simulátorech (DTS) je výpočet simulace všech jevů v reálném čase (což je hlavní rozdíl od tzv. síťových simulátorů), někdy je dokonce požadována i možnost realizace režimu FAST/SLOW vyžadujícího výpočet simulací i časově rychlejší než je reálný čas. Druhým nejdůležitějším požadavkem na dynamké modely je naopak dosažení požadované přesnosti simulačních ustálených a zejména přechodových dějů. Většinou je přesnost definována jako rozdíl mezi reálným průběhem určitého přechodového děje (naměřeným v provozu na technologkém zařízení pro které je trenažér vyvíjen) a simulovaným průběhem téhož děje. Obvykle je pro vybrané hlavní veličiny požadována přesnost, resp. odchylka až 5 % ve všech časových okamžích při současném požadavku na vždy správný trend, u vedlejších veličin je požadovaná přesnost menší, např. odchylka 0 % za stejných podmínek. Všem čtenářům je zřejmé, že tyto požadavky jdou proti sobě, protože požadavek vyšší přesnosti vyžaduje přesnější matematko-fyzikální popis modelovaných dějů s použitím zákonů zachování hmotnosti, energie a mentu, tzv. metod first principle. Lze tedy říci, že disciplina modelování a simulace vyžaduje nejen matematko-fyzikální znalosti a znalosti numerké, ale zejména je potřebná inženýrská intue a zkušenosti. Modely synchronních generátorů SG. Model SG v toolboxu SimPowerSystem V toolboxu SimPowerSystem jsou k dispozi dva typy modelů synchronních strojů. Prvním je modul Synchronous Machine, který modeluje dynamiku třífázového generátoru (počet parametrů, které je nutné zadat je celkem 7). Model je matematko-fyzikálně popsán soustavou tzv. Parkových rovn a odpovídá tedy modelu vytvořenému týmem uvedeným v literatuře []. Tento model je stručně popsán v následující podkapitole.. Model byl autory vyvinut v programu SIMULINK, protože v podstatě matematko-fyzikálně shodný model SG z knihovny SimPowerSystem je už pouze jako samostatný model schopen se rozběhnout pouze s prěnným krokem, což je pro realizaci DTS se simulací v konstantním real-time režimu nepoužitelné. Druhým je modul Simplified Synchronous Machine (počet parametrů, které je nutné zadat je celkem 8), který je matematko-fyzikálně obdobný tzv. modelu Behn-Eschenburg, neboli klaskému modelu (používanému např. v programu MODES autora Ing. Karla Másla viz []) a mohl by být použit v modelech distručních a přenosových soustav pro účely realizace DTS. Avšak i tento model může být spuštěn se s pevným krokem, ale pouze kratším než ms (při kroku 5 ms je již časový průběh fázového úhlu nepřípustně zakmitaný, a při integračním
2 kroku 0 ms je již numerky nestabilní (časový průběh veličin je fyzikálně nesprávný). To tedy znamená, že i tento zjednodušený model SG je pro realizaci DTS praktky nepoužitelný. Z těchto důvodů museli autoři vyvinout a odladit vlastní modely synchronních generátorů SG v programu SIMULINK, jak je uvedeno v následující podkapitole.. Model SG v programu Simulink Prvním příkladem je model synchronního generátoru. Je-li modelován jako obecný elektrký stroj pak je generátor popsán tzv. Parkovým modelem (Parkova transformace) a je vhodný i pro řešení krátkodobé dynamiky. Z hlediska numerkého řešení je odladěný a provozovaný model elektrárenských rozvoden v elektrárně Opatove (International Power Opatove, a.s. - IPO) v prostředcích MATLAB-SIMULINK odladěn při použití metody ode (Runge-Kutta) s pevným integračním krokem 0,0 sec. viz []. Model SG vytvořený v programu SIMULINK je na následujícím Obr.. io m i ua a b alfa beta Ground ual ube m i ub 5 uc c nula abcabo Term inator g sy n o Obr. Parkův model synchronního generátoru v programu SIMULINK ig ur0 uabc bc Q fqmetr uabc bc P fwatt -K- Gain -K- Gain5 HMP In OMU OSP In ORP Subsystem6 Out Out Out Out Obr. Blok buzení s ezením P-Q dgramu Pro modelování SG byla použita teorie obecného elektrkého stroje v pěrných veličinách, konkrétně transformace α, β, 0 pro stator, kde rychlost otáčení vztažných souřadn je nulová, takže umožňuje modelovat nesymetrii napětí, proudů i impedancí ve vnější síti. Pro rotor je užito transformace d, q, 0, kde se vztažné souřadne otáčejí s rotorem. Pro převod z jedné soustavy do druhé a nazpět pak slouží pocné vztahy, respektující okamžitou polohu rotoru vůči statoru. Tímto způsobem vyloučíme nutnost použití prěnných vazebních koefientů v diferenciálních rovních. Na Obr. jsou dále vstupy u f (budící napětí) a g (otáčky turbíny) []. Na Obr. je uveden blok realizující ezení P-Q dgramu, kde jsou indikační výstupy HMP (horní mez činného výkonu), OMU (mez podbuzení), OSP (ezovač statorového proudu) a ORP (ezovač rotorového proudu).
3 . Zjednodušený model SG v programu Simulink Pro určité podmínky plně vyhovuje při menší náročnosti na simulační výpočet i modifikace Parkova modelu 7. řádu a to snížením na 5. řád zanedbáním indukovaného elektrotorkého napětí, případně dalším snížením až na. řád zanedbáním vlivu tlumících vinutí na indukované napětí ve statoru i rotoru viz Obr.. [Odbuzovac_TG] io Sum Sum - ual -/r xd ube - -/r d7 d8 if Gain d9 AD ifg r In Out In AD In psif In KINT Sum Sum Memory Gain Goto5 cosg Goto si ng Goto Gain cos fiq 5 reset fi KINT5 Trigonetr Function si n fid Sum Gain mi Trigonetr Function Sum5 Obr. Model synchronního generátoru. řádu. Ekvivalentní modely SG Jinou možností je zvolit některou náhradu, například ekvivalentní model Behn- Eschenburg, který je vhodný pro řešení střednědobé dynamiky. Stator generátoru je nahrazen elektrotorkou silou za rázovou reaktancí Eav X. Je ale nutné, aby tento model byl S připojený na síť obsahující nejméně jeden objekt počítající frekvenci sítě. Obdobný model generátoru, nazývaný klaský, je používán i u známého síťového simulátoru MODES používaného pro modelování krátko- a dlouho-dobé dynamiky elektrizačních (přenosových, distručních) soustav ve společnosti ČEPS, a.s. viz []. Model Behn-Eschenburg je popsán rovní V = ( R + j L ) I E A S ω + S S A av kde a ω = jsou nezávislé konstanty, S S S R S L X () E av je veličina proporcionální frekvenci otáčení rotoru ω a budícího proudu S I r Φ je fázový úhel Model Behn-Eschenburg nepracuje s jednotlivými fázemi, ale s fázorem sousledné soustavy, který je popsán rovnemi. E = U + R I cos Φ + L I sin Φ () vx ω E = R I sin Φ + L I cos Φ () vy ω Závěrem této kapitoly lze tedy řící, že podle požadavků lze modelovat generátor trojfázově (nutné např. pro posuzování vlivu zkratů na činnost ochran) nebo jednofázově (dostačující např.
4 pro realizaci jednofázových zkratů). Obecně lze model generátoru rozložit do tří složkových soustav a modelovat poté jen souslednou složku, tzn. generátor modelovat jedním fázorem viz Behn-Eschenburg ). Model elektrizační soustavy Druhým příkladem inženýrské volby jsou možnosti modelování elektrizační soustavy (rozvodné, distruční, přenosové). Jednou z možností je realizace kplexního plně dynamkého spojitého modelu. Plně dynamký složitý model je popsaný soustavou nelineárních diferenciálních rovn (NDR) a algebrakých rovn počítaný s časovým krokem cca 0 ms (nutným pro realistkou simulaci elektrechankých přechodových dějů s časovými konstantami T=0 - až 0 0 sec; řízení TG, ochranná relé, kývání rotorů, řízení stability systému). Výhodou tohoto modelu je skutečnost, že ho lze využívat i pro inženýrské analýzy a síťové simulace, jak před událostí, tak i postmortem - pro tyto účely se využije buďto pouze spodní úroveň Model ES a střední Emulace řídícího systému (resp. Stimulace řídícího, měřícího a telemetrkého systému), nebo i horní úroveň HMI viz následující Obr.. D ispečerské m onitory (HM I) Em ulace řídícího systém u M odel ES Obr. Konfigurace DTS Alternativně k uvedenému dynamkému spojitému modelu může být pro určité požadavky realizován tzv. pseudodynamký středně složitý model skládající se ze statkého modelu ustáleného chodu sítě (počítaného např. jednou za nebo 5 sec.) a ze vstupně/výstupně připojených dynamkých submodelů (počítaných v časových intervalech sec.), např. submodely synchronních turbogenerátorů (buzení, P-Q dgramy, kmitání rotorů elektrkých strojů s uvažováním setrvačných hmot ), model zatížení s uvažováním vlivu kmitočtu (frekvenční charakteristik odběrů), model kmitočtu sítě na základě balance výroby []. Dále pak v oblasti nastavení výroby/spotřeby a jejh palých změn lze počítat/nastavovat i logko-časovými sekvenčními prostředky. Turbogenerátory, transformátory, synchronní kpenzátory nutno počítat i v tto modelu dynamky (popis nelineárními diferenciálními rovnemi - NDR), ale zkraty a přechodovou stabilitu; vzniklou v důsledku nepředvídaných změn v topologii sítě; lze počítat zjednodušeně podle scénářů (nadproudové a diferenční ochrany, kruhování a fázování, ztráta synchronismu, OZ). Na druhé straně však nejen chod sítě ale i palé dynamké děje s časovými konstantami T=0 až 0 sec mohou být počítány sekvenčně s časovým krokem např. 0 sec. Konfigurace trenažérových simulátorů Příspěvek popisuje trenažéry typu "Partlly Stimulation", které jak již bylo uvedeno lze členit na tři základní části viz Obr.. První je vlastní model elektrko-technologkých zařízení (generátory, trafa, rozvodny, sítě). Druhou částí je emulovaný řídící systém, který kopíruje reálné algoritmy řízení a blokády. Třetí částí je vlastní pracoviště trénovaného dispečera a učitele-instruktora (SCADA/HMI). 5 Příklad případového referenčního projektu Všechny uvedené specifičnosti modelování lze dokumentovat na dodaném a provozovaném plnorozsahovém dispečerském trenažérovém simulátoru rozvoden elektrárny International Power Opatove, a.s., který zahrnuje šest turbogenerátorů, elektrárenské rozvodny všech
5 napěťových úrovní (0. kv, 6. kv, 0.5 kv, 0 kv), linky na vyvedení výkonu do distruční soustavy 0 kv ČEZ VČE a blízké uzlové rozvodny Opočinek a Neznášov []. V současnosti jsou již získány zkušenosti s vývojem dynamkých modelů soustav, s realizací a uváděním do provozu DTS, které budou využívány při dalších projektech. 6 Závěr Na základě zkušeností s vytvářením dynamkých modelů elektrizačních soustav a s kplexní realizací dispečerských trenažérových simulátorů v nízkonákladové verzi (Low Cost = Cost Effective) je možné konstatovat realizovatelnost takovým způsobem, aby byly vyvinuté DTS investičně akceptovatelné i pro český trh a trhy rozvojových zemí. V příspěvku by bylo též možné doložit i provozní zkušenosti a přínosy plynoucí z rutinního využívání DTS pro výcvik a trénink dispečerů, manipulantů a rozvodných, čemuž však brání ezený rozsah příspěvku. Literatura [] Neuman, P., Pokorný, M., Tušla, P., Varcop, L., Weiglhofer, W.: Vývoj a využití dispečerských simulačních trenažerů. Sborník 7. mezinárodní konference Autatizace energetkých procesů 006, , Zlín [] Chmura A., Černohorský J., Máslo K., Neuman P.: Dispečerský trenažér přenosové soustavy České republiky, Sborník 7. mezinárodní konference Autatizace energetkých procesů 006, , Zlín [] Neuman P. a kol.: Plnorozsahové dispečerské trenažéry, jejh přínos ke zvýšení spolehlivosti a bezpečnosti provozu technkých zařízení elektráren. Energetika, č. 8-9, 006, str Ing. Petr Neuman, CSc. speclista skupiny GDC a DTS ČEPS, a.s. Elektrárenská 77/ 0 5 Praha 0 Tel.: Fax: Mobil: neuman@ceps.cz
Možnosti simulace zařízení SYNCHROTAKT u trenažérů elektráren a elektrárenských soustav
Možnosti simulace zařízení SYNCHROTAKT u trenažérů elektráren a elektrárenských soustav Petr Neuman, NEUREG, Praha neumanp@volny.cz Jaroslav Jirkovský, HUMUSOFT, Praha jirkovsky@humusoft.cz Úvod Problematika
Příloha P1 Určení parametrů synchronního generátoru, měření provozních a poruchových stavů synchronního generátoru
synchronního generátoru - 1 - Příloha P1 Určení parametrů synchronního generátoru, měření provozních a poruchových stavů synchronního generátoru Soustrojí motor-generátor v laboratoři HARD Tab. 1 Štítkové
SIMULAČNÍ TRENAŽÉRY ELEKTRO-ENERGETICKÝCH VÝROBNÍCH BLOKŮ A ROZVODEN
SIMULAČNÍ TRENAŽÉRY ELEKTRO-ENERGETICKÝCH VÝROBNÍCH BLOKŮ A ROZVODEN Petr NEUMAN, Marek POKORNY, Petr TUŠLA, Ludvík VARCOP, Willy WEIGLHOFER NEUREG sdružení pro regulaci a modelování, Studnická 2128, 193
Ochrany bloku. Funkce integrovaného systému ochran
39 Ochrany bloku Ochrany bloku Integrovaný systém chránění synchronního alternátoru pracujícího v bloku s transformátorem. Alternátor je uzemněný přes vysokou impedanci. 40 Ochrany bloku Funkce integrovaného
STABILITA SYNCHRONNÍHO HO STROJE PRACUJÍCÍHO
STABILITA SYNCHRONNÍHO HO STROJE PRACUJÍCÍHO DO TVRDÉ SÍTĚ Ing. Karel Noháč, Ph.D. Západočeská Univerzita v Plzni Fakulta elektrotechnická Katedra elektroenergetiky a ekologie Analyzovaný ý systém: Dále
Příloha 3 Určení parametrů synchronního generátoru [7]
Příloha 3 Určení parametrů synchronního generátoru [7] Příloha 3.1 Měření charakteristiky naprázdno a nakrátko synchronního stroje Měření naprázdno: Teoretický rozbor: při měření naprázdno je zjišťována
Nové směry v řízení ES
Nové směry v řízení ES Nové směry v řízení ES Systémy založené na technologii měření synchronních fázorů: WAM - Wide Area Monitoring WAC Wide Area Control WAP - Wide Area Protection Někdy jsou všechny
i β i α ERP struktury s asynchronními motory
1. Regulace otáček asynchronního motoru - vektorové řízení Oproti skalárnímu řízení zabezpečuje vektorové řízení vysokou přesnost a dynamiku veličin v ustálených i přechodných stavech. Jeho princip vychází
Elektroenergetika 1. Elektrické části elektrárenských bloků
Elektrické části elektrárenských bloků Elektrická část elektrárny Hlavním úkolem elektrické části elektráren je: Vyvedení výkonu z elektrárny - zprostředkování spojení alternátoru s elektrizační soustavou
C L ~ 5. ZDROJE A ŠÍŘENÍ HARMONICKÝCH. 5.1 Vznik neharmonického napětí. Vznik harmonického signálu Oscilátor příklad jednoduchého LC obvodu:
5. ZDROJE A ŠÍŘENÍ HARMONICKÝCH 5.1 Vznik neharmonického napětí Vznik harmonického signálu Oscilátor příklad jednoduchého LC obvodu: C L ~ Přístrojová technika: generátory Příčiny neharmonického napětí
Symetrické stavy v trojfázové soustavě
Pro obvod na obrázku Symetrické stavy v trojfázové soustavě a) sestavte admitanční matici obvodu b) stanovte viděnou impedanci v uzlu 3 a meziuzlovou viděnou impedanci mezi uzly 1 a 2 a c) stanovte zdánlivý
Ochrany v distribučním systému
Ochrany v distribučním systému Ochrany elektroenergetických zařízení Monitorují provozní stav chráněného zařízení. Provádí zásah, pokud chráněný objekt přejde z normálního stavu do stavu poruchového. Poruchové
Elektroenergetika 1. Elektrické části elektrárenských bloků
Elektroenergetika 1 Elektrické části elektrárenských bloků Elektrická část elektrárny Hlavním úkolem elektrické části elektráren je: Vyvedení výkonu z elektrárny zprostředkování spojení alternátoru s elektrizační
Modelování a simulace Lukáš Otte
Modelování a simulace 2013 Lukáš Otte Význam, účel a výhody MaS Simulační modely jsou nezbytné pro: oblast vědy a výzkumu (základní i aplikovaný výzkum) analýzy složitých dyn. systémů a tech. procesů oblast
1. Regulace otáček asynchronního motoru - skalární řízení
1. Regulace otáček asynchronního motoru skalární řízení Skalární řízení postačuje pro dynamicky nenáročné pohony, které často pracují v ustáleném stavu. Je založeno na dvou předpokladech: a) motor je popsán
Míra vjemu flikru: flikr (blikání): pocit nestálého zrakového vnímání vyvolaný světelným podnětem, jehož jas nebo spektrální rozložení kolísá v čase
. KVLIT NPĚTÍ.. Odchylky napájecího napětí n ± % (v intervalu deseti minut 95% průměrných efektivních hodnot během každého týdne) spínání velkých zátěží jako např. pohony s motory, obloukové pece, bojlery,
Synchronní stroje Ing. Vítězslav Stýskala, Ph.D., únor 2006
8. ELEKTRICKÉ TROJE TOČIVÉ Určeno pro posluchače bakalářských studijních programů F ynchronní stroje Ing. Vítězslav týskala h.d. únor 00 říklad 8. Základy napětí a proudy Řešené příklady Třífázový synchronní
Energetická bilance elektrických strojů
Energetická bilance elektrických strojů Jiří Kubín TECHNICKÁ UNIVERZITA V LIBERCI Fakulta mechatroniky, informatiky a mezioborových studií Tento materiál vznikl v rámci projektu ESF CZ.1.07/2.2.00/07.0247,
A45. Příloha A: Simulace. Příloha A: Simulace
Příloha A: Simulace A45 Příloha A: Simulace Pro ověření výsledků z teoretické části návrhu byl využit program Matlab se simulačním prostředím Simulink. Simulink obsahuje mnoho knihoven s bloky, které dokáží
Testování ochrany při nesymetrickém zatížení generátoru terminálu REM 543
Testování ochrany při nesymetrickém zatížení generátoru terminálu REM 543 Cíle úlohy: Cílem úlohy je seznámit se s parametrizací terminálu REM543, zejména s funkcí ochrany při nesymetrickém zatížení generátoru.
STŘÍDAVÝ ELEKTRICKÝ PROUD Trojfázová soustava TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY.
STŘÍDAVÝ ELEKTRICKÝ PROUD Trojfázová soustava TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY. Vznik trojfázového napětí Průběh naznačený na obrázku je jednofázový,
Synchronní stroje. Φ f. n 1. I f. tlumicí (rozběhové) vinutí
Synchronní stroje Synchronní stroje n 1 Φ f n 1 Φ f I f I f I f tlumicí (rozběhové) vinutí Stator: jako u asynchronního stroje ( 3 fáz vinutí, vytvářející kruhové pole ) n 1 = 60.f 1 / p Rotor: I f ss.
Stupeň Datum ZKRATOVÉ POMĚRY Číslo přílohy 10
Projektant Šlapák Kreslil Šlapák ČVUT FEL Technická 1902/2, 166 27 Praha 6 - Dejvice MVE ŠTĚTÍ ELEKTROTECHNICKÁ ČÁST Stupeň Datum 5. 2016 ZKRATOVÉ POMĚRY Číslo přílohy 10 Obsah Seznam symbolů a zkratek...
PRAVIDLA PROVOZOVÁNÍ LOKÁLNÍ DISTRIBUČNÍ SOUSTAVY. ENERGETIKY TŘINEC, a.s. DOTAZNÍKY PRO REGISTROVANÉ ÚDAJE
PRAVIDLA PROVOZOVÁNÍ LOKÁLNÍ DISTRIBUČNÍ SOUSTAVY ENERGETIKY TŘINEC, a.s. PŘÍLOHA 1 DOTAZNÍKY PRO REGISTROVANÉ ÚDAJE Zpracovatel: PROVOZOVATEL LOKÁLNÍ DISTRIBUČNÍ SOUSTAVY ENERGETIKA TŘINEC, a.s. Říjen
Elektrárny A1M15ENY. přednáška č. 6. Jan Špetlík. Katedra elektroenergetiky, Fakulta elektrotechniky ČVUT, Technická 2, 166 27 Praha 6
Elektrárny A1M15ENY přednáška č. 6 Jan Špetlík spetlij@fel.cvut.cz -v předmětu emailu ENY Katedra elektroenergetiky, Fakulta elektrotechniky ČVUT, Technická 2, 166 27 Praha 6 Charakteristika naprázdno,
PRAVIDLA PROVOZOVÁNÍ LOKÁLNÍ DISTRIBUČNÍ SOUSTAVY DOTAZNÍKY PRO REGISTROVANÉ ÚDAJE
PRAVIDLA PROVOZOVÁNÍ LOKÁLNÍ DISTRIBUČNÍ SOUSTAVY PŘÍLOHA 1 DOTAZNÍKY PRO REGISTROVANÉ ÚDAJE Zpracovatel: PROVOZOVATEL LOKÁLNÍ DISTRIBUČNÍ SOUSTAVY VLČEK Josef - elektro s.r.o. Praha 9 - Běchovice Září
PRAVIDLA PROVOZOVÁNÍ. MOTORPAL,a.s.
PRAVIDLA PROVOZOVÁNÍ LOKÁLNÍ DISTRIBUČNÍ SOUSTAVY MOTORPAL,a.s. licence na distribuci elektřiny č. 120705508 Příloha 1 Dotazníky pro registrované údaje 2 Obsah Dotazník 1a Údaje o všech výrobnách - po
Automatizační technika. Regulační obvod. Obsah
30.0.07 Akademický rok 07/08 Připravil: Radim Farana Automatizační technika Regulátory Obsah Analogové konvenční regulátory Regulátor typu PID Regulátor typu PID i Regulátor se dvěma stupni volnosti Omezení
5. Elektrické stroje točivé
5. Elektrické stroje točivé Modelováním točivých strojů se dají simulovat elektromechanické přechodné děje v elektrizačních soustavách. Sem patří problematika stability, ostrovní provoz, nebo jen rozběhy
1990 SYNCHRONNÍ FÁZORY NAP
Založeno 1990 SYNCHONNÍ FÁZOY NAPĚTÍ A POUDU V ENEGETICE, IDENTIFIKACE PAAMETŮ VEDENÍ ZA POVOZU Ing. Antonín Popelka, AIS spol. s r.o. Brno, 24.9.2006 Úvod Současný stav elektrizační sítě stejně jako mnoho
2.6. Vedení pro střídavý proud
2.6. Vedení pro střídavý proud Při výpočtu krátkých vedení počítáme většinou buď jen s činným odporem vedení (nn) nebo u vn s činným a induktivním odporem. 2.6.1. Krátká jednofázová vedení nn U krátkých
Osnova kurzu. Elektrické stroje 2. Úvodní informace; zopakování nejdůležitějších vztahů Základy teorie elektrických obvodů 3
Osnova kurzu 1) 2) 3) 4) 5) 6) 7) 8) 9) 1) 11) 12) 13) Úvodní informace; zopakování nejdůležitějších vztahů Základy teorie elektrických obvodů 1 Základy teorie elektrických obvodů 2 Základy teorie elektrických
Regulace frekvence a napětí
Regulace frekvence a napětí Ivan Petružela 2007 ZS X15PES - 5. Regulace frekvence a regulace napětí 1 Osnova Opakování Blokové schéma otáčkové regulace turbíny Statická charakteristika (otáčky, výkon)
Určeno pro studenty kombinované formy FS, předmětu Elektrotechnika II. Vítězslav Stýskala, Jan Dudek únor Elektrické stroje
Stýskala, 2002 L e k c e z e l e k t r o t e c h n i k y Určeno pro studenty kombinované formy FS, předmětu Elektrotechnika II Vítězslav Stýskala, Jan Dudek únor 2007 Elektrické stroje jsou zařízení, která
Elektrické výkonové členy Synchronní stroje
Elektrické výkonové členy prof. Ing. Jaroslav Nosek, CSc. EVC 7 Projekt ESF CZ.1.07/2.2.00/28.0050 Modernizace didaktických metod a inovace výuky. Tato prezentace představuje učební pomůcku a průvodce
Mechatronické systémy struktury s asynchronními motory
1. Regulace otáček asynchronního motoru skalární řízení Skalární řízení postačuje pro dynamicky nenáročné pohony, které často pracují v ustáleném stavu. Je založeno na dvou předpokladech: a) motor je popsán
PRAVIDLA PROVOZU LOKÁLNÍ DISTRIBUČNÍ SOUSTAVY ELEKTRICKÉ ENERGIE ÚJV Řež, a. s.
AVIDLA OVOZU LOKÁLNÍ DISTRIBUČNÍ SOUSTAVY ELEKTRICKÉ ENERGIE ÚJV Řež, a. s. PŘÍLOHA 1 DOTAZNÍK O REGISTROVANÉ ÚDAJE Zpracovatel: OVOZOVATEL LOKÁLNÍ DISTRIBUČNÍ SOUSTAVY Schválil: ENERGETICKÝ REGULAČNÍ
Můj život s programy Matlab-Simulink v energetice
Můj život s programy Matlab-Simulink v energetice Petr Neuman Článek je určitou rekapitulací autorova patnáctiletého energetického života s programem Simulink. Kapitoly z tohoto života začal autor zveřejňovat
PRAVIDLA PROVOZOVÁNÍ LOKÁLNÍ DISTIBUČNÍ SOUSTAVY ELPROINVEST s.r.o. Příloha1 Dotazníky pro registrované údaje. Schválil: ENERGETICKÝ REGULAČNÍ ÚŘAD
PRAVIDLA PROVOZOVÁNÍ LOKÁLNÍ DISTIBUČNÍ SOUSTAVY ELPROINVEST s.r.o. Příloha1 Dotazníky pro registrované údaje Schválil: ENERGETICKÝ REGULAČNÍ ÚŘAD Obsah Dotazník 1a - Údaje o výrobnách pro všechny výrobny
Calculation of the short-circuit currents and power in three-phase electrification system
ČESKOSLOVENSKÁ NORMA MDT 621.3.014.3.001.24 Září 1992 Elektrotechnické předpisy ČSN 33 3020 VÝPOČET POMĚRU PŘI ZKRATECH V TROJFÁZOVÉ ELEKTRIZAČNÍ SOUSTAVĚ Calculation of the short-circuit currents and
WIDE AREA MONITORING SYSTÉMY V DISTRIBUČNÍ ENERGETICE CONTROL OF POWER SYSTEMS 2010
WIDE AREA MONITORING SYSTÉMY V DISTRIBUČNÍ ENERGETICE WAMS ORIENTED TO DISTRIBUTION NETWORKS Antonín Popelka, Petr Marvan AIS spol. s r.o. Brno 9th International Conference CONTROL OF POWER SYSTEMS 2010
PŘÍLOHA 1 PPDS:DOTAZNÍKY PRO REGISTROVANÉ ÚDAJE
AVIDLA OVOZOVÁNÍ DISTRIBUČNÍCH SOUSTAV PŘÍLOHA 1 DOTAZNÍKY O REGISTROVANÉ ÚDAJE Strana 3 Obsah Dotazník 1a - Údaje o výrobnách pro všechny výrobny 3 Dotazník 1b - Údaje o výrobnách pro výrobny s výkonem
Mechatronické systémy se spínanými reluktančními motory
Mechatronické systémy se spínanými reluktančními motory 1. SRM Mechatronické systémy se spínaným reluktančním motorem (Switched Reluctance Motor = SRM) mají několik předností ve srovnání s jinými typy
Můj život se SIMULINKem v energetice
Můj život se SIMULINKem v energetice Ing. Petr Neuman, CSc. NEUREG, Praha neumanp@volny.cz 21. ročník konference Technical Computing Prague 2013 13. listopadu 2013 Kongresové centrum ČVUT, Praha 6 Úvod
PRAVIDLA PROVOZOVÁNÍ LOKÁLNÍ DISTRIBUČNÍ SOUSTAVY. VEOLIA PRŮMYSLOVÉ SLUŽBY ČR, a.s. PŘÍLOHA 1. Dotazníky pro registrované údaje
AVIDLA OVOZOVÁNÍ LOKÁLNÍ DISTRIBUČNÍ SOUSTAVY VEOLIA ŮMYSLOVÉ SLUŽBY ČR, a.s. PŘÍLOHA 1 Dotazníky pro registrované údaje aktualizace přílohy 1: 12. 03. 2015 schválení Energetickým regulačním úřadem: PŘÍLOHA
Měření a automatizace
Měření a automatizace Číslicové měřící přístroje - princip činnosti - metody převodu napětí na číslo - chyby číslicových měřících přístrojů Základní pojmy v automatizaci - řízení, ovládání, regulace -
rozdělení napětí značka napětí napěťové hladiny v ČR
Trojfázové napětí: Střídavé elektrické napětí se získává za využití principu elektromagnetické indukce v generátorech nazývaných alternátory (většinou synchronní), které obsahují tři cívky uložené na pevné
Průhonice 2009 Energetika. Miroslav Kocur
Průhonice 2009 Energetika Miroslav Kocur Kompaktní RTU jednotky Jednoduchá konstrukce Minimální rozměry Nízká cena Omezený počet integrovaných IO Pro rozšíření nutno použít externí moduly Modulární RTU
13. Budící systémy alternátorů
13. Budící systémy alternátorů Budící systémy alternátorů zahrnují tyto komponenty: Systém zdrojů budícího proudu (budič) Systém regulace budícího proudu (regulátor) Systém odbuzování (odbuzovač) Na budící
1.1. Základní pojmy 1.2. Jednoduché obvody se střídavým proudem
Praktické příklady z Elektrotechniky. Střídavé obvody.. Základní pojmy.. Jednoduché obvody se střídavým proudem Příklad : Stanovte napětí na ideálním kondenzátoru s kapacitou 0 µf, kterým prochází proud
Přechodné jevy v elektrizačních soustavách
vičení z předmětu Přechodné jevy v elektrizačních soustavách Další doporučená literatura: 1. Beran, Mertlová, Hájek: Přenos a rozvod elektrické energie. Hájek: Přechodné jevy v elektrizačních soustavách
Synchronní stroj je točivý elektrický stroj na střídavý proud. Otáčky stroje jsou synchronní vůči točivému magnetickému poli.
Synchronní stroje Rozvoj synchronních strojů byl dán zavedením střídavé soustavy. V počátku se používaly zejména synchronní generátory (alternátory), které slouží pro výrobu trojfázového střídavého proudu.
Digital Control of Electric Drives. Vektorové řízení asynchronních motorů. České vysoké učení technické Fakulta elektrotechnická
Digital Control of Electric Drives Vektorové řízení asynchronních motorů České vysoké učení technické Fakulta elektrotechnická B1M14DEP O. Zoubek 1 MOTIVACE Nevýhody skalárního řízení U/f: Velmi nízká
Elektrárny A1M15ENY. přednáška č. 2. Jan Špetlík. Katedra elektroenergetiky, Fakulta elektrotechniky ČVUT, Technická 2, Praha 6
Elektrárny A1M15ENY přednáška č. 2 Jan Špetlík spetlij@fel.cvut.cz -v předmětu emailu ENY Katedra elektroenergetiky, Fakulta elektrotechniky ČVUT, Technická 2, 166 27 Praha 6 Příklad I: počítejte počáteční
Synchronní stroje 1FC4
Synchronní stroje 1FC4 Typové označování generátorů 1F. 4... -..... -. Točivý elektrický stroj 1 Synchronní stroj F Základní provedení C Provedení s vodním chladičem J Osová výška 560 mm 56 630 mm 63 710
ŘÍZENÍ A PROVOZ DISTRIBUČNÍ SOUSTAVY s VELKÝM POČTEM ROZPTÝLENÝCH zdrojů. Petr Vaculík, E.ON Brno, Antonín Popelka, Petr Marvan, AIS Brno
ŘÍZENÍ A PROVOZ DISTRIBUČNÍ SOUSTAVY s VELKÝM POČTEM ROZPTÝLENÝCH zdrojů Petr Vaculík, E.ON Brno, Antonín Popelka, Petr Marvan, AIS Brno Úvod V poslední době se v energetických kruzích hodně mluví o obavách
SYNCHRONNÍ STROJE (Synchronous Machines) B1M15PPE
SYNCHRONNÍ STROJE (Synchronous Machines) B1M15PPE USPOŘÁDÁNÍ SYNCHRONNÍHO STROJE Stator: Trojfázové vinutí po 120 Sinusové rozložení v drážkách Připojení na trojfázovou síť Rotor: Budicí vinutí napájené
Transformátory. Mění napětí, frekvence zůstává
Transformátory Mění napětí, frevence zůstává Princip funce Maxwell-Faradayův záon o induovaném napětí e u i d dt N d dt Jednofázový transformátor Vstupní vinutí Magneticý obvod Φ h0 u u i0 N i 0 N u i0
Modelování polohových servomechanismů v prostředí Matlab / Simulink
Modelování polohových servomechanismů v prostředí Matlab / Simulink Lachman Martin, Mendřický Radomír Elektrické pohony a servomechanismy 27.11.2013 Struktura programu MATLAB-SIMULINK 27.11.2013 2 SIMULINK
PRAVIDLA PROVOZOVÁNÍ LOKÁLNÍ DISTRIBUČNÍ SOUSTAVY VÍTKOVICE. Dotazníky pro registrované údaje
PRAVIDLA PROVOZOVÁNÍ LOKÁLNÍ DISTRIBUČNÍ SOUSTAVY VÍTKOVICE Příloha 1 Dotazníky pro registrované údaje Zpracovatel: VÍTKOVICE, a.s. V Ostravě, květen 2013 Schválil: Energetický regulační úřad : OBSAH...
Nastavení parametrů PID a PSD regulátorů
Fakulta elektrotechniky a informatiky Univerzita Pardubice Nastavení parametrů PID a PSD regulátorů Semestrální práce z předmětu Teorie řídicích systémů Jméno: Jiří Paar Datum: 9. 1. 2010 Zadání Je dána
Betonové konstrukce (S) Přednáška 3
Betonové konstrukce (S) Přednáška 3 Obsah Účinky předpětí na betonové prvky a konstrukce Silové působení kabelu na beton Ekvivalentní zatížení Staticky neurčité účinky předpětí Konkordantní kabel, Lineární
Synchronní generátor. SEM Drásov Siemens Electric Machines s.r.o. Drásov 126 CZ 664 24 Drásov
Synchronní generátor 3~ SEM Drásov Siemens Electric Machines sro Drásov 126 CZ 664 24 Drásov Jedná se o výrobek firmy Siemens Electric Machines sro, podniku s mnohaletou tradicí Synchronní generátor, vytvořený
Základy elektrotechniky
Základy elektrotechniky Přednáška Asynchronní motory 1 Elektrické stroje Elektrické stroje jsou vždy měniče energie jejichž rozdělení a provedení je závislé na: druhu použitého proudu a výstupní formě
STŘÍDAVÝ PROUD POJMY K ZOPAKOVÁNÍ. Testové úlohy varianta A
Škola: Autor: DUM: Vzdělávací obor: Tematický okruh: Téma: Masarykovo gymnázium Vsetín Mgr. Jitka Novosadová MGV_F_SS_3S3_D17_Z_OPAK_E_Stridavy_proud_T Člověk a příroda Fyzika Střídavý proud Opakování
KNIHOVNA MODELŮ TECHNOLOGICKÝCH PROCESŮ
KNIHOVNA MODELŮ TECHNOLOGICKÝCH PROCESŮ Radim Pišan, František Gazdoš Fakulta aplikované informatiky, Univerzita Tomáše Bati ve Zlíně Nad stráněmi 45, 760 05 Zlín Abstrakt V článku je představena knihovna
Digitální učební materiál
Digitální učební materiál Číslo projektu CZ.1.07/1.5.00/34.0802 Název projektu Zkvalitnění výuky prostřednictvím ICT Číslo a název šablony klíčové aktivity III/2 Inovace a zkvalitnění výuky prostřednictvím
DISPEČERSKÉ ŘÍZENÍ ČEPS
INOVACE ODBORNÉHO VZDĚLÁVÁNÍ NA STŘEDNÍCH ŠKOLÁCH ZAMĚŘENÉ NA VYUŽÍVÁNÍ ENERGETICKÝCH ZDROJŮ PRO 21. STOLETÍ A NA JEJICH DOPAD NA ŽIVOTNÍ PROSTŘEDÍ CZ.1.07/1.1.00/08.0010 DISPEČERSKÉ ŘÍZENÍ ČEPS Ing. JANA
Ochrany v PRE. Radek Hanuš. Pražská energetika, a.s.
Radek Hanuš Pražská energetika, a.s. Ochrany elektroenergetických zařízen zení Monitorují provozní stav chráněného ho zařízen zení. Provádí zásah, pokud chráněný ný objekt přejde z normáln lního stavu
BlackStart jako zvláštní případ ostrovního provozu
lackstart jako zvláštní případ ostrovního provozu Ing. Petr Neuman, Sc. 1), Ing. Zdeněk Hruška 1), Ing. Pavel Hrdlička 2), c. Martin Příhoda 2) 1) ČEPS, a.s., Elektrárenská 774/2, Praha 10 2) Elektrárna
( LEVEL 2 něco málo o matematickém popisu, tvorbě simulačního modelu a práci s ním. )
( LEVEL 2 něco málo o matematickém popisu, tvorbě simulačního modelu a práci s ním. ) GRATULUJI! Pokud jste se rozhodli pro čtení této části proto, abyste se dostali trochu více na kloub věci, jste zvídaví
ČESKÁ TECHNICKÁ NORMA
ČESKÁ TECHNICKÁ NORMA ICS 17.220.01, 29.240.20 2004 Zkratové proudy v trojfázových střídavých soustavách - Část 1: Součinitele pro výpočet zkratových proudů podle IEC 60909-0 ČSN 33 3022-1 Květen idt IEC
Katedra obecné elektrotechniky Fakulta elektrotechniky a informatiky, VŠB - TU Ostrava 8. TRANSFORMÁTORY
Katedra obecné elektrotechniky Fakulta elektrotechniky a informatiky, VŠB - T Ostrava 8. TRANSFORMÁTORY 8. Princip činnosti 8. Provozní stavy skutečného transformátoru 8.. Transformátor naprázdno 8.. Transformátor
Tel-30 Nabíjení kapacitoru konstantním proudem [V(C1), I(C1)] Start: Transient Tranzientní analýza ukazuje, jaké napětí vytvoří proud 5mA za 4ms na ka
Tel-10 Suma proudů v uzlu (1. Kirchhofův zákon) Posuvným ovladačem ohmické hodnoty rezistoru se mění proud v uzlu, suma platí pro každou hodnotu rezistoru. Tel-20 Suma napětí podél smyčky (2. Kirchhofův
Program odborných akcí EGÚ Praha Engineering, a.s. PROSINEC.
PROSINEC www.egu-prg.cz Cyklus E 2012 POZOR!!! Tentokrát zase v Heyrovského ústavu AV, Praha 8, viz poslední stránka Seminář č. 10 12. 12. 2012 ROZVOJ DISTRIBUOVANÉ VÝROBY V ES A PRINCIPY INTEGRACE. VIRTUÁLNÍ
CW01 - Teorie měření a regulace
Ústav technologie, mechanizace a řízení staveb CW01 - Teorie měření a regulace ZS 2010/2011 SPEC. 2.p 2010 - Ing. Václav Rada, CSc. Ústav technologie, mechanizace a řízení staveb Teorie měření a regulace
D C A C. Otázka 1. Kolik z následujících matic je singulární? A. 0 B. 1 C. 2 D. 3
atum narození Otázka. Kolik z následujících matic je singulární? 4 A. B... 3 6 4 4 4 3 Otázka. Pro která reálná čísla a jsou vektory u = (,, 3), v = (3, a, ) a w = (,, ) lineárně závislé? A. a = 5 B. a
Praha technic/(4 -+ (/T'ERATU"'P. ))I~~
Jaroslav Baláte Praha 2003 -technic/(4 -+ (/T'ERATU"'P ))I~~ @ ZÁKLADNí OZNAČENí A SYMBOLY 13 O KNIZE 24 1 SYSTÉMOVÝ ÚVOD PRO TEORII AUTOMATICKÉHO iízení 26 11 VYMEZENí POJMU - SYSTÉM 26 12 DEFINICE SYSTÉMU
Regulace frekvence a napětí
Regulace frekvence a napětí Ivan Petružela 2006 LS X15PES - 5. Regulace frekvence a napětí 1 Osnova Opakování Blokové schéma otáčkové regulace turbíny Statická charakteristika (otáčky, výkon) turbíny Zajištění
Určeno pro posluchače bakalářských studijních programů FS
SYNCHRONNÍ STROJE Určeno pro posluchače bakalářských studijních programů FS Obsah Význam a použití 1. Konstrukce synchronních strojů 2. Princip činnosti synchronního generátoru 3. Paralelní chod synchronního
Vítězslav Stýskala, Jan Dudek. Určeno pro studenty komb. formy FBI předmětu / 06 Elektrotechnika
Stýskala, 00 L e k c e z e l e k t r o t e c h n i k y Vítězslav Stýskala, Jan Dudek rčeno pro studenty komb. formy FB předmětu 45081 / 06 Elektrotechnika B. Obvody střídavé (AC) (všechny základní vztahy
Modely synchronních generátorů a transformátorů pro Simulátor ochran a protihavarijních automatik RTDS
Moely synchronních generátorů a transformátorů pro Simulátor ochran a protihavarijních automatik RDS EÓRIA A PRAX Příspěvek popisuje tvorbu ynamických moelů elektrických strojů a transformátorů vhoných
SYNCHRONNÍ STROJE. Konstrukce stroje, princip činnosti
SYNCHRONNÍ STROJE Konstrukce stroje, princip činnosti Synchronní stroj řazen do strojů točivých jehož kmitočet svorkového napětí je přímo úměrný otáčkám a počtu pólových dvojic. Rotor se tedy otáčí synchronně
3. Střídavé třífázové obvody
. třídavé tříázové obvody říklad.. V přívodním vedení trojázového elektrického sporáku na x 400 V, jehož topná tělesa jsou zapojena do trojúhelníku, byl naměřen proud 6 A. Jak velký proud prochází topným
přednáška č. 5 Elektrárny B1M15ENY Generátory: Konstrukce, typy Základní vztahy Regulace, buzení Ing. Jan Špetlík, Ph.D.
Elektrárny B1M15ENY přednáška č. 5 Generátory: Konstrukce, typy Základní vztahy Regulace, buzení Ing. Jan Špetlík, Ph.D. ČVUT FEL Katedra elektroenergetiky E-mail: spetlij@fel.cvut.cz Nárazový proud bude:
Elektroenergetika 1. Přenosová a distribuční soustava
Přenosová a distribuční soustava Přenosová soustava Soubor vedení a zařízení 400 kv, 220 kv a vybraných vedení a zařízení 110 kv sloužící pro přenos elektřiny pro celé území ČR a k propojení s elektrizačními
přednáška č. 2 Elektrárny B1M15ENY Schéma vlastní spotřeby Příklady provedení schémat VS Výpočet velikosti zdrojů pro VS Ing. Jan Špetlík, Ph.D.
Elektrárny B1M15ENY přednáška č. 2 chéma vlastní spotřeby Příklady provedení schémat V Výpočet velikosti zdrojů pro V Ing. Jan Špetlík, Ph.D. ČVUT FEL Katedra elektroenergetiky E-mail: spetlij@fel.cvut.cz
Větrné elektrárny s asynchronními generátory v sítích VN
Větrné elektrárny s asynchronními generátory v sítích VN Ing. Stanislav Mišák, Ph.D, Ing. Lukáš Prokop, Ph.D., Ing. Petr Krejčí, Ph.D., Ing. Tadeusz Sikora, Ph.D. Vysoká škola báňská Technická univerzita
Doc. Ing. Stanislav Kocman, Ph.D , Ostrava
9. TOČIV IVÉ ELEKTRICKÉ STROJE Doc. Ing. Stanislav Kocman, Ph.D. 2. 2. 2009, Ostrava Stýskala, 2002 DC stroje Osnova přednp ednášky Princip činnosti DC generátoru Konstrukční provedení DC strojů Typy DC
Určeno studentům středního vzdělávání s maturitní zkouškou, druhý ročník, synchronní stroje. Pracovní list - příklad vytvořil: Ing.
Určeno studentům středního vzdělávání s maturitní zkouškou, druhý ročník, synchronní stroje Pracovní list - příklad vytvořil: Ing. Lubomír Kořínek Období vytvoření VM: září 2013 Klíčová slova: synchronní
Měření výkonu jednofázového proudu
Měření výkonu jednofázového proudu Návod k laboratornímu cvičení Úkol: a) eznámit se s měřením činného výkonu zátěže elektrodynamickým wattmetrem se dvěma možnými způsoby zapojení napěťové cívky wattmetru.
Nové pohledy na kompenzaci účiníku a eliminaci energetického rušení
Nové pohledy na kompenzaci účiníku a eliminaci energetického rušení Jiří Holoubek, ELCOM, a. s. Proč správně kompenzovat? Cenové rozhodnutí ERÚ č. 7/2009: Všechny regulované ceny distribučních služeb platí
Diplomová práce roku 2013 Cena ČEPS
Diplomová práce roku 2013 Cena ČEPS Společnost ČEPS, a.s. vyhlašuje druhý ročník soutěže Diplomová práce roku Cena ČEPS. Soutěž je zaměřena na podporu vysokého školství, zvýšení atraktivity odvětví energetiky
PRAVIDLA PROVOZOVÁNÍ LOKÁLNÍ DISTRIBUČNÍ SOUSTAVY. Dotazníky pro registrované údaje
PŘÍLOHA 1 PDS SETUZA :DOTAZNÍKY O REGISTROVANÉ ÚDAJE AVIDLA OVOZOVÁNÍ LOKÁLNÍ DISTRIBUČNÍ SOUSTAVY Příloha 1 Dotazníky pro registrované údaje Zpracovatel: OVOZOVATEL LOKÁLNÍ DISTRIBUČNÍ SOUSTAVY ENERGY
Název: Autor: Číslo: Únor 2013. Střední průmyslová škola a Vyšší odborná škola technická Brno, Sokolská 1
Střední průmyslová škola a Vyšší odborná škola technická Brno, Sokolská 1 Šablona: Název: Téma: Autor: Číslo: Inovace a zkvalitnění výuky prostřednictvím ICT Střídavé motory Synchronní motor Ing. Radovan
ZÁPADOČESKÁ UNIVERZITA V PLZNI FAKULTA ELEKTROTECHNICKÁ KATEDRA ELEKTROMECHANIKY A VÝKONOVÉ ELEKTRONIKY BAKALÁŘSKÁ PRÁCE
ZÁPADOČESKÁ UNIVERZITA V PLZNI FAKULTA ELEKTROTECHNICKÁ KATEDRA ELEKTROMECHANIKY A VÝKONOVÉ ELEKTRONIKY BAKALÁŘSKÁ PRÁCE Měření na synchronním stroji za klidu Martin Málek 2015 Abstrakt klidu. Předkládaná
Určeno pro posluchače bakalářských studijních programů FS
rčeno pro posluchače bakalářských studijních programů FS 3. STŘÍDAVÉ JEDNOFÁOVÉ OBVODY Příklad 3.: V obvodě sestávajícím ze sériové kombinace rezistoru, reálné cívky a kondenzátoru vypočítejte požadované
PRAVIDLA PROVOZOVÁNÍ LOKÁLNÍCH DISTRIBUČNÍCH SOUSTAV DOTAZNÍKY PRO REGISTROVANÉ ÚDAJE
AVIDLA OVOZOVÁNÍ LOKÁLNÍCH DISTRIBUČNÍCH SOUSTAV PŘÍLOHA 1 DOTAZNÍKY O REGISTROVANÉ ÚDAJE Zpracovatel: OVOZOVATEL LOKÁLNÍCH DISTRIBUČNÍCH SOUSTAV Coal Services a.s. Schválil: ENERGETICKÝ REGULAČNÍ ÚŘAD
princip činnosti synchronních motorů (generátoru), paralelní provoz synchronních generátorů, kompenzace sítě synchronním generátorem,
1 SYNCHRONNÍ INDUKČNÍ STROJE 1.1 Synchronní generátor V této kapitole se dozvíte: princip činnosti synchronních motorů (generátoru), paralelní provoz synchronních generátorů, kompenzace sítě synchronním
6. ÚČINKY A MEZE HARMONICKÝCH
6. ÚČINKY A MEZE HARMONICKÝCH 6.1. Negativní účinky harmonických Poruchová činnost ochranných přístrojů nadproudové ochrany: chybné vypínání tepelné spouště proudové chrániče: chybné vypínání při nekorektním