c) Matematické myšlení
|
|
- Naděžda Musilová
- před 9 lety
- Počet zobrazení:
Transkript
1 c) Matematické myšlení Koš 1: 1. Které číslo doplníte místo otazníku?? a) 3 b) 4 c) 5 d) 6 Správné řešení d) 2. Které číslo doplníte místo otazníku? 5 7? a) b) 10 c) 11 d) Které číslo doplníte místo otazníku? 60 61? 66 a) 62 b) 63 c) 64 d) Které číslo doplníte místo otazníku? ? a) 148 b) 158 c) 168 d) Které číslo doplníte místo otazníku? ? 102 a) 45 b) 56 c) 67 d) 78 Koš 2: 1. Které číslo doplníte místo otazníku?
2 ? a) 11 b) 12 c) 13 d) Které číslo doplníte místo otazníku? ? a) 10 b) 12 c) 14 d) 16 Správné řešení d) 3. Které číslo doplníte místo otazníku? ? a) 162 b) 0 c) 102 d) 158 Správné řešení a) 4. Které číslo doplníte místo otazníku? ? a) 54 b) 56 c) 556 d) 256 Správné řešení d) 5. Které číslo doplníte místo otazníku? ? a) 34 b) 36 c) 32 d) 28 Koš 3: 1. Které číslo je největší, a které nejmenší , ,, 27 11, 5 27 a) b) 5 27 c) d) Správné řešení a) 2. Které číslo je největší, a které nejmenší 5, , ,, 28 10, 5 28
3 a) b) 5 28 c) d) Správné řešení a) 3. Které číslo je největší, a které nejmenší ,, 24 10, 6 24 a) b) 6 24 c) d) Správné řešení a) 4. Které číslo je největší, a které nejmenší , , ,, 5 a) b) 5 18 c) d) Správné řešení d) 5. Které číslo je největší, a které nejmenší a) b) 5 28 c) d) , ,, 5 28 Koš 4: 1. Porovnejte dvě hodnoty 8% z 10 I % z 10 8
4 a) Hodnoty v obou sloupcích jsou stejné. b) V pravém sloupci je vyšší hodnota. c) V levém sloupci je vyšší hodnota. d) Nelze zjistit, která hodnota je vyšší. 2. Porovnejte dvě hodnoty 5% z I 25% z a) Hodnoty v obou sloupcích jsou stejné. b) V pravém sloupci je vyšší hodnota. c) V levém sloupci je vyšší hodnota. d) Nelze zjistit, která hodnota je vyšší. 3. Porovnejte dvě hodnoty 7% z 10 I 0% z 10 8 a) Hodnoty v obou sloupcích jsou stejné. b) V pravém sloupci je vyšší hodnota. c) V levém sloupci je vyšší hodnota. d) Nelze zjistit, která hodnota je vyšší. 4. Porovnejte dvě hodnoty 18% z 10 1 I 1% z a) Hodnoty v obou sloupcích jsou stejné. b) V pravém sloupci je vyšší hodnota. c) V levém sloupci je vyšší hodnota. d) Nelze zjistit, která hodnota je vyšší. 5. Porovnejte dvě hodnoty 8% z 10 1 I 0% z a) Hodnoty v obou sloupcích jsou stejné. b) V pravém sloupci je vyšší hodnota. c) V levém sloupci je vyšší hodnota. d) Nelze zjistit, která hodnota je vyšší. Koš 5: 1. Který obrázek doplníte?
5 ? a) b) c) d) 2. Který obrázek doplníte?? a) b) c) d) Správné řešení d) 3. Který obrázek doplníte?? a) b) c) d)
6 4. Který obrázek doplníte?? a) b) c) d) Správné řešení d) 5. Který obrázek doplníte místo otazníku?? a) b) c) d) Správné řešení d) Koš 6: 1. Které číslo bude místo otazníku?? a) 34 b) 33 c) 8 d) 28
7 2. Které číslo bude místo otazníku? 11? a) 3 b) 12 c) 1 d) Které číslo bude místo otazníku? 11? a) 83 b) 12 c) 81 d) Které číslo bude místo otazníku? 11? a) 13 b) 12 c) 1 d) 25 Správné řešení a) 5. Které číslo bude místo otazníku?
8 8? a) b) 12 c) 10 d) 66 Koš 7: 1. Autobus má spotřebu 20 litrů nafty na 100 km. Jeho průměrná cestovní rychlost včetně zastávek je 25km/h. Odměna řidiči je 50Kč za hodinu jízdy, cena nafty je 25Kč za jeden litr. Jiné náklady neuvažujeme. Kolik stojí 1 km jízdy autobusem. a) 4 Kč b) 5 Kč c) 6 Kč d) 7 Kč 2. Auto má spotřebu 10 litrů nafty na 100 km. Jeho průměrná rychlost je 120km/h. Odměna řidiči je 60Kč za hodinu jízdy. Cena nafty 25 Kč za jeden litr. Jiné náklady neuvažujeme. Kolik stojí 1 km jízdy autem? a) 2,5 Kč b) 3 Kč c) 3,5 Kč d) 4 Kč 3. Dodávka má spotřebu 20 litrů nafty na 100 km. Její průměrná rychlost je 0km/h. Odměna řidiči je 0Kč za hodinu jízdy. Cena nafty 25 Kč za jeden litr. Jiné náklady neuvažujeme. Kolik stojí 1 km jízdy dodávkou? a) 5 Kč b) 5,5 Kč c) 6 Kč d) 6,5 Kč správná odpověď c) 4. Auto má spotřebu 10 litrů nafty na 100 km. Jeho průměrná rychlost je 120km/h. Odměna řidiči je 60Kč za hodinu jízdy. Cena nafty 30 Kč za jeden litr. Jiné náklady neuvažujeme. Kolik stojí 1 minuta jízdy autem? a) 7 Kč b) 7,50 Kč c) 8 Kč d) 8,50 Kč správná odpověď a) 5. Autobus má spotřebu 20 litrů nafty na 100 km. Jeho průměrná rychlost je 50km/h. Odměna řidiči je 60Kč za hodinu jízdy. Cena nafty 25 Kč za jeden litr. Jiné náklady neuvažujeme. Kolik stojí 1 hodina jízdy autobusem?
9 a) 300 Kč b) 310 Kč c) 320 Kč d) 330 Kč Koš 8: 1. Krychli o hraně 1 metr rozřežeme na malé krychle o hranách 1 milimetr a výsledné krychličky sestavíme za sebou. Tím dostaneme dlouhý prut o průřezu 1mm. Jak dlouhý bude tento prut? a) 100 m b) 10 km c) 100 km d) 1000 km 2. Krychli o hraně 0,5 metru rozřežeme na malé krychle o hranách 1 centimetr a výsledné krychličky sestavíme za sebou. Tím dostaneme dlouhý prut o průřezu 1cm. Jak dlouhý bude tento prut? a) 25 m b) 250 m c) 1250 m d) 1 km správná odpověď c) 3. Kvádr o hranách 1 metr x 2 metry x 3metry rozřežeme na malé krychle o hranách 1 centimetr a výsledné krychličky sestavíme za sebou. Tím dostaneme dlouhý prut o průřezu 1cm. Jak dlouhý bude tento prut? a) 600 m b) 60 km c) 600 km d) km 4. Kvádr o hranách 1 metr x 2 metry x 1metr rozřežeme na malé krychle o hranách 1 decimetr a výsledné krychličky sestavíme za sebou. Tím dostaneme dlouhý prut o průřezu 1dm. Jak dlouhý bude tento prut? a) 2 m b) 20 m c) 200 m d) 2 km správná odpověď c) 5. Krychli o hraně 2m rozřežeme na malé krychle o hranách 1 centimetr a výsledné krychličky sestavíme za sebou. Tím dostaneme dlouhý prut o průřezu 1cm. Jak dlouhý bude tento prut? a) 80 km b) 8 km c) 800 m d) 800 km správná odpověď a) Koš : 1. Hodiny se předcházejí o 15 minut za hodinu. Kolik hodin je ve skutečnosti, jestliže v poledne ukazovaly správně a nyní ukazují 22 hodin?
10 a) 20 hodin b) 21 hodin c) 22 hodin d) 23 hodin správná odpověď a) 2. Hodiny se předcházejí o 20 minut za hodinu. Kolik hodin je ve skutečnosti, jestliže v 6 hodin ráno ukazovaly správně a nyní ukazují 16 hodin? a) 12:30 b) 12:40 c) 13:00 d) 13:30 3. Hodiny se předcházejí o 6 minut za hodinu. Kolik hodin je ve skutečnosti, jestliže v 10 hodin ráno ukazovaly správně a nyní ukazují 1:21? a) 18:24 b) 18:30 c) 18:36 d) 18:42 4. Hodiny se předcházejí o 14 minut za hodinu. Kolik hodin je ve skutečnosti, jestliže v hodin ráno ukazovaly správně a nyní ukazují 23:48? a) 20:00 b) 20:30 c) 21:00 d) 21:20 správná odpověď c) 5. Hodiny se předcházejí o 12 minut za hodinu. Kolik hodin je ve skutečnosti, jestliže v 5 hodin ráno ukazovaly správně a nyní ukazují 17:18? a) 15:00 b) 15:15 c) 15:16 d) 15:25 Koš 10:
11 1. Petr šel do divadla. Vstupenka jej stála polovinu peněz, které měl v peněžence. Za třetinu zbylých peněz si koupil svačinu a zbylo mu 48 Kč. Kolik stála vstupenka do divadla? a) 16 Kč b) 24 Kč c) 48 Kč d) 72 Kč 2. Petr šel do ZOO. Vstupenka jej stála třetinu peněz, které měl v peněžence. Za třetinu zbylých peněz si koupil svačinu a zbylo mu 48 Kč. Kolik měl v peněžence před koupí vstupenky do ZOO? a) 8 Kč b) 108 Kč c) 112 Kč d) 120 Kč 3. Petr šel na bazén. Vstupenka jej stála pětinu peněz, které měl v peněžence. Za polovinu zbylých peněz si koupil svačinu a zbylo mu 24 Kč. Kolik stála vstupenka do bazénu? a) 10 Kč b) 11 Kč c) 12 Kč d) 13 Kč správná odpověď c) 4. Petr šel do divadla. Vstupenka jej stála dvě třetiny peněz, které měl v peněžence. Za čtvrtinu zbylých peněz si koupil svačinu a zbylo mu 24 Kč. Kolik měl v peněžence před koupí vstupenky do divadla? a) 3 Kč b) 4 Kč c) 5 Kč d) 6 Kč 5. Petr šel do multikina. Vstupenka jej stála tři pětiny peněz, které měl v peněžence. Za třetinu zbylých peněz si koupil svačinu a zbylo mu 56 Kč. Kolik stála vstupenka do multikina? a) 116 Kč b) 121 Kč c) 126 Kč d) 12 Kč správná odpověď c) Koš 11: Z následujících 15 otázek vybrat náhodně 5 otázek
12 1. Když Jiří má o čtyři jablka více než Bára, kolik jablek jí musí dát, aby měli oba stejně? a) 0 b) 8 c) 4 d) 2 2. Máme tři koule A, B a C. Každá z nich je modrá nebo žlutá. C je modrá. Alespoň dvě koule jsou žluté. Který z následujících výroků je určitě pravdivý? a) A má jinou barvu než B b) A i B jsou modré c) všechny koule jsou žluté d) A i B jsou žluté správní odpověď d) 3. Jaká je pravděpodobnost, že při hodu dvěma šestibokými hracími kostkami padne součet dělitelný třemi? a) 5/18 b) 4/ c) 1/4 d) 1/3 4. Máme dvě koule - A a B. Každá z nich je červená nebo zelená. A ani B nejsou červené. Který z následujících výroků je určitě pravdivý: a) B má jinou barvu než A b) A i B jsou červené c) A není červená ani zelená d) A i B jsou zelené 5. Adam je pomalejší než Dominik, ale rychlejší než Bára. Cyril je pomalejší než Eva, ale rychlejší než Dominik. Franta je rychlejší než Adam, ale pomalejší než Cyril. Kdo z nich je nejrychlejší? a) Adam b) Franta c) Cyril d) Eva 6. Někteří Globové jsou Labové. Všichni Labové jsou Xulové. Žádný Xul není Rokk. Který z následujících výroků je určitě pravdivý? a) všichni Globové jsou Rokkové b) někteří Globové jsou Rokkové c)žádný Glob není Rokk d) žádný Rokk není Lab 7. Máme čtyři koule A, B, C a D. Každá z nich je červená nebo žlutá. Dvě koule jsou červené, dvě žluté. A má stejnou barvu jako B nebo C. Který z následujících výroků je určitě pravdivý? a) A má stejnou barvu jako C b )C a D mají různou barvu c) B a C mají různou barvu d) A má stejnou barvu jako B
13 správná odpověď c) 8. Co patří místo otazníku? S, SV, S, Z, JZ, S, Z, V, J, SV, V, J,?, J a) J b) JZ c) JV d) SZ. Pokud fotbalista skóruje z penalty s pravděpodobností 80 procent, jaká je pravděpodobnost, že promění minimálně dvě ze tří penalt? a) 8,6 procent b),2 procenta c) 64procent d) 4,4 procenta správná odpověď a) 10. Co patří místo otazníku? ? a) 8 b) 4 c) d) Co patří místo otazníku? N-O-R-E-?-A-K-E-D a) H b) M c) L d) D 12. Aritmetický průměr tří po sobě jdoucích přirozených čísel je 124. Jaké je nejmenší z těchto čísel? a) 121 b) 122 c) 123 d) ani jedno z předchozích a) až c) správná odpověď c) 13. Součin tří po sobě jdoucích přirozených čísel je 210. Jaké je největší z těchto čísel?
14 a) 6 b) 8 c) 10 d) ani jedno z předchozích a) až c) 14. Funkce f je definována takto: f(x) = x 2 2x + 1. Potom f(x+1) je rovno: a) x 2 b) 0 c) 1 d) ani jedno z předchozích a) až c) správná odpověď a) 15. Kolik dní přibližně uběhlo od narození Ježíše Krista: a) b) c) d)
Znění otázky Odpověď a) Odpověď b) Odpověď c) Odpověď d) Správná odpověď C C B B C
Matematické myšlení: Znění otázky Odpověď a) Odpověď b) Odpověď c) Odpověď d) Správná odpověď. Které číslo doplníte místo 6 8 0. Které číslo doplníte místo 5 7 7 5 3. Které číslo doplníte místo 70 7 76
VíceKód uchazeče ID:... Varianta: b. 1. Z původní ceny byl výrobek zlevněn o 10 % a potom ještě o 8 % nové ceny.
Fakulta informačních technologií ČVUT v Praze Přijímací zkouška z matematiky 014 Kód uchazeče ID:.................. Varianta: 35 1. Z původní ceny byl výrobek zlevněn o 10 % a potom ještě o 8 % nové ceny.
VíceKterá z forem nedokonalé konkurence je z hlediska efektivnosti obecně nejpřijatelnější: a) monopol b) duopol c) monopolní konkurence d) oligopol
Osobní číslo : Příjmení:... Jméno:... Datum narození:... 1 Která z forem nedokonalé konkurence je z hlediska efektivnosti obecně nejpřijatelnější: a) monopol b) duopol c) monopolní konkurence d) oligopol
VíceM08-01 Přijímačky nanečisto osmileté studium matematika
M08-01 Přijímačky nanečisto osmileté studium matematika Řešení 1) Bratři Martin a Tomáš dostali stolní hru, ve které se hrálo o papírové peníze - dolary. Martin rozdělil peníze před začátkem hry tak, že
VíceTest žáka. Zdroj testu: Celoplošná zkouška 2. Školní rok 2012/2013 MATEMATIKA. Jméno: Třída: Škola: Termín provedení testu:
Test žáka Zdroj testu: Celoplošná zkouška 2 Školní rok 2012/2013 MATEMATIKA Jméno: Třída: Škola: Termín provedení testu: Datum vytvoření: 14. 10. 2013 Obtížnost 1 Úloha 1 Trojúhelník má jeden úhel tupý,
VícePříprava na závěrečnou písemnou práci
Příprava na závěrečnou písemnou práci Dělitelnost přirozených čísel Osová a středová souměrnost Povrch a objem krychle a kvádru Zlomky 1) Určete, zdali jsou pravdivé následující věty. 2) a) Číslo 544 721
VíceMatematický KLOKAN : ( ) = (A) 1 (B) 9 (C) 214 (D) 223 (E) 2 007
Matematický KLOKN 007 kategorie enjamín Úlohy za 3 body. Které číslo patří do prázdného rámečku? 007 : ( + 0 + 0 + 7) 0 0 7 = () () 9 (C) 4 (D) 3 (E) 007. Který z dílů stavebnice musíš přiložit k dílu
VíceMATEMATIKA. 3 hmotnosti nákupu a 2 kg. Kolik kilogramů. Nákup vážil 5. vážil celý nákup? (A) 4,25 kg (B) 4,5 kg (C) 5 kg (D) 5,25 kg 6.
MATEMATIKA 9. třída. Nechť M je součet druhých mocnin prvních tří přirozených čísel a N součet těchto tří přirozených čísel. Které z následujících tvrzení je pravdivé? (A) M + N = 7 (B) M = 4N (C) M N
VíceTest z celoplošné zkoušky I. MATEMATIKA. 9. ročník ZŠ (kvarta G8, sekunda G6)
Test žáka Zdroj testu: Domácí testování Školní rok 2014/2015 Test z celoplošné zkoušky I. MATEMATIKA 9. ročník ZŠ (kvarta G8, sekunda G6) Jméno: Třída: Škola: Termín testování: Datum tisku: 01. 02. 2015
VíceMATEMATIKA 9. TŘÍDA. 0,5 b. Umocnění výrazu (x 2) 2 : 3 hmotnosti nákupu a 2 kg. Kolik kilogramů. Nákup vážil 5
MATEMATIKA 9. TŘÍDA 1. Nechť M je součet druhých mocnin prvních tří přirozených čísel a N součet těchto tří přirozených čísel. Které z následujících tvrzení je pravdivé? (A) M + N = 17 (B) M = 4N (C) M
VíceTest žáka. Zdroj testu: Celoplošná zkouška 2. Školní rok 2012/2013 MATEMATIKA. Jméno: Třída: Škola: Termín provedení testu:
Test žáka Zdroj testu: Celoplošná zkouška 2 Školní rok 2012/2013 MATEMATIKA Jméno: Třída: Škola: Termín provedení testu: Datum vytvoření: 14. 10. 2013 Obtížnost 1 Úloha 1 Železná trubka o délce 3 metry
VíceMATEMATIKA. 2Pravidla správného zápisu odpovědí. 1Základní informace k zadání zkoušky DIDAKTICKÝ TEST. Testový sešit neotvírejte, počkejte na pokyn!
MATEMATIKA DIDAKTICKÝ TEST Maximální bodové hodnocení: 30 bodů Pro přijetí uchazečů je rozhodné umístění v sestupném pořadí uchazečů podle dosaženého bodového hodnocení. 1Základní informace k zadání zkoušky
VíceCVIČNÝ TEST 37. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 5 III. Klíč 13 IV. Záznamový list 15
CVIČNÝ TEST 37 Mgr. Tomáš Kotler OBSAH I. Cvičný test 2 II. Autorské řešení 5 III. Klíč 13 IV. Záznamový list 15 I. CVIČNÝ TEST VÝCHOZÍ TEXT A OBRÁZEK K ÚLOZE 1 Na staré hliněné desce je namalován čtverec
Více. Určete hodnotu neznámé x tak, aby
Fakulta informačních technologií ČVUT v Praze Přijímací zkouška z matematiky 206 Kód uchazeče ID:.................. Varianta: 2 Příklad. (3b) Binární operace je definovaná jako a b = a+b a b. Určete hodnotu
VíceMatematika. Až zahájíš práci, nezapomeò:
9. TØÍDA PZ 2012 9. tøída I MA D Matematika Až zahájíš práci, nezapomeò: každá úloha má jen jedno správné øešení úlohy mùžeš øešit v libovolném poøadí test obsahuje 30 úloh na 60 minut sleduj bìhem øešení
VíceMATEMATIKA. 5. třída. Čemu se rovná uvedený součet v metrech? (A) 1,65015 m (B) 16,515 m (C) 16,0515 m (D) 16,5 m
MATEMATIKA 5. třída 1. Jaké číslo je o 12 stovek, 4 desítky a 9 jednotek menší než 2000? (A) 751 (B) 861 (C) 1249 (D) 1831 2. Které z následujících tvrzení o pravoúhlém trojúhelníku je správné? (A) Dvě
VíceMATEMATIKA. 7. třída. Scio Matematika ukázkový test 7. třída
MATEMATIKA 7. třída 1. Pavel musí vypracovat slohovou práci o rozsahu 4000 slov. Za půl hodiny napíše v průměru 100 slov. Kolik hodin Pavel potřebuje pro vytvoření slohové práce, pokud se chce po dopsání
VíceP Y T H A G O R I Á DA. 37. ročník 2013/2014 8. R O Č N Í K
P Y T H A G O R I Á DA 37. ročník 013/014 8. R O Č N Í K Š K O L N Í K O L O Adresář krajských garantů soutěží na školní rok - 013/014 Kraj Krajský úřad pověřená osoba * Mgr. Michaela Knappová. Magistrát
VíceÚloha č. 1 Rozměry fotografie jsou a = 12 cm a b = 9 cm. Fotografii zvětšíme v poměru 5 : 3. Určete rozměry zvětšené fotografie.
Slovní úlohy - řešené úlohy Úměra, poměr Úloha č. 1 Rozměry fotografie jsou a = 12 cm a b = 9 cm. Fotografii zvětšíme v poměru 5 : 3. Určete rozměry zvětšené fotografie. Každý rozměr zvětšíme tak, že jeho
VíceSOUBOR OTÁZEK. 9. ročník
SOUBOR OTÁZEK 9. ročník 2016 Mezinárodní matematická soutěž Pangea v Evropě Název země Počet registrovaných účastníků Název země Počet registrovaných účastníků 1 Německo 147 000 10 Dánsko 5 068 2 Polsko
VíceILUSTRAÈNÍ TEST LIBERECKÝ KRAJ
ILUSTRAÈNÍ TEST LIBERECKÝ KRAJ 5 NEOTVÍREJ, DOKUD NEDOSTANEŠ POKYN! Test obsahuje 30 úloh na 60 minut. Každá úloha má právì jedno správné øešení. Za správné øešení získáš 2 body. Za chybnou odpovìï ztratíš
VíceAutobus urazí... větší vzdálenost než studenti.
MATEMATIKA Obor: 79-41-K/81 Součet bodů: Opravil: Kontroloval: Vítáme vás u přijímacích zkoušek z matematiky a přejeme hodně úspěchů při řešení zadaných úloh. Úlohy můžete řešit v libovolném pořadí. 1.
VíceAritmetická posloupnost
1. Zjistěte vzorec posloupnosti 6; 3; 2; 3/2; 1,2; 1; 6/7; 3/4;... 2. V aritmetické posloupnosti z daných údajů vypočítejte naznačené hodnoty: a 4 = 11 a (a) 1 =? a 1 = 2 n =? a 5 = 14 d =? (d) d = 3 a
Více1) Vypočítej 2001+2002+2003+2004+2005= A) 10 015 B) 2015 C) 5010 D) 10 150
Varianta B 1) Vypočítej 2001+2002+2003+2004+2005= A) 10 015 B) 2015 C) 5010 D) 10 150 10 A 5 20 170 2) Vyber číslo, které se ve výpočtu skrývá za A:. A) 70 B) 56 C) 44 D) 36 3) Součet všech číslic deseticiferného
VíceAritmetická a geometrická posloupnost, definice, vlastnosti, vzorce, užití.
Aritmetická a geometrická posloupnost, definice, vlastnosti, vzorce, užití. ARITMETICKÁ POSLOUPNOST 1. Posloupnost je dána n-týn členem. Určete druh posloupnosti, d, q: 2 5n a) a n = AP; d = -5/4 4 n 2
VíceZákladní škola, Příbram II, Jiráskovy sady Příbram II
Výběr tematicky zaměřených matematických úloh pro posouzení dovedností žáků 5. ročníku při jejich zařazování do tříd se skupinami s rozšířenou výukou matematiky a informatiky 1) Pokračuj v řadách čísel:
VíceMATEMATIKA vyšší úroveň obtížnosti
MATEMATIKA vyšší úroveň obtížnosti DIDAKTICKÝ TEST MAMVD2C0T0 Maximální bodové hodnocení: 50 bodů Hranice úspěšnosti: 33 % Základní informace k zadání zkoušky Didaktický test obsahuje 23 úloh. Časový limit
VíceMATEMATIKA NEOTVÍREJ, DOKUD NEDOSTANEŠ POKYN OD ZADÁVAJÍCÍHO! 9. třída
MATEMATIKA 9. třída NEOTVÍREJ, DOKUD NEDOSTANEŠ POKYN OD ZADÁVAJÍCÍHO! JMÉNO TŘÍDA ČÍSLO ŽÁKA AŽ ZAHÁJÍŠ PRÁCI, NEZAPOMEŇ: www.scio.cz, s.r.o. Pobřežní 34, 186 00 Praha 8 tel.: 234 705 555 fax: 234 705
VíceMATEMATIKA základní úroveň obtížnosti
MATEMATIKA základní úroveň obtížnosti DIDAKTICKÝ TEST Maximální bodové hodnocení: 50 bodů Hranice úspěšnosti: 33 % Základní informace k zadání zkoušky Didaktický test obsahuje 26 úloh. Časový limit pro
VíceI. kolo kategorie Z9
59. ročník Matematické olympiády I. kolo kategorie Z9 Z9 I 1 Dostal jsem zadána dvě přirozená čísla. Poté jsem je obě zaokrouhlil na desítky. Určete, která čísla jsem měl zadána, pokud víte, že: podíl
VíceŠablona pro zadávání otázek pro přijímací řízení pro akademický rok 2009/2010
Šablona pro zadávání otázek pro přijímací řízení pro akademický rok 00/010 Zadavatel: Ekonomický přehled: kód 1 Matematické myšlení: kód Společensko historický přehled: kód Zadejte kód místo x do níže
VíceILUSTRAÈNÍ TEST LIBERECKÝ KRAJ
ILUSTRAÈNÍ TEST LIBERECKÝ KRAJ NEOTVÍREJ, DOKUD NEDOSTANEŠ POKYN! Test obsahuje 30 úloh na 60 minut. Každá úloha má právì jedno správné øešení. Za správné øešení získáš 2 body. Za chybnou odpovìï ztratíš
VíceILUSTRAÈNÍ TEST LIBERECKÝ KRAJ
ILUSTRAÈNÍ TEST LIBERECKÝ KRAJ 7 NEOTVÍREJ, DOKUD NEDOSTANEŠ POKYN! Test obsahuje 30 úloh na 60 minut. Každá úloha má právì jedno správné øešení. Za správné øešení získáš 2 body. Za chybnou odpovìï ztratíš
VíceSBÍRKA n PŘÍKLADŮ Z MATEMATIKY kde n =
SBÍRKA n PŘÍKLADŮ Z MATEMATIKY kde n = 017-1957 Mgr. Petr Říman Gymnázium Ostrava-Zábřeh, Volgogradská a červen 017 1. Vypočítejte: 1 0, 4 1 8 0,75. Vypočítejte:. Vypočítejte: ( 4 4) ( + ) ( i) [ + 4i]
VíceMatematický KLOKAN 2005 kategorie Junior
Matematický KLOKAN 2005 kategorie Junior Vážení přátelé, v následujících 75 minutách vás čeká stejný úkol jako mnoho vašich vrstevníků v řadě dalších evropských zemí. V níže uvedeném testu je zadáno čtyřiadvacet
Více( ) Zadání SPORT 2014. 1. Kolik % z 2,5 Kč je 0,5 Kč? a) 5% b) 10% c) 20% d) 25% 2. Žák popleta v písemce napsal: ( x 1) x 1
Zadání SPORT 0. Kolik % z,5 Kč 0,5 Kč? a) 5% b) 0% c) 0% d) 5%. Žák popleta v písemce napsal: ( x ) x =. Pro která x ho výpočet správný? a) x = b) x = c) x = 0 d) pro žádné x. Určete délku x podle údajů
VícePříklad 1. Kolik přirozených čísel menších než 1000 lze vytvořit z číslic 0, 1, 2, 4, 8, jestliže se číslice mohou opakovat?
Příklad 1. Kolik přirozených čísel menších než 1000 lze vytvořit z číslic 0, 1, 2, 4, 8, jestliže se číslice mohou opakovat? A: 92 B: 100 C: 108 D: 116 E: 124 Příklad 2. Definičním oborem funkce y = log(x
VíceTest žáka. Zdroj testu: Celoplošná zkouška 2. Školní rok 2012/2013 MATEMATIKA. Jméno: Třída: Škola: Termín provedení testu:
Test žáka Zdroj testu: Celoplošná zkouška 2 Školní rok 2012/2013 MATEMATIKA Jméno: Třída: Škola: Termín provedení testu: Datum vytvoření: 14. 10. 2013 Obtížnost 1 Úloha 1 Otec je o 10 cm vyšší než matka
VíceTest žáka. Zdroj testu: Celoplošná zkouška 2. Školní rok 2012/2013 MATEMATIKA. Jméno: Třída: Škola: Termín provedení testu:
Test žáka Zdroj testu: Celoplošná zkouška 2 Školní rok 2012/2013 MATEMATIKA Jméno: Třída: Škola: Termín provedení testu: Datum vytvoření: 15. 10. 2013 Obtížnost 1 Úloha 1 Přednáška trvala 80 minut a skončila
VíceCVIČNÝ TEST 51. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17
CVIČNÝ TEST 51 Mgr. Tomáš Kotler OBSAH I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17 I. CVIČNÝ TEST VÝCHOZÍ TEXT A OBRÁZEK K ÚLOZE 1 V obchodě s kouzelnickými potřebami v Kocourkově
VíceDigitální učební materiál
Projekt: Digitální učební materiál Digitální učební materiály ve škole, registrační číslo projektu CZ.1.07/1.5.00/34.0527 Příjemce: Střední zdravotnická škola a Vyšší odborná škola zdravotnická, Husova
VíceMatematika 5. ročník
Matematika 5. ročník Pátá třída (Testovací klíč: GSZGTH) Počet správně zodpovězených otázek Počet nesprávně zodpovězených otázek 0 26 Počítání s čísly / Slovní úlohy / Geometrie / 0/9 0/10 0/7 Obecná škola
VíceTest žáka. Zdroj testu: Celoplošná zkouška 2. Školní rok 2012/2013 MATEMATIKA. Jméno: Třída: Škola: Termín provedení testu:
Test žáka Zdroj testu: Celoplošná zkouška 2 Školní rok 2012/2013 MATEMATIKA Jméno: Třída: Škola: Termín provedení testu: Datum vytvoření: 14. 10. 2013 Obtížnost 1 Úloha 1 Ke každé z jednoduchých úloh přiřaď,
Více1. otázka. 2. otázka = Ve které z následujících možností je výsledek uvedeného výpočtu? 3. otázka
1. otázka Paní Irena měla černé, bílé a černobílé kočky. elkově jich měla dvanáct. Z toho bylo šest černých a čtyři bílé. Jakou část z celkového počtu představují černobílé kočky? 2. otázka 24 + 12 3 5
VíceNeotvírej, dokud nedostaneš pokyn od zadávajícího!
9. třída Neotvírej, dokud nedostaneš pokyn od zadávajícího! jméno třída číslo žáka až zahájíš práci, nezapomeň: www.scio.cz, s.r.o. Pobřežní, 86 00 Praha 8 tel.: 0 fax: 0 0 e-mail: scio@scio.cz www.scio.cz
VíceKATEGORIE Z6. (L. Hozová)
Z5 I 1 KATEGORIE Z5 Vítekmánapsánadvěčísla,541a293.Zšestipoužitýchčíslicmá nejprve vyškrtnout dvě tak, aby součet dvou takto získaných čísel byl největší možný. Poté má z původních šesti číslic vyškrtnout
VíceCVIČNÝ TEST 5. OBSAH I. Cvičný test 2. Mgr. Václav Zemek. II. Autorské řešení 6 III. Klíč 17 IV. Záznamový list 19
CVIČNÝ TEST 5 Mgr. Václav Zemek OBSAH I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 17 IV. Záznamový list 19 I. CVIČNÝ TEST 1 Zjednodušte výraz (2x 5) 2 (2x 5) (2x + 5) + 20x. 2 Určete nejmenší trojciferné
Více4. Vypočítejte objem dané krychle, jestliže víte, že objem krychle s hranou poloviční délky má objem 512 m 3.
Didaktika matematiky DM 3 - příklady stereometrie Kvádr, krychle 1. Vypočítejte objem krychle, jejíž povrch je 96 cm 2. 2. Vypočítejte povrch krychle, jejíž objem je 512 cm 3. 3. Jedna stěna krychle má
Více1 z 7 18.6.2012 8:14. 1. otázka. Které číslo musíme odečíst od čísla 250, aby výsledné číslo bylo osminásobkem čísla 25? 2. otázka
Stonožka 9 - M 2011 - náhled testu http://ib.scio.cz/test?t=ceow8rrhgtr79v2xq7/zcppky1fbxbzulq... 1 z 7 18.6.2012 8:14 1. otázka Které číslo musíme odečíst od čísla 250, aby výsledné číslo bylo osminásobkem
Více1. Opakování učiva 6. ročníku
. Opakování učiva 6. ročníku.. Čísla, zlomek ) Z číslic, 6 a sestavte všechna trojciferná čísla tak, aby v každém z nich byly všechny tři číslice různé. ) Z číslic, 0, 3, sestavte všechna čtyřciferná čísla
Více1BMATEMATIKA. 0B9. třída
BMATEMATIKA 0B. třída. Na mapě v měřítku : 40 000 je vyznačena červená turistická trasa o délce cm. Za jak dlouho ujde tuto trasu turista, který se pohybuje stálou rychlostí 4 km/h? (A) za minut (B) za
VíceObecné informace: Typy úloh a hodnocení:
Obecné informace: Počet úloh: 30 Časový limit: 60 minut Max. možný počet bodů: 30 Min. možný počet bodů: 8 Povolené pomůcky: modrá propisovací tužka obyčejná tužka pravítko kružítko mazací guma Poznámky:
VícePRAVDĚPODOBNOST Náhodné pokusy. Náhodný jev
RAVDĚODOBNOST Náhodné pokusy okusy ve fyzice, chemii při splnění stanov. podmínek vždy stejný výsledek ř. Změna skupenství vody při 00 C a tlaku 00 ka okusy v praxi, vědě, výzkumu při dodržení stejných
VíceMatematický KLOKAN kategorie Junior
Matematický KLOKN 2008 kategorie Junior Úlohy za 3 body 1. Vkrabicích byly uloženy některé z karet označených,, I, O, U, jak ukazuje obrázek. Petr odebíral z každé krabice karty tak, aby na konci zbyla
VícePřijímačky nanečisto - 2011
Přijímačky nanečisto - 2011 1. Vypočtěte: 0,5 2 + (-0,5) 2 (- 0,1) 3 = a) 0,001 b) 0,51 c) 0,499 d) 0,501 2. Vypočtěte: a) 0,4 b) - 0,08 c) 2 3 d) 2 3. Určete číslo s tímto rozvinutým zápisem v desítkové
VíceSOUTĚŽNÍ ÚLOHY 37. ročník regionální matematické soutěže žáků středních odborných škol, středních odborných učilišť a integrovaných středních škol
Krajský úřad Pardubického kraje - odbor školství Jednota českých matematiků a fyziků, pobočka Pardubice Střední škola automobilní Ústí nad Orlicí 26.3.2019 SOUTĚŽNÍ ÚLOHY 37. ročník regionální matematické
VíceMATEMATIKA NEOTVÍREJ, DOKUD NEDOSTANEŠ POKYN OD ZADÁVAJÍCÍHO! 5. třída
MATEMATIKA 5. třída NEOTVÍREJ, DOKUD NEDOSTANEŠ POKYN OD ZADÁVAJÍCÍHO! JMÉNO TŘÍDA ČÍSLO ŽÁKA AŽ ZAHÁJÍŠ PRÁCI, NEZAPOMEŇ: www.scio.cz, s.r.o. Pobřežní 34, 186 00 Praha 8 tel.: 234 705 555 fax: 234 705
VíceFVL UO, Brno 2018 str. 1
Příklad 1. Kolik lichých přirozených čísel větších než 84 lze vytvořit z číslic 0, 1, 2, 4, 8, jestliže se žádná číslice neopakuje? A: 42 B: 45 C: 48 D: 51 E: 54 1 Příklad 2. Definičním oborem funkce y
VíceMatematika NÁRODNÍ SROVNÁVACÍ ZKOUŠKY BŘEZNA 2017
NÁRODNÍ SROVNÁVACÍ ZKOUŠKY Matematika T BŘEZNA 07 D : 4 BŘEZNA 07 P P P : 964 : 0 M M : 0 : 8,8 M : 8,8 % S : -7,5 M P : -,5 :,8 Zopakujte si základní informace ke zkoušce: n Test obsahuje 0 úloh a na
VíceDo výtvarné výchovy se nakupují čtvrtky za cenu 5 Kč za kus. Kolik čtvrtek se nakoupí za 95 korun?
MATEMATIKA Součet bodů: Obor: 79-41-K/81 Opravil: Kontroloval: Vítáme vás u přijímacích zkoušek z matematiky a přejeme hodně úspěchů při řešení zadaných úloh. Úlohy můžete řešit v libovolném pořadí. 1.
VíceTest žáka. Zdroj testu: Celoplošná zkouška 2. Školní rok 2012/2013 MATEMATIKA. Jméno: Třída: Škola: Termín provedení testu:
Test žáka Zdroj testu: Celoplošná zkouška 2 Školní rok 2012/2013 MATEMATIKA Jméno: Třída: Škola: Termín provedení testu: Datum vytvoření: 14. 10. 2013 Obtížnost 1 Úloha 1 Tatínek zaplatil za rozříznutí
VíceČÍSLA, ZÁKLADNÍ VÝPOČTY, SLOVNÍ ÚLOHY, PROCENTA
ČÍSLA, ZÁKLADNÍ VÝPOČTY, SLOVNÍ ÚLOHY, PROCENTA ČÍSLA. Vyznačte na číselné ose obrazy čísel / a 5/6.. a) Na číselné ose vyznačte interval - n; n - pro n = 5. b) Najděte nejmenší přirozené číslo n, pro
VícePřijímací zkouška z matematiky 2017
Fakulta informačních technologií ČVUT v Praze Přijímací zkouška z matematiky 2017 Kód uchazeče ID:.................. Varianta: 14 Příklad 1. (3b) Mějme dvě čísla zapsaná v pětkové soustavě: 4112 5 a 2443
VíceTest žáka. Zdroj testu: Celoplošná zkouška 2. Školní rok 2012/2013 MATEMATIKA. Jméno: Třída: Škola: Termín provedení testu:
Test žáka Zdroj testu: Celoplošná zkouška 2 Školní rok 2012/2013 MATEMATIKA Jméno: Třída: Škola: Termín provedení testu: Datum vytvoření: 14. 10. 2013 Obtížnost 1 Úloha 1 Kolik os souměrnosti má kruh?
Vícef(x) = 9x3 5 x 2. f(x) = xe x2 f(x) = ln(x2 ) f(x) =
Zadání projektů Projekt 1 f(x) = 9x3 5 2. Určete souřadnice vrcholů obdélníka ABCD, jehož dva vrcholy mají kladnou y-ovou souřadnici a leží na parabole dané rovnicí y = 16 x 2 a další dva vrcholy leží
VíceCíl a následující tabulku. t [ s ] s [ mm ]
1.1.8 Rychlost I Předpoklady: 010107 Pomůcky: Rychlost: kolik ukazuje ručička na tachometru, jak rychle se míhá krajina za oknem, jak rychle se dostaneme z jednoho místa na druhé. Okamžitá rychlost se
VíceVzorové příklady k přijímacím zkouškám. 1) Doplňte číselné řady o další dvě čísla. a) 3, 6, 12, 24, 48, 96,... b) 875, 764, 653, 542, 431,...
Vzorové příklady k přijímacím zkouškám ) Doplňte číselné řady o další dvě čísla. a), 6,, 4, 48, 96,... b) 87, 764, 6, 4, 4,... c), 6, 8,,, 0, 6,... d),,, 7,,, 7, 9,,... e) ; ; ; ; ; 8 ) Doplňte číslo místo.
VíceSOUBOR OTÁZEK. 7.ročník
Finále 2015 SOUBOR OTÁZEK 7.ročník Co je Pangea a jaká je její filozofie? V dávných dobách prvohor a druhohor, tedy přibližně před 300 miliony let, nebyly jednotlivé kontinenty na naší planetě ještě rozdělené,
Více5) Ve třídě 1.A se vyučuje 11 různých předmětů. Kolika způsoby lze sestavit rozvrh na 1 den, vyučuje-li se tento den 6 různých předmětů?
0. Kombinatorika, pravděpodobnost, statistika Kombinatorika ) V restauraci mají na jídelním lístku 3 druhy polévek, 7 možností výběru hlavního jídla, druhy moučníku. K pití si lze objednat kávu, limonádu
Více(A) o 4,25 km (B) o 42,5 dm (C) o 42,5 m (D) o 425 m
. Když od neznámého čísla odečtete 54, výsledek vydělíte 3 a následně přičtete 6, získáte číslo 9. Jaká je hodnota tohoto neznámého čísla? (A) 0 (B) 03 (C) 93 (D) 89 2. Na úsečce SV, jejíž délka je 3 cm,
Více( ) ( ) 9.2.7 Nezávislé jevy I. Předpoklady: 9204
9.2.7 Nezávislé jevy I Předpoklady: 9204 Př. : Předpokládej, že pravděpodobnost narození chlapce je stejná jako pravděpodobnost narození dívky (a tedy v obou případech rovna 0,5) a není ovlivněna genetickými
Více4. Stezkou, která vede na vrchol hory, vystupuje turista rychlostí 2,5 km/h, sestupuje rychlostí 5 km/h. Jakou průměrnou rychlostí jde?
1. Při zjišťování počtu nezletilých dětí ve třiceti vybraných rodinách byly získány tyto výsledky: 1, 1, 0, 2, 3, 4, 2, 2, 3, 0, 1, 2, 2, 4, 3, 3, 0, 1, 1, 1, 2, 2, 0, 2, 1, 1, 2, 3, 3, 2. Uspořádejte
Vícei 8 klouzků a 4 kozáky. Zbylé 4 praváky rozkrájela na plátky a nechala sušit. Kolik babek našel Michal?
(1) 1. Michal Muchomůrka rád sbírá houby. Jednou se vrátil z lesa s plným košíkem. Dvacet procent hub od každého druhu ale bylo červivých, a tak je paní Muchomůrková musela vyhodit. Protože řízky jsou
VíceFVL UO, Brno 2018 str. 1
Příklad 1. Kolik přirozených čísel větších než 84 lze vytvořit z číslic 0, 1, 2, 4, 8, jestliže se žádná číslice neopakuje? A: 212 B: 232 C: 240 D: 248 E: 260 ( Příklad 2. Definičním oborem funkce y =
VíceÚvod do informatiky. Miroslav Kolařík
Úvod do informatiky přednáška devátá Miroslav Kolařík Zpracováno dle učebního textu prof. Bělohlávka: Úvod do informatiky, KMI UPOL, Olomouc 2008 Obsah 1 Kombinatorika: princip inkluze a exkluze 2 Počítání
VíceMATEMATIKA 5. ročník
MATEMATIKA 5. ročník ZŠ praktické Pracovní sešit Škola pro život CZ.1.07/1.2.19/02.0007 Projekt Základní školy Cheb, Kostelní náměstí 14 Měl(a) bych znát: 1. číst, psát a porovnávat čísla v oboru do 1000
VíceMatematika NÁRODNÍ SROVNÁVACÍ ZKOUŠKY DUBNA 2017
NÁRODNÍ SROVNÁVACÍ ZKOUŠKY Matematika T DUBNA 07 : 9. dubna 07 D : 830 P P P : 30 M. M. : 30 : 8,8 M. :, % S : -7,5 M. P : -,5 :,4 Zopakujte si základní informace ke zkoušce: n Test obsahuje 30 úloh a
VíceCVIČNÝ TEST 17. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 13 IV. Záznamový list 15
CVIČNÝ TEST 17 Mgr. Tomáš Kotler OBSAH I. Cvičný test II. Autorské řešení 6 III. Klíč 13 IV. Záznamový list 15 I. CVIČNÝ TEST VÝCHOZÍ TEXT A OBRÁZEK K ÚLOZE 1 Jsou dány funkce f: y = x + A, g: y = x B,
Více1. Na stole jsou tři hromádky jablek. Na první je o třináct jablek méně než na druhé, na třetí hromádce je o osm
1. Na stole jsou tři hromádky jablek. Na první je o třináct jablek méně než na druhé, na třetí hromádce je o osm jablek více než na první. Kolik jablek je dohromady na stole, víš-li, že na druhé hromádce
VíceCVIČNÝ TEST 25. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 13 IV. Záznamový list 15
CVIČNÝ TEST 25 Mgr. Tomáš Kotler OBSAH I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 13 IV. Záznamový list 15 I. CVIČNÝ TEST VÝCHOZÍ TEXT A OBRÁZEK K ÚLOZE 1 V lidové výkupně barevných kovů vykoupili
VícePřevody jednotek Vedlejší jednotky objemu
Převody jednotek Vedlejší jednotky objemu Pár užitečných rad, jak postupovat při převádění jednotek objemu. Zopakujme si již známé jednotky objemu: Základní jednotka: metr krychlový ( kubík značka m Odvozené
Více56. ročník Matematické olympiády. tedy číslice 1, 2, a 3. Dále nám zbývají zlomky. Má-li být jejich součet co nejmenší,
6 ročník Matematické olympiády Komentáře k domácímu kolu kategorie Z8 1 Z číslic 1,2,,9 jsme vytvořili tři smíšená čísla a b c Potom jsme tato tři čísla správně sečetli Jaký nejmenší součet jsme mohli
Více2.1 Pokyny k otevřeným úlohám. Výsledky pište čitelně do vyznačených bílých polí. 2.2 Pokyny k uzavřeným úlohám
MATEMATIKA DIDAKTICKÝ TEST Maximální bodové hodnocení: 50 bodů Hranice úspěšnosti: 33 % Základní informace k zadání zkoušky Didaktický test obsahuje 26 úloh. Časový limit pro řešení didaktického testu
VícePřípravný kurz - Matematika
Přípravný kurz - Matematika Téma: Základy statistiky, kombinační úsudek v úlohách Klíčová slova: tabulky, grafy, diagramy Autor: Mlynářová 1 Základy statistiky Statistika je vědní obor, který se zabývá
VíceZadání a řešení testu z matematiky a zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia od podzimu 2016
Zadání a řešení testu z matematiky a zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia od podzimu 2016 Zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia
VíceCVIČNÝ TEST 10. OBSAH I. Cvičný test 2. Mgr. Renáta Koubková. II. Autorské řešení 6 III. Klíč 17 IV. Záznamový list 19
CVIČNÝ TEST 10 Mgr. Renáta Koubková OBSAH I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 17 IV. Záznamový list 19 I. CVIČNÝ TEST 1 Pro x R řešte rovnici: 5 x 1 + 5 x + 5 x + 3 = 3 155. 2 Za předpokladu
VíceMária Sadloňová. Fajn MATIKA. 150 řešených příkladů (vzorek)
Mária adloňová Fajn MATIKA (nejen) na přijímačky 50 řešených příkladů (vorek) 0 Mgr. Mária adloňová FajnMATIKA (nejen) na přijímačky 50 řešených příkladů (reklamní vorek) Mgr. Mária adloňová, 0 Vydavatel
VíceNárodní institut dětí a mládeže Ministerstva školství, mládeže a tělovýchovy ČR PYTHAGORIÁDA 33. ROČNÍK 2009/2010 ŠKOLNÍ KOLO PRO 6.
Národní institut dětí a mládeže Ministerstva školství, mládeže a tělovýchovy ČR PYTHAGORIÁDA 33. ROČNÍK 2009/2010 ŠKOLNÍ KOLO PRO 6. ROČNÍK Zadání úloh Autorka úloh: Mgr. Lucie Filipenská Katedra didaktiky
VíceAutor: Jana Krchová Obor: Matematika. Hranoly
Převeď na jednotky v závorce: Hranoly a) 0,5 cm 2 (mm 2 ) = 8,4 dm 2 (cm 2 ) = b) 2,3 m 2 (dm 2 ) = 0,078 m 2 (cm 2 ) = c) 0,09 ha (a) = 0,006 km 2 (a) = d) 4 a (m 2 ) = 540 cm 2 (m 2 ) = e) 23 cm 3 (mm
VíceS = 2. π. r ( r + v )
horní podstava plášť výška válce průměr podstavy poloměr podstavy dolní podstava Válec se skládá ze dvou shodných podstav (horní a dolní) a pláště. Podstavou je kruh. Plášť má tvar obdélníka, který má
VíceMATEMATIKA ZÁKLADNÍ ÚROVEŇ
NOVÁ MTURITNÍ ZKOUŠK Ilustrační test 2008 Základní úroveň obtížnosti MVCZMZ08DT MTEMTIK ZÁKLDNÍ ÚROVEŇ DIDKTICKÝ TEST Testový sešit obsahuje 8 úloh. Na řešení úloh máte 90 minut. Úlohy řešte v testovém
VíceCVIČNÝ TEST 19. OBSAH I. Cvičný test 2. Mgr. Kateřina Nováková. II. Autorské řešení 5 III. Klíč 13 IV. Záznamový list 15
CVIČNÝ TEST 19 Mgr. Kateřina Nováková OBSAH I. Cvičný test 2 II. Autorské řešení 5 III. Klíč 13 IV. Záznamový list 15 I. CVIČNÝ TEST 1 Určete, kolikrát je rozdíl čísel 289 a 255 větší než jejich součet.
VíceŘešíme slovní úlohy Růžena Blažková Pedagogická fakulta MU
Řešíme slovní úlohy Růžena Blažková Pedagogická fakulta MU blazkova@ped.muni.cz V úvodu si položme několik otázek: - Proč řešíme slovní úlohy? - Je řešení slovních úloh žáky oblíbené? - Jaká tématika slovních
VíceTest žáka. Zdroj testu: Celoplošná zkouška 2. Školní rok 2012/2013 MATEMATIKA. Jméno: Třída: Škola: Termín provedení testu:
Test žáka Zdroj testu: Celoplošná zkouška 2 Školní rok 2012/2013 MATEMATIKA Jméno: Třída: Škola: Termín provedení testu: Datum vytvoření: 14. 10. 2013 Obtížnost 1 Úloha 1 Na obrázku jsou zakresleny rovinné
VícePříklady k opakování učiva ZŠ
Příklady k opakování učiva ZŠ 1. Číslo 78 je dělitelné: 8 7 3. Rozhodněte, které z následujících čísel je dělitelem čísla 94: 4 14 15 3. Určete všechny dělitele čísla 36:, 18, 4, 9, 6, 3, 1, 3, 6, 1 3,
VíceTest žáka. Zdroj testu: Celoplošná zkouška 2. Školní rok 2012/2013 MATEMATIKA. Jméno: Třída: Škola: Termín provedení testu:
Test žáka Zdroj testu: Celoplošná zkouška 2 Školní rok 2012/2013 MATEMATIKA Jméno: Třída: Škola: Termín provedení testu: Datum vytvoření: 14. 10. 2013 Obtížnost 1 Úloha 1 Trojúhelník má jeden úhel tupý,
VíceTéma 1: Numerické výpočty (číselné množiny, druhy čísel, absolutní hodnota, zaokrouhlování, dělitelnost čísel, společný násobek a dělitel čísel)
Téma : Numerické výpočty (číselné množiny, druhy čísel, absolutní hodnota, zaokrouhlování, dělitelnost čísel, společný násobek a dělitel čísel) Příklady Číselná osa ) Která z následujících čísel neleží
VíceTest studijních předpokladů Varianta B2 FEM UO, Brno 2014 1
Test studijních předpokladů Varianta B2 FEM UO, Brno 2014 1 Příklad 1. Z uvedených možností vyerte tu, která odpovídá dané větě (je s danou větou ekvivalentní): Jestliže v sootu neude pěkně, koncert se
VícePřijímací zkouška na MFF UK v Praze
Přijímací zkouška na MFF UK v Praze pro bakalářské studijní programy fyzika, informatika a matematika 017, varianta A U každé z deseti úloh je nabízeno pět odpovědí: a, b, c, d, e. Vaším úkolem je u každé
VíceJméno a příjmení. 2.1 Pokyny k otevřeným úlohám. 2.2 Pokyny k uzavřeným úlohám TESTOVÝ SEŠIT NEOTVÍREJTE, POČKEJTE NA POKYN!
MATEMATIKA 7 M7PAD19C0T01 DIDAKTICKÝ TEST Jméno a příjmení Počet úloh: 16 Maximální bodové hodnocení: 50 bodů Povolené pomůcky: pouze psací a rýsovací potřeby 1 Základní informace k zadání zkoušky Časový
Více